Astroparticle Physics

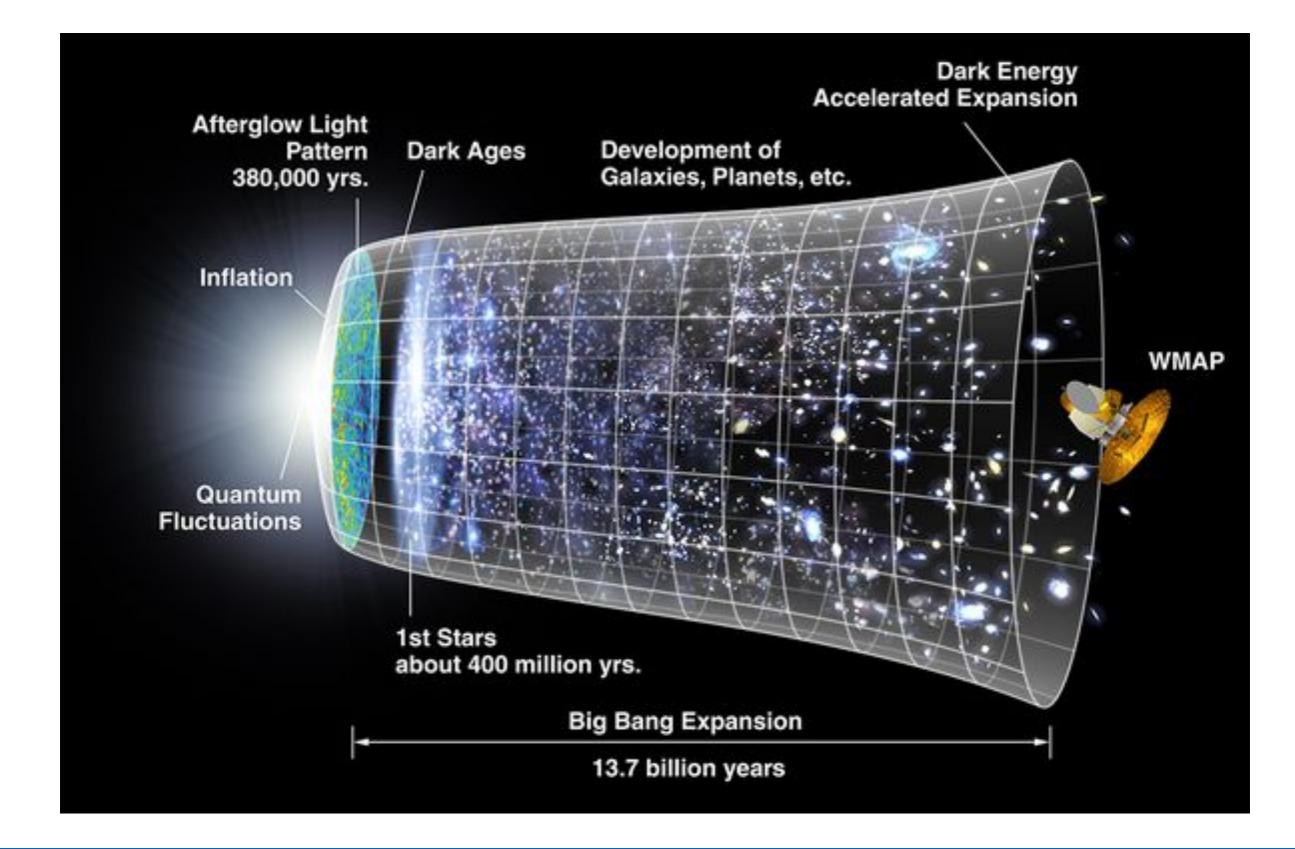
Luca Doria

Institut für Kernphysik Johannes-Gutenberg Universität Mainz

Lecture 1

JG U Lectures Plan

Ter	Termine						
	Datum	Von	Bis	Raum	Lehrende/r		
1	Do, 16. Apr. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
2	Mo, 20. Apr. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
3	Do, 23. Apr. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
4	Mo, 27. Apr. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
5	Do, 30. Apr. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
6	Mo, 4. Mai 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
7	Do, 7. Mai 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
8	Mo, 11. Mai 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
9	Do, 14. Mai 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
10	Mo, 18. Mai 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
11	Mo, 25. Mai 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
12	Do, 28. Mai 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
13	Do, 4. Jun. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
14	Mo, 8. Jun. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
15	Mo, 15. Jun. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
16	Do, 18. Jun. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
17	Mo, 22. Jun. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
18	Do, 25. Jun. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
19	Mo, 29. Jun. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
20	Do, 2. Jul. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
21	Mo, 6. Jul. 2020	08:15	09:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		
22	Do, 9. Jul. 2020	12:15	13:45	00 260 Seminarraum 1 Kernphysik	Dr. Luca Doria		


Notes and Slides: reader.uni-mainz.de

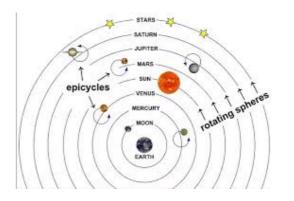
- General Introduction
- Cosmic History
- * General Relativity and Cosmology
- * Thermodynamics of the expanding Universe
- * Big Bang Nucleosynthesis
- Cosmic Rays
- Stellar evolution
- * Neutrinos in the Cosmos
- Dark Matter / Dark Energy
- Experimental Methods
- Gravitational Waves



(Ancient) History

<16th century BC, Mesopotamian: Flat, circular Earth in the middle of an ocean

4th century BC, Aristotle:


Earth-centric, finite, immutable universe

3th century BC, Archimedes

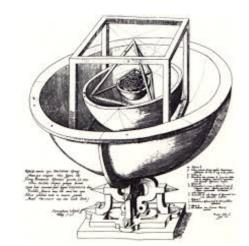
"measured" the diameter of the Universe (2lyr !)

2th century BC, Ptolemy: Earth-Centred universe, Sun and planets revolving

Non-European astronomers proposing Sun-centered theories

Sommersemester 2018


(non-BC) History


1540s: Copernicus

proposes the heliocentric theory

1584: Giordano Bruno

proposes a non-privileged position of the Sun in the cosmos.

1600s: Kepler

discovered his laws and elliptic motion. He believed in a finite universe

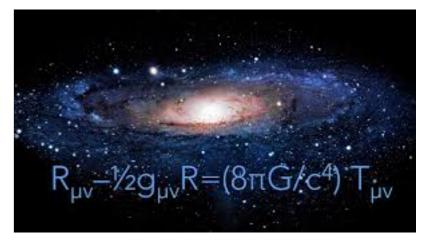
1680s: Isaac Newton: Theory if Gravitation

(non-BC) History

1755: I. Kant

argues that nebulae are really separate galaxies

1826: Olber's Paradox

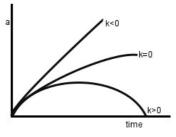

1837: Bessel

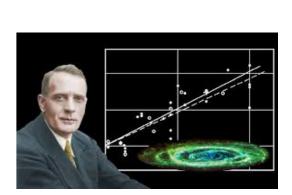
successfully measures the first parallax

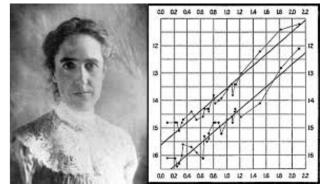
1911-13: V. Hess Discovery of Cosmic Rays

1915: A. Einstein publishes the General Relativity Theory

Sommersemester 2018


1912: Henrietta Leavitt discovers the Cepheid variable stars


1922: Friedmann finds expanding solutions of GR


1923: E. Hubble measures an apparent expansion of the universe

1933: E. Milne states the Cosmological Principle

1948: G. Gamow predicts the CMB

(after GR) History

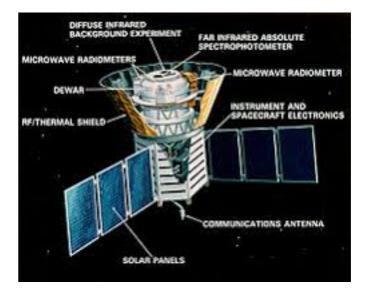
1950: F. Hoyle coins the word "Big-Bang"

1965: A. Penzias and R. Wilson discover the CMB

1967: A. Sakharov states the requirements for baryogengesis

1970: V. Rubin and K. Ford

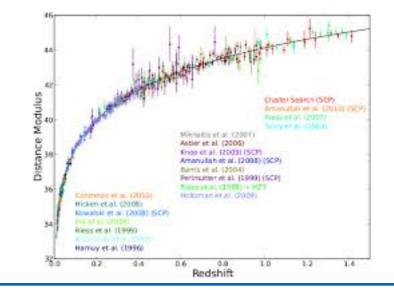
present precise data on galaxy rotational curves



(Modern) History

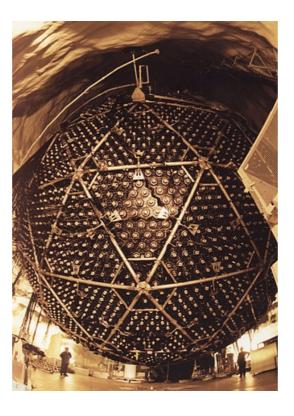
1980: A. Guth presents the idea of cosmic inflation

1982: J.Peebles and others propose CDM


1990s: COBE Mission and the first measurement of CMB anisotropy

1996: Hubble Space Telescope deep-field pictures

1998: Supernova Cosmology Project and High-Z Supernova Search



1999: More COBE data and BOOMERanG experiment

2001: The SNO Experiment

Oscillation of solar neutrinos

~2004: SNEWS

Different detectors around the world formed a network for an early-warning system for supernovae explosions based on neutrinos.

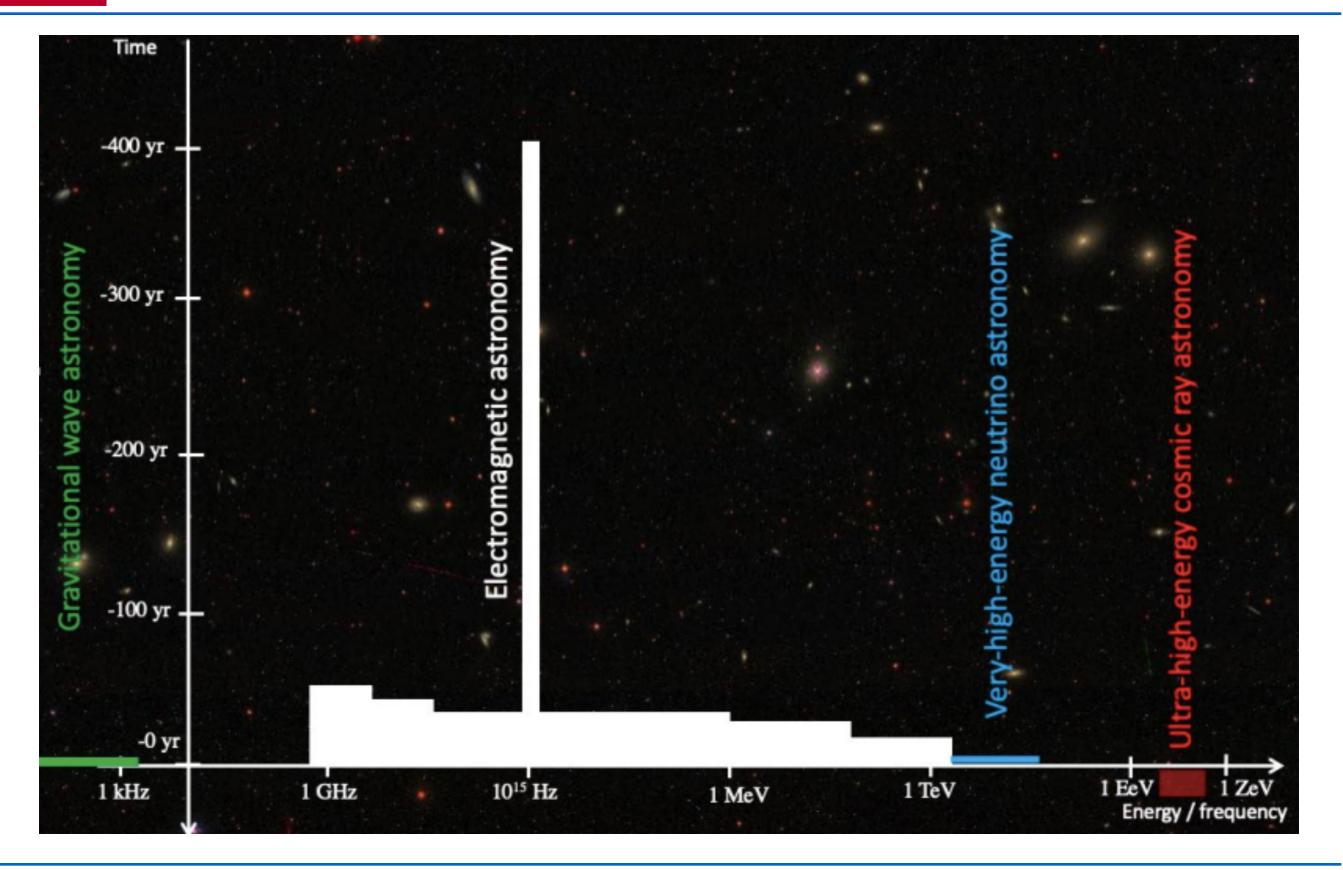
(Modern) History

2003-2011: WMAP, Planck and LambdaCDM

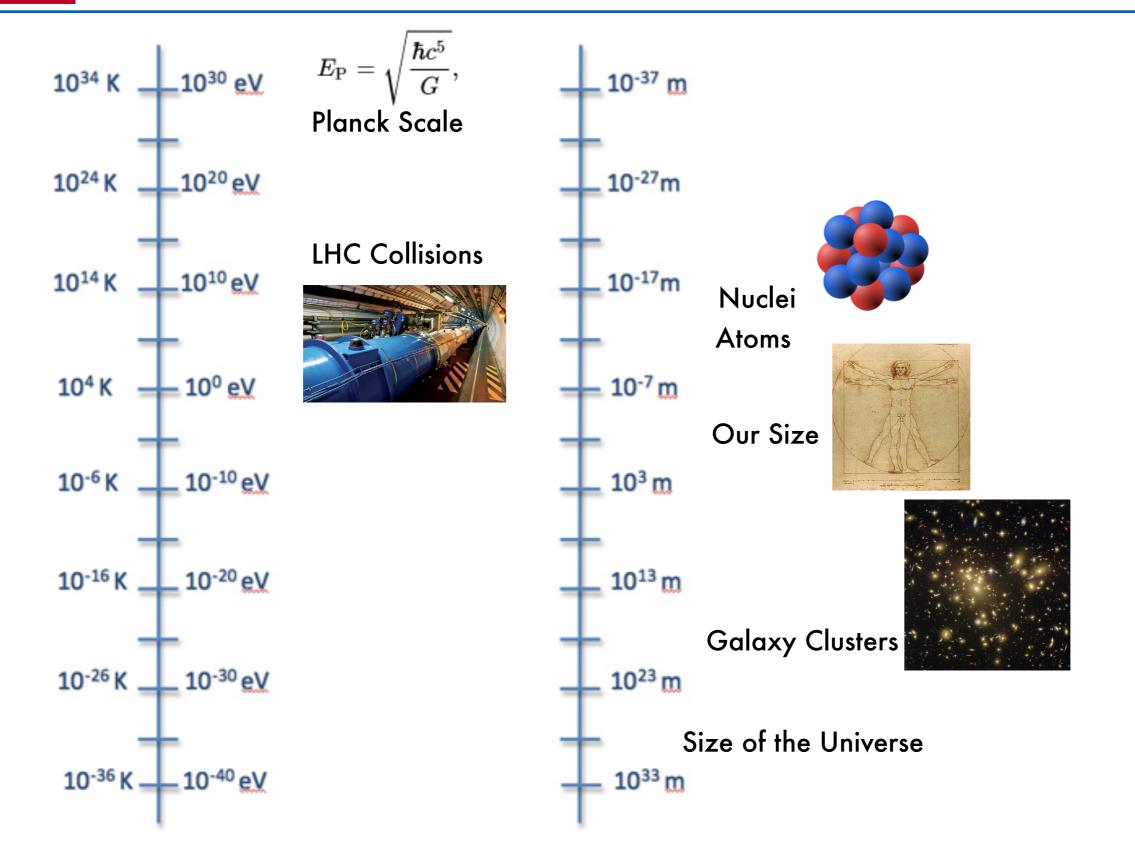
2014: BICEP2 and (the not confirmed) B-modes

2016: First Measurement on Earth of Gravitational Waves

14+1.0+0


deploted using white wheth product

som SK and



TODAY: Multimessenger Astronomy

Energy and Length Scales

$$c = \hbar = \epsilon_{\circ} = k_B = 1$$

$$c = \text{speed of light} = 2.9979 \times 10^8 \text{ m/s}$$

$$\hbar = \text{reduced Planck constant} = 1.0546 \times 10^{-34} \text{ J s}$$

$$\epsilon_{\circ} = \text{electric constant} = 8.8542 \times 10^{-12} \text{ A}^2 \text{ s}^4 \text{ kg}^{-1} \text{ m}^{-3}$$

$$k_B = \text{Boltzmann constant} = 1.3806 \times 10^{-23} \text{ J K}^{-1}$$

Consequences of this choice: $1s = 2.9979 \times 10^8 m$ $1s^{-1} = 1.0546^{-34} J$

Let's try to measure everything with Energy! This means: $[time] = [length] = [Energy]^{-1}$

What about velocity, momentum, mass,...?

Conversions

Conversion form SI

SI units are combinations of mass/length/time units. We would like to convert everything in energy, eventually setting hbar=c=1

$$kg^{\alpha}m^{\beta}s^{\gamma} = E^a\hbar^b c^c$$

Converting E, hbar, c in SI units and comparing the exponents, we obtain

$$kg^{\alpha}m^{\beta}s^{\gamma} = E^{\alpha-\beta-\gamma}\hbar^{\beta+\gamma}c^{\beta-2\alpha}$$

Common choice for [E] is GeV (1.6022x10⁻¹⁰ J)

Conversions

Variable	SI Unit	Natural Unit	Factor	Natural unit \rightarrow SI unit
mass	kg	Е	c^{-2}	$1 \text{ GeV} \rightarrow 1.7827 \times 10^{-27} \text{ kg}$
length	m	E^{-1}	$\hbar c$	$1 \text{ GeV}^{-1} \rightarrow 1.9733 \times 10^{-16} \text{ m}$
time	S	E^{-1}	\hbar	$1 \text{ GeV}^{-1} \rightarrow 6.5823 \times 10^{-25} \text{ s}$
energy	$\mathrm{kg}~\mathrm{m}^2~\mathrm{s}^{-2}$	Ε	1	$1 \text{ GeV} \rightarrow 1.6022 \times 10^{-10} \text{ J}$
momentum	$\rm kg~m~s^{-1}$	E	c^{-1}	$1 \text{ GeV} \rightarrow 5.3444 \times 10^{-19} \text{ kg m s}^{-1}$
velocity	${\rm m~s^{-1}}$	dimensionless	c	$1 \rightarrow 2.9979 \times 10^8 \text{ m s}^{-1}$
angular momentum	$\mathrm{kg}~\mathrm{m}^2~\mathrm{s}^{-1}$	dimensionless	\hbar	$1 \rightarrow 1.0546 \times 10^{-34} \mathrm{J~s}$
area	m^2	E^{-2}	$(\hbar c)^2$	$1 \text{ GeV}^{-2} \rightarrow 3.8938 \times 10^{-32} \text{ m}^2$
force	$\rm kg~m~s^{-2}$	E^2	$(\hbar c)^{-1}$	$1~{ m GeV^2} \rightarrow 8.1194 \times 10^5~{ m N}$
energy density	$kg m^{-1} s^{-2}$	E^4	$(\hbar c)^{-3}$	$1 \ { m GeV^4} \ \rightarrow 2.0852 \times 10^{37} \ { m J m^{-3}}$
charge	$C = A \cdot s$	dimensionless	1	$1 \longrightarrow 5.2909 \times 10^{-19} \text{ C}$

The fundamental constants of Nature set a natural scale for the measurement units:

Planck length:
$$l_P = \sqrt{\frac{\hbar G}{c^3}}$$
 $\sim 1.6 \times 10^{-35} m$ Planck Mass: $m_P = \sqrt{\frac{\hbar c}{G}}$ $\sim 2.1 \times 10^{-8} kg$ Planck Time: $t_P = \sqrt{\frac{\hbar G}{c^5}}$ $\sim 5.4 \times 10^{-44} s$ Planck Energy: $E_P = \sqrt{\frac{\hbar c^5}{G}}$ $\sim 1.96 \times 10^9 J \sim 1.22 \times 10^{19} GeV$

...etc...