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Chapter 1 | Preface

This document contains the notes of the "Astroparticle Physics" course
held in the 2020 Summer Term at the Johannes Gutenberg University in
Mainz (Germany). The course is aimed at last year Bachelor and Master
students. With the term “astroparticle”,we refer to particle physics ap-
plied to astrophysical sources: stars, galaxies, interstellar medium, and
even black holes. Astrophysical objects generate and send around the
universe many kinds of particles which we can detect: photons, leptons,
hadrons and nuclei, and neutrinos. The groundbreaking recent detec-
tion of gravitational waves opens a completely new opportunity for com-
plementing a multimessenger astronomy approach, where an astrophysical
source can be observed detecting many different emission patterns.
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Chapter 2 | General Relativity

In this chapter, we briefly review the central concepts at the foundations
of General Relativity (GR) and derive its fundamental equations.

2.1 The Equivalence Principle

Gravity has the unique property of impressing the same acceleration to
bodies regardless from their mass. This observation leads to the indistin-
guishably between gravity or an accelerated reference frame. Following
an ideal experiment suggested by Einstein, if we are inside an uniformly
accelerated elevator, we might think to be immersed in a gravitational
field (or the other way around: we think that the elevator is accelerating,
but it just hangs still over the surface of a planet). There is a key obser-
vation to make here: if the elevator is large enough, we can understand if
it is accelerated or at rest into a gravitational field. In the latter case, we
could for example note that the acceleration vectors in the elevator are not
all parallel. For example, if the elevator is immersed in the gravitational
field of a planet, the field lines converge to a single point (the center of
the planet). Therefore, an accelerated reference frame or a gravitational
field are indistinguishable only locally.
We can state now the so called (strong) Equivalence Principle (EP): at
every space-time point in a gravitational field, it is possible to choose a locally
inertial coordinate system such that in a sufficiently small neighborhood of that
point the laws of nature are expressed in the same form as in an unaccelerated
Cartesian (flat) coordinate system. There is also a weaker version of the prin-
ciple, called (weak) Equivalence Principle which instead of referring to
all the laws of nature, it refers only to the laws of motion of free-falling
bodies. Clearly the strong version implies the weak on but not vice-versa.
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CHAPTER 2. GENERAL RELATIVITY

2.2 Free-Falling Bodies

Let’s try to translate in mathematical formulas the ideas contained in the
EP. Consider a free-falling body: according to the EP, there must exist lo-
cally a coordinate system where the effect of gravitation vanishes (inside
Einstein’s elevator) and the equation of motion in flat space time is

d2ξµ

dτ2 = 0 , (2.1)

where dτ2 = −ηµνdξµdξν is the proper time and ηµν the Lorentz metric.
Let’s get out from the elevator and change to new coordinates xµ, which
can be whatever we want (a curvilinear system, an accelerated or rotating
system, etc..)

d
dτ

(
∂ξα

∂xµ

dxµ

dτ

)
=

∂ξα

∂xµ

d2xµ

dτ2 +
∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
= 0 . (2.2)

Multiplying the last equation by ∂xλ/∂ξα and recognizing the presence
of the Christoffel symbol 1

d2xλ

dτ2 + Γλ
µν

dxµ

dτ

dxν

dτ
= 0 . (2.4)

The last result is quite interesting: the presence of the gravitational field
can be seen as a curvature of space-time where free-falling particles follow
a geodetic in that space. From the coordinate transformation formula and
dτ = −ηµνdξµdξν, it is clear that the metric tensor of the curved space is
related to the Lorentzian flat space by

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ . (2.5)

1Only the metric is needed for calculating the Chistoffel symbols:

Γσ
µν =

1
2

gσρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (2.3)

2



CHAPTER 2. GENERAL RELATIVITY

2.3 Non-Relativistic Limit

So far our calculations were relativistic and now we would like to see if
what we derived can be reduced to the know non-relativistic result, which
should be classical Newtonian gravity. The non-relativistic limit refers to
velocities smaller than the speed of light (v � c) and weak, stationary
gravitational fields. Remembering the composition of the velocity four-
vector dxµ/dτ = (dt/dτ, dx/dτ), in this limit dx/dτ � dt/dτ so the only
non-zero component of the velocity is µ = 0 and therefore

d2xµ

dτ2 + Γµ
00

(
dt
dτ

)2

= 0 . (2.6)

For a weak stationary gravitational field, the space-time geometry must
be almost flat: gαβ = ηαβ + hαβ with |hαβ| � 1.
Substituting this metric tensor into the Christoffel symbol we obtain

Γα
00 = −1

2
ηαβ ∂g00

∂xβ

. (2.7)

Reinserting the Christoffel symbol in Eq. 2.6 and separating the µ = 0
"time" and µ = 1, 2, 3 "space" parts we have

d2t
dτ2 = 0 ;

d2x
dτ2 −

1
2

(
dt
dτ

)2

∇h00 = 0 . (2.8)

The first equation tells us that dt/dτ is a certain constant K and we choose
K=1. Substituting the first equation in the second and comparing it with
the equation of motion with the gravitational potential d2x/dt2 = −∇φ
we find h00 = −2φ + C where C is another constant. Since the potential
must be zero at infinity, we can fix also the second constant C=0. Rein-
serting the result for h in the original metric tensor we finally have

g00 = −(1 + 2φ) (2.9)

which is its the only non-zero component in the low-velocity, low-gravitational
field approximation. We have showed here that there is a choice of the
metric tensor which in the non-relativistic limit makes the relativistic
geodesic equation is consistent with Newtonian gravity.

3



CHAPTER 2. GENERAL RELATIVITY

2.4 Energy-Momentum Tensor

Our aim is to find general relativistic equations for the gravitational field
which are valid in every reference frame (not only the inertial ones). Such
equation must have tensorial character, and since gravitational fields are
created by matter and energy distributions, it it meaningful to find a
(relativistic) tensorial description for them. The object we are looking for
is the energy-momentum tensor. We know already from electrodynamics
that in the 4-dimensional formalism charge density and current vector
can be organized in a single four-vector. We are going to do something
similar for the 4-momenta pα of a system of N particles labeled with the
index n. The momentum density is

Tα0 = ∑
n

pα
nδ3(x− xn) . (2.10)

Note that in this definition we are already thinking at the density as the
zeroth-component of a tensor T. In this case T is a tensor with two indices,
since one index spans the 4-vector components, while the other one will
label the density and the three components of the current which we define
as

Tαi = ∑
n

pα
n

dxi
n

dt
δ3(x− xn) . (2.11)

where the latin index i runs only on the "space" coordinates 1,2,3. Merg-
ing the last two equations into a single tensor

Tαβ = ∑
n

pα
n

dxβ
n

dt
δ3(x− xn) = ∑

n

pα
n pβ

n

En
δ3(x− xn) , (2.12)

where we used the known relativistic result v = p/E. From the last ex-
pression, it is clear that Tαβ = Tβα, and therefore the energy-momentum
tensor is symmetric.
As in classical physics the time derivative of the momentum gives the
force, in this context we have

∂Tαβ

∂xβ
= Fα , (2.13)

where Fα is a density of forces’ 4-vector. In absence of forces, ∂Tαβ/xβ = 0
and this represents the energy-momentum conservation law. On a generic

4



CHAPTER 2. GENERAL RELATIVITY

curved space, the partial derivative is substituted by the covariant one:
∇αTαβ = 0.

2.5 The Einstein Equations

We are now in the position to derive the generally covariant equations
for the gravitational field. The distribution of matter and energy exerts a
gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system. This requirement is connected to the
equivalence principle.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is gµν, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµν must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµν = 0.

From requirements 1. and 4., the equations must have a form like

Gµν ∝ Tµν . (2.14)

Since we know that from energy-momentum conservation ∇µTµν = 0,
we require that ∇µGµν = 0. Moreover, since T is symmetric, also G must
be symmetric. A symmetric, two-indices tensor which contains gµν and
its derivatives up to second order is the Einstein tensor. So we can guess
the following form

Rµν −
1
2

gµνR = k · Tµν . (2.15)

5



CHAPTER 2. GENERAL RELATIVITY

where now we use covariant indices, Rµν is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
We have to use the weak-field and v � c approximations together with
stationarity ∂gµν/∂t = 0. In this limit, the only non-zero component of
the Ricci tensor is R00. The energy-momentum tensor reduces also to
only the energy density component T00 which in the non-relativistic limit
is just the matter density ρ. The approximate equation is therefore

R00 =
1
2
∇2h00 = kρ , (2.16)

which has to be compared to the Poisson equation for the gravitational
potential

∇2φ = 4πGρ . (2.17)

where G is the Newton constant. Calculating the constant k, we can write
the general relativistic Einstein equation (in natural units G = c = 1)

Rµν −
1
2

gµνR = 8πTµν . (2.18)

In "normal units", 8π → 8πG/c4.
The equation has been checked against many astronomical data, and lab-
oratory and satellite experiments, always finding good agreement up to
now.
Eq. 2.18 is not the most general form allowed by our requirements. Since
the covariant derivative of both sides of the equation vanishes and this
happens also for the metric tensor, we can also add a term which is pro-
portional to gµν

Rµν −
1
2

gµνR + Λgµν = 8πTµν . (2.19)

The new constant Λ is called cosmological constant.
Given the symmetry of the tensors in the equation, there are only 10 in-
dependent components. This means that the Einstein equation represents
a coupled system of 10 non-linear second-order partial differential equa-
tions and finding analytical general solutions is possible only in few cases
characterized by high symmetry content. Besides the trivial flat solu-
tion, a particularly important space-time satisfying the Einstein equations
is the Schwarzschild solution which finds wide applications in physics
problems involving a spherically symmetric gravitational field.

6



CHAPTER 2. GENERAL RELATIVITY

2.6 Trace-Reversed Form of the Einstein Equa-
tions

There is another equivalent form for Eq. 2.19 which can be obtained tak-
ing first its trace

− R + 4Λ = 8πT , (2.20)

where R and T are the traces of the Ricci tensor and energy-momentum
tensor respectively. Multiplying the last trace formula by gµν/2 and sub-
stituting the result again in Eq. 2.19, we obtain the "trace-reversed" form
of the Einstein equations

Rµν −Λgµν = 8π(Tµν −
1
2

Tgµν) . (2.21)

This version of the equation allows some interesting observations. First,
in absence of the cosmological constant, matter and energy we have Rµν =
0, which represent a Ricci-flat space-time. Ricci-flat spacetimes are the
solutions of GR for the completely empty space. The flat space-time is a
trivial example of Ricci-flat space-time. A classical non-trivial example of
vacuum solution is the Schwarzschild solution describing the space-time
around a spherical mass. In absence of matter and energy, and Λ 6= 0 we
have

Rµν = Λgµν , (2.22)

and it is tempting to do the identification Tµν = Λgµν and thinking at the
cosmological constant as the energy content of the vacuum itself.

2.7 Geodesic Deviation

There is another interpretation of the role played by the Riemann tensor
in General Relativity. If a free-falling observer observes a nearby free-
falling object, if there is no gravity, he should see it at rest. If gravity
is present, the observer and the object should move with respect to each
other. The free-falling observer follows the trajectory

d2xµ

dτ2 + Γµ
νλ

dxν

dτ

dxλ

dτ
= 0 . (2.23)

7



CHAPTER 2. GENERAL RELATIVITY

Another observer is closeby, at xµ(τ) + δxµ(τ) thus following the trajec-
tory

d2

dτ2 (xµ + δxµ) + Γµ
νλ(xµ + δxµ)

d
dτ

(xν + δxν)
d

dτ
(xλ + δxλ) = 0 . (2.24)

The difference between the last two equations at first order in δxµ is

d2δxµ

dτ2 +
∂Γµ

νλ

∂xρ δxρ dxν

dτ

dxλ

dτ
+ 2Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 , (2.25)

which in terms of a covariant derivative along a curve 2 can be written as

D2

Dτ2 δxλ = Rλ
νµρδxµ dxν

dτ

dxρ

dτ
. (2.26)

In absence of gravity, the Riemann tensor is identically zero and two close
geodetics stay "parallel" to each other. If gravity is present, two nearby
particles will not conserve their distance along the motion. In this sense,
the Riemann tensor can be regarded as quantifying the amount of geodesic
deviation. The relative acceleration detected among two nearby particles
can be thought to be caused by a tidal force.

2.8 Summary

Eq. 2.18 was written first by Einstein in 1915 (with Riemann almost con-
temporarily providing a derivation based on a variational method). Gen-
eral Relativity can thus be summarized as follows:

Space-time is described by a manifold M equipped with a Lorentz metric. The
curvature of M (computable from the metric) is related to the matter/energy dis-
tribution in M by the Einstein equation.

Eq. 2.18 represent 10 non-linear partial differential equations of the hyper-
bolic kind (like the wave equation) and they are the gravitational analog
to the Maxwell equations written with the relativistic formalism where

2If Vµ is a vector, its derivative along a curve xµ parameterized by a parameter τ is
DVµ/Dτ = dAµ/dτ + Γµ

νλdxλ/dτAν.

8



CHAPTER 2. GENERAL RELATIVITY

the scalar and vector potentials are arranged into a fourvector Aµ and
charge density and current into a four-vector Jµ: ∂2Aµ = −4π Jµ. A fun-
damental difference among these two theories is the following: while in
Maxwell theory once the charges/currents are given, all the potentials
can be calculated, in General Relativity the metric enters on both sides of
the equation. This means that we cannot specify Tµν and then calculate
gµν, since also for constructing Tµν we need the metric. Intuitively this
means that gravitation influences the matter/energy distribution, which
in turn modifies the gravitational field ("backreaction"). A famous quote
summarizing the complexity of Einstein equation is "Space tells matter how
to move, matter tells space how to curve" (from Gravitation, Misner, Thorne,
Wheeler).

9
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Chapter 3 | Cosmological
Models

In this chapter, we will apply the Einstein equations to the Universe as
a whole discussing some possible models and their consequences. The
standard cosmological model presently favored by the available data will
be presented.

3.1 The Cosmological Principle

The Einstein equations allow to calculate the space-time geometry if the
distribution of matter is known. This task is in general quite complex
if we would like to find analytical solutions. Symmetry principles can
simplify the problem greatly. In cosmological applications, the so-called
Cosmological Principle:

The Universe is spatially homogeneous and isotropic

is assumed. With "homogeneous" we mean that the universe is invariant
under spatial translations, while with "isotropic" we assume that the uni-
verse looks the same in every direction, or that it is spherically symmetric
around us. The principle implies that every observer at every point of the
universe observes the same properties (a modern version of the Coperni-
can principle which stated that we do not occupy any privileged position
in the Universe.). Another way to state the principle, is that the universe
can be foliated in space-like surfaces which are spherically symmetric

11
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about any point.
Of course, on a small scale the universe is not homogeneous, since there
are stars, galaxies and even clusters of galaxies. The Cosmological Prin-
ciple is assumed to be approximately realized on scales larger than - say
- 108 or 109 light-years where many galaxy clusters are contained. The
Cosmological Principle is not a completely proved fact, but it is sup-
ported (besides from our philosophical beliefs) by observations of the
matter distribution on the largest scales and by the existence of a rather
homogeneous cosmic microwave background (which is of cosmological
origin).
If you like to be more mathematically precise, then a space-time is said to
be spatially homogeneous if there exist a one-parameter family of space-
like hypersurfaces Σt foliating the space-time, such that for every t, P and
Q in Σt, there exists an isometry1 of the space-time metric which maps P
into Q.
A space-time is said to be spatially isotropic at each point if there exists a
congruence of time-like curves2 ("observers"), with tangents denoted by
vα filling the space-time and satisfying the following property. Given any
point P and any two unit spatial tangent vectors (orthogonal to vα) sα

1 , sα
2

there is an isometry of the metric which leaves p and uα at P fixed, but
rotates sα

1 , sα
2 . This means that if isotropy is assumed, it is not possible

to construct a preferred tangent vector orthogonal to vα. Constructing a
preferred vector is possible of the tangent space to Σt does not coincide to
the tangent space containing the vectors orthogonal to uα. This fact also
shows that isotropy requires that Σt is orthogonal to uα.

3.2 Metric of Homogeneous and Isotropic Space-
times

The requirements of homogeneity and isotropy from the Cosmological
Principle greatly constrain the class of metrics compatible with it.
The spatial isotropy requirement implies that g0i = 0 (i = 1, 2, 3): in this
way no direction is privileged (we have no "mixing" between directions

1An isometry is a transformation which preserves the lengths.
2A congruence of curves is the set of integral curves of a nowhere-vanishing vector

field.
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and time). We assume that all the observers on a spatial surface are able
to measure the time ("cosmic time") in the same way, so we can choose
g00 = −1 (a constant not depending on the space-time point). It turns out
that all these requirements lead to a space-time with constant curvature
(in particular such space-times are called maximally symmetric3). It can
be showed that the requirements of homogeneity and isotropy in four
dimensions lead to the following metric

− ds2 = g(v)dv2 + f (v)
[

du2 +
k(udu)2

1− ku2

]
, (3.1)

where v is a coordinate and u is a vector of three coordinates and f an
unknown function of v only. This metric is clearly rotationally invariant
as required. Introducing new "spherical coordinates" r, θ, φ for the "space"
variables u and a time coordinate t =

∫
−
√
−g(v)dv we obtain

ds2 = dt2 − R2(t)
[

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
]

, (3.2)

where R(t) function of time to be determined, and k is a constant repre-
senting the curvature. This metric is invariant under the rescaling

R→ R
λ

r → λr

k→ k
λ2 ,

(3.3)

so choosing λ =
√

k, the curvature k can assume only the values k =
−1, 0, 1. The function R(t) is usually normalized to its present value
a(t) = R(t)/R(0). and a(t) is called cosmic scale factor.
Eq 3.2 is called the Friedman-Lemaître-Robertson-Walker metric (FLRW)
and represents the most general homogeneous and isotropic space-time
in four dimensions.
It interesting to look at the spatial geometry. If k = 0, space is flat and
equivalent to a three-dimensional "plane". If k = 1, space is equivalent

3Mathematically, a maximally symmetric space M of dimension D is a space with a
metric admitting D(D+1)/2 Killing vectors. Killing vectors form a vector field describing
the infinitesimal isometric transformations in M.
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Figure 3.1: Comoving Coordinates

to the surface of a sphere with radius a(t). If k = −1, the space is hy-
perbolic. An important observation is that the requirements of homogeneity
and isotropy (the Cosmological Principle) allowed us to write the metric without
solving or considering the Einstein Equations.

3.3 Properties of the FLRW Universe

Considering the FLRW metric for an homogeneous and isotropic uni-
verse, we can directly calculate some relevant geometric quantities. In
the k = 1 case, it is possible to calculate the spatial volume of the uni-
verse

(3)V =
∫ √

| −(3) g|d3x = a3(t)
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ RU

o

r2dr√
1− kr2

,

(3.4)
where RU is the "radius of the universe". RU is finite only in the spherical
k = 1 case, while in the other two cases k = 0,−1 it is infinite. Therefore,
only in the k = 1 case we obtain a finite spatial volume (3)V = 2π2a3(t)
and a(t) can be interpreted as a "radius". A k = 1 Universe is said to be
closed, while the other two cases correspond to open universes.
Let’s discuss now what the coordinates mean in the FLRW metric. These
coordinates are called comoving, because the position of an observed
does not change with respect to them. The idea is clearer looking at

14
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Fig. 3.2: if the space-time is expanding (or contracting), the coordinates
stretch according to the scale factor a(t) and an object (say, a galaxy) keeps
its position with respect to the axes.
An extremely simplified case is the one where k = 0 and a(t)=constant.
Substituting the FLRW metric in the Einstein Equations gives Tµν = 0,
since the components of the Ricci tensor Rµν are zero (and therefore also
the curvature scalar R). In this case, the equations of General Relativity
describe an empty universe with a Lorentz (flat) metric. This case is
trivial but it is a check that the Einstein Equations have an additional
correct limiting case.

3.4 Friedmann Equations

Now it is time to use the FLRW metric in the Einstein equations. This
will allow us to extract the exact form of the still unknown scale factor
a(t). The left side of the equation contains only the geometric quantities
which can be calculated from the metric gµν which non-zero components
are

g00 = 1

g11 = − a2(t)r2

1− kr2

g22 = −a2(t)r2

g33 = −a2(t)r2 sin2 θ .

(3.5)

From the metric tensor, we can directly calculate the Christoffel symbols:
the non-zero ones are:

Γ0
11 =

ȧa
1− kr2 ; Γ0

22 = aȧr2 ; Γ0
33 = aȧr2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ
a

Γ1
22 = −r(1− kr2) ; Γ1

33 = −r(1− kr2) sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
r

Γ2
33 = − sin θ cos θ ; Γ3

23 = Γ3
32 = cot θ ,

(3.6)

15



CHAPTER 3. COSMOLOGICAL MODELS

and the Riemann tensor with its definition

Rµ
βγλ = Γν

λβΓµ
γν −

∂Γµ
γβ

∂xλ
− Γν

γβΓµ
λν +

∂Γµ
λβ

∂xγ
. (3.7)

Contracting the Riemann tensor we can calculate the Ricci tensor which
non-zero components are

R00 = −3
ä
a

R11 =
aä + 2ȧ2 + 2k

1− kr2

R22 = r2(aä + 2ȧ2 + 2kr)

R33 = r2(aä + 2ȧ2 + 2kr) sin2 θ ,

(3.8)

where the "dot" represents the total derivative with respect to the time
(ẋ = dx/dt). Finally, contracting the Ricci tensor (gµνRµν) we obtain the
curvature scalar

R =
6
a2 (aä + 2ȧ2 + k) . (3.9)

Now we have all the ingredients for calculating the left side of the Einstein
equations and we just need Tµν. Again the Cosmological Principle can
help us: an homogeneous and isotropic distribution of matter is the one
corresponding to a perfect fluid with density ρ and pressure P:

Tµν = (ρ + P)vµvν − Pgµν , (3.10)

where v is the four-velocity vector with components v = (1, 0, 0, 0), since
the "fluid" is at rest with respect to the comoving coordinates. Again,
thinking at the fluid as made of point-like galaxies, they retain their
place with respect to the coordinate axes: it is just the distance among
them which changes through a(t). Density and pressure can be time-
dependent, but not space-dependent, otherwise this would be against the
Cosmological Principle.
Consider now the energy-momentum conservation

∇µTµ
ν = ∂µTµ

ν + Γµ
µβTβ

ν − Γβ
µνTµ

β = 0 , (3.11)

and the zero component (i.e. the energy component) of the above equa-
tion

∂0ρ(t) + 3
ȧ(t)
a(t)

(ρ(t) + P(t)) = 0 . (3.12)
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This equation expresses energy conservation in the FLRW Universe. No-
tice that for obtaining Eq. 3.12 we had to use the space-time geometry
through the covariant derivative and this brings us back to the complex-
ity of the Einstein Equations, where curvature and energy/matter distri-
bution are in general directly connected.
At his point we are stuck: we have the scale factor and other two un-
knowns in a single equation. The only way forward is to postulate a
relationship between density and pressure, i.e. an equation of state for
the energy/matter content of the universe. It can be showed that basi-
cally all the cosmologically relevant perfect fluids have an equation of
state like P = wρ where w is a constant characteristic of the specific fluid.
Substituting this generic equation of state in Eq. 3.12 we obtain

ρ̇

ρ
= −3(1 + w)

ȧ
a

, (3.13)

which has solutions like

ρ(t) ∝ a(t)−3(1+w) . (3.14)

Now we have an equation that tells us how the density behaves while the
universe expands or contracts. We still have to determine the dynamics
of the scale factor.
Using the expressions for the Ricci tensor, the curvature scalar and the
energy-momentum tensor, we can substitute them into the Einstein equa-
tions Eq. 2.18 finding (we leave Λ = 0 for the moment)

−3
ä
a
= 4πG(ρ + 3P) for (µ, ν) = (0, 0)

ä
a
+ 2

(
ȧ
a

)2

+ 2
k
a2 = 4πG(ρ− P) for (µ, ν) = (i, j) .

(3.15)

For the spatial components i, j = 1, 2, 3 there is only one equation as it
should be, given the requirement of isotropy. Substituting the second
derivative of a(t) from the first of the Eq. 3.15 into the second we obtain
the Friedmann Equations

ä
a
= −4πG

3
(ρ + 3P)(

ȧ
a

)2

=
8πG

3
ρ− k

a2 .
(3.16)
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The Friedmann equations are basically the Einstein equations for an ho-
mogeneous and isotropic universe filled with a perfect fluid. For fully
solve them and obtain the function a(t), we need to specify the equation
of state (or - almost equivalently - the parameter w).

3.5 The Cosmological Parameters

The expansion rate (how much a(t) changes in units of a(t) itself) is called
the Hubble Parameter

H(t) =
ȧ(t)
a(t)

. (3.17)

The definition of H makes sense, since the scale of a itself is not important:
in the ratio, we obtain a meaningful measurable quantity. The today’s
value of this parameter is called H0.
It is also useful to rewrite the energy conservation equation in the FLRW
Universe (Eq. 3.12) using the Hubble parameter as

ρ̇ + 3H(ρ + P) = 0 . (3.18)

Another relevant quantity is the deceleration parameter

q = − aä
ȧ2 , (3.19)

which quantifies the rate of change of H. Substituting the Hubble param-
eter in the second Friedmann equation

H2 =
8πG

3
ρ− k

a2 ⇒
8πG
3H2 ρ− 1 =

k
H2a2 . (3.20)

Defining the critical density ρc = 3H2

8πG (today’s value ≈ 10−29g/cm3 ∼
1.05× 10−4 eV/cm3) and the density parameter Ω = ρ/ρc we have

Ω− 1 =
k

H2a2 . (3.21)

The density parameter is quite important since it determines the geome-
try (through the curvature k) of the universe:

ρ < ρc ⇐⇒ Ω < 1⇐⇒ k = −1 (Open)
ρ = ρc ⇐⇒ Ω = 1⇐⇒ k = 0 (Flat)
ρ > ρc ⇐⇒ Ω > 1⇐⇒ k = 1 (Closed)

(3.22)
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3.6 Cosmological Models

In order to treat all the possible cases, we will use the most general form
of the Einstein equations, thus including the cosmological constant Λ.
When the cosmological constant is taken into account, the Friedmann
equations become

ä
a
= Ḣ + H2 = −4πG

3
(ρ + 3P) +

Λ
3

H2 =
8πG

3
ρ− k

a2 +
Λ
3

.
(3.23)

Regarding the equation of state, the most relevant cases are

w = 0⇒ ρ ∼ 1
a3 "Dust"

w = 1/3⇒ ρ ∼ 1
a4 "Radiation"

w = −1⇒ ρ ∼ const. "Vacuum" .

(3.24)

In an universe filled with "dust", i.e. point-like massive particles, there is
not interaction between them so the pressure is zero and therefore w=0.
It is a standard physics result that for a volume filled with radiation only,
P = ρ/3. The last case, where P = −ρ (a sort of negative pressure) can
arise in different models. It is called "vacuum energy" since this equation
of state can arise from quantum field theory. We are now in the position
to discuss some specific cosmological models.

3.6.1 The Einstein Universe

This cosmological model was first proposed by Einstein, who tried to
obtain a static universe without expansion or contraction. This goal can
be achieved only if Λ 6= 0. The static conditions are ȧ = ä = 0 and from
Eq. 3.23 we obtain

a =

√
Λ
k
⇒ k = 1

ρ =
Λ

4πG
.

(3.25)
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The previous equations describe a spherical universe with a constant ra-
dius (scale factor), a constant density and a non-zero cosmological con-
stant. An unpleasant characteristic of this universe is its instability: a
small perturbation would make it expand or contract. In this sense this
model is not as static as its name may imply.

3.6.2 The Matter-dominated Universe
Suppose that the universe is uniformly filled only with non-interacting
bodies. In this case, P = 0 (or w = 0), Λ = 0 and from Eq. 3.14 we have
ρ · a(t)3 = A with A =constant. The second of the Friedman equations
Eq. 3.23 becomes

ȧ2 =
8πG

3
A
a
− k . (3.26)

Introducing the conformal time η instead of the time t such that dη/dt =
1/a(t) the last equation becomes

a′2 =
8πG

3
Aa− ka2 . (3.27)

The apex in a′ indicates differentiation with respect to the conformal time.
The last equation can be easily integrated. For example, choosing as
initial condition a(0) = 0 we have

k = 1⇒ a =
4πGA

3
(1− cos η) ; t =

4πGA
3

(η − sin η)

k = 0⇒ a =
2πGA

3
η2 ; t =

2πGA
9

η3

k = −1⇒ a =
4πGA

3
(cosh η − 1) ; t =

4πGA
3

(sinh η − η) .
(3.28)

In this model, a closed (k = 1) universe expands and eventually collapses
again. Open universes (k <= 1) expand forever. In the boundary case
k = 0, the expansion continues forever, but the expansion rate approaches
zero for infinite times (H → 0 when t→ +∞).

3.6.3 The Radiation-dominated Universe

For radiation, we have already seen that w = 1/3, so ρ = 3P and ρa4 = A
with A=constant. Setting Λ = 0, the second of the Friedman equations
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Eq. 3.23 becomes

ȧ2 =
8πG

3
A
a2 − k . (3.29)

Using the initial condition a(0)=0, the solutions are

k = 1⇒ a =

√
2

√
8πGA

3a2 t− t2

k = 0⇒ a =

√
2

√
8πGA

3a2 t

k = −1⇒ a =

√
2

√
8πGA

3a2 t + t2 .

(3.30)

As in the matter-dominated universe, the closed solution expands and
then recollapses, while the other cases expand forever.

3.6.4 Vacuum-Dominated Universe

In the vacuum-dominated model, there is no matter present, so P = ρ =
0. In this case, only the cosmological constant plays a role (Λ > 0). A
possible interpretation of this model comes from quantum field theory
(QFT), where there are non-zero quantum fluctuations even in the vac-
uum where fields have zero average. QFT predicts a term analogous to
the cosmological constant. In this case the second of the Friedman equa-
tions Eq. 3.23 reduces to

ȧ2 =
Λa2

3
− k , (3.31)

and the solutions are

k = 1⇒ a =

√
3
Λ

cosh

(√
Λ
3

t

)

k = 0⇒ a =

√
3
Λ

exp

(√
Λ
3

t

)

k = −1⇒ a =

√
3
Λ

sinh

(√
Λ
3

t

)
.

(3.32)
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The k = 1 case is also known as deSitter Universe.
The k = 0 case predicts an exponential growth of the Universe and as we
will see later on, this solution has relevance in the framework of inflation-
ary models. If we assume Λ < 0, there are no solutions for k = 0, 1, while
for k = −1

a =

√
− 3

Λ
cos

(√
−Λ

3
t

)
. (3.33)

It can be verified that for Λ = 0 this model reduces to the flat spacetime
case with k = 0 and a =constant.

3.6.5 Mixed Models

The models investigated so far contained only one type of matter/radiation.
A more realistic model could contain different kinds of them in different
proportions. In this case, the energy density will be the sum of the differ-
ent components

ρTOT(a) = ∑
i

ρi(a) = ρC ∑
i

Ωia−3(1+w1) , (3.34)

where ρc is the critical density and ΩTOT = ρTOT/ρC. Considering all the
cases we treated so far and introducing the appropriate critical densities,
the second Friedmann equation (Eq. 3.23) can be rewritten as

k
a2 = H2(ΩTOT − 1) . (3.35)

Introducing in the last equations the density parameters observed today,
together with the present Hubble parameter H0 and the present scale a0
we have

k
a2

0
= H0(Ωm + Ωr + ΩΛ − 1) , (3.36)

where the density parameters describe pure matter (the "dust" universe),
relativistic matter (radiation) and the effect of the cosmological constant.

3.7 Cosmological Red Shift

Most of the information we gather on earth about the cosmos comes in the
form of electromagnetic radiation. Here we would like to investigate how
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the universe’s dynamics can affect a generic light signal of wavelength λ
(or frequency ν = c/λ). According to the Cosmological Principle, we
can place the origin of our coordinate system where we would like to, so
we choose r = 0 and for simplicity we forget about the angular coordi-
nates θ and φ (equivalently, we can think of keeping them constant). An
electromagnetic wave traveling from a distant star towards us (in the −r
direction) has the following equation of motion in an FLRW universe

dτ2 = dt2 − a2(t)
dr2

1− kr2 = 0 . (3.37)

If the wave (say, a certain crest of the wave) leaves the star at time t1 and
reaches our telescope at time t0, integrating the last equation we have

∫ t0

t1

dt
a(t)

=
∫ r1

o

dr√
1− kr2

=


sin−1 r1 k = 1
r1 k = 0
sinh−1 r1 k = −1 .

(3.38)

If our star belongs to a galaxy (as basically always it is the case), it has
fixed coordinates, so

∫ t0
t1

dt
a(t) is a time-independent function, as it is clear

from Eq. 3.38. This means that if we consider another crest of the elec-
tromagnetic wave leaving the star at a slight different time t + δt we will
find the same result as before for the integral

∫ t0+δt0
t1+δt1

dt
a(t) . Subtracting the

two integrals and assuming that a(t) does not vary much between the
two crests,∫ t0+δt0

t1+δt1

dt
a(t)
−
∫ t0

t1

dt
a(t)

=
∫ δt1

δt0

dt
a(t)

= 0⇒ δt0

a(t0)
− δt1

a(t1)
= 0 (3.39)

and therefore
δt0

a(t0)
=

δt1

a(t1)
(3.40)

Frequencies and times are inversely proportional, so

δt1

δt0
=

a(t1)

a(t0)
=

ν0

ν1
=

λ1

λ0
. (3.41)

We can now introduce the red-shift parameter and relate it to the scale
factor

z =
λ0 − λ1

λ1
=

a(t0)

a(t1)
− 1 . (3.42)
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The wavelength λ1 is the original one emitted from the star, as measured
by a nearby observer, while λ0 is what we will observe on the earth (at
r = 0 of our coordinate system).
If z > 0, then λ0 > λ1 : this is called red-shift and corresponds to an
expanding universe.
If z < 0, then λ0 < λ1 : this is called blue-shift and corresponds to a
contracting universe.

3.8 Age of the Universe

We would like to use the Friedmann equations for determining how old
the universe is as a function of the curvature and of the matter/energy
content. The scale factor has no dimension and can be thought as the
ratio of two lengths, or "radii": R(t) at a time t, and R(0) at t = 0 which is
a reference time, for example "today". For t = 0 we have therefore a(0)=1.
Multiplying and dividing the second Friedmann equation by the critical
density ρc = 3H2

0/8πG (H0 is the Hubble parameter’s value today) we
have

H2 =
8πG

3
ρc

[
∑

i

ρi

ρc
+

ρk
ρc

]
, (3.43)

where we have defined ρk = k/(a2) which looks like a density due to the
global curvature of the universe.
Strictly speaking, this is just a formal analogy, and we should not think at ρk
as a contribution to the energy density: this definition just helps in writing the
equations in a more appealing way.
Remembering how the different energy densities scale (ρ(t) ∝ a−3(1+w))
and introducing the present-day density factors Ω0

x = ρ0
x/ρc, Eq. 3.43

becomes

H2 = H2
0

[
Ω0

m
a3 +

Ω0
r

a4 +
Ω0

k
a2 + Ω0

Λ

]
. (3.44)

For making better contact with measurements, we can introduce the red-
shift parameter z = a0/a− 1 (a0 = 1 in our convention):

H2 = H2
0

[
Ω0

m(1 + z)3 + Ω0
r (1 + z)4 + Ω0

k(1 + z)2 + Ω0
Λ

]
. (3.45)
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The last equation can be further simplified with the following steps

• We can rewrite H = ȧ/a using the red-shift parameter, obtaining
H = − 1

1+z
dz
dt .

• Approximate Ω0
r ≈ 0 since the era when the universe was radiation-

dominated was much shorter than the matter domination and vacuum-
energy domination.

• Remember that the sum of all the density parameters is equal to 1
by definition, so we set Ω0

k = 1−Ω0
m −Ω0

Λ.

obtaining after some algebra

∆t =
1

H0

∫ z

0

dz′

1 + z′
1√

(1 + Ω0
mz′)(1 + z′)2 − z′(2 + z′)Ω0

Λ

. (3.46)

The integral over the red-shift factor extends from today (z = 0) to some
era when the factor was equal to z. For obtaining the total age of the
universe, we have to extend the integration to z → ∞. Since the integral
in Eq. 3.46 is of order one, a quick estimate of the age A of the universe
is A ∼ 1/H0 ≈ 14 Gyr.
The exact calculation can be carried out only numerically, but it is inter-
esting to investigate the simple analytic result were the universe is flat
(k = 0⇒ Ω0

Λ = 1−Ω0
m) and just dust-filled (Ω0

Λ = 0):

A =
1

H0

∫ ∞

0

dz′

(1 + z′)5/2 =
2

3H0
∼ 10 Gyr . (3.47)
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Chapter 4 | Elements of Nuclear
Physics

Nuclei are at the core of every atom and are composed in general by
Z protons and N neutrons. The number Z is also called atomic number,
while the number A=Z+N is called mass number. An important concept is
that of binding energy EB of a nucleus: it is the minimal amount of energy
needed for removing all the protons and neutrons from it and it is always
a positive number.
The binding energy is given by the mass difference between the single
nucleons and the nucleus:

EB(Z, N) = {Z ·mp + N ·mn −M(Z, N)}c2 , (4.1)

where M(Z,N) is the mass of the nucleus as a function of its proton and
neutron content.

4.1 General Properties of Nuclei

In the following, we list some general aspects of nuclei which emerged
after a century of theoretical and experimental efforts.

• Stable nuclei are found between Z=1 (hydrogen) and Z=82 (lead).
These nuclei belong to the so-called valley of stability and this name
comes from the binding energy chart as a function of Z and N (see
figure).

• For every Z, there are different isotopes differing by the number of
neutrons. The chemistry of an element is determined by the number
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Figure 4.1: The nuclear valley of stability.

of electrons, which is equal to Z, therefore all the isotopes have the
same chemical properties.

• Unstable nuclei (outside the “valley”, see Fig. 4) decay after a cer-
tain time. Natural unstable isotopes are only the ones with half-lives
comparable (or longer) to the lifetime of our solar system (∼ 5× 109

years). Unstable nuclei are created continuously in stars or artifi-
cially in laboratory.

• Roughly, stable nucley have the Z = N property. This approxi-
mation becomes worse as Z increases. After a certain point, the
Coulomb repulsion among protons is too high and only an increas-
ing amount of neutrons is able to keep the nucleus together. In any
case, a too big N with respect to Z (or the other way around) brings
the nucleus farer away from the valley of stability.

• The lighter nucleus is hydrogen with just one proton. The next
hydrogen isotope is called deuterium and it has une proton and
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Figure 4.2: Binding energy per nucleon as a function of the mass number.
The semi-empirical formula of Weiszäcker fits well the overall behaviour
of EB. Nuclear reactions releasing energy tend to produce nuclei which
are more tightly bound than the initial ones: this means that fusion is fa-
vored for light nuclei, while heavier ones (beyond the iron peak) undergo
fission.

one neutron. Nuclei with only two protons or two neutrons are not
bound: this means that the n-p force is in general attractive but it is
not the case for p-p or n-n.

• The rich variety of nuclei and their properties have roots in the nu-
clear force.

4.2 A simple nuclear model: Weizsäcker Semiem-
pirical Mass Formula

The model takes its name from from the name of its proposer Carl von
Weizsäcker (1912-2007). Experimentally, the binding energy EB(Z, N) of
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a nucleus is approximately proportional to the number of nucleons A.
This means that the binding energy is also proportional to the volume
of the nucleus: this is why such a model is also referred as liquid drop
model. The nucleus is thought as an incompressible liquid drop with a
certain volume (proportional to the particles contained) and surface. In
first approximation we can write

E(Z, N) = α1A , (4.2)

The coefficient α1 is called volume energy parameter. The last equation
is very approximate and needs corrections since it tends to overestimate
the binding energy as A grows. The first correction comes from surface
effects: nucleons at the surface of the nucleus are less bound so the total
binding energy should decrease with the number of them:

E(Z, N) = α1A− α2A2/3 , (4.3)

and α2 is the surface energy parameter. Another corrections comes from
the electric repulsion among protons which should diminish the total
binding energy:

E(Z, N) = α1A− α2A2/3 − α3
Z2

A1/3 , (4.4)

with α3 the Coulomb energy parameter. In the third term, the formula of
the Coulomb energy can be recognized. The 1/A1/3 factor comes from
the fact that we are considering the nucleus a spherical object with con-
stant density and therefore the radius is R = r0A1/3. All the constants
are factorized in the Coulomb energy parameter. According to this term,
isobaric (same A) nuclei with less protons are more bound. Another cor-
rection comes from the following observed fact: nuclei with Z ∼ N are
more bound. An imbalance among neutrons and protons corresponds
to a less bound nucleus. This observation leads to the symmetry energy
correction:

E(Z, N) = α1A− α2A2/3 − α3
Z2

A1/3 − α4
(Z− N)2

A
, (4.5)

with α4 the symmetry energy parameter. The presence of a factor A in
the denominator compensates the growing number of neutrons present in
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heavy nuclei. In heavy nuclei, the electric charge is so high that only more
neutrons can compensate for it and keep the nucleus bound, therefore
a larger asymmetry among nucleons is tolerated. The existence of the
symmetry term already points to certain properties of the nuclear force.
Another property is that even-Z/even-N nuclei (even-even for short) are
more bound. This property is called pairing. For dealing with pairing
force, we introduce another correction:

E(Z, N) = α1A− α2A2/3 − α3
Z2

A1/3 − α4
(Z− N)2

A
+ ∆ , (4.6)

where

Dit =


δ for even-even nuclei
0 for odd-mass
−δ for odd-odd nuclei

(4.7)

The last final form obtained is the Weizsäcker mass formula. Typical val-
ues for the constants (depending on the fitted dataset) are:

α1 = 15.8 MeV
α2 = 17.8 MeV
α3 = 0.7 MeV
α4 = 23.7 MeV
δ = 25/A MeV

The parameter δ is the less determined one since it varies significantly
more than the others given the dataset considered. In Fig. 4.1 is shown
the binding energy per nucleon as a function of the number of nucle-
ons and a fit using the Weizsäcker mass formula. Note that EB/A grows
towards a maximum around the Fe nucleus (A ∼ 56) and then slowly
decreases (because of Coulomb repulsion). This behavior explains why
we can obtain energy by nuclear fusion with light elements or nuclear fis-
sion with heavy elements. If two light elements fuse together, the EB/A
will be higher for the resulting nucleus and the excess energy will be
released. The opposite happens with heavy nuclei: for them it is more
energetically convenient to fissionate and produce two daughter nuclei
with higher EB/A.
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Chapter 5 | Early Universe Ther-
modynamics and Freeze-
Out

During its expansion history, the Universe undewent periods of thermo-
dynamic equilibrium and therfore for studying them we need the tools of
(quantum) statistical mechanics.

5.1 Equilibrium

Before starting to discuss thermodynamic quantities, it is useful to recall
some definitions about equilibrium.

• Thermodynamic Equilibrium: in this case, there are no net macro-
scopic flows of matter or of energy within a system. The entropy
is maximized at thermodynamic equilibrium, while other relevant
functions like the Helmholtz and Gibbs free energies are minimized.
An isolated system out of equilibrium eveloves towards the equilib-
rium state.

• Chemical Equilibrium: if reactions are involved, at chemical equi-
librium the concentrations of the reactants do not change. Reactions
can still tranform one reactant into another, but the concentrations
stay the same in case of dynamical equilibrium. A relevant quan-
tity is the chemical potential µ, introduced originally by Gibbs, which
gives the change in free energy as the number of particles in the
system changes.
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In chemical equilibrium, the reactions that create and destroy particles
occur faster than the expansion and the chemical potential keep its equi-
librium value determined by (for example)

µi + µj = µk + µl , (5.1)

if the reaction is binary: i + j ↔ k + l. In statistical equilibrium, the
elastic scattering reactions that maintain the thermal energy distribution
of particles occur faster than the expansion. A certain particle species
can be in statistical equilibrium, but not in chemical equilibrium. Fully
thermal equilibrium occurs when the particle species are in statistical and
chemical equilibrium.
A small note about the chemical potential. Considering the Helmholtz free
energy A

dA = −PdV − SdT + µdN , (5.2)

since it tends to reach its minimum, if the chemical potential µ is positive,
the particle number N is driven to smaller numbers for minimizing A.
This is why µ is called “potential”. So at the end the chemical potential is
the variation in energy when the number of particles changes (and V and
T are kept constant).

5.2 Statistical Mechanics Recap

According to statistical mechanics, macroscopic thermodynamic quanti-
ties can be obtained as averages using specific probability distributions
f over the phase space. The distribution for relativistic particles can
be expressed as a function of the particle momenta: f = f (k̄) where
E2 − k̄2 = m2. By definition of f , its integral over the whole phase space
is the particle density

n =
g

(2π)3

∫
f (k̄)d3k , (5.3)

where g is the number of degrees of freedom and the (2π)3 factor repre-
sents the smallest volume of the phase space (here h̄ = 1).
Following statistical mechanics, the energy density ρ is

ρ =
g

(2π)3

∫
E(k̄) f (k̄)d3k , (5.4)
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and the pressure:

p =
g

(2π)3

∫ k2

3E(k̄)
f (k̄)d3k . (5.5)

Quantum particles can be either bosons (integer spin) or fermions (half-
integer spin) and each class follows a different distribution function. In
the following we give expressions for the number density, energy density,
and pressure for bosons (characterized by the “-” sign) and fermions (“+”)

n =
g

2π2

∫ ∞

m

(E2 −m2)1/2

e(E−µ)/T ± 1
EdE , (5.6)

ρ =
g

2π2

∫ ∞

m

(E2 −m2)1/2

e(E−µ)/T ± 1
E2dE , (5.7)

p =
g

6π2

∫ ∞

m

(E2 −m2)3/2

e(E−µ)/T ± 1
dE , (5.8)

where the integral over three-momenta was changed to a one-dimensional
integral over energy using the relativistic expression relating them and in-
tegrating over momenta in spherical coordinates.
The last integrals are not analytical but can be solved in physically rele-
vant limiting cases summarized in the following table:

Bosons Fermions Bosons and Fermions
Limit: T � µ, m Limit: T � µ, m Limit: T � µ, m

n = ζ(3)
π2 gT3 n = 3

4
ζ(3)
π2 gT3 n = g

(mT
2π

)3/2
e−(m−µ)/T

ρ = π2

30 gT4 ρ = 7
8

π2

30 gT4 ρ = m · n

p = ρ
3 p = ρ

3 p = n · T � ρ
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5.3 Entropy and its Density

During the expansion of the Universe, there are phases where the reac-
tion rate was much faster than the expansion rate and thus we can assume
(local) thermal equilibrium (TE). It can be proved that in TE, the entropy
per comoving volume element remains constant. The identification of a
conserved quantity is important for successive calculations.
Remembering the second law of thermodynamics (dS = δQ/T, where
Q is the heat, T the temperature) and rewriting the heat non-exact dif-
ferential as dU − dW where U is the energy and W the work, we have,
rewriting the energy using the energy density (U = ρV)

TdS = d(ρV) + pdV , (5.9)

where we re-expressed the work as dW = pdV, with p and V being the
pressure and volume of the system respectively. After expanding the
differential d(ρV) we obtain

TdS = d[(p + ρ)V]−Vdp . (5.10)

The integrability condition

∂2S
∂T∂V

=
∂2S

∂V∂T
, (5.11)

gives a direct relation between pressure and density:

T
dp
dT

= p + ρ =⇒ dp =
ρ + p

T
dT . (5.12)

Substituting the last equation in Eq. 5.10, we obtain

dS =
d[(p + ρ)V]

T
− (p + ρ)VdT

T2 = d
[
(p + ρ)V

T
+ const.

]
. (5.13)

Eq. 5.13 gives an expression for the entropy per unit comoving volume
(V = a3): S/V = S/a3 = (p + ρ)/T. Now we can show show that
the entropy is a conserved quantity. Accoring to the first principle of
thermodynamics (equivalent to energy conservation) we have

d[(p + ρ)V] = Vdp (5.14)

36



CHAPTER 5. EARLY UNIVERSE THERMODYNAMICS AND
FREEZE-OUT

and substituting into Eq. 5.12 we obtain

d
[
(p + ρ)V

T

]
= 0 , (5.15)

which proves that the entropy per unit comoving volume is conserved.
We can now define the entropy density

s =
S
V

=
p + ρ

T
, (5.16)

as an useful quantity which stays constant during the expansion.
In the early Universe, the entropy density is dominated by relativistic par-
ticles, so considering the Bose and Fermi distributions in the relativistic
limit the entropy density becomes

s =
p + ρ

T
=

ρ/3 + ρ

T
=

4
3

π2

30
gT3 =

2
45

π2gT3 . (5.17)

If more relativistic particles are present, it is useful to introduce the effec-
tive number of degrees of freedom

g∗ = ∑
B

gB

(
TB

T

)4

+
7
8 ∑

F
gF

(
TF

T

)4

, (5.18)

where the index B stands for bosons and F for fermions. The effective
number of degrees of freedom g∗ can be used instead of g in Eq. 5.17.
The temperature T is the temperature of the photons, while TB,F are the
temperatures of the additional relativistic bosons and fermions.
At high enough temperatures (T>200 GeV), all the Standard Model parti-
cles play a role and the number of effective degrees of freedom is

g∗ = 28 +
7
8

90 ≈ 106.72 . (5.19)

When the temperature is below ∼ 1 GeV, there are no electroweak bosons
and heavy quarks (b,t) and g∗ = 18 + (7/8)50 = 61.75. For tempera-
tures below ∼ 100 MeV, the only relativistic particles left are electrons,
positrons, photons, and neutrinos and thus g∗ = 2 + (7/8)10 = 10.75.
The degrees of freedom carried by each particle of the Standard Model
are summarized in Tab. 5.1.
The entropy density scales as s ∼ 1/a3 and therefore the following quan-

tity remains constant as the Universe expands

g∗T3a3 ∼ const. . (5.20)
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Figure 5.1: Change of the effective number of degrees of freedom as a
function of the temperature. The QCD phase transition (confinement)
and the neutrino decoupling events are marked by a grey band (figure
from A. Lewis, U. Sussex, UK).

(anti)Particle(s) Quantity Spin Other g gtot
Quarks 6+6 1/2 Colors=3 2 2 · 2 · 3 · 6 = 72
Gluons 8 1 2 8 · 2 = 16
Massive Leptons 3+3 1/2 2 2 · 2 · 3 = 12
Massless Leptons (ν) 3 1/2 2 2 · 3 = 6
EW bosons (W±,Z) 3 1 3 3 · 3 = 9
Photon 1 1 2 2
Higgs Boson 1 0 1 1
∑Bosons 28
∑Fermions 90

Table 5.1: Degrees of freedom of the Standard Model particles.

5.4 Thermal Decoupling

Until now, we assumed to be in thermal equilibrium, but now we have
to understand better when we can consider to be in such condition. The
idea is that if the reactions are fast enough with respect to the expansion
rate, then thermodynamical equilibrium holds.
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As the Universe expands, the temperature drops as

Ṫ
T
= − ȧ

a
= −H . (5.21)

This can be seen using energy conservation ρ̇/ρ = −3(1 + w)ȧ/a and
remembering that in a radiation-domiated Universe ρ ∼ T4 and w = 1/3.
We would like to compare H with the reaction rate Γ. To see how the
balance between H and Γ determines if there is equilibrium or not, we
can try to perform first a simplified calculation just for making the point.
First, we can assume radiation domination and thus H ∼ T2, since H2 ∼ ρ
from Einstein equations for a Friedman Universe and ρrad ∼ T4. Second,
we can assume that the reaction rate is proportional to some power of T:
Γ ∼ Tn, as it is usually the case. What we would like to calculated now is
the number of reactions N happened from a certain time t onwards:

N =
∫ ∞

t Γ(t′)dt′ ∼
∫ ∞

t Tn T2

T2 dt′ =
∫ ∞

t Tn−2T2 ∼
∫ ∞

t Tn−2(−H)dt′ =

=
∫ ∞

t Tn−2 Ṫ
T dt′ =

∫ ∞
t Tn−3Ṫdt′ =

∫ ∞
t

d
dt

(
1

n−2 Tn−2
)
=

= 1
n−2

Tn

T2 ∼ 1
n−2

Γ
H

.

(5.22)
The last result

N =
∫ ∞

t
Γ(t′)dt′ ∼ 1

n− 2

(
Γ
H

)
t

. (5.23)

shows that if n > 2, after Γ ∼ H, a particle interacts less than one time and
therefore it is decoupled: that particle will stay around without undergo-
ing further interactions (on average). The last result shows the interplay
between reaction rate and expansion: if the reactions cannot keep up the
expansion and particles become too “diluted”, than interactions stop and
the particle species “freeze out” and their abundance will not change fur-
ther.
The previous calculations were approximate for proving the point: in the
next sections we will try to treat the problem in a more rigorous way.

5.5 The Boltzmann Equation

The correct method for treating the thermodynamics of the early Universe
is using an equation which describes the evolution of the distribution
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function for the various particles species. Such distribution over the phase
space will depend in general from time, positions, and momenta of the
particles: f = f (t, x, p). If there are no interactions among particles which
can modify f , we have d/dt( f ) = 0 and therefore

∂ f
∂t

+
dx
dt
∇x f +

dp
dt
∇p f = 0 . (5.24)

and remembering the definition of velocity and force, can be rewritten as

∂ f
∂t

+ v∇x f + F∇p f = 0 . (5.25)

The last equation is also known as Vlasov equation or collision-less Boltz-
mann equation, which can also be written as L[ f ] = 0. The operator L is
called Liouville operator. The proper Boltzmann equation is

L[ f ] = C[ f ] , (5.26)

where C[ f ] is a term accounting for particles collisions, or interactions. In
the case of early cosmology, we have to consider the relativistic version of
the Boltzmann equation

L[ f ] = pµ ∂ f
∂xµ − Γµ

αβ pα pβ ∂ f
∂pµ . (5.27)

We would like now to write the last equation in the case of the Friedman
metric, which is isotropic and homogeneous and therefore f (t, x, p) →
f (t, |p|):

L[ f ] = E
∂ f
∂t
− ȧ

a
p2 ∂ f

∂E
. (5.28)

By definition of f, we have

n(t) =
∫ d3p

(2π)3 g f (|p|, t) , (5.29)

where g counts the spin degrees of freedom. Since we are interested in
particle densities, we want to integrate out the momenta, obtaining∫

L[ f ]g
d3p
(2π)3 =

dn
dt

+ 3Hn . (5.30)
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In the following, we will show how the integral is calculated. Consider-
ing the collisionless case, we can divide L[f] by the energy E and integrate
with spherical coordinates the mometum such that d3p→ 4πp2dp. Drop-
ping the overall factor 4π/(2π)3 factor we have∫

dpp2 ∂ f
∂t
− ȧ

a
p4

E
∂ f
∂E

. (5.31)

The integral of the first term is exactly the particle density, while the sec-
ond integral, using E2− p2 = m2 ⇒ pdp = EdE, ȧ/a = H, and integrating
by parts becomes

−
∫

dp
ȧ
a

p4

E
∂ f
∂E

= −H
∫

dpp3 ∂ f
∂p

= 3Hn . (5.32)

We can also observe that

ṅ + 3Hn = 0⇒ d(a3n)
dt

= 0 , (5.33)

which expresses the conservation of particle number per comoving vol-
ume in absence of interactions.
After having integrated over the phase space the Liouville operator L,
we can do the same with the collision operator C[f]. We will not per-
form this (longer) calculation here but refer instead to the classic paper
of P.Gondolo and G.Gelmini (Nucl.Phys. B360, 145-179 (1995)) and quote
the main result of it. Considering the simplest process 1 + 2 ↔ 3 + 4
where species 1 and 2 are in thermal equilibrium with 3 and 4 we have

g1

∫
C[ f1]

d3p
(2π)3 = −〈σvM〉(n1n2 − neq

1 neq
2 ) , (5.34)

where ni is the number density of the particle type i, neq
i are the cor-

responding number densities at equilibrium, and σ = ∑ f s σ12→ f s is the
invariant unpolarized cross section of the process 1 + 2 → f s where f s
are all the possible final states. The velocity vM is called Møller velocity
and is defined as

vM =
√
(v1 − v2)2 − (v1 × v2)2 =

√
(p1p2)2 −m2

1m2
2

E1E2
, (5.35)
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where in the last expression vM is written in explicity covariant form.
The Møller velocity is a Lorentz invariant quantity and in the rest frame
of e.g. particle 1 (or 2) it reduces to the relative velocity vrel = |v1 − v2|.
Thus, since all the quantities in the Boltzmann equation L[ f ] = C[ f ] are
invariant, the whole equation is invariant.
The product of the cross section times the velocity is in the 〈..〉 operator
which denotes the thermal average:

〈σvM〉 =
∫

dp3
1dp3

2σvMe−E1/Te−E2/T∫
dp3

1dp3
2e−E1/Te−E2/T

. (5.36)

In the last equation, as an example (which works in many practical situa-
tions) we assumend a Maxwell-Boltzmann distribution instead of a Bose-
Einstein or Fermi-Dirac one.
Summarizing the above results and considering a single particle type,
we have the following Boltzmann equation for an expanding Friedman
Universe

ṅ + 3Hn = 〈σv〉
(

n2 − n2
eq

)
. (5.37)

5.6 Freeze Out

We can now use the Boltzmann equation for better understanding ther-
mal decoupling and its relation with expansion and reaction rates.
Starting from Eq. 5.37 and remembering that sa3=const. (conservation of
entropy), deriving both sides with respect to time we can easily discover
that ṡ = −3Hs (if g∗ is constant). We can now define the new quantity
Y = n/s: dividing the particle density by the entropy density, we obtain
a new quantity which is proportional to the comoving number density.
Further observing that

d
dt

Y =
d
dt

(n
s

)
=

1
s
(ṅ + 3Hn) (5.38)

and introducing the variable x = m/T with time derivative

dx
dt

= xH , (5.39)
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Eq. 5.37 can be rewritten in the more suggestive form

x
Yeq

dY
dx

= − Γ
H(m)

(
Y2

Y2
eq
− 1

)
. (5.40)

where we defined Γ = 〈σv〉neq. We used also the fact that since H ∝ T2

in a radiation-dominated phase, then H ∝ x−2 and

H(m)

H(T)
= x2 . (5.41)

Eq. 5.40 n clearly shows two distinct regimes controlled by the parameter
Γ/H and divided by the value Γ ∼ H which defines the freeze-out tem-
perature Tf o. If Γ/H � 1, the abundance Y stops changing and we have
“freeze-out”. If Γ/H � 1, Y is driven to its equilibrium value Yeq and the
particles are in thermal equilibrium (see Fig 5.2).
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Figure 5.2: Graphical representation of Eq 5.40 (Figure from:
https://www.particlebites.com/).
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6.1 Introduction

One of the most strikingly correct predictions of the Big Bang model is
the abundance of light elements present in the observed Universe. If we
use the nuclear reaction rates measured in the laboratory in a calculation
where we consider a plasma in an expanding Universe with the correct
baryon density, we find the mass abundances of hydrogen (∼ 75%) and
helium (∼ 25%) that we observe today, plus traces of deuterium and
lithium (7Li).
This primordial creation of the light nuclei is called “Big Bang Nucle-
osynthesis” (BBN). For creating nuclei, we need protons and neutrons:
the proportion between them was fixed in the first second after the Big
Bang, where the temperature was low enough for quarks to condense into
hadrons. At that time, the universe was rather homogeneous and dom-
inated by radiation. The sufficiently low temperature for nuclei to form
was reached after about 10 seconds after the Big Bang. BBN created only
light nuclei by fusion of protons and neutrons, and most of the neutrons
ended up into 4He nuclei.
Helium is special among light nuclei, since it has a quite high binding en-
ergy per nucleon. More massive nuclei can by even more tightly bound,
but the freeze-out mechanism prevents reactions to form them in the early
Universe: the expansion is faster than the reaction rates and almost only
the helium nuclei have time to form.
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6.2 Protons and Neutrons

After the formation of protons and neutrons, the balance between them
was set by the electro-weak interaction through the following reactions

n←→ p + e− + ν̄e , (6.1)

νe + n←→ p + e− , (6.2)

e+ + n←→ p + ν̄e . (6.3)

The first equation is the β-decay of the free neutron, while the other two
represent inverse β-decays for protons and neutrons. If T � 1 MeV,
the rates of these reactions are faster with respect of the expansion rate
set by the Hubble constant and therefore we can assume that chemical
equilibrium holds:

µn − µp = µe− − µµe = µν̄e − µe+ (6.4)

which implies that (detailed balance)
nn

np
= e−Q/T+(µe−µν)/T , (6.5)

where Q = mn − mp ≈ 1.293 MeV. Assuming charge neutrality in the
Universe (np = ne) and T � me:

µe

T
∼ ne

nγ
=

np

nγ
∼ η ∼ 10−10 , (6.6)

where η is the baryon to photon ratio. A similar estimate can be carried
out for neutrinos (µν/T) but the relic neutrino background has not yet
been detected and we can assume that, as for the baryon to photon ratio
number η, also the equivalent quantity referred to leptons is small. In
non-standard scenarios, such approximations are relaxed. Using here the
approximations, we have in equilibrium

nn

np
= e−Q/T . (6.7)

Now we have to consider the rates of the various electroweak processes.
The neutron decay rate is

Γn→peν =
1
τn

=
G2

F
2π3 (1 + 3g2

A)m
5
e λ0 , (6.8)
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where
λ0 =

∫ q

1
dεε(ε− q)2

√
ε2 − 1 ≈ 1.6363 , (6.9)

is a phase-space factor, GF the Fermi constant, and gA the axial coupling
constant. GF and gA can be measured with other electroweak processes
and can be extracted for example from the measurement of the neutron
lifetime τn ∼ 15 min and the neutron decay spectrum. The rate for pro-
ton/neutron conversion in a thermal bath at temperature T depends also
from the neutron lifetime:

Γpe↔nν =


1
τn

(
T

me

)3
e−Q/T T � Q, me

7π4

30λ0τn

(
T

me

)5
∼ G2

FT5 T � Q, me

(6.10)

Plugging in the numbers, for T � me we can find (remembering that
H ∼ T2, i.e.: H ∼ 1.66

√
g∗T2/MPl)(

Γ
H

)
∼
(

T
0.8 MeV

)3

. (6.11)

The last equation implies that if T > 0.8 MeV, we expect equilibrium
among protons and neutrons, again because the reaction rates are larger
than the expansion rate. At the same time, at T = Tf .o. ∼ 0.8 MeV we
have “freeze-out”: after this point the relative amount of the two particles
cannot change anymore significantly and(

nn

np

)
f .o.

= e−Q/Tf .o. ∼ 1
6

. (6.12)

The last result gives the ratio between protons and neutrons as they
emerge from the Big-Bang. As the temperature drops further (T = 0.3–0.1
MeV), neutrons and protons can start to combine forming nuclei.

6.3 Nuclear Reactions at Equilibrium

It is useful to introduce the following notation:

XA =
nA A

nn + np + ∑i(AnA)i
=

nA A
nN

. (6.13)
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XA represents the abundance fraction of the nucleus A with respect to
all the free protons, free neutrons, and the other i nuclei nN = nn + np +
∑i(AnA)i. In the same way, we can consider the fraction of protons and
neutrons (Xp, Xn) and thus the corresponding abundances ratio can also
be written as nn/np = Xn/Xp.
By definition of the abundance fraction, we have that

∑
i

Xi = 1 . (6.14)

Considering now a non-relativistic nuclear species with A nucleons, Z
protons, and (A-Z) neutrons, in the case of kinetic equilibrium, the parti-
cle density is given by

nA = gA
mAT
2π

3/2
e

µA−mA
T , (6.15)

where µA is the chemical potential. The same equation is in principle
valid also for protons and neutrons. Chemical equilibrium is realized if
the reaction producing the nucleus is fast with respect to the expansion
rate. In this regime, the chemical potential of the nucleus is related to the
one of the nucleons by

µA = Zµp + (A− Z)µn . (6.16)

From Eq. 6.15 and Eq. 6.16, we can rewrite eµA/T as

eµA/T = nZ
p nA−Z

n

(
2π

mNT

)3A/2

2−Ae[Zmp+(A−Z)mn]/T . (6.17)

Introducing in the last equation the definition of binding energy BA

BA = Zmp + (A− Z)mn −mA , (6.18)

we can re-write Eq. 6.15 as

nA = gA A3/22−AnZ
p nA−Z

n

(
2π

mNT

)3(A−1)/2

eBA/T . (6.19)

We would like now to rewrite the last equation in terms of the fraction XA.
Considering the definition of abundance fraction (Eq. 6.13), the baryon
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fraction η = nN/nγ, and the photon density of the relativistic Bose gas
nγ = 2ζ(3)T3/π2, we can finally rewrite (after some algebra) Eq. 6.19 as

XA = gAζ(3)A−1π
1−A

2 2
3A−5

2 A
5
2

(
T

mN

) 3(A−1)
2

ηA−1XZ
p XA−Z

n e
BA
T . (6.20)

The last equation gives an expression for the fraction of a nucleus present
at equilibrium given the fractions of protons and neutrons available.

6.4 Nucleosynthesis of the Light Elements

Using Eq. 6.20, it is possible to calculate the evolution of the fraction
of a nucleus as a function of the temperature (which is equivalent to
time, since the Universe is expanding lowering the temperature). For
illustration, we can consider the evolution of protons, neutrons, hydrogen
isotopes (A=1,2), and helium isotopes (A=3,4):

Xn/Xp = e−Q/T

X2 = 16.3(T/mN)
3/2ηeB2/TXnXp

X3 = 57.4(T/mN)
3η2eB3/TXnX2

p
X4 = 113(T/mN)

9/2η3eB4/TX2
nX2

p
1 = Xn + Xp + X2 + X3 + X4

, (6.21)

where the numerical factors and the degrees of freedom gA are already
calculated. The method is completely analogous to the one used for track-
ing the time evolution of chemical reactions.
The binding energies per nucleon BA are rather high, in the few-MeV
range, but given the smallness of η (the entropy of the Universe is very
large), the fraction of stable nuclei approaches values close to 1 only at
much lower energies (temperatures). To see this, we can use Eq. 6.20 and
solve it for the temperature TA when XA ∼ 1 and Xp ∼ Xn ∼ 1:

TA ∼
BA/(A− 1)

log(1/η) + 1.5 log(mN/T)
. (6.22)

From the last equation, we can calculate TA(2H)∼ 0.07 MeV, TA(3He)∼
0.11 MeV, TA(4He)∼ 0.28 MeV. It is interesting to note that it is the large
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entropy of the Universe (or η � 1) which prevents nuclei to form sooner
during the Big Bang, and not the deuterium relatively small binding en-
ergy.
Let us see now in steps how the lightest elements were created. Starting in
the radiation-dominated era at high temperature (T=10 MeV, t = 10−2s),
the only relativistic species we can have are electrons, positrons, photons,
and neutrinos, adding up to an effective number of degrees of freedom
g∗ = 10.75 (if the neutrinos are three and there is no “new physics”).
The electroweak reaction rates at this time are larger than the expansion
rate, so at equilibrium we have Xn = Xp = 1/2. The light nuclei were in
nuclear statistical equilibrium and the abundances can be calculated with
the system of equations 6.21 and η ∼ 10−9


Xn = Xp = 1/2
X2 ∼ 6× 10−12

X3 ∼ 2× 10−23

X4 ∼ 2× 10−34

, (6.23)

which shows how difficult was at that time to find nuclei in the primordial
plasma. As the Universe expands and cools, we can consider an epoch
where T=1 MeV (t ∼ 1s): at this time neutrinos decouple from the plasma,
positrons and electrons start to annihilate into photons, and the p ↔ n
reactions freeze out (Γ� H), fixing their ratio nn/np ∼ 1/6, as calculated
before (Eq. 6.12). Using the last ratio and T=1 MeV:

Xn = 1/7
xP = 6/7
X2 ∼ 6× 10−12

X3 ∼ 2× 10−23

X4 ∼ 2× 10−28

. (6.24)

Considering now temperatures low enough for nuclei to form (T ∼ 0.3−
0.1 MeV, t=3 min), the number of effective degrees of freedom becomes
similar to the today’s one: g∗ = 3.36. Reactions forming 4He are initially
too slow and nuclear electromagnetic repulsion forces nuclei to be formed
via tunnel effect, further slowing down 4He formation. When finally
the temperature reached ∼ 0.1 MeV, the helium fraction started to grow
significanly. Almost all the neutrons ended up in helium and therfore we
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can estimate its fraction as

X4 =
4n4

nN
=

4(nn/2)
nn + np

=
2(nn/np)

1 + (nn/np)
∼ 25% . (6.25)

The ratio nn/np ∼ 1/6 is now a bit lower due to occasional residual elec-
troweak interactions until 4He really starts to form, so we considered it
∼ 1/7.
The large Coulomb barrier for reactions like 4He(3H,γ)7Li and 4He(3He,γ)7Be,
and the absence of stable nuclei with A = 5 and A = 8 strongly limits the
production of heavier elements after the Big Bang. There is the possibility
to create 12C with the triple-alpha reaction, but the nucleon density is too
low for a significant rate.
The heavier nucleus which could be produced in a non-negligible amount
is 7Li from the direct reaction mentioned before, or by decay of 7Be.
The abundance of 7Li over hydrogen is of the order of 10−10 − 10−9.
There is also some 3He left over, with an abundance over hydrogen of
10−5 − 10−4. For a complete overview of the nuclear reactions relevant
for BBN, see Fig. 6.2.

6.5 Predictions of Big Bang Nucleosynthesis

G. Gamow was the first proposing the idea of nucleosynthesis after the
Big Bang in 1946. Gamow’s original idea was that all the elements were
created during the Big Bang through successive neutron capture followed
by beta-decay.
F. Hoyle and others proved that this was not possible and only the light-
est elements could have been created cosmologically. Gamow’s theory
still predicted correctly the relative abundances of hydrogen and helium
which form the bulk of the cosmologically produced nuclei.
After him and his collaborator’s work, computer codes implementing the
full reaction network similar to the small one sketched in the previous
section were developed. With the advances in computer hardware and
the development of better computer codes, today we can solve the reac-
tion network with high numerical accuracy (see Fig. 6.3).
Since the numerical error is not a problem, we have to focus on the errors
in the input parameters of the calculation, like nuclear cross sections and
the neutron lifetime. The final results of the calculation are quite robust
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against errors in the cross sections, while the neutron lifetime tradition-
ally represented a rather large uncertainty, which improved with time
(besides some systematic uncertainty problems). The current PDG value
(2019) is τn = 879.4 ± 0.6 s but still it represent the major influencing
factor on the 4He abundance. This happens because the neutron lifetime
influences all the electroweak reactions (Γ ∝ 1/τn) and an increase in its
value would slow down the p ↔ n rates leading to a n/p freeze-out at a
higher temperature (Tf .o ∝ τ1/3

n ). From Eq. 6.12 and Eq. 6.25 an increase
in the neutron lifetime will lead to an increase in the helium abundance
prediction. Since the helium abundance is known with good precision,
the neutron lifetime precision is also very important as a test for the Big
Bang nucleosynthesis model.

Figure 6.1: The famous “αβγ” paper about big bang nucleosynthesis.

6.6 Observations

The measurement of the abundances of the various elements is a complex
problem. The first issue is the fact that we would like to know the abun-
dance of the elements of cosmic origin, which is different from today’s
abundance: the latter can be different due to further reactions happened
e.g. in stars. In the following, we briefly review the experimental methods
and issues in determining the abundances of the light elements produced
during the Big Bang nucleosynthesis.

• Deuterium (2H)
A good source of information about cosmologically-created elements
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Figure 6.2: Reaction network for the creation of the light elements in the
Big Bang.

is spectroscopy of the interstellar medium. From such measure-
ments the deuterium abundance is estimated to be ∼ 10−5 with
respect to hydrogen. Since deuterium is a weakly-bound nucleus, it
is easy to break (temperatures of ∼ 0.5× 106 K are sufficient) and it
is not easily synthesized astrophysically. This means that the deu-
terium we measure is a good representative of the cosmological one
and thus gives us a lower bound on its abundance.

• Helium-3 (3He)
The abundance of this nuclide is also of the order of ∼ 10−5 and has
been measured for example with galactic spectroscopy, rocks/meteorites
analysis, and lunar soil. In our solar system, deuterium was con-
verted in 3He by the Sun and therefore local measurements of 3He
represent the local abundances of 2H+3He.

• Helimu-4 (4He) This nuclide is copiously produced in stars and thus
counting of the cosmologically-produced one is a primary issue in
the determination of its abundance. The latter observation points
towards measurements outside the solar system or in extra-galactic
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Figure 6.3: Evolution of the baryon fractions during Big Bang Nucleosyn-
thesis (figure from www.astro.ucla.edu/~wright/BBNS.html).

regions.

• Lithium-7 (7Li) This is the heaviest nuclide created during BBN and
its very low abundance is also the most difficult to precisely as-
sess. This is because 7Li has a low binding energy and is easily
destroyed in stellar environments, while it can be created also by
cosmic rays interactions. The abundance can be measured for ex-
ample in the athmosphere of low-metallicity stars and values of the
order of 10−10 are found, roughly consistent with the abundances of
the other light elements according to BBN calculations. The correct
abundance of this nuclide is still at the center of a theoretical and
experimental debate.

The BBN model can explain the relative abundances with the same value
of η (the barion-to-photon ratio) and this can be regarded as another
success of this model.
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Figure 6.4: Evolution of the nuclear fractions as a function of the baryon-
to-photon ratio η, which can be measured with high accuracy with the
CMB. (figure from WMAP Collaboration)
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Chapter 7 | Cosmic Rays

7.1 Introduction

Cosmic rays are particles of different species arriving on earth from the
cosmos. Usually cosmic rays (CR) are divided in primary and secondary.
Primary cosmic rays are fully ionized nuclei, protons or other particles ac-
celerated by some astrophysical sources and sent around in the Universe
and thus also in the direction of the Earth. Secondary CRs are produced
by primary CRs entering the atmosphere and interacting with atoms and
molecules.
The discovery of CRs is attributed to the austrian physicist Victor Hess in
1912. It was known that a kind of natural radioactivity existed also when
radioisotopes were not close to detectors. Hess, with a series of balloon
flights at altitudes beyond 5000 m showed that such radioactivity was in-
creasing, thus demonstrating its cosmic nature. Later, the discovery was
confirmed showing that CRs had a latitude dependence and detectors
put in time-coincidence and separated by more than 200 m were detect-
ing large showers caused by a primary CR.
The study of CRs allowed also the discovery of new subatomic particles
(e.g. pions and muons) and opened a new window on our Universe, be-
yond optical observations. In principle, CRs comprehend also neutrinos
but they will be treated separately in the next chapter.
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7.2 Cosmic Ray Flux

An important quantity for characterizing cosmic rays is the flux, defined
as

Φ(E) =
d2Φ

dEdΩ
(E) =

dN
A · T · dΩdE

[
# particles

cm2 sr s GeV

]
, (7.1)

which is the differential intensity of incoming particles per solid angle
and per energy. Cosmic rays arrive approximately isotropically on Earth
and in some cases it can be useful to integrate over all the angles consid-
ering the flux through a sphere: d2Φ/dEdΩ→ 4π dΦ/dE.
An experimentally interesting case is the one where cosmic rays from one
hemisphere reach a detection plane

Φpl(E) =
∫ d2Φ

dEdΩ
cos θdΩ

[
# particles
cm2 s GeV

]
. (7.2)

The angle θ is the angle between the vertical to the detector plane and the
direction of the incoming cosmic ray. If the cosmic rays have an isotropic
distribution, we can integrate over all the angles

ΦPl =
dΦ
dE

∫ 2π

0
dφ
∫ π/2

0
dθ sin θ cos θ = π

dΦ
dE

. (7.3)

7.3 Primary Cosmic Rays

Scientists study CRs since a century and this has lead to a rather precise
measurement of the energy spectrum of the primary CRs. The spectrum
extends from few MeV to the extremely high energy of about 1020 eV =
108 TeV. To make a comparison, the highest energies we realize in labora-
tory on Earth is of the order of 10 TeV. To give an idea about how CRs are
distributed in energy, we can consider the energy-integrated spectrum

F(ECR > E) = π
∫ ∞

E
dEΦPl

[
# particles

cm2 s

]
, (7.4)

where we integrate all the cosmic rays from a certain energy ECR onwards.
What we obtain is the number of particles per surface and per time. What
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it is observed is approximately

F(E > 1GeV = 109 eV) ∼ 1000 particles/s/m2

F(E > 1PeV = 1015 eV) ∼ 1 particle/year/m2

F(E > 100 EeV = 1020 eV) ∼ 1 particle/century/km2
(7.5)

The CRs spectrum is rather smooth with two main features: the so-called
“knee” and “ankle”. At those points, the energy spectrum changes slope
in a logarithmic plot (see Fig. 7.3).
In general, the energy spectrum can be decribed by a power-law

Φ(E) = KE−α , (7.6)

where the parameter α is the differential spectral index and K a normaliza-
tion constant. From a fit of the experimental data from the few-GeV to
the knee range, we have

K ∼ 3.01 ; α ∼ 2.7 . (7.7)

Different fits give slightly different numbers but the values are approxi-
mately the ones reported above and the data includes protons and also
heavier nuclei.
After the knee, the spectrum becomes steeper with α ∼ 3.1, while after
the ankle the spectrum flattens again. After the ankle, CRs are believed
to have an extra-galactic origin.
Often, the cosmic ray spectrum is presented as E2.6Φ for flattening the
first part and make the knee/ankle features more evident.
Concerning the low-energy region, below ∼4 GeV the largest source of
CRs is the Sun where they are produced by solar flares and are composed
mainly of protons, electrons and heavier nuclei. The solar activity is usu-
ally measured with neutron monitors. These detectors measure neutrons
produced in the atmosphere by solar CRs: the advantage is that neutrons
are not deviated by the Earth’s magnetic field and thus even low-energy
CRs can be detected. Neutron monitors clarly show the 11-year cycle of
solar activity which is thus correlated to CRs emission.

7.4 Secondary Cosmic Rays and Showers

Cosmic rays interact with the Earth’s atmosphere creating the so-called
extensive air showers (EAS). If we would like to detect these secondary
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Figure 7.1: Energy spectrum of the primary cosmic rays measured by var-
ious experiments. The two points where the slope changes are conven-
tionally called “knee” and “ankle”. For reference, the maximum energies
of the two most powerful proton accelerators are reported (Tevatron and
LHC). (Figure from W. Hanlon, U. Utah).

rays, we are effectively using the atmosphere as a calorimeter. In general,
EAS have electromagnetic and hadronic components. If the primary CR
is a photon, the shower is almost purely electromagnetic, so it is useful to
characterize the two types of showers separately.
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Figure 7.2: Evolution of an electromagnetic shower according to the ap-
proximate Heitler model. In this model, the evolution proceeds only
through bremstrahlung and pair creation at each step.

Electromagnetic Showers

These showers are entirely composed by photons, electrons and positrons.
The main processes multiplying the particles are bremsstrahlung and pair
production. The main features of the EM showers can be understood with
a simple model due to Heitler (1944), where the shower is divided in steps
where at each step a photon creates an e+e− pair or an electron radiates a
photon via bremsstrahlung. The whole process can be tought as a binary
tree and therefore it will have an exponential character. Until photons
have energies higher than about twice the electron mass (∼ 1 MeV), the
multiplication process continues.
In general, in an EM cascade, there are excitation/ionization (described

by a function K(E)) and bremstrahlung (∼ E/X0) components and the
change in energy is described by

− dE
dX
∼ K(E) +

E
X0

, (7.8)
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where X is measured in g·cm−2 and X0 is the so-called radiation lenght
and it is dependent from the material where the cascade develops. In an
electromagnetic EAS we can neglect the ionization part (K ∼ 0) such that
the solution of Eq. 7.8 becomes

E(X) = E0e−X/X0 , (7.9)

which describes the energy of the single electrons. Since after each bremsstrahlung/pair
creation step we assume approximately that the energy drops its value by
one half,

E(X = d)
E0

= e
−X0 ln 2

X0 =
1
2

, (7.10)

and the single steps have a radiation length of d = X0 · ln 2. Following
this model, after k steps, we have N = 2k particles with energy E0/2k and
the process continues until the critical energy EC is reached after k = k∗

steps. The critical energy is the energy at which excitation/ionization
processes have the same rate as radiation processes. The so-called shower
maximum, where the maximum of particles is produced, is reached at

Nmax = 2k∗ ∼ E0

Ec
(7.11)

In air we have X0 ∼ 37 g·cm−2 and EC ∼ 86 MeV. For example, using the
previous approximate formulas, a 10 TeV photon entering the atmosphere
would create on average about 105 electrons.
We can now calculate at which depth in the atmosphere (in g·cm−2) Xmax
the shower maximum occurs. Defining Xi the depth at which the shower
starts we have

Xmax = Xi + k∗ · d = Xi + k∗X0 · ln 2 = Xi + X0

(
E0

EC

)
. (7.12)

The shower development is usually simulated using Monte Carlo sim-
ulations, which roughly confirm the simplified Heitler model. One of
the main differences is that the Heitler model overpredict the number of
particles, assuming that the electron/photon ratio is 2, while in reality is
closer to 1/6. The discrepancy is explaning by the fact that during brem-
strahlung more than one photon is emitted on average.
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Figure 7.3: Schematic evolution of an hadronic shower.

Hadronic Showers

CRs initiated by protons or heavy nuclei create hadronic shower in the at-
mosphere. The number of charged particles in such a shower with initial
energy E0 can be approximated by

n ∝ E0.2
0 . (7.13)

The evolution of an hadronic shower is more complex than that of an
EM shower, at least because they can contain EM showers. Protons (or
nuclei) entering the atmosphere and colliding with nuclei create mainly
charged and neutral pions π±, π0. The main decay mode of the neutral
pion is π → γγ and the produced γ-rays can start sub-electromagnetic
showers. Charged pions decay mainly into muons: π → µν. If the energy
is sufficient, also kaons can be created, which produce further pions and
muons. Fig. 7.3 shows schematically how an hadronc shower develops.
The balance between hadronic and electromagnetic components in terms
of total hadronic energy Eh and electromagnetic energy EEM after k steps
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is given approximately by

Eh =

(
2
3

)k
E0 ; EEM = E0 − Eh . (7.14)

Hadronic showes induced by nuclei can be approximately treated with a
superposition model, where a nucleus with mass number A is treated as
A incoming protons.
Extended showers in the atmosphere have to be ultimately treated with
simulations, given their complexity of the large amount of particles of
different types, decays, interactions, and wide energy range involved.

7.5 Diffusion

After the production of CRs at astrophysical sites which are also respon-
sible for their acceleration, CRs diffuse throughout the galaxy (disregard-
ing for now extragalactic CRs). As CRs travel through the galaxy, they
are bent by the galactic magnetic field and interact with the interstellar
medium: these physics effects determine the property of the CRs which
we measure on Earth. For example, the galactic magnetic field is re-
sponsible for “randomizing” the CRs such that we measure an isotropic
distribution for their incoming direction.
Information about the diffusion of CRs in the galaxy can be gathered
studying their interaction with the interstellar medium. The medium is
mainly constituted by hydrogen and nuclei present in the CRs can inter-
act with it. These nuclear reactions can give rise to light nuclei like B, Be,
and Li. These light nuclei are poorly present in our solar system while
they are more abundant in CRs: why?
Heavy nuclei are created by reactions in the stellar environment up to the
Fe nucleus. Stars cannot create nuclei heavier than Fe by fusion since it
is not anymore energetically convenient. Nuclei heavier than Fe are be-
lieved to be created by supernova explosions (or, as recently discovered,
by neutron star mergers). These highly energetic events project heavy
nuclei through the galaxy and they interact with the interstellar medium
producing light nuclei. These light nuclei are not particularly present in
the solar system, since they act as catalyzers in stellar reactions and are
not directly produced, thus their abundance does not grow due to star
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Figure 7.4: Galactic cosmic rays elemental abundance compared to the so-
lar system’s one. Note the drop in abundance for the light elements. Stel-
lar processes do not produce them, while they are produced by fragmen-
tation of heavier nuclei in the interstellar medium (Figure from: A. Pacini,
Rev. Bras. Ensino Fis. 39, 1, (2017)).

burning.
What is possible to do, is to measure the B, Be, and Li abundances in our
planetary system and look at their ratio with respect to CRs. From this
number we can deduce interesting informations about the propagation of
CRs in the galaxy.
Summarizing: light elements are created by the fragmentation of heavier
elements present in CRs. The heavy elements are present in CRs because
they were produced e.g. in supernova explosions or other astrophysical
sites. The light elements are not produced in stars since there they act
just as catalyzers. Measuring the abundance of light elements in CRs and
in the Solar system we can infer properties about CRs.
In Fig. 7.5 the abundance of nuclear species in galactic cosmic rays and

in the solar system are compared.

65



CHAPTER 7. COSMIC RAYS

In order to study how CRs diffuse and create an excess of light elements,
we have to introduce few concepts.
The probability of a nuclear reaction to occur is characterized by its cross
section σ (in units of cm2). If one projectile goes through a medium, its
mean free path λ (the path in cm travelled until an interaction occurs) is

λ =
1

nσ
, (7.15)

where n is the volume density (in units of particles/cm3). Since the num-
ber density n depends on the density ρ of the medium, the relevant quan-
tity is the nuclear interaction length (in units of g/cm2)

λI =
ρ

nσ
≈

Amp

σ
(7.16)

where mp is the proton mass and A the nucleus mass number. The sim-
plest model of the nuclear cross section is a rough estimation of the nu-
cleus’ cross section area considering it a sphere with radius R: σ = πR2.
If the volume is proportinal to the number of nucleons A, then R ∼ rA1/3

where r ∼ 1.2× 10−13 cm is the radius of one nucleon.
CRs are composed mainly by protons and medium-mass nuclei. We in-
troduce now the labels L for quantities relative to light nuclei (B, Be, and
Li) and M for medium-mass nuclei (mainly C,N,O). The reaction we are
interested in is

M + p→ L + X , (7.17)

where p is a proton and X are other nuclear fragments. The relevant
variable in these interactions is the path length ξ

ξ = ρISM · x , (7.18)

where ρISM is the density of the interstellar medium and x the path trav-
elled by the CR. From experimental measurements, we can calculate the
average cross sections for the light and medium-mass nuclei against pro-
tons: σM ∼ 280 mb and σL ∼ 200 mb.
Now we can write an equation describing how the number of nuclei M
changes in time (due to interactions with the medium)

dNM

dξ
= − 1

λM
NM(ξ) , (7.19)
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where λM is the interaction length defined in Eq. 7.16. The number of
light nuclei varies instead according to

dNL

dξ
=

PLM

λM
NM −

1
λL

NL(ξ) , (7.20)

where PLM ∼ 0.28 is the average probability that M fragments into N. The
average is calculated from the average nuclear cross sections of B, Be, Li,
C, N, and O. From the cross sections we have also λM ∼ 6 g cm−2 and
λL ∼ 8.4 g cm−2.
The right-hand side of the last equation has two terms. The first one
is a source term describing how N are created, while the second term
is an attenuation term, describing how L can be destroyed by further
interactions. The Eqs. 7.19 and 7.20 represent a coupled system of differ-
ential equations that we have to solve. Eq. 7.19 gives directly the solution
NM(ξ) = N0

Me−ξ/λM . Replacing this solution in Eq. 7.20 and multiplying
by eξ/λL one can recognize a derivative of the product of two functions:

d
dξ

(
NL · eξ/λL

)
=

PLM

λM
N0

Meξ/λL−ξ/λM . (7.21)

Using as ansatz the form e−ξ/λL−ξ/λM one finds the solution

NL(ξ) = N0
M ·

PLM

λM

λMλL

λL − λM
e−ξ/λL−ξ/λM . (7.22)

Looking at the evolution of NL and NM as a function of ξ, we can calcu-
late the point ξ = ξesc where the experimental value NL/NM = 0.25 is
reproduced (looking at this ratio, the value of N0

M is not relevant). The
value ξesc is called average escape length and it is linked to the distance xesc
a CR can travel before exiting our galaxy:

xesc =
ξesc

ρISM

5 g/cm2

1.6× 10−24g cm−3 = 1025 cm ∼ 3 Mpc . (7.23)

Our galaxy has a radius of ∼15 kpc and a thicknes of ∼300 pc: this means
that the CR can travel really a large distance circling in the galaxy (due to
the galactic magnetic fields) before exiting it. Assuming a CR travelling
at the speed of light, we can also calculate an average escape time:

tesc =
xesc

c
∼ 3× 1014s = 107y . (7.24)
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Figure 7.5: Evolution of the medium-mass (black line) and light mass nu-
clei (red line) abundances and their ratio (dashed black line) as a function
of ξ = x · ρISM. The initial medium-mass abundance is set arbitrarily to 1
and decreases due to the interactions with the interstellar medium (ISM).
The light-mass abundance increases due to fragmentation of heavier nu-
clei agaist the hydrogen of the ISM. The measured ratio of about 0.25
corresponds to ξ ∼ 5 g/cm2.

From the above numbers, we see that the galaxy is rather efficient in
keeping the CRs confined in its volume and their motion can be seen as a
kind of random walk. Since the propagation time is so long with respect
to their creation time, these observations justify a separate treatment of
propagation and creation of the CRs.

7.6 Acceleration Mechanisms

CRs have a non-thermal distribution, so they cannot be considered as
particles escaped from a thermal astrophysical environment: CRs should
have undergone a process of acceleration. A theory for CR acceleration
must explain a multitude of features: the E−a dependence of the flux, the
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value a ∼ 2.7 for protons and nuclei before the knee, a ∼ 3 above the
knee, the CR composition, and the flattening after the ankle. The first
ideas about possible acceleration mechanisms were proposed by Fermi,
which imagined the particles accelerated by their interactions with gas
clouds moving at high speed because of an (maybe explosive) astrophys-
ical event. Before looking at the acceleration mechanisms, we have to
investigate what can “reflect” a charged particle: it turns out that a non-
uniform magnetic field (as fields present in the vicinity of astrophysical
objects) can indeed act as a “mirror”.

7.6.1 Magnetic Mirrors

If a magnetic field is spacially not homogeneous, an electric field arises,
as known from Faraday’s law

∇× E = −1
c

∂B
∂t

. (7.25)

The electric field can modify the energy K associated to the radial motion
of the particle:

∆K = ∆
(

1
2

mv2
⊥

)
=
∮

qE · dl = q
∮
∇× E · dS = −q

c

∮
−∂B

∂t
· dS ,

(7.26)
where the surface integral (on the surface S) is performed on the approx-
imate circular orbit of radius r the particle induced by the magnetic field.
Considering the Larmor period TL = 2π/ω (ω = qB/mc is the Larmor
frequency) the time derivative of the magnetic field can be approximated
by

∂B
∂t
∼ ∆B

TL
. (7.27)

Reinserting in Eq. 7.26 we have

∆K =
q
c

∆B
ω

2π
(πr2) =

(
1
2

mv2
⊥

)
∆B
B

= K
∆B
B

. (7.28)

Rearranging the first and last terms of the last equation

∆K
K

=
∆B
B

⇒ ∆
[

ln
(

K
B

)]
⇒ K

B
= const. . (7.29)
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Figure 7.6: Schematic representation of a magnetic mirror. A spacially in-
homogeneous magnetic field B can reflect the motion of a particle through
the force of an induced electric field.

The last result proves that changes in B induce changes in K. Because
of conservation of energy, if the transverse energy K changes, also the
energy associated to the parallel component of the motion must change.
For example, if B increases, also K increases, and therefore, the energy in
the parallel component must decrease: this effect in in opposition to the
particle motion. Actually, if the field B increases enough, the particle can
even be “reflected” and we have an effective magnetic mirror.
Another way to see this is the following. Defining θ as the angle between
the particle velocity and the magnetic field we have v⊥ = v sin θ. Since v
is assumed constant, from Eq. 7.29 we can conclude that

sin2 θ

B
= const. ⇒ sin θ = sin θ0

√
B
B0

, (7.30)

which says that the angle can increase up to π/2: after that, the particle
must reverse its motion. A similar mechanism traps charged particles in
the van Allen radiation belts around the Earth.
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Figure 7.7: Schematic representation of the second order (stochastic) CR
acceleration mechanism (Figure from N. Murphy, Harvard-Smithsonian
Center for Astrophysics).

7.6.2 Second Order Fermi Acceleration

This is the (historically) first acceleration mechanism devised by Fermi in
1949 and why it is called “second order” will be clear towards the end
of the discussion. Fermi imagined that a particle with velocity v could
collide with a gas cloud moving with speed U and being reflected for ex-
ample through the magnetic mirror mechanism. Modeling the scattering
as elastic, the new velocity of the particle after the collision is

v′ =
(m−M)v + 2mM

m + M
, (7.31)

where m and M are the masses of the particle and the cloud, respectively.
Assuming M � m, the last formula reduces to v′ ≈ −v ± 2U. If the
cloud and the particle move towards each other, v′ = −v − 2U, while
if the particle and the cloud are moving in the same direction we have
v′ = −v + 2U. In both cases, the particle reverses its motion. The kinetic
energies E and E’ before and after the collisions are

E =
1
2

mv2 ; E′ =
1
2

m(−v± 2|U|)2 . (7.32)

The kinetic energy variation ∆E = E′ − E at first order in U/v is

∆E ≈ ±4
U
v

E , (7.33)

where the approximation is justified by assuming v � U. This acceler-
ation mechanism is “stochastic” in the sense that we assume that clouds
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are present in both directions of the particle and after one collision, more
of them happen against different clouds (see Fig 7.7). With such random
distribution of clouds, we can estimate an average collision rate f

f1 =
v + U

l
;

v−U
l

, (7.34)

where the indices 1,2 refer to the two collision cases (cloud moving agaist
or away from the particle) and l is the mean free path travelled by the
particle before a collision. We can now estimate the average change of
kinetic energy with time

∆E
∆t

= f1∆E1 + f2∆E2 =

(
8U2

lv

)
E . (7.35)

From the last equation, we can identify a characteristic time τ = lv/(8U2)
The fact that the cloud velocity U appears at second order gives the name
“second order acceleration” to this process. The coefficient 8 stems from
having considered an unidimensional problem. The full 3-dimensional
treatment reduces the factor to 2.
The described collisions with interstellar clouds for accelerating CRs is
quite inefficient, as soon realized by Fermi himself. Since interstellar
clouds velocities in our galaxy are estimated to be small, of the order
of U ∼ 106 cm/s, and l ∼ 0.1 pc, as estimated by the size of typical
magnetic inhomogeneities in the interstellar medium, we have as typical
time

t ∼ l
c
=

3× 1017cm
3× 1010cm/s

= 107s , (7.36)

which implies only few collisions per year. The time constant τ in Eq. 7.35

τ =
lv

8U2 , (7.37)

is estimated to be τ ≈ 109 years: this means that an appreciable CR
acceleration can be achieved only on cosmological scales. The latter con-
siderations lead Fermi to devise a different mechanism, described in the
next section.
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7.6.3 First Order Fermi Acceleration
In 1954 Fermi devised a more efficient mechanism for obtaining particle
acceleration, which is based on the presence of shock waves in astrophys-
ical environments.
Shock waves have typically magnetic inhomogeneities both preceding
and following them. If a charged particle travels through the shock wave
it encounters a moving change in the magnetic field: this can reflect it
back through the shock front at increased velocity. A similar process oc-
curs on the other side of the shock front and the particle will gain energy
again. These multiple reflections between the upstream and downstream
parts of the shock wave can effectively increase the particle’s energy.
Let us consider the 4-momentum of the particle (head-on collision in the
direction x with a front of velocity U) in the observer’s reference frame
(E, px) and the the wave’s reference frame (E′, p′x) where through the
Lorentz transformations we have

E′ = γ(E + Upx) ; p′x = γ(px +
U
c

E) . (7.38)

If the collision is elastic, the y and z components are conserved and E →
E′, px → −px.
In the reference frame of the observer, the energy is obtained by inverting
Eq. 7.38: E = γ(E′ −Up′x) and in the same frame, after the collision, the
energy is

E∗ = γ[E′ −U(−p′x)] = γ

[
γ(E + Upx) + Uγ(px +

U
c2 E)

]
. (7.39)

Condidering polar coordinates, px = mvγ cos θ and using E = mc2γ

px

E
=

v
c2 cos θ . (7.40)

Using the last expression in Eq. 7.39 we have

E∗ = γ2E
[

1 + 2U
v cos θ

c2 +
U2

c2

]
. (7.41)

Using now the approximation γ2 = 1/[1− (U/c)2] ≈ 1 + (U/c)2, up to
second order the energy is

E∗ ≈ E
[

1 + 2U
v cos θ

c2 + 2
U2

c2

]
. (7.42)
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The energy gain is ∆E = E∗ − E. When averaging over all the direc-
tions, the cos θ term is zero, since energy is gained with head-on colli-
sions cos θ > 0 and lost in the other case with cos θ < 0. In this averaged
case, ∆E ≈ 2E(U/c)2, which is a second-order effect in agreement with
the Fermi acceleration of the previous section. In the shock-wave case, we
have to consider only head-on collisions. Assuming further U/c� 1 and
v ∼ c:

∆E = 2E
U cos θ

c
; E∗ = E + 2E

U
c

cos θ . (7.43)

Remembering that the average of a quantity x distributed like f (x) is
〈x〉 =

∫
x f (x)dx/

∫
f (x)dx, assuming only head-on collisions (cos θ > 0)

and integrating over all the angles dΩ = cos θdθdφ with f (x) given by
Eq. 7.43

〈cos θ〉 =
∫

cos3 θdθdφ∫
cos θdθdφ

=
2
3

, (7.44)

and therefore

∆E =
4E
3

U cos θ

c
. (7.45)

In this case, the cloud velocity appears at first order: this is the difference
between a stochastic mechanism like the second-order one, and a head-on
collisions only mechanism, which is more efficient.
It is interesting to note, that the first-order acceleration mechanism can
also be obtained considering only “ f1”-type collisions in the second order
mechanism (see Eq. 7.35):

∆E
∆t

= f1∆E1 = 4
U
v

E
U + v

l
≈ 4

U
l

E =
E

τF1
, (7.46)

where we used v ∼ c � U and we define τF1 as the characteristic time
of the first order acceleration mechanism. By comparison with the time
obtained for the second-order mechanism, that we call now τF2 we have
the relation

τF1 =
l

4U
=

2U
c

τF2 . (7.47)

The really interesting feature of the first-order Fermi mechanism, is its
ability to reproduce the correct spectral index for the CR spectrum.
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7.7 Supernovae as Sources of Shock Waves

Very massive stars (with masses exceeding about 8 solar masses) un-
dergo a core collapse, becoming Type II supernovae. Nuclear fusion can
counteract the gravitational force up to the systhesis of iron. After that,
no more exothermic fusion reactions are energetically allowed and the
star collapses. The compression induced by the collapse forces electrons
to combine with protons producing neutrons and neutrinos. The in-
falling material in the outer layers of the stars, when reaching the neutron
core bounches back, producing a shock wave (the supernova explosion).
About 99% of the energy is emitted as neutrinos, while 1% is contained
in the shock wave and composed by other material. A 10-solar masses su-
pernova (MSN) weights about 2× 1034 g which translate in a gravitational
energy of ∼ 2× 1053 erg. Considering 1% of the gravitational energy, the
the kinetic energy of a shock wave would be K ∼ 2× 1051 erg. With the
last number, we can estimate the speed of the wave

U ≈

√
2K

MSN
=

√
4× 1051

2× 1034 ≈ 5× 108 cm/s⇒ U
c
≈ 2× 10−2 . (7.48)

The last result shows that the wave is non-relativistic, but the velocity is
still much larger than typical velocities of the interstellar medium.
As the wave expands roughly spherically, its density ρW diminishes: the
wave will stop when its density will be comparable to the interstellar
medium one ρISM ∼ 1.6× 10−24 g/cm3 (about 1 proton per cm3):

ρW =
MSN

4
3 πR3

W
= ρISM (7.49)

From the last condition, we can extract the radius of the shock wave RW

RW =

(
3×MSN

4πρISM

)1/3

=

(
6× 1034

4π · 1.6× 10−24

)1/3

≈ 1.4× 1019cm = 5 pc .

(7.50)
Wave maximum radius and velocity (assuming it constant) allow the es-
timation of the time TW during which particles can be accelerated

TW =
RW

U
=

1.4× 1019cm
3× 108cm/s

≈ 3× 1010s ≈ 103 y . (7.51)
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Figure 7.8: Correlation between Z and the cosmic ray energy and how it
contributes to the creation of the knee effect in the CR flux.

A supernova can accelerate particles during a period of the order of 1000
years, while, as calculated before, CRs have a galactic escape time of the
order of ten million years: this means that supernova explosions actively
fill the galaxy with CRs.
As a side-note, it is worth noting that the average distance between stars
in the galaxy is of the order O(1 pc), which fits with the estimated maxi-
mum radius of supernova explosions.

7.8 The Knee

The origin of the knee is still debated but there are some observations
which can explain it. We start estimating the gyroradius of a proton in
the magnetic field B of the galaxy. Equating magnetic force to centripetal
force

qBv = m
v2

R
⇒ R =

mv
qB

. (7.52)
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The same quantity, taking into account relativity is

R =
mvγ

qB
=

γmc2 v
c

qB
= 3.3

γmc2

GeV
v
c

q
e

B
T

. (7.53)

The last expression in GeV/Tesla units is very common in accelerator
physics and v is the orthogonal component of the velocity with respect to
the motion.
Considering a mean galactic magnetic field of 10−10 T, we can evaluate
the gyroradius at the knee energy ∼ 1015 eV for a proton with v ∼ c,
obtaining

R ∼ 1016 m , (7.54)

which is of the same order of our galactic spiral arm. Energetic events
after the knee can thus be due to some powerful sources near us.
Another explanation can be the inefficiency of the galaxy (due to its mag-
netic field) to confine CRs with energies larger than the knee one.
Another explanation for the knee, or at least, a contribution to it, is the
correlation between energy and nuclear charge. To see this, we have
first to estimate the maximum CR energy achievable by the accelera-
tion mechanisms. Recalling the result of the first order Fermi mechanism
〈∆E〉 = 4U/(3c)〈E〉 = ηE, we can estimate

dE
dt
≈ ηE

Tacc
, (7.55)

where Tacc is the typical time between two successive accelerations, which
we have to estimate. The typical size of the confinement region around
the shock wave is given by the Larmor radius rL = E/(ZeB). If we
consider the shock velocity U, we have Tacc ≈ rL/U. Inserting in Eq. 7.55,
we have

dE
dt
≈ ηZeBU . (7.56)

In the following we approximate further η ≈ U/c. The maximum energy
a particle can obtain is dE/dt times the acceleration time TW we estimated
before in Eq. 7.51:

Emax ≈
dE
dt

TW = ηZeBRW ≈
ZeBRWU

c
. (7.57)
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For a proton and a galactic magnetic field of 4× 10−6 G we can roughly
estimate

Emax =
(e = 4.8× 10−10) · (B = 4× 10−6) · (U

c = 2× 10−2) · (1.4× 1019) · Z
≈ Z · 300 TeV .

(7.58)
We showed that the maximum energy depends from the the CR particle
charge: a nucleus can obtain a higher energy than a proton. There is
some evidence that indeed higher energy CRs have higher mass. The
correlation between E and Z in forming the knee is sketched in Fig 7.8.

7.9 After the Knee

If we would like to say something about CRs after the knee, we have to
find stronger acceleration mechanisms (or stronger astrophysical sources).
Let’s try first to understand what is the maximum energy of a particle in
the proximity of an astrophysical object with a very strong rotating mag-
netic field, like a pulsar, for example.
Let’s start with estimating the power P (energy per unit time) needed for
keeping the present level of CRs above an energy ECR in the galaxy

P(> ECR) =
ρCR ·VG

τesc(> ECR)
, (7.59)

where VG is the galactic volume, τesc is the escape time (or the time the
CR remains in the galaxy), and ρCR is the CR energy density in the galaxy.
The energy density can be estimated using the integral of the CR spec-
trum above the knee, which is approximately given by

Φ(> E) ≈ 2.2× 10−10
(

E
1 PeV

)−2.06 parts.
cm2 s sr

, (7.60)

integrating the experimental data: ρCR = (4π/c)
∫

Φ(> E)dE. The es-
cape time is estimated to be

τ ∼ 2.5× 105 ( E
1 TeV

)−0.13
y for 1 < E < 5× 103 TeV

τ ∼ 0.8× 105 ( E
5 PeV

)−0.53
y for E > 5× 103 TeV .

(7.61)
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Taking now a galactic volume V ∼ 6× 1066 cm3, Eq. 7.60, and Eq. 7.61 we
can estimate

P(> ECR) ≈
2× 1039 erg.s for E > 100 TeV
2× 1038 erg.s for E > 1 PeV
5× 1037 erg.s for E > 10 PeV

. (7.62)

The conclusion is that the power needed for accelerating particles at en-
ergies above the knee is about 3 orders of magnitude smaller than the
power contained in the whole CR spectrum. This means that even few
very powerful sources within our galaxy can be relevant in explaining
these high-energy CRs: the problem is to find them!

7.10 Can be a (binary) pulsar a candidate source
for high-energy cosmic rays?

A pulsar, with its rapidly rotating intense magnetic field, can be a good
candidate for CRs beyond the knee. We can try to estimate what is the
maximum energy a particle can obtain if accelerated by a typical pulsar.
The magnetic field B of a pulsar is not aligned with its angular momen-
tum vector thus the rapid rotation of the magnetic field vector produces
an electric field E , which can be estimated from Faraday’s law

E
L
=

1
c

dB
dt

, (7.63)

where the line integral is approximated with the typical lenght L. In order
to estimate the maximum energy Emax, we can take L = RP where RP is
the pulsar radius

Emax =
∫

eZEdx =
∫

eZ
L
c

dB
dt

dx =
e
c

ZRPBωPRP , (7.64)

where ωP is the rotation angular velocity. Considering a typical radius of
10 km, a magnetic field of 1011 Gauss, and a proton as accelerated particle
near the surface of the pulsar rotating at the angular velocity of the Crab
nebula one (ω ∼ 60π/s) we obtain

Emax ≈ 3× 103 PeV . (7.65)
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Figure 7.9: Simulation of the propagation of CRs through the galactic
magnetic fields for different CR energies. In the rightmost panel, particles
above 1020 eV propagate almost on straight paths (from T. Ebisuzaki).

The obtained energy is very high, and hints towards the possibility that
pulsars are good candidate sources of very high-energy cosmic rays be-
yond the knee.
Pulsars, neutron stars or balck holes can be present in binary systems.
These compact objects attract material from the companion star: this ma-
terial spirals towards the compact object and emits electromagnetic radia-
tion and particles. Also in such systems, an estimate similar to the one we
performed above leads to accelerations up to O(103) PeV, therefore they
are other candidates for high-energy CRs.

7.11 Ultra-High Energy Cosmic Rays

CRs above ∼ 1018 eV = 103 PeV are usually called Ultra-High Energy
Cosmic Rays (UHECR). Looking at the CR spectrum, UHECRs form the
ankle energy region. In the previous section we have seen that CRs up to
the ankle can in priciple be created by compact astrophysical objects with
intense rotating magnetic fields. CRs with even high energies must have
extra-galactic origin, since their Larmor radius is very large and we do
not measure any anisotropy in their distribution.
Expressing the Larmor radius in “galactic” units we have

rL = 110 kpc
1
Z

(
µG
B

)
·
(

E
1020eV

)
, (7.66)
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from which we can calculate the approximate angular deflection for a
particle after travelling a distance d

θ ≈ d
rL
≈ 0.5◦Z

(
1020eV

E

)
·
(

d
kpc

)
·
(

B
µG

)
. (7.67)

The last formula shows that for an UHECR proton (Z=1), the devia-
tion is within few degrees. This estimation is made more concrete in
Fig. 7.9, where simulated CR trajectories for different energies are shown:
if UHECR were produced within the galaxy from powerful sources, we
should have detected an anisotropy in their distribution. Since the anisotropy
is not present in the data, UHECRs should come from extra-galactic
sources.
The latter considerations move our attention to extra-galactic magnetic
fields. These fields are poorly known: the current data comes from Fara-
day rotation measurements in galaxy clusters where synchrotron radia-
tion is emitted. These measuremets place extra-galactic magnetic fields
in the 0.1–1 µG region.

7.12 The GZK Effect

In 1966 K. Greisen, V. Kuzmin, and G. Zatsepin independently studied
a new effect UHECRs should undergo. This effect was named “GZK
effect” after them and it has to do with the interaction of UHECRs with
the cosmic microwave background (CMB).
The prediction of GZK is that proton CRs will be strongly attenuated after
an energy

EGZK ∼ 5× 1019 eV = 5× 104 PeV , (7.68)

while nuclei with mass A will be attenuated after an energy A · EGZK.
This cut-off energy arises because of the interaction of CRs with the CMB
photons:

p+γ→ ∆+ → π+n ( or π0p ) . (7.69)

Neutral pions futher decay as π0 → γγ, charged pions as π± → µ±νµ(ν̄µ),
and neutrons as n→ pe−ν̄e.
In the final state of the GZK reaction there is always a proton, although it
lost part of its energy. Another result of the process is the production of
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high-energy photons and neutrinos.
The ∆-resonance has mass m∆ = 1232 MeV. If the initial four-vectors of
the proton and the photon are pp = (Ep, pp) and pγ = (Eγ, pγ), in order
to excite the resonance the condition is

s = (pp + pγ)
2 = m2

∆ ⇒ m2
p + 2EpEγ − 2pp · pγ = m∆ . (7.70)

For a photon |pγ| = Eγ (c=1) and at high energy |pp| ≈ Ep and the last
equation becomes

Ep =
m2

∆ −m2
p

2Eγ(1− cos θ)
. (7.71)

Considering the minimum possible value of Ep, which happens at θ = π

and taking the average CMB photon energy Eγ ∼ 1.2 · 10−3 eV we have
the estimate

Ep = 1.2× 1020 eV . (7.72)

The GZK effect starts to become significant at the slightly lower energy
quoted at the beginning of the section, but the estimate is quite close: this
happens because protons start to interact already with the high-energy
tail of the CMB spectrum.
The energy loss of the protons per interaction can be estimated noting
that there is a pion in all the final states and thus

y =
∆Ep

E
∼ mπ

mp
∼ 0.1 . (7.73)

The last result tells us that protons loose about 10% of their energy after
each interaction.
We can now try to calculate the energy loss length λ = 1/(y · σ · n), where
σ = 250µb is the pγ cross section and n ∼ 400/cm3 is the CMB photon
density:

λ =
1

0.1 · 250× 10−30 · 400
= 1026 cm = 30 Mpc . (7.74)

The last result tells us that protons produced at distances larger than
about 30 Mpc should arrive on Earth with an energy E < EGZK ∼ 1020 eV.
The obtained distance corresponds roughly to the closest galaxy cluster
(the Virgo cluster) and we cannot receive information through CRs from
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sources which are farer than that.
As last comment, in the case of nuclei with mass number A and energy E,
the photon interacts with a proton inside them: if we consider therefore
the proton energy Ep = E/A we arrive at a GZK cutoff which is higher
by a factor A.
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Chapter 8 | The Gamma Ray Sky

Gamma rays are an important tool for looking at the sky. Since they are
neutral, they are not deviated by magnetic fields and thus observing them
we can “point” directly to their sources. The latter advantage is shared
also by neutrinos.
Gamma rays are produced by a large variety of astrophysical sources and
by interactions of CRs with the interstellar medium.
After initial experiments on earth, real fundamental advancement in this
field came with the launch of satellites like Swift (2004), AGILE (2007),
and the latest Fermi-LAT mission (2008). The measurement of high-
energy gamma rays implies the use of particle physics technology for
the detectors mounted on the satellites.
Satellites can observe the sky in the multi-GeV range but since they are
limited in weight, it is not possible to mount detectors able to go to higher
energies. A new method for observing the gamma ray sky in the TeV
range is to use ground-based experimens and optical techniques which
are able to see Cherenkov light induced by high-energy gamma rays.

8.1 Hadronic Sources

The presence of high-energy protons can lead to gamma-ray production
through hadronic mechanisms. In particular, proton-proton collisions can
produce a variety of hadrons: p + p→ p, n, π±, π0, K±, K0, ....
The decay of neutral kaons then produces gamma rays, like for example
π0 → γγ. A second mechanism is photoproduction (like in the GZK ef-
fect case): p + γ→ ∆+ → π+(π0) + n(p).
The p + p process cross section is about 100 times larger than photopro-
duction, thus it is also the relevant gamma production mechanism.
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We can now estimate one of the most relevant components of gamma
production: the neutral pion decay. From π0 → γγ, the energy of the
photons in the center of mass (*) is

E∗γ =
1
2

mπc2 = 67.5 MeV , (8.1)

and the momenta have opposite directions. Since the pion has spin zero,
the angular gamma distribution is uniform and dN/dΩ∗ = 1/4π.
Moving now to the laboratory system, the pion has a boost described by
β = |pπ|/Eπ and Γ = Eπ/mπ:

Eγ = ΓE∗γ + βΓp∗γ cos θ∗ ⇒ Eγ =
Eπ

2
(1 + β cos θ∗) , (8.2)

where we used p∗γ = E∗γ and E∗γ = mπ/2. Differentiating the last equation

dEγ = βΓp∗γd cos θ∗ ⇒ d cos θ∗

dEγ
=

1
βΓE∗γ

. (8.3)

We can now calculate the differential cross section in energy

dN
dEγ

=
dN

d cos θ∗
d cos θ∗

dEγ
=

1
2

1
βΓp∗γ

. (8.4)

Depending on the emission angle, Eγ can range from Emin = Eπ
2 (1− β)

to Emax = Eπ
2 (1 + β): in this range the photon emission probability with

energy Eγ is the same, since the cross section is constant.
Since the emission probability is constant and the spectrum of acceler-
ated protons scales as 1/E2, if we represent photon emission in a plot of
E2

γdNγ/dEγ as a function of the energy, we should see a flat distribution.
This is indeed what is observed: a steep rise at about Eγ = 200 MeV and
then a flat distribution. This feature in gamma spectra is known as the
“pion bump” (see Fig. 8.1).

8.2 Leptonic Sources

The model of photon emission through electrons/positrons is called SSC,
or Self-Synchrotron Compton mechanism. The idea is that electrons in
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Figure 8.1: Pion bump detected by the Fermi-LAT satellite in the direction
of two different supernova remnants.

strong magnetic fields emit synchrotron radiation. This radiation is usu-
ally in the infrared up to the X-ray band (see Fig. 8.2). The energy loss
rate due to synchrotron radiation is described by

− dE
dt

=
4
3

σTcρBΓ2 , (8.5)

where ρB = B2/8π is the magnetic energy density, Γ = Ee/me the electron
boost factor, and

σT =
8πr2

e
3

=
8πe2

3m2
e c4 ≈ 0.66 · 10−24cm2 , (8.6)

is the Thomson cross section which was re-expressed using the classical
electron radius re = e2/(mec2). The Thomas cross-section describes the
scattering of photons on charged particles and can be viewed as an ap-
proximation to the Compton cross section.
Further electrons can hit the synchrotron photons and through inverse-
Compton scattering they can be pushed into the gamma band.
The energy loss of inverse Compton scattering electrons against a “cloud”
of photons can be described by

− dE
dt
∼ 4

3
σTcρradΓ2 , (8.7)

where ρrad is the energy density of the photon field and the approxima-
tion Γε � mec2 was used (ε is the average photon energy). Note the
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formal similarity between Eq. 8.5 and Eq. 8.7: it stems from the similarity
of the two processes which are based on an energy loss due to the pres-
ence of an energy density. In one case it is due to photons, and in the
other one is a magnetic field.
The inverse Compton scattering energy spectrum is instead

E2
γ

dNγ

dEγ
∼ Eγ , (8.8)

which is consistent with observations (see Fig. 8.2).
For having an idea about how much photons can gain energy through
this mechanism, calculations show that IR photons (galaxies produce a
large quantity of them) can be pushed into the optical (eV) frequency
range, while optical photons can be pushed into the X-ray band (keV en-
ergy range) up to the gamma band (MeV range).
Synchrotron radiation and inverse Compton scattering are strongly cor-
related, since e.g. if one process increases, also the other one increases.
Using Eqs. 8.5 and Eq. 8.7 we can write

(dE/dt)iCS

(dE/dt)sync
=

ρrad
ρB

. (8.9)

The last formula shows that with X-ray/Gamma-ray observations we
can infer informations about the magnetic fields and the photon den-
sity. In practice, numerical simulations are used for describing the mea-
sured photon spectrum. An example of observations carried out with the
gamma-ray satellite Fermi-LAT is showed in Fig. 8.3.

8.3 The 511 keV Line

A very important gamma line in astrophysical spectroscopy is the 511 keV
line resulting from the annihilation process

e+e− → γγ , (8.10)

where two photons are produced, each with an energy equal to the rest-
mass of the electron (or positron) me = 0.511 MeV.
A strong 511 line can be emitted for example in the surroundings of a
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Figure 8.2: Schematic representation of the main characteristics of the
gamma spectrum. Synchrotron emission starts at very low energies pro-
ducing photons at the astrophysical site (organce shaded spectrum). Pro-
ton interactions generate mesons which decay into photons: the spec-
trum for these processes is dominated by the “pion bump” (dashed
blue line). Synchrotron photons constitute targets for high-energy elec-
trons, which by inverse Compton scattering produce high-energy photons
(green shaded spectrum).

black hole, where an accretion disk is present. For example, the galactic
center is a strong 511 emitter and we think that a super-massive black
hole is responsible for this signal. Indeed, an intense radio-source accom-
panied by 511 emission in its surroundings was identifyed very close to
the galactic center: Sagittarius A∗ (Sgt A∗).
Sgt A∗ is a super-massive black hole (millions of solar masses) with many
stars orbiting it.
The Doppler effect can broaden the 511 line giving information about the
speed of the emitting object (e.g. gas clouds) around the astrophysical
site. 511 gamma rays emitted from the interstellar medium have quite
sharp lines.
Another interesting object is 1E1740.7− 2942, also called the “Great An-
nihilator”, which is a microquasar located near the center center of our
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Figure 8.3: Position of supernova remnants from observations of the
gamma-ray sky by the Fermi-LAT satellite. The long bright central re-
gion corresponds to the galactic plane.

galaxy. The great annihilator is a binary system composed by a black hole
and a companion star. It is one of the brightest X-ray sources in the region
around the galactic center and also a strong 511 emitter. The emitted 511
gamma flux has strong time variability.

8.4 The Crab Nebula

In 1054 chinese astronomers noted the appearence of what today we know
it was a supernova. Today, in the place of the explosion we observe a neb-
ula (the Crab nebula) formed by the ejected material from the supernova.
At the center of the nebula, there is a pulsar (PSR 0531+21) with rotation
period 0.0332 s. This pulsar is also the first discovered pulsar ever and
we observe it at various wavelenghts bands, one of which is the gamma
one (see also Fig. 8.4).
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Figure 8.4: Strong gamma sources in our Galaxy. The photon flux is
histogrammed as a function of the galactic plane coordinate.

8.5 An interesting gamma source: Geminga

Geminga, or Gemini-Gamma-Ray, is one of the first strong gamma sources
identified (Fig. 8.4). The discovery happened in 1975 by the satellite mis-
sion SAS-2.
The clarification of the nature of this object came only in 1991: Geminga
is a pulsar with rotation period of 0.237 s. Its identification was dif-
ficult, since pulsars are intense radio-sources, while Geminga is radio-
quiet, having instead strong emission in the X and gamma bands.
This pulsar is “only” 800 ly away from us and it is believed to contribute
significantly to the positron CR flux we measure from Earth (or its orbit
with satellites like AMS-02).
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Figure 8.5: Working principle of the Imaging Atmospheric Cherenkov
Telescope (IACT) (Figure from: N. Sidro)

8.6 Gamma ray bursts

A quite new observed phenomenon is the appearance of gamma-ray
bursts (GRBs). GRBs are very bright gamma-ray emissions which last
for about 10 ms to 100 s in the 10 keV-100 MeV energy range with an
intensity following approximately

I(> E) ∼ 7 · E−1.25

MeV
cm−2s−1 . (8.11)

GRBs are observed in distant galaxies and are the brightest (but short in
time) sources of gamma rays. The emission is concentrated in time, fol-
lowed by a characteristic “after-glow” of increasing wavelenght.
The origin of these high-energy events is still not known but the most
probable explanation are the birth of a black-hole or neutron star, or
neutron-star mergers. GRBs are very bright, even if billions of ly far
away: estimates point toward an emitted energy in few seconds compa-
rable to the total energy emitted by the Sun in its entire life.
No GRBs within our galaxy were observed yet.
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8.7 The “TeV Sky”

Satellites are very effective in detecting gamma rays, avoiding atmospheric
absorption. However, they can cover a limited acceptance, given the
weight limits set by current launch vehicles. This is an issue in the case we
would like to detect very high-energy events, which are also more rare.
For example, the most recent satellite mission, Fermi-LAT, has a surface
of the order of ∼ 6 m2 and it is quite effective in the ∼ 100 GeV range.
For observing photons in the TeV range, a different technique has to be
developed.
The idea is to build ground-based experiments, which can be much larger
than satellite ones and use the fact that such high-energy photons can en-
ter the atmosphere inducing extended showers. In fact, these experiments
will use the atmosphere as detection medium.
The technique is based on Imaging Atmospheric Cherenkov Telescopes
(IACTs). More IACTs work together realizing a stereoscopic reconstruc-
tion using the Cherenkov light produced by the high-energy shower. A
IACT is composed by a large reflector (∼ 10 m2) which concentrates the
light on a light sensor (a pixelized camera, like an array of photomultipli-
ers). Such arrangements are sensitive to energies on the O(10 TeV) range.
The energy threshold for a IACT is

Eth =

√
ΦΩτ

εA
, (8.12)

where Φ is the photon flux, Ω the solid angle, τ the energy integration
time, ε the efficiency, and A the mirror surface.
The light collected by IACTs is very dim: that’s why observations can be
made only with clear skies and not during the day: IACTs are installed
in areas where th weather allows such conditions for a large part of the
year.
The speed of light in atmosphere is

c =
c0

c
= 299710637 m/s (8.13)

where c0 is the speed of light in vacuum and n = 1.000273 is the air
refraction index at standard conditions (temperature T=20◦, pressure 1
atm).
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Such speed is obtained by an electron with kinetic energy

Ekin = Etot −m0c2 = γm0c2 −m0c2 =

(
n√

n2 − 1

)
− 1 ≈ 21.36 MeV .

(8.14)
The obtained energy is the threshold energy for an electron in atmosphere
for emitting Cherenkov light. The Cherenkov light is emitted in a cone
with opening angle

θ =
1

nβ
, (8.15)

and for a multi-GeV energy photon this means θ ∼ 1◦.
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Chapter 9 | Neutrino Astronomy

9.1 Neutrino Basics

Neutrinos are embedded in the SM as massless particles with a definite
helicity state. However, the discovery of neutrino oscillations implies that
at least two of them must have a non-zero mass. Massive neutrinos imply
that the flavour νe,µ,τ and mass eigenstates ν1,2,3 are different, like in the
case of quarks. These states are related by a unitary mixing matrix: the
Pontecorvo-Maki-Nakagawa-Sakata Matrix (PMNS), see Fig. 9.1) U:νe

νµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

 . (9.1)

Neutrino mixing gives rise to the neutrino oscillation phenomenon, which
has been observed experimentally. The probability of the oscillation from
a flavour α = (e, µ, τ) to a flavour β = (e, µ, τ) is described by

P(να → νβ) = δαβ

−4 ∑i>j <(U∗αiUβiUαjU∗βj) sin2[1.27 · ∆m2
ij(L/E)]

+2 ∑i>j =(U∗αiUβiUαjU∗βj) sin[2.54 · ∆m2
ij(L/E)] ,

(9.2)

where i,j=(1,2,3) label the mass eigenstates, L is the distance in km trav-
eled by the neutrino, and E is its energy in GeV 1.
From the measurement of the oscillation probabilities, the difference of

1The km/GeV convention is particularly useful for designing neutrino oscillation
experiments. For example, if the neutrino energy is of the order of 1 GeV, sin2 2θ ∼ 0.8
(assuming only one oscillation parameter in a simplified two-flavour model), and the
neutrino mass difference is ∆m2 ∼ 3 · 10−3eV2, the maximum oscillation probability will
be located at L ∼ 400 km.
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Figure 9.1: Left: neutrino mixing matrix elements, Right: quark mix-
ing matrix elements. The surface of the squares represents the absolute
value of the relative magnitudes of the matrix elements. In the quark
CKM matrix a hierarchical pattern can be seen, in contrast to the present
knowledge of the neutrino PMNS matrix.

the squared neutrino masses ∆m2
ij = m2

i −m2
j and the mixing angles can

be extracted. Oscillation experiments are sensitive to different mixing an-
gles depending on the employed neutrino source. Neutrinos from the
sun, the atmosphere, fission reactors or spallation sources at accelerators
have been used for investigating neutrino properties.

The PMNS matrix can be conveniently parameterized with three an-
gles θ12, θ13, θ23 (defined in the first quadrant [0, π/2]):

U =

 c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar Neutrinos

 c13 0 s13e−iδ

0 1 0
−s13e−iδ 0 c13


︸ ︷︷ ︸

Reactor Neutrinos

1 0 0
0 c23 s23
0 −s23 c23


︸ ︷︷ ︸

Atmospheric/Accel. Neutrinos

1 0 0
0 eiα1/2 0
0 0 eiα2/2


︸ ︷︷ ︸

Majorana Phases

,

(9.3)
where sij = sin θij, cij = cos θij. For example, in this parameterization,
Ue1 = cos θ12 cos θ13 (compare with Eq. 9.1). The most sensitive experi-
ments to the different angles are highlighted under the matrices2. Besides

2Accelerator experiments can also access the CP phase δ comparing data produced
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the angles, there are also three phases δ and α1,2 related to the Dirac or
Majorana nature of neutrinos.

If neutrinos ψ have Dirac nature, their mass will be described by a
term like mψψ = m(ψ̄LψR + ψ̄RψL) in the SM lagrangian and the "Dirac
phase" δ will describe CP violation in the lepton sector (in analogy with
the CKM matrix).
Neutrinos admit another possibility for constructing their mass term. Un-
like the other SM fermions, neutrinos carry no electric charge. They
still carry lepton and flavour number but these can be violated by BSM
physics. If the neutrino does not have conserved quantum numbers, it
can be its own antiparticle. In this case neutrinos must be described by
Majorana fermions and the only difference between ν and ν̄ is a spin flip.
Mathematically, a Majorana neutrino is described by a two-component
Weyl spinor instead of a 4-component Dirac spinor. In the case of Majo-
rana neutrinos, two additional phases have to be present: α1 and α2

3. For
Majorana neutrinos, a different mass term is allowed:

LM = mDν̄LνR︸ ︷︷ ︸
Dirac term

+
1
2

mLνT
L νL +

1
2

mRνT
RνR︸ ︷︷ ︸

Majorana terms

+h.c. . (9.4)

In the case of a charged lepton (e.g. an electron), the fields eR and eL have
the same mass, as showed by the Dirac term in Eq. 9.4. For a neutrino,
all three terms in Eq. 9.4 are instead in principle allowed. The interesting
feature of the two additional Majorana terms is that they induce lepton
number violation (LNV). LNV gives rise to new phenomena , like neutri-
noless double beta decay of nuclei (0νββ, e.g. for 130Te, 76Ge, 136Xe) and
SM-forbidden ∆L = 2 decays like B−c → π+µ−µ+ or K+ → π+e−µ+.

Majorana neutrinos have the interesting feature of providing a possi-
ble explanation for the smallness of the neutrino mass. Rewriting Eq. 9.4
as

LM =
1
2
(νL, νR)

(
mL mD
mD mR

)(
νL
νR

)
+ h.c. , (9.5)

and supposing that νR is a very heavy sterile neutrino (i.e. does not cou-
ple to SM forces), diagonalizing the mass matrix we obtain the effective

with neutrino and antineutrino beams.
3In the Dirac case, these phases vanish. Neutrino oscillations are influenced only by

a linear combination of Majorana phases.
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masses
MH ≈ mR

ML ≈ mL −
m2

D
mR

, (9.6)

where MH and ML are the masses of a "heavy" and a "light" state respec-
tively. If mL � mD � mR, then if mD ≈ 200 GeV and mR ≈ 1015 then
ML ≈ 0.04 eV, which is close to the mass scale observed for neutrinos.
This is the so-called seesaw mechanism: if mR is large, MH is pushed at
high masses while ML becomes small.
In conclusion, if neutrinos are Majorana particles, there is a possible ex-
planation for their small mass if a very heavy right-handed sterile neu-
trino is introduced.

9.2 Neutrino Sources and the Waxman-Bahcall
Bound

Neutrinos produced at astrophysical sites are produced through hadronic
interactions: neutrinos come mainly from meson and muon decays. The
observation of a point neutrino source would be an unambiguous proof
of the acceleration of hadrons (protons). Neutrinos share the same advan-
tage of photons: they are not sensitive to magnetic fields and thus allow
an exact pointing to the source.
A significant high-energy neutrino flux is generically expected from all
the high-energy sources like gamma-ray bursts and active galactic nuclei:
these sources should be responsible for a diffuse extragalactic neutrino
flux.
We would like to calculate now an upper bound to the neutrino flux.
From the data, considering ultra-high energy cosmic rays (E > 1019eV),
we can calculate the energy density over time

E2
p

Ṅ
dEp
∼ 1044 erg

Mpc3 yr
. (9.7)

We use the factor E2
p as it eliminates the dependence of the proton energy

spectrum from the Fermi acceleration mechanism, which scales as E−2.
At these energies, neutrino production comes from the interaction of pro-
tons with the CMB photons and thus neutrinos come from π0 decays and
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meson/muon decays. Comparing the proton flux with the neutrino flux,
we can obtain an upper bound

E2
νµ

dN
dEµµ

≈ 1
4

ε
1

H0
E2

p
Ṅ

dEp
. (9.8)

H0 ∼ 1010 yrs is the inverse of the Hubble constant and thus a measure of
the Universe’s age, while ε is the fraction of the initial energy going into
meson production (through the ∆ excitation mechanism). The Hubble
constant term is the result of an approximate time integration over the
age of the Universe and in the following we assume ε = 1 for simplicity.
The factor 1/4 comes from the following two observations:

• The proton energy is about equally split between π0 and π± pro-
duction.

• In the decay chain π+ → µ+νµ → e+ν̄µνe, there are only two muon
neutrinos and here we are considering only the muon neutrino flux.

Substituting the numbers

E2
νµ

dN
dEµµ

∼ 1.5 · 10−8 GeV
cm2 · s · sr

. (9.9)

The last result constitutes the Waxman-Bahcall bound.

9.3 Short Digression: Neutrino freeze-out

We can use what we learned before about early cosmology thermody-
namics and freeze-out for determining the freeze-out temperature Tν of
neutrinos during the Universe expansion.
The freeze-out condition is

nν · σν = H . (9.10)

We can think about the neutrino reactions as ν + ν̄ ↔ f + f̄ where f is
a generic charged fermion. Converting energies in temperatures, elec-
troweak cross sections scale as σ ∼ G2

FT2 (GF ∼ 10−5 GeV−2). Remember-
ing that in a radiation-dominated Universe H ∼ T2/MP and n ∼ T3:

T3
ν G2

FT2
ν =

T2
ν

MP
⇒ Tν =

1
(G2

F MP)1/3
≈ 1MeV . (9.11)
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The assumption n ∼ T3 is valid only relativistically if Tν � mν, which
we can now verify a posteriori. We also notice that neutrinos from the
early Universe are hot relics, in the sense that they freeze-out as relativistic
particles.

9.4 Solar Neutrinos

Neutrinos coming from the Sun are produced in nuclear reactions. The
primary nuclar reactions powering the Sun are together called the pp-
chain and make up to 98.4% of the produced energy.
The p-p fusion goes mainly through (99.75%)

p + p→2 H + e+ + νe , (9.12)

where the neutrino has an energy < 0.42 MeV. A 0.25% contribution
comes from

p + p + e+ →2 H + νe . (9.13)

with a neutrino energy of 1.44 MeV.
The lightest helium isotope is created without neutrino emission:

2H + p→3 He + γ + 5.49 MeV . (9.14)

With 86% probability, 4He is created by the following reaction (also with-
out neutrinos)

3H +3 He→4 He + 2p + 12.86 MeV . (9.15)

With negligible probability (∼ 10−5), a third neutrio could come also from

3He + p→4 He + e+ + νe + 18.77 MeV . (9.16)

In total, since we need two reactions described by Eq. 9.12 for having
two 3He to fuse, two electron neutrinos are produced up to this point.
Neutrinos from Eq. 9.16 are highly energetic, up to 18.77 MeV, although
their flux is very small.
The next step is the creation of beryllium

3He +4 He→7 Be + γ + 1.59 MeV . (9.17)
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Figure 9.2: The pp-chain reaction which describes the reaction path fol-
lowing proton-proton fusion. The red arrows indicate the most probable
reaction path. The blue boxes indicate the important neutrino emission
reactions. The 7Be reaction box is responsible for two neutrino emission
lines, depending on the produced nuclear state.

The last reaction branches in two different reactions (the complete picture
can be seen in Fig. 9.2):

7Be + e− →7 Li + νe Eν = 0.862 MeV or 0.384 MeV ,
7Be + p→8 B + γ + 0.14 MeV

(9.18)

The first reaction can generate neutrinos with two different energies, since
7Li can be produced in an excited state (10% branching ratio). The second
reaction generates another high-energy neutrino with the decay

8B→8 Be∗ + e+ + νe Eν < 14.06 MeV . (9.19)

The excited beryllium state decays through 8Be∗ →4 He +4 He, closing
the “cycle”.
The second relevant fusion cycle is the CNO-cycle, which is responsible
for the remaining 1.6% solar energy production:

12C+p → 13N + γ
13N → 13C + e+ + νe Eν < 1.2 MeV
13C+p → 14N + γ
14N+p → 15O + γ
15O → 15N + e+ + νe Eν < 1.73 MeV
15N+p → 12C +4 He

(9.20)
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Figure 9.3: The CNO cycle. The blue boxes indicate the reactions where
neutrino emission is implied: the β-decay of 15O, 13N, and 17F.

The full CNO cycle is represented in Fig. 9.4.

9.5 Solar Neutrino Spectrum

The nuclear reactions we have seen in the previous section are one of the
ingredients one needs for calculating the neutrino enegy spectrum from
the Sun. The other ingredients are quantities describing the stellar envi-
ronment, namely: gravity and thermodynamics.
A star is a complex system and the equations describing it can be fully
solved only numerically. These equations are:

Density equation
dr
dm

=
1

4πr2ρ
, (9.21)

Pressure equation:
dP
dm

= − Gm
4πr4 , (9.22)

Luminosity equation

dL
dm

= ε−
[

d
dt

(
u
ρ

)
− P

ρ2
dρ

dt

]
, (9.23)
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Source Flux (1010 cm−2 s−1)
pp 6
pep 41.4 · 10−2

7Be 4.5 · 10−1

8Be 5 · 10−4

13N 5 · 10−2

15O 4 · 10−2

17F 4.5 · 10−4

Target SNU
∑(Φσ)Cl 7± 1
∑(Φσ)Ga 127± 7

Table 9.1: Approximate neutrino fluxes on Earth from the various nu-
clear reaction processes in the Sun. The expected flux× cross section for
Clorine and Germanium detectors is also indicated below in SNU (Solar
Neutrino Units: 1 SNU = 10−36 captures per atom, per second).

Energy transport equation

dT
dm

=

{
− 3κ

4acT3
L

16πr4 radiative e. transport
Γ2−1

Γ2
T
P

dP
dm convective e. transport

(9.24)

Hydrogen abundance equation

dX
dt

= rX . (9.25)

rX is the hydrogen burning rate and it is calculated as a sum over the dif-
ferent reactions which can consume hydrogen. In general, all the possible
nuclear reactions should have thier own equation.
ε is the energy production rate, κ the opacity (absorption coefficient),
Γi are the adiabatic coefficients (Γ1 = ∂(ln P)/∂(ln ρ), Γ2/(Γ2 − 1) =
∂(ln P)/∂(ln T), Γ3− 1 = ∂(ln T)/∂(ln ρ)), a = 7.5 · 10−15 erg cm−3 K−4 is
radiation density constant (urad = aT4).
Solving the latter system of equations, one can estimate the neutrino flux
coming from each reaction. The result is showed in Fig. 9.4 and in Tab. 9.1.
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Figure 9.4: The CNO cycle. The blue boxes indicate the reactions where
neutrino emission is implied: the β-decay of 15O, 13N, and 17F.

9.6 The Solar Neutrino Problem

The Solar neutrino problem can be summarized in the following table,
presenting the approximate results of experiments and theory values:

Experiment Result Theory
Homestake 2.56± 0.22 SNU 8 SNU
Kamiokande 2.9± 0.22± 0.35 · 10−36 cm−2s−1 5 cm−2s−1

GALLEX 69.7± 7 SNU 132 SNU
SAGE 69± 10 SNU 120 SNU

Different experiments using different techniques and targets were consis-
tently measuring a lower neutrino count (or flux). This mismatch between
experiments and theory represented the so-called solar neutrino problem,
which was interpreted as due to neutrino oscillations and experimentally
confirmed with new experimental techniques.
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9.7 How to detect Solar Neutrios

Solar (electron) neutrinos have relatively low energies and in the few-MeV
regime they mostly interact quasi-elastically with nucleons

νe + n→ p + e− . (9.26)

or elastically (νe + n→ νe + n)/
Since a free-neutron target does not exist, we have to consider neutrons
embedded in nuclei X

νe +
A
Z X →A

Z+1 Y + e− . (9.27)

where Y is the resulting nucleus after the neutrino interaction.
The last reaction could be used for detecting solar neutrinos, if it is possi-
ble to separate the new few Y elements from the (way more) abundant X.
Chemical techniques are based on exposing a large quantity of an element
X to a neutrino flux and later on nuclei Y are searched for with chemical
separation techniques.
Another technique is based on the in real-time detection of reactions like
Eq. 9.26 or νe + e− → νee−.

9.8 Radiochemical Experiments

Chlorine Experiment
The first reaction for detecting solar neutrinos was suggested by B. Pon-
tecorvo already in 1946

νe +
37
17 Cl→37

18 Ar + e− . (9.28)

R. Davis (Nobel Prize 2002) was the first developing working detectors
based on clorine, and later building a 390.000l tank filled with C2Cl4 in
the Homestake mine (South Dakota) in 1965. Measurements continued
until 2002.
Chlorine is a good nucleus for such measurements since the threshold en-
ergy for neutrino interactions is 0.814 MeV. The resulting argon is chem-
ically inert and thus could be extracted with 95% efficiency from the de-
tector. 37Ar is radioactive with a lifetime of 35 days: the decay proceeds
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via the capture of one of the orbital electrons returning to chlorine with
the inverse Eq. 9.28 reaction. The resulting 37Cl nucleus is formed in an
excited state which decays emitting a 2.82 keV X-ray. Davis developed de-
tectors for detecting these X-rays and thus count the number of neutrino
interactions. The resulting rate was about 25 counts per year.
Gallium Experiment
Another reaction which was exploited for example in the SAGE4 and
GALLEX detectors is

νe +
71
31 Ga→71

32 Ge + e− . (9.29)

SAGE (Caucasus mountains) used 50 tons of liquid gallium kept at 30◦C
(1989-), while GALLEX (Gran Sasso) used 30 tons of GaCl3 solution (1991-
1997). The resulting germanium isotope has a half-time of 11.4 days,
while its extraction is chemically more complex as for argon. The reac-
tion thershold is 233 keV. An important feature of the gallium-based ex-
periments was the possibility to use an external electron neutrino source
of known activity for calibrating the detectors The source was based on
51Cr with an intensity of about 0.5 MCi, emitting electron neutrinos by
electron capture (half-life 27.7 days).

9.9 Real-time Experiments

The real-time experiments measured directly the neutrino interactions as
they happen, without the need of a later-phase chemical separation pro-
cess.
Super Kamiokande

This experiment based in Japan employed a 2.2 kton water tank for de-
tecting the

νe + e− → νe + e− , (9.30)

with the Cherenkov effect. This method is sensitive only to the highest en-
ergy neutrinos coming from 8B. The scattered electrons create Cherenkov
“rings” which are detected by 948 20-inch photomultipliers.
Also Super Kamiokande, like radiochemical experiments, confired the
deficit in solar neutrinos.

4later renamed GNO: Gallium Neutrino Observatory
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Figure 9.5: Reactions in the SNO detector, allowing the simulataneous
measurement of the total and the electron neutrino fluxes.

[!t]

SNO: Sudbury Neutrino Observatory
SNO was active in the period 1999-2006 and detected neutrinos by Cherenkov
light using a 12-m diameter spherical acrylic vessel viewed by 9500 20-
cm photomultipliers. The detection medium was 1000tons heavy water
(D2O) in an inner volume surrounded by 1500 tons of normal water for
screening.
The relevant neutrino interactions in the detector were (see also Fig. 9.5)

1. Elastic scattering (ES) νe + e− → νee−. This reaction is in principle
sensitive to all neutrino flavours, but

σ(νe + e− → νee−) ≈ 6× σ(νµ,τ + e− → νµ,τ + e−) . (9.31)

2. Charged-current interaction (CC), which happens only for electron
neutrinos (W± exchange)

νe + d→ e− + p + p , (9.32)
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The deuterium break-up reaction is 1.44 MeV and almost all the
energy is carried out by the electron and thus this reaction can be
detected by Cherenkov effect.

3. Deuterium break-up by Z0 exchange neutral current interaction (NC)

ν f + d→ ν f + p + n , (9.33)

where f = e, µ, τ. The reaction emits a 2.2 MeV gamma (this energy
is the deuteron binding energy).

The data collected by SNO contain all the three reactions listed above. In
principle, the last reaction cannot produce Cherenkov light, but the emit-
ted neutron can be recaptured by deuterium releasing a 6.25 MeV gamma
ray. This gamma can further produce through Compton scattering an
electron above Cherenkov threshold.
In a first phase (SNO-1), the detector took data only with heavy water.
In a second phase (SNO-2), 2 tons of salt (NaCl) were added. The salt
helped in increasing the neutron capture rate (third reaction)

n +35 Cl→35 Cl∗ →35 Cl + γ . (9.34)

In a third phase (SNO-3), the salt was removed and special proportional
counters (3He/CF4) installed in the detector volume for directly count
the neutrons from the third reaction. The neutron detection proceeded
through the reaction n +3 He → p +3 H. The three experimental phases
delivered consistent results. The measured fluxes (in 106×cm−2s−1) were

ΦNC = Φν f = 5.25± 0.16± 0.13
ΦCC = Φνe = 1.68± 0.06± 0.09
ΦES ∼ Φνe +

1
6 Φνµ+ντ = 2.35± 0.22± 0.15

(9.35)

where the first error is statistical and the second systematic.
The results clearly show that

Φνµ+ντ = Φν f −Φνe 6= 0 , (9.36)

and this finally demonstrates that 2/3 of the 8B electron neutrinos change
their flavour on their way from the Sun to the Earth. Moreover, the total
neutrino flux measured by the NC reaction is finally consistent with the
solar neutrino model (Fig. 9.6). A.B. McDonald was awarded the 2015
Noble prize in physics for leading the SNO experiment (together with
T. Kajita for SuperKamiokande.
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Figure 9.6: Results of the SNO experiment.

9.10 Supernova Neutrinos

Stars heavier than 8 solar masses can reach high enough temperatures
to sythesize iron. Once this point is reached, they cannot sustain their
weight through further nuclear reactions. At this stage, the star has de-
veloped an “onion-like” structure where the heavier nuclei fuse only in
the deepest layers. Starting from the outermost layer, the ongoing reac-
tions are

H→ He
He→ 12C, 16O, 22Ne
12C→ 20Ne, 24Mg
20Ne→ 16O, 24Mg
16O→ 28Si
28Si→ Fe, Ni

After the exaustion of the iron reactions, if the star iron core has a mass
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larger than the Chandrasekhar mass

MC = 5.72 ·Y2
e ·MSun , (9.37)

(Ye is the electron-to-nucleon ratio) an irreversible collapse begins.
A typical value for the Chandrasekhar mass for a 15-solar masses pro-
genitor star is ∼ Mc = 1.5 solar masses with a central temperature of
∼ 8 · 109 K, density of 3.7 · 109 g/cm3, and Ye ∼ 0.42. During the collapse,
photodisintegration of the iron-group elements takes place:

56Fe→ 134He + 4n (- 124 MeV) . (9.38)

These reactions revert to helium all what thousands of years of nuclear
fusion turned into iron. Further photodisintregration of helium frees pro-
tons and neutrons. A rapid “neutronization” phase of the core of the star
is then expected, through the reactions

p + e− → n + νe , (9.39)

ZA + e− →Z−1 A + νe , (9.40)

thus with a strong emission of electron neutrinos with a duration of
O(10 ms).
Using computer simulations, it was realized that the collapse followed by
a shock wave and neutrino emission was not sufficent for explaining su-
pernova explosions. The reason is that the shock wave energy will quickly
slow down since its energy will go into the dissociation of nuclei in the
outer crusts of the collapsing star.
At the core of the collapsing star, the density is so high to trap neutrinos.
This region is called neutrinosphere.
In the central region, the temperature is very high (∼ 10 MeV) and elec-
tron pairs can create neutrinos of all flavours (see also Fig. 9.7):

e+ + e− → ν f + ν̄ f . (9.41)

This reaction stops when the in-falling material pushes the density so
high to start the inverse reaction, reaching eventually thermal equilib-
rium.
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Figure 9.7: Neutrino production in a supernova. (Top): in the core, elec-
tron neutrinos are produced by electron capture by protons. (Bottom):
other electroweak reactions in the dense parts of the collapsing star pro-
duce neutrinos of every flavour.

The produced neutrinos carry the bulk of the gravitational collapse en-
ergy and can deposit part of their energy in the region between the form-
ing neutron star and the stalled first shock wave through the reactions

νe + n→ e− + p
ν̄e + p→ e+ + n (9.42)

and neutral-current interactions involving also the other flavours (Fig. 9.7).
These reactions increase the temperature of the stellar matter behind the
first shock wave. When the pressure inside the first shock becomes higher
than the one after it, the star explodes and the neutrinos are released.
About 99% of the energy of the collapse is converted into neutrinos.
The general characteristic of the neutrino species average energies are

〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉 , (9.43)

where νx represents all the other (anti)neutrino flavours (Fig. 9.8).
The ordering is the consequence of neutrino interactions with matter:
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Figure 9.8: Neutrino fluence from the GKVM (Gava-Kneller-Volpe-
McLaughlin) model. The structure in the νe spectrum is caused by collec-
tive effects (a “gas” of neutrinos can undergo collective flavour changes).

electron neutrinos undergo more interactions than anti-electron neutri-
nos, since in the core there are more neutrons than protons. Muon- and
tau-neutrinos have larger energies since they can interact mostly only
through neutral currents.
The energy of neutrinos emitted by a supernova is in the ∼ 10-20 MeV
range. The flux can be parameterized by

Φ(Eν) = N
(

Eν

〈Eν〉

)α

exp
[
−(α + 1)

Eν

〈Eν〉

]
, (9.44)

where the normalization constant is

N =
(α + 1)α+1

〈Eν〉Γ(α + 1)
. (9.45)
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9.11 How to detect supernova neutrinos

The expected number N of supernova neutrinos a detector on earth can
detect scales with the supernova distance D as N ∼ 1/D2. Approxi-
mately, if the detector has mass M, then N ∼ M. Given the typical energy
of supernova neutrinos, a threshold of few MeV would be sufficient.
Given the relatively high energy of the supernova neutrinos, radioac-
tive backgrounds should not be a problem, since they are all at energies
< 10 MeV. The supernova burst lasts about 10 s and also this helps in
suppressing backgrounds, which, in an underground detector accumu-
late over long times. The underground location helps also in suppressing
cosmics-induced backgrounds.
Since detectors contain mainly protons (many of them are based on water
or scintillators which are basically CnH2n chains), they are mostly sensi-
tive to antineutrinos through the reaction

ν̄e + p→ e+ + n . (9.46)

For a supernova at 10 kpc distance and a 1 kton water detector, one ex-
pects O(200) events, without taking into account the detector efficiency.
For comparison, for a supernova in the Andromeda galaxy (∼ 770 kpc),
O(1) event is expected.

Given the random character and frequency of a supernova explosion
near the Earth, detectors, telescopes, and satellites should be ready.
To this end, the SNEWS (SuperNova Early Warning System) collabora-
tion was established. The goal of SNEWS is to provide the astronomical
community with an alert signal of the occurrence of a core-collapse event.
SNEWS is also engaged in downtime coordination, and global sensitiv-
ity optimization to a supernova signal. SNEWS has been automatically
running since 2005. Currently, the following neutrino experiments are in-
volved: Super-K (Japan), LVD (Italy), Ice Cube (South Pole), KamLAND
(Japan), Borexino (Italy) Daya Bay (China), and HALO (Canada). Alerts
of possible supernova neutrinos are sent from the experiments to the
SNEWS computer at Brookhaven National Laboratory. Multiple detec-
tors would see supernova neutrinos simultaneously, so the probability of
a false alarm is extremely low.
A supernova emits about half its neutrinos in a couple of seconds, while
the first electromagnetic signal may not come for many hours or even
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Figure 9.9: The SN1987A supernova observed at various wavelenghts.

days, depending on the outer layers of the star and dust between Earth
and the star. That’s why the neutrino detectors and the SNEWS system
offer the possibility of an early detection of a supernova’s birth.
Calculations show that neutrinos from supernovae in other galaxies will
be too weak for these facilities to detect, so SNEWS will alert us for events
happening in the Milky Way or nearby.
The SNEWS alert can be received signing up for a mailing list. Up to now
(2020) no alerts has been issued.

9.12 SN 1987A

The supernova SN 1987A in the Large Magellanic Cloud, a satellite of our
Milky Way Galaxy, is the first for which neutrinos were detected (Fig. 9.9).
The supernova explosion prior to 1987 and visible with nacked eye hap-
pened in 1604 (“Kepler’s Supernova”, ∼6 kpc.).
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Figure 9.10: (Left): The SN1987A supernova light curve. (Right): Early
neutrino measurements associated to SN1987A.

The progenitor of SN 1987A was Sanduleak-69202: a heavy (16-22 solar
masses) blue super-giant star at a distance of 50± 5 kpc from Earth. Af-
ter the explosion was indeed verified that Sanduleak-69202 disappeared
from the sky.

The Hubble Space Telescope has taken images of the supernova regu-
larly since August 1990 without detecting the neutron star remnant. It
could be that the remnant is covered by dust clouds, or that the remnant
is not a neutron star but a black hole.
The neutrino detectors at the time collected only few events (Fig. 9.10)
but they were sufficient for an overall proof of the core-collapse picture.
Looking at the time distribution of the events, they are in agreement with
a ∼ 10 s burst, in agreement with theoretical models. The energy dis-
tribution of the events is consistent with a neutrinosphere temperature
of about 4 MeV and the average energy of the detected neutrinos was
∼15 MeV.
The number of events detected was in agreement with a 3× 1053 erg lib-
erated energy (Baksan: 5 events, Super Kamiokande: 12 events, IMB: 8
events).
The neutrino arrival time distribution allowed also a measurement of the
neutrino masses, resulting in mν < 10 eV and in a test of the neutrino
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Figure 9.11: Backgrounds in a diffuse supernova neutrino search. The
window of opportunity between 20 and 40 MeV is visible. (Figure from
Lunardini/Sholberg)

speed: |vν − c|/c < 2× 10−9.

9.13 Diffuse Supernove Neutrino Background

It is expected that all the supernovae in cosmic history gives rise to a
diffuse neutrino background (DSNB), calles also relic supernova neutrino
flux. The DSNB flux depends on the historical rate of core-collapses,
average neutrino production, cosmological redshift effects and neutrino
oscillation effects. For neutrino energies above ∼19 MeV, estimates of the
ν̄e flux are 0.1-1 cm−2s−1.
The detection techniques are the same as for burst neutrinos, however in
the DSNB case the problems are the background.
At low energies, solar and reactor neutrinos dominate the background
while at higher energies, atmospheric neutrino backgrounds dominate.
The atmospheric and reactor backgrounds vary by detector location. There
is an energy window at ∼ 20-40 MeV in which the DSNB dominates over
the other neutrino fluxes and there is an opportunity for an experimental
observation (see Fig. 9.11).
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Already in 1932, Jan Hendrik Oort found some discrepancies between
the observed rotation curve (the velocity of the stars as a function of the
galactic radius) of our own galaxy and the expected one from luminous
matter.From this observation, he was not able to exclude that this discrep-
ancy may have been caused by an underestimate of luminous matter due
to the presence of absorbing matter. In 1933, Fritz Zwicky’s studies of the
Coma cluster pointed to a significant discrepancy between the amount of
matter deduced from the knowledge of the typical mass-to-light ratio of
galaxies, and the gravitation properties of the system. Under the suppo-
sition that the Coma system has reached, mechanically, a stationary state,
the Virial Theorem implies

〈Ekin〉 =
1
2
〈Vg〉 (10.1)

where 〈Ekin〉 and 〈Vg〉 denote average kinetic and potential energies. Zwicky
assumed an uniform mass distribution and a cluster radius R∼ 1 Mly
with 800 galaxies with M ∼109 solar masses. The total mass estimate
was ∼ 1.6× 1045g. The average gravitational potential energy was there-
fore 〈Vg〉 = (3/5)GM/R. Using the virial theorem (Eq. 10.1), the average
mean squared velocity can be extracted:√

〈v2〉 ≈ 80
km

s
(10.2)

This result has to be compared to the observed value of the average
Doppler effect of ∼1000 km/s. The conclusion was that the average den-
sity of the Coma system would have to be at least 400 times larger than
that derived from the observations on luminous matter. Zwicky himself
commented:
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If this would be confirmed we would get the surprising result that dark matter
is present in much greater amount than luminous matter.

10.1 Galaxy Rotation Curves

Until the 1970s, there was not much progress towards the understanding
of this discrepancy attributed to some from of non-luminous matter, until
Vera Rubin and coworkers published their work on rotation curves of
spiral galaxies.
The measurements showed convincingly that the rotational velocities of
the stars as a function of the radius R of the galaxies did not follow the
expected Kepler’s law

v(R) =

√
GM(R)

R
(10.3)

but they rather stayed about constant out to very large R, as showed in
Fig. 10.1. This implied that galaxies were surrounded by a large amount
of invisible matter.

10.2 Barionic Mass Estimation with X-ray Halos

Galaxy clusters are composed by abundant barionic matter which usually
does not emit radiation. If this matter is present within strong gravita-
tional potentials, bremsstrahlung photons can be emitted (usually in the
X-ray band). Measuring these X-rays can lead to an estimation of the
amount of barionic matter contained in a cluster, thus providing a tool
for measuring its dark matter content by subtraction, if the total gravita-
tional mass could be estimated in another way.
Approximating the cluster as a spherically symmetric system in equilib-
rium (v̄ = 0) the hydrodynamical Euler equation

ρ
dv̄
dt

= −∇P− ρ∇φ , (10.4)
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Figure 10.1: Rotational curves for different galaxies as measured by Rubin
et al in V.C. Rubin et al., Astrophys. Journal, 255, 107 (1978).

where P is the pressure, ρ the density, and φ the gravitational potential,
becomes

dP
dr

= −GM(r)
r2 ρ . (10.5)

M(r) is the amount of matter contained within the radius r. Connecting
the pressure P(r) with the temperature T(r) through the law of ideal
gases P = ρkBT/m and considering only protons for simplicity (m = mP),
after some algebra we obtain

M(r) =
kBTr
GmP

(
−d ln ρ

d ln r
− d ln T

d ln r

)
. (10.6)

The previous equation allows the measurement of the mass profile M(r)
through the measurement of the temperature and density profiles T(r)
and ρ(r).
The temperature is determined via the shape of the frequency spectrum
of the X-ray radiation, or through the strength of the emission lines. The
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gas density ρ(r) is proportional to the square root of the luminosity density,
which is another directly measured quantity.

10.3 Gravitational Mass Estimation with
Weak Lensing

Galaxies and clusters of galaxies act as gravitational lenses for the light
coming toward us. This means that the deflection of light must be af-
fected by the total gravitational mass of the astrophysical object under
consideration, including the possible presence of dark matter.
Weak gravitational lensing (WGL) is the deflection of light emitted from
sources behind a massive object (like a galaxy or a cluster of galaxies).
Since the distortion of light is not very strong (in contrast to strong gravi-
tational lensing, where light is so bended to form the characteristic "arcs"),
many measurements of different background objects are needed, so that
a WGL measurement is an inherently statistical process.
Let’s start with looking how a light ray would be bent if we use Newto-
nian gravity.
The acceleration in the direction orthogonal to the direction observer-
source (z) is (for small deflections)

g⊥ =
GMb

(b2 + z2)3/2 , (10.7)

where M is the lens’mass and b the impact parameter. The orthogonal
velocity is

v⊥ =
∫

g⊥dt =
∫

g⊥
dz
c

=
2GM

bc
. (10.8)

The deflection angle is then

α =
v⊥
c

=
2GM
bc2 . (10.9)

We will see that the general-relativistic calculation will give a factor 2
larger deviation angle. This effect was famously verified during a solar
eclipse giving one of the first striking confirmation of general relativity.
The weak-field approximation metric is

ds2 = c2
(

1 + 2
φ

c2

)
dt2 −

(
1− 2

φ

c2

)
dr2 . (10.10)
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For a light ray, ds2 = 0, and the last equation, evaluated at the first order
for φ/c2 � 1 gives the effective speed of light in a weak gravitational
field

c′ = |dr
dt
| ≈ c

(
1 +

2φ

c2

)
. (10.11)

We can also introduce the effective index of refraction at first order n ≈
c/c′ ≈ 1− 2φ/c2 > 1 (since φ < 0).
Fermat’s principle implies the following variational problem

δ
∫ b

a
nx(l)dl = δ

∫ λb

λa
nx| dx

dλ
|dλ = δ

∫ λb

λa
L(ẋ, x, λ)dλ = 0 , (10.12)

where λ is some arbitrary curve parameter and L is the legrangian. The
solution to the variational problem (a and b are fixed) is given by the
Euler-Lagrange equation

d
dλ

∂L
∂ẋ −

∂L
∂x = 0 with ∂L

∂ẋ = n ẋ
|ẋ|

∂L
∂x = |ẋ| ∂n

∂c and
⇒ d

dλ (n · x)−∇n = 0⇒ nẍ = ∇n− ·x(∇n · x) .
(10.13)

In the last equation, we have the spacial derivative if n minus the “paral-
lel” derivative along the light path: this subtraction is thus equivalent to
the derivative perpendicular to the light path. Rearranging the terms

ẍ = ∇⊥ ln(n) , (10.14)

and substituting the approximate value for n

ẍ ≈ − 2
c2∇⊥ ln(n) . (10.15)

The total deviation angle α is the integral along the light path of the
gradient of n perpendicular to the light path (from the source λa to the
observer λb), since θ =

∫
ẍdλ

α =
∫ λb

λa
ds∇⊥n =

2
c2

∫ λb

λa
dλ∇⊥φ , (10.16)

where the gradient is taken only along the two coordinates orthogonal to
the light ray (gravity acts only there, while longitudinally along z the con-
tributions sum up to zero) and therefore φ in the last integral is viewed
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as a vector with 2 components instead of three. Considering the sim-
plified case where the deviating mass is point-like, φ = −GM/r with
r =

√
x2 + y2 + z2 =

√
b2 + z2 (b2 = x2 + y2 is the impact parameter).

Evaluating Eq. 10.16

α =
2GM

c2 (x̂, ŷ)
∫ +∞

−∞

dz
(b2 + z2)3/2 =

4GM
c2 (x, y)

[
z

b2(b2 + z2)1/2

]∞

0

=
4GM
c2b

(cos ϕ, sin ϕ)

(10.17)
Some interesting points about the deviation due to a gravitational field
are the following

• α is linear wrt the mass M, so the effects of more masses just add
together to the total deviation.

• The same calculation using Newton’s gravity would return an angle
smaller by a factor of two.

• Introducing the Schwartzschild radius Rs = 2GM/c2, we can rewrite
α = 2RS/b.

10.4 Dark Matter from Astrophysical
Measurements

Weak gravitational lensing provides a method for estimating the total
mass of an astronomical object, while X-ray surveys are sensitive mostly
to the baryonic content. If these two mass estimation methods do not
agree, the difference among them should be due to some kind of non-
baryonic matter. The today’s baryonic density parameter is Ω0

b = ρ0
b/ρc

and measurements at different red-shifts are related by ρb/ρc = Ω0
b/a−3.

Expressing the baryonic density as Ωbh2, where h is the Hubble’s constant
in 100 km/s/Mpc, we have the following different measurements

• From X-ray surveys, Ωbh2 ∼ 0.02.

• From light absorption from far-away quasars (with higher uncer-
tainty), Ωbh2 ∼ 0.02.

122



CHAPTER 10. DARK MATTER

• From the CMB anisotropy measurements, Ωbh2 = 0.02225± 0.00023
(Planck satellite). The density of baryonic matter is deduced from
the relative height of the of the odd and even acoustic peaks. If
Ωb is enhanced, also the fist peak is enhanced, while the second is
suppressed. The enhancement of Ωb shifts also the peaks to higher
l.

• Another method for estimating Ωb is based on the predictions of the
nucleosynthesis models based on our knowledge of nuclear physics.
The predicted abundances of light elements match quite well the
observations.

In summary, the surprising result Ωbh2 ∼ 0.02 follows from a variety of
observations which are consistent with each other.
Weak lensing is instead sensitive to Ωm, measuring Ωmh2 ∼ 0.3 as also
other methods:

• Measure for different objects of the mass-to-light ratio as a function
of the scale. This ratio saturates to a limiting value past the galaxy
cluster scale (∼ Mpc). From this, the Ωmh2 ∼ 0.3 result can be
deduced.

• Large-scale surveys for mapping the spectrum of the distribution of
galaxies lead to Ωmh2 ∼ 0.2. While this number is quite different
from 0.3, it is still much bigger than the baryonic density.

• The mapping of the cosmic velocity field combined with the distri-
bution of galaxies leads also to Ωmh2 ∼ 0.3.

• The CMB provides directly Ωmh2 = 0.308± 0.012 (Planck satellite,
Ade et al, Planck Results XIII, Astron.Astroph. 594, A13 (2015)).

The surprising result is that baryons constitute only about 5% of the crit-
ical density, while the total matter content about 30%. Both numbers are
surprising: we would have expected that matter constitutes the bulk of
the Universe’s content, while baryons should have constituted the bulk
of the matter content. Both these expectations are put into question by
many different measurements, which are quite consistent with each other.
Neutrinos are very abundant in the Universe, and as non-baryonic matter,
they could be the solution to the puzzle. Unfortunately, their contribu-
tion is estimated to be Ωνh2 ∼ 0.0025 making them irrelevant in the total
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balance for Ωm.
In summary, different measurements point to the existence of additional
gravitating matter the exact nature of which we do not know yet.

10.5 Dark Matter and Structure Formation

Although indirect, a very strong argument for the existence of dark mat-
ter is based on considerations related to structure formation. The struc-
tures we observe today (galaxies, clusters of galaxies) should represent
inhomogeneities in the early Universe which acted as "seeds" for grav-
itational instability and aggregation of matter. These density inhomo-
geneities δρ/ρ can be observed measuring the δT/T anisotropies in the
CMB. It turns out that δρ/ρ ∼ 10−4 and δρ/ρ ∼ a where a is the scale
factor, which has grown by a factor equal to the red-shift since recombi-
nation time (z ∼ 1100).
Today, δρ/ρ � 1, but since recombination, not enough time has passed
for going from δρ/ρ ∼ 10−4 to the needed size of the perturbations.
This tells us that considering only barions, there was not enough time
for structures to form and create what we observe today. Therefore, we
need some kind of matter which decoupled from the primordial plasma
much earlier and started to clump and form in time the required density
perturbations.

10.6 Dark Matter Properties

Having estimated by different methods how much Dark Matter (DM) is
present in the Universe, we would like now to know what are its proper-
ties, in the case DM is really a new kind of particle(s).

• Mass: This parameter is not very well constrained and, depending
from the model, can vary within tens of orders of magnitude. Sim-
ply estimating the de Broglie wavelength for a particle confined on
galactic scales (kpc) with a typical escape velocity of 100km/s, we
can derive a lower limit of 10−22 eV.

• Interaction: DM should be indeed "dark", i.e. it should not inter-
act electromagnetically. If DM can interact with known particles, it
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also depends from the specific model. Since DM cannot radiate, it
is believed to be rather dissipationless: this would restrict its ability
to clump or accrete around compact objects like black holes with
respect to barionic matter. Some models of DM based on the ex-
istence of a "dark sector" propose an interaction with the Standard
Model photon to some level and in this sense some electromagnetic
interaction is allowed. Other models predict the possibility for DM
to annihilate into Standard Model particles and this might represent
a possible astrophysical signal to detect.

• Self-Interaction: Limits to the self-interaction of DM allow for cross-
sections of the order of the strong ones.

10.7 Dark Matter as a Thermal Relic

The idea of thermal decoupling is an appealing framework for the descrip-
tion of DM. Thermal decoupling assumes that DM was in thermodynam-
ical equilibrium in the early Universe. As the Universe expanded and
cooled down, DM density dropped to the point that annihilation basi-
cally stopped, freezing out DM to the density we observe today.
A slightly more quantitative description is the following. As the density
dropped via the expansion, the rate

Γ = n · σ · v (10.18)

of the reaction keeping DM in equilibrium becomes smaller. The Hubble
time 1/H(T) as a function of the temperature T is a measure of the age
of the Universe and the inverse of the reaction rate 1/Γ tells how long
does it take for the reaction to happen on average. So, if Γ � H(T) is,
then the reaction keeping the equilibrium is too slow, since less than one
reaction happens in one age of the Universe. In other words, the rate of
the reaction does not keep up to the expansion rate of the Universe. The
freeze-out temperature Tf o is the temperature at which expansion and
reaction rate are equal

Γ(Tf o) = H(Tf o) . (10.19)

While the Universe expands, Γ > H, until Tf o is reached. After that,
Γ < H and the DM density is "frozen" and then it will keep decreasing
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with the expansion.

10.8 Hot Thermal Relics and the Example of Neu-
trinos

If thermal relics are relativistic at the decoupling time, they are called
hot thermal relics. Neutrinos are an example of such particles: given their
almost vanishing mass they move at almost the speed of light at the de-
coupling. If they have to be thermal relics, they should have been in
thermodynamical equilibrium, for example through a reaction like

ν + ν̄←→ f + f̄ , (10.20)

where ν(ν̄) is a neutrino (antineutrino) and f ( f̄ ) is a fermion (antifermion).
Taking E ∼ Tν and for the cross-section the Fermi approximation 1 σ ∼
G2

FT2
ν , at the freeze-out temperature Tν we require (v = c = 1)

n(Tν) · σ(Tν) = H(Tν)⇒ T3
ν G2

FT2
ν =

T2
ν

MP
. (10.21)

where we used the Friedmann equation H2 = 8πG
3 ρ and ρ ∼ T4 for rela-

tivistic particles. Solving for the freeze-out temperature

Tν = (G2
F MP)

−1/3 ≈ 1 MeV . (10.22)

This result is consistent with the relativistic condition m� T assumed at
the beginning, so neutrinos are really an example of hot relics.

10.9 Cold Thermal Relics and WIMPs

Cold thermal relics are non-relativistic at freeze-out, so the appropriate
approximation for the density is

n ∼ (mT)3/2e−
m
T , (10.23)

1GF ∼ 10−5GeV−2 and we assume E� mW .
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Figure 10.2: Plot of the two sides of Eq. 10.24. The blue dashed line
corresponds to the WIMP case 1/(m · MP · σ) = 10−14, calculated with
the weak scale "miracle" values mχ = 100 GeV and σ = G2

Fm2
χ. Other two

horizontal lines at 10−8 and 10−20 are added for reference.

The freeze-out condition nσ ∼ H (we still consider v ∼ c up to some
factor) in the radiation-dominated phase of the Universe implies n f o ∼
T2

f o/(σMP).
Defining x = m/T (x � 1 then defines the non-relativistic "cold" regime),
the freeze-out condition becomes

√
xe−x =

1
m ·MP · σ

. (10.24)

The last equation does not have analytical solutions and must be solved
numerically. A graphical representation of the solution is given in Fig 10.8,
where

√
xe−x is reported together with three cases for 1/(m ·MP · σ): the
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solutions are at the intersection points.
Let’s try now to calculate the density parameter associated to a cold relic
particle with mass mχ

Ωχ =
mχnχ(T0)

ρc
=

mχT3
0

ρc

n0

T3
0

. (10.25)

Today, T0 = 2.7K ∼ 10−4 eV. In an isoentropic FLRW Universe (aT ∼
const.), for relativistic particles we have T ∼ 1/a and n ∼ 1/a3, so

n0

T3
0
=

n f o

T3
f o

. (10.26)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

Ωχ =
T3

0
ρcMP

x f o

σ
. (10.27)

The dark matter abundance is measured to be about ΩDM ∼ 0.2, so the
last equation can be recast in the more suggestive form

Ωχ

0.2
'

x f o

20

(
10−8GeV−2

σ

)
, (10.28)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section 〈σv〉 for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ∼ c/3 for x ∼ 20 and this leads to the estimate

〈vσ〉 ∼ 3× 10−26 cm3

s
. (10.29)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ∼ EEW ∼ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

σEW ∼ G2
FT2

f o ∼
(

EEW

20

)2

∼ 10−8GeV−2 , (10.30)
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we obtain the right cross-section which is able to explain the DM abun-
dance. This result is often quoted as an indication that new physics at the
electroweak scale might also explain DM in the form of a cold relic from
the early Universe. Looking at Fig. 10.8, the dashed line describes about
this case with σEW = G2

Fm2
χ and mχ = 100 GeV, corresponding to x ∼ 35.

Is this really a "miracle"? The previous result was obtained under the as-
sumption of electroweak cross-sections and the cold relic condition x � 1.
In general, following a dimensional argument, a DM annihilation cross-
section can be written as σ ∼ g4/m2

χ, where g is some coupling constant.
Using Eq. 10.24, x � 1 ⇒ mχMPσ � 1, and therefore mχ � 0.1 eV if
σ ∼ 10−8 GeV2. This means that as long as the cross-section is the right
one for explaining the DM abundance, the cold relic mass can be very
small. The conclusion is that the supposed "miracle" can be realized also
without appealing to the electroweak scale.
The argument for understanding the WIMP paradigm can also be restated
as following.
As we have seen,

Ωχ ∝
1
〈vσ〉 ∼

m2
χ

g4
χ

. (10.31)

The WIMP miracle states that if we use weak-scale masses and coupling
constants, we can roughly reproduce the observed DM abundance. The
last equation though fixes only the ratio between couplings and masses
and therefore also other combinations might in principle obtain the cor-
rect abundance.

10.10 Mass Ranges for Cold Thermal Relics

General limits can be imposed to the allowed mass range of cold thermal
dark matter. The requirement of unitarity in the calculation of cross-
sections places the approximate bound

σ <
4π

m2
χ

, (10.32)

and this, together with Eq. 10.28 approximately implies

Ωχ

0.2
> 10−8GeV−2 ×

m2
χ

4π
. (10.33)
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Since Ωχ < 0.2 we have ( mχ

120 TeV

)2
< 1 . (10.34)

For a lower limit for WIMPs (σ ∼ G2
Fm2

χ), choosing x f o ∼ 20 we have

Ωχh2 ∼ 0.1
10−8GeV−2

G2
Fm2

χ

∼ 0.1
(

10 GeV
mχ

)2

. (10.35)

This lower limit is known as the Lee-Weinberg limit. The overall mass
range allowed for WIMPs goes therefore from few GeVs to many TeVs.

10.11 Direct Searches for Dark Matter

The dark matter rate R in a detector containing NT nuclei is

R = NT × 〈Φχ〉 , (10.36)

where 〈Φχ〉 is the average flux. The recoil energy spectrum can be further
written as

dR
dER

= NT · nχ · 〈vχ
dσ

dER
〉 = NT ·

ρχ

mχ
· 〈vχ

dσ

dER
〉 , (10.37)

where σ is the nucleus-DM cross section, ER the nucleus recoil energy,
and vχ is the DM velocity. In general the cross section can be dependent
from the velocity which has a distribution f (v) over which the cross sec-
tion is averaged.
From classical mechanics collision theory,

ER =
q2

2mT
=

µ2
T

mT
v2

χ(1− cos θ) , (10.38)

where µT is the nucleus-DM reduced mass and θ the scattering angle.

Differentiating the last equation (dER =
µ2

T
mT

v2
χd(cosθ)) and substituting in

Eq. 10.37
dR
dER

= NT
ρχmT

mχµ2
T

∫ vesc

vmin

d3v
f (v)

v
dσ

d cos θ
. (10.39)
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The integration limits are between the minimal velocity (corresponding
to cos θ = −1) vmin = q/(2µT) and the galactic escape velocity vesc.
The velocity distribution f (v), the DM density ρχ, and the escape velocity
come from astrophysical measurements, the DM mass mχ is a parameter,
while the other quantities are known. The cross section depends from the
DM model considered.
The formula is general and can be used for placing upper limits to DM
cross sections as a function of the DM particle mass.

10.12 Velocity Distribution Models

The Standard (galactic) Halo Model (SHM) assumes an isotropic thermal
distribution for dark matter described by a Maxwell-Boltzmann distribu-
tion with a cutoff at vesc

fSHM(v) = NSHM · e−
1
2 |v|2/σ2 ·Θ(vesc − |v|) , (10.40)

where NSHM is a normalization constant and σ = |v0|/
√

2 is the DM ve-
locity dispersion for a local reference frame at rest with velocity vo.
The SHM is a first-order approximation of the DM distribution in the
galaxy. The galaxy has different kinds of inhomogeneities and substruc-
tures, which can be modeled by

fsub(v) = Nsub · exp

[
− (v− v̄sub)

T σ−2
sub
2

(v− v̄sub)

]
×Θ(vesc − |v|) ,

(10.41)
where v is intended as a 3-dim vector and σ is a 3x3 matrix (the dispersion
tensor), and vsub is the average velocity of the particles in the galactic sub-
structure.
The total velocity distribution can be modeled as

fχ(v) = (1− η) · fSHM(v) + η · fsub(v) , (10.42)

where the parameter η regulates the proportion of the substructure in the
galaxy.
A generic model for the dispersion tensor which can describe “in-falling
clumps” structures is σsub = diag(vrr, vθθ, vφφ) with 〈vsub〉 = (〈vr〉, 〈vθ〉, 〈vφ〉).
In these spherical coordinates, r points towards the center of the galaxy, θ
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Figure 10.3: Velocity distributions measured by the Gaia mission. The
“Sausage” is clearly visible with respect to the distribution of galactic
disk stars. The structure is the result of a merger happened O(10) billions
of years ago.

is the zenith angle and φ is oriented in the direction of the galactic disk’s
rotation. Condidering the angle α between the velocity vector of the Earth
and v, the model assumes

〈vr〉 = 〈vθ〉 = 1√
2
|v| sin α

〈vφ〉 = |v| cos α

σrr = σθθ =
1√
2
(σ‖ sin α− σ⊥ cos α) .

(10.43)

Choosing different model parameters (〈v〉, σ‖, σ⊥), the different galactic
substructures can be modeled.
A relevant galactic structure recently discovered is the so-called “Gaia
Sausage” or Enceladus: it is a merger event happened billions of years ago

132



CHAPTER 10. DARK MATTER

where the Milky way merged with another smaller galaxy. The structure
was discovered by the Gaia satellite mission which measured distances
and velocity of millions of stars in our galaxy. The measured velocity
distribution is showed in Fig.10.3.
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Chapter 11 | Dark Energy

11.1 Introduction

The Dark Energy “problem” (DE) started in 1998 with the publication
of results about 1a supernovae distances: very distant supernova were
dimmer than expected suggesting that the universe’s expansion was ac-
celerating.
A brief historical account of DE is the following:

1917: Einstein introducd the cosmological constant in his field equations
to obtain a static Universe.
1920s: Pauli realized that for a radiation field the vacuum energy would
be very large. Ha calculated (unpublished) such an energy using as ultra-
violet cutoff the classical electron radius, obtaining a value such that the
Universe would have a too large curvature.
1931: Einstein removed the cosmological constant after the discovery of
cosmic expansion.
1967: Zeldovich reintroduced the cosmological constant in connection
with vacuum fluctuations.
1987: Weinberg published his famous review paper on the problem (Rev.
Mod. Phys. 61 (1989) 1)
1998: Based on the analysis of 16 distant and 34 nearby supernovae, Riess
et al. first discovered the acceleration of the expansion of the Universe.
Right after, using 18 nearby supernovae and 42 high-redshift supernovae,
Perlmutter et al. confirmed the discovery.
2011: Adam Riess, Brian Schmidt, and Saul Perlmutter win the Nobel
Prize in physics 2011.
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11.2 Cosmological Constant

The presence of a positive cosmological constant can account for the pres-
ence of dark energy. In the following we review briefly what the cosmo-
logical constant Λ is in the framework of general relativity.
The Einstein equation allows a term proportional to gµν

Rµν −
1
2

gµνR + Λgµν = 8πGTµν (11.1)

where Λ is a constant. Such term is allowed by the conservation laws
(∇µGµν = 0 and ∇µTµν = 0).
If we interpret the new term as an additional form of matter we can
rewrite the energy-momentum tensor as

Tµν → Tµν −
1

8πG
Λgµν . (11.2)

If we condider an ideal fluid

Tµν = (ρΛ + PΛ)uµuν + PΛgµν , (11.3)

then
PΛ = −ρΛ with ρΛ =

1
8πG

Λ . (11.4)

The described fluid is “strange”, since if Λ is positive, then pressure is
negative. Since the cosmological constant term is proportinal to gµν, it is
Lorentz invariant and thus can be interpreted as vacuum energy. Using
the FRLW metric, the Einstein equations with the cosmological constant
are

ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

, (11.5)

H2 =
8πG

3
ρ− k

a2 +
Λ
3

. (11.6)

Sometimes it is useful to introduce the Planck Mass

MP =

√
1

8πG
, (11.7)

and recast the Friedmann equations in the following form

3M2
PH2 = ρm + ρΛ −

3M2
Pk

a2 , (11.8)
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6M2
P

ä
ȧ
= 2ρΛ − ρm , (11.9)

where we assumed Pm = 0 and have differentiated between the normal
matter density ρm and the dark energy density ρΛ = M2

PΛ. Considering
the first equation Eq. 11.8, a static Universe (H=0) without a cosmological
constant, would imply a density: ρm = 3M2

P/a2 and k=1 (positive curva-
ture).
Such a result is not consistent with Eq. 11.9, since it implies ä/a < 0,
namely a collapsing Universe.
The latter considerations show that for having a static Universe (H=0 and
ä/a < 0) we need

2ρΛ = ρm and ρΛ =
M2

P
a2 , (11.10)

forcing a fine-tuning of the constant’s value. All these problems, together
with the instability of a static Universe (see the exercises), and the discov-
eries of Hubble lead Einstein to abandon the cosmological constant.

11.3 Cosmological Constant and the Vacuum

In the vacuum, quantum fields can have fluctuations even if their mean
value is zero. According to quantum field thery, the vacuum is populated
by virtual particles which in certain conditions can have even measurable
macroscopic effects, like in the case of the Casimir force.
Taking the example a free bosonic field, the creation/annihilation oper-
ators satisfy the relation [a†, a] = 1 and the Hamiltonian of the system
reads

H =
1
2

h̄ω(aa† + a†a) = h̄ω(a†a +
1
2
) . (11.11)

The second term of the last member of the equation gives rise to a diver-
gence if all the frequencies are summed up. Going to the continuum limit
(h̄ = 1) and considering a bosonic field with mass m

1
2 ∑

i
ωi =

1
2

∫
(d3x)(d3p)

(2π)3

√
k2 + m2 = V

∫ k2dk
4π2

√
k2 + m2 , (11.12)
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where we performed the space integration and used spherical coordinates
in momentum space.
The momentum integral diverges as expected, and we can introduce an
UV cutoff for obtaining a finite result. The Planck mass seems a good
possible choice, and the energy density for the boson field becomes

ρb =
∫ MP

0

k2dk
4π2

√
k2 + m2 ≈

∫ MP

0

k3dk
4π2 =

M4
P

16π2 ≈
1

210π4G2 ≈ 1071 GeV4 ,

(11.13)
where we used the ultra-relativistic approximation k� m.
In our universe, the energy density corresponding to the cosmological
constant term is smaller than the critical density ρc

ρΛ < ρc ≈ 10−46 GeV4 . (11.14)

Instead, our rough estimate of the vacuum energy contribution from a
quantum field leads to

ρb
ρc
≈ 10117 , (11.15)

which is quite surprising: if the cosmological constant were so large, the
Universe would be much different with respect to how it looks like today.
A possibility is that supersymmetry exists: in this case the bosonic con-
tributions are counter-balanced by the fermionic superpartners. We still
did not observe supersymmetry, but even if we use a cut-off at the elec-
troweak scale (or the scale at which supersymmetry should be broken)
like ≈ 100 GeV, still we have ρb/ρc ≈ 1052.
The latter estimates show the difficulties in interpreting the cosmological
constant as vacuum energy. Up to now (2020), the nature of dark energy
remains elusive and we only observe its effects on the dynamics of the
Universe.

11.4 Modified Gravity

Another possibility is that gravity is described by higher-order terms in
the Einstein-Hilbert action. The Einstein equations can be obtained vary-
ing the following (relatively simple) action

S =
1

16πG

∫
d4x
√
−gR + Smatter , (11.16)
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which could be modified including higher-order terms like Rn. For ex-
ample, S. Carroll and collaborators proposed

S =
1

16πG

∫
d4x
√
−g
(

R− µ4

R
Smatter

)
, (11.17)

resulting in the following equations of motion(
1 +

µ4

R2

)
Rµν −

1
2

(
1− µ4

R2

)
gµνR + µ4(gµν −∇(µ∇ν))R−2 = 8πGTµν

(11.18)
If µ = 0 the last equation reduces to the Einstein one.
Considering the energy-momentum tensor T of a fluid, the Friedmann
“Hubble” equation becomes

3M2
PH2 −

µ4M2
P

12(Ḣ + 2H2)3
(2HḦ + 15H2Ḣ2 + 6H4) = ρ . (11.19)

A careful analysis of the last equation shows that there is the possibility
of an accelerated expansion, although this version of modified gravity
violates the equivalence principle.
In general, one could in principle consider the general class of theories

S =
1

16πG

∫
d4x
√
−g f (R) + Smatter , (11.20)

and see which ones give accelerated expansions. Such theories should
anyhow respect the existing experimental constraints favouring the sim-
pler Einstein-Hilbert action.

11.5 Coupling gravity with quantum fields

Models of the so-called Quintessence consider a scalar field

S =
∫

d4x
√
−g
[
−1

2
gµν∂µφ∂νφ−V(φ)

]
, (11.21)

which, varying with respect to gµν gives the energy-momentum tensor

Tµν = ∂µφ∂νφ− gµν

[
1
2

∂λφ∂λφ + V(φ)

]
. (11.22)
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Comparing with the usual fluid energy-momentum tensor, we can con-
clude (co-moving frame)

ρ =
1
2

φ̇2 + V(φ) , P =
1
2

φ̇2 −V(φ) , (11.23)

and the Friedmann equations are

3M2
PH2 =

1
2

φ̇2 + V(φ) , (11.24)

− 2M2
PḢ = φ̇2 . (11.25)

Considering a ∝ tn, where with n=1 there is no acceleration, while n > 1
implies acceleration, the Friedmann equations imply a potential of the
form

V = V0exp

(
−
√

2
n

φ

MP

)
. (11.26)

This means that all the potentials “flatter” than the previous one with
n = 1 can give rise to accelerated expansion. The quintessence scenario
can be realized with scalar fields like axions, dilatons, or the Higgs field.
There is a large variety of scenarios where gravity is coupled to one (or
more) fields for trying to explain dark energy and here we mentioned
only one out of many possibilities.

11.6 Dark Energy Measurements

Type 1a Supernovae
The Dark Energy effect was discovered in 1998-99 using observations on

peculiar stars: Type Ia supernovae. These “stars” are actually binary sys-
tems (two stars orbiting one another) in which one of the stars is a white
dwarf. The other star type can be anything from a giant star to a smaller
white dwarf.
When a carbon/oxygen white dwarf accretes matter from a companion,
it can exceed the Chandrasekhar limit of ≈1.44 solar masses: beyond this
point, it cannot support itself with electron-degeneracy pressure (Pauli
exclusion principle). The white dwarf eventually collapses to form a neu-
tron star.
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Figure 11.1: Supernova Type 1a distance measurements from the DES
collaboration. The gray line and values represent the best fit to the data.
In the lower panel are reported the residuals with respect to the best fit
line.

The type Ia category of supernovae produces a consistent peak luminos-
ity because the mass at explosion is fixed by the Chandrasekhar limit.
This fixed value allows these stars’explosions to be used as standard can-
dles: this allows to measure the distance of their host galaxies from us.
Distance Measurements
Dark Energy surveys measure the luminosity distance dL of the super-
novae as a function of the redshift and in particular the relevant variable
is the distance modulus µ

µ = m−M = 5 log10

(
dL

10 pc

)
, (11.27)

where m is the apparent magnitude and M the absolute magnitude. The
absolute magnitude is defined as the apparent magnitude of an object
when seen at a distance of 10 parsecs.
The luminosity distance is connected to the measurable light flux (power/surface)
Φ: dL =

√
L/(4πΦ), where L is the intrinsic luminosity of the object.

dL is further connected to the cosmological parameters through

dL = (1 + z)c
∫ z

0

z′

H(z′)
, (11.28)
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Figure 11.2: Constraints to the ΛCDM model with 68% and 95% confi-
dence intervals.

where the Hubble parameter, through the Friedmann equations is ex-
pressed as a function of the red-shift

H(z) = H(0)
√

Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w) . (11.29)

In Fig. 11.1 are reported the results of the DES dark energy survey collab-
oration. The very distent supernovae show a statistically significant devi-
ation from models without dark energy. The best fitting model has Ωm =
0.321 and ΩΛ = 0.679 with an equation of state parameter w = −0.978.
The result is consistent with a ΛCDM model with significant fraction of
dark energy. In Fig. 11.2 the dark energy survey results are plotted to-
gether with the results from CMB. Together, they constrain even more the
cosmological parameters and are consistent with an almost-flat Universe
dominated by dark energy and accelerating expansion rate.
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Figure 11.3: Supernova 1998ba observed during the supernova survey
that lead to the discovery of Dark Energy and to the 2011 Nobel Prize
won by S. Perlmutter, B.P. Schmidt, and A. Riess.

11.7 Experimental Details

Ia supernovae, are the brightest of the supernova types (by a factor ∼ 6):
that’s why they are condidered as standard candles for very high dis-
tances measurements.
The glow of a Type 1a supernova lasts a few weeks and it faded away
within a few months. The measurements use the magnitude at peak,
which has a very consistent brightness (after calibration procedures). Since
one can never predict a supernova explosion and supernovae only ex-
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plode a couple of times per millennium in any given galaxy, the search
for these objects must be carefully planned in order to obtain observation
time at the best telescopes.
In practice, astronomers observe wide fields of sky out from the galactic
plane. These patches of sky contain O(100) distant galaxies. After having
observed O(10000) galaxies, after a period of 3 weeks, the same galaxies
are observed again. The comparison between images allows the discov-
ery of Type 1a supernovae. An example of obtained images is showed in
Fig. 11.3
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12.1 Brief History

After the striking first verifications of the prediction of GR (Mercury’s per-
ihelion precession, bending of light rays from the Sun), Einstein worked
on another consequence of the theory, namely gravitational waves. Un-
fortunately, the first 1916 paper Einstein wrote on the subject, contained
mathematical errors that were only corrected in 1918. In 1922, Eddington
pointed out (in addition to another mathematical mistake), that some of
the wave solutions in Einstein’s paper allowed speeds higher than that of
light, sarcastically commenting that “the only speed of propagation rele-
vant to them is the speed of thought”. Now understood that the problem
noticed by Eddington was due to artefacts of the coordinate system that
Einstein used and therefore they were unphysical.
Eddington’s critical remarks were reinforced by Einstein himself and his
assistant N. Rosen which started to be convinced that gravitational wave
emission was not possible.
The story ended only 35 years after: in 1957, Felix Pirani was finally able
to show how gravitational waves were able to affect other bodies and later
Hermann Bondi showed that gravitational waves were able to transport
energy (like electromagnetic waves).
After that, J. Wheeler and J. Weber started to think that gravitational
waves could be detectable.
In 1967, radio pulses were discovered from rotating neutron stars: these
“pulsars” motivated Joseph Taylor to measure binary sytems composed
by couples of such stars. The orbital properties of binaries are important
because, according to GR, gravitational waves carry energy away from
the system, forcing it to slow down its rotation. In 1974, Taylor and his
graduate student Russell Hulse discovered the first binary pulsar and in
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1993 were awarded the Nobel Prize in Physics for the discovery.
In 1981, orbital-period slow-down was measured in that system, with a
magnitude exactly consistent with GR (within a small uncertainty).
J. Weber (U. of Maryland) tackled the experimental problem of detecting
gravitational waves and came to the conclusion that two techniques were
viable: resonant detectors and laser interferometers.
Resonant detectors were more affordable adn in 1965 Weber build his first
detector: a 1.5-tonne, 1 m × 2 m cylindrical bar made of aluminium that
would resonate is excited by a gravitational wave of the right frequency.
The Weber’s cylinders had a resonance frequency of 1660 hertz and the
piezoelectric sensors had to be very sensitive, since they had to detect a
change in the cylinders’ lengths by about 10−16 m.
In 1969 Weber announced the detection of a gravitational wave in two
bars separated by 1000 km (Chicago-Maryand). Unfortunately, these re-
sults could not be reproduced by other experimental groups and the data
analysis procedure was questioned.
Although the detection failed, the work of Weber stimulated the com-
munity and developed new technology. Rainer Weiss at MIT started to
think about detecting gravitational waves and in 1972 he wrote a 23-page
note in a MIT’s quarterly newsletter describing for the first time the main
experimental design for a laser interferometer. The Weiss design would
later become the foundation of the Laser Interferometer Gravitational-
wave Observatory (LIGO).

12.2 Linearized General Relativity

For weak gravitational fields, we can linearize the metric tensor around
the flat Lorentz spacetime ηµν

gµν = ηµν + hµν with |ηµν| � 1 and |
∂hµν

∂xξ
| � 1 . (12.1)

Important relations the perturbation h must fulfill are

hµν = hνµ ,
h00 = h00 , hij = hij , h0i = −hi0 ,
hχ

ν = gχµhµν = (ηχµ − hχµ)hµν ≈ ηχµhµν ,
h ≡ hν

ν ,
h̄µν ≡ hµν − ηµν

h
2 .

(12.2)
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We introduce now small changes on the coordinates, which in GR are
equivalent to a gauge transformation. “Small” changes means |ξµ � 1|
and |∂ξµ/∂ξβ| � 1 with the properties

xα′ ≡ xα + ξα[xβ] ,
xα = xα′ − ξα[xβ] = xα′ − ξα[xβ′ − ξβ] ≈ xα′ − ξα[xβ′ ] ,
∂ξα

∂ξβ
= ∂xα′

∂xβ′
∂xβ′

∂xβ
= ∂xα′

∂xβ′
∂(xβ+ξβ)

∂xβ
≈ ∂ξα

∂ξβ′
,

∂xα

∂xβ′
= ∂xα′

∂xβ′
− ∂ξα

∂ξβ′
= δα

β −
∂ξα

∂ξβ
,

∂xα′

∂xβ
= ∂xα

∂xβ
+ ∂ξα

∂ξβ
= δα

β +
∂ξα

∂ξβ
,

gα′β′ = ηα′β′ + hα′β′ = ηαβ + hα′β′ .

(12.3)

We expect that δ does not change at first order and indeed

δα′
β′ =

∂xα′

∂xβ′
=

∂(xα + ξα)

∂xβ

∂xβ

∂xβ′
= (δα

β +
∂ξα

∂ξβ
)

∂(xβ′ − ξβ)

∂xβ′
, (12.4)

and performing the derivative in the second half of the last part of the
latter equation and multiplying we have

δα′
β′ = δα

β =
∂xα

∂xβ
, (12.5)

which proves also that ηα′β′ = ηαβ.
With the above properties, it can also be proved that

hαβ = hα′β′ +
∂ξα
∂ξβ

+
∂ξβ

∂ξα
,

hα′β′ = hαβ − ∂ξα
∂ξβ
− ∂ξβ

∂ξα
.

(12.6)

The above results follow considering the tensor transformation laws

gµ′ν′(x′) =
∂xα

∂xµ′
∂xβ

∂xν′
gαβ(x) . (12.7)

Substituting the definition of the coordinate transformation (x′ = x− ξ)

gµ′ν′(x′) = (δα
µ′ −

∂ξα

∂xµ′
)(δ

β
ν′ −

∂ξβ

∂xν′
)[gαβ(x′)−

∂gαβ

∂xσ
(x′)ξσ] (12.8)
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and simplifying

gµ′ν′(x′) = gµν(x)− ∂ξα

∂xµ
gαν −

∂ξβ

∂xν
gµβ −

∂gµν

∂xσ
ξσ . (12.9)

The last term of the previous result can be neglected in the case of the
Minkowski spacetime and the obtained formula shows how also hµν trans-
forms under a coordinate transformation.
The obtained transformation property shows that the perturbation tensor
h is not unique but it remains small even if changed by a gauge transfor-
mation: the idea is to choose the best transformation for simplifying the
calculations in the linearized regime.
For the linearization of the Einstein equations, we need to linearize the
Ricci tensor, which is function of derivatives and products of Christoffel
symbols. The products can be discarded, since they are of higher order,
while the linearization of the derivatives become

∂Γχ
βµ

∂xν
=

1
2

ησχ

[
∂2hβσ

∂xµ∂xν
+

∂2hµσ

∂xβ∂xν
−

∂2hβµ

∂xσ∂xν

]
, (12.10)

∂Γχ
βν

∂xµ
=

1
2

ησχ

[
∂2hβσ

∂xµ∂xν
+

∂2hνσ

∂xβ∂xµ
−

∂2hβν

∂xσ∂xµ

]
, (12.11)

Substituting in the Riemann curvature tensor

Rαβ = gαχRχ
βµν = gαχ

[
∂Γχ

βµ

∂xν
−

∂Γχ
βν

∂xµ
+ Γχ

γµΓγ
βν − Γχ

γνΓγ
βµ

]
≈ gαχ

[
∂Γχ

βµ

∂xν
−

∂Γχ
βν

∂xµ

]
(12.12)

we finally obtain

Rαβµν =
1
2

ηαχησχ

[
∂2hνσ

∂xβ∂xµ
−

∂2hβν

∂xσ∂xµ
−

∂2hµσ

∂xβ∂xν
+

∂2hβµ

∂xσ∂xν

]
. (12.13)

Multiplying the Lorentz metrix tensors in front of the last equation

Rαβµν =
1
2

[
∂2hνα

∂xβ∂xµ
−

∂2hβν

∂xα∂xµ
−

∂2hµα

∂xβ∂xν
+

∂2hβµ

∂xα∂xν

]
, (12.14)
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we can also calculate the Ricci tensor

Rβν = gαµRαβµµ = ηαµRαβµν (12.15)

and threfore

Rβν =
1
2

[
∂2hµ

ν

∂xβ∂xµ
− ηαµ ∂2hβν

∂xα∂xµ
− ∂2h

∂xβ∂xν
+

∂2hαβ

∂xα∂xν
.

]
. (12.16)

In the last equation, the second term is just the wave equation in disguise

− (∇2 − ∂2

∂t2 )hβν , (12.17)

and this shows already where we will end with this calculation. We still
need the Ricci scalar for having the complete Einstein equations: renam-
ing some indices we have

R = gβνRβν = ηβνRβν =
∂2hµα

∂xµ∂xα
−

∂2hαµ

∂xµ∂xα
. (12.18)

We have now all the ingredients for calculationg the Einstein tensor

Gβν = Rβν −
1
2

gβνR ≈ Gβν = Rβν −
1
2

ηβνR ≈ (12.19)

∂2hµ
ν

∂xβ∂xµ
− ηαµ ∂2hβν

∂xα∂xµ
− ∂2h

∂xβ∂xν
+

∂2hα
β

∂xα∂xν
−

ηβν

2

(
∂2hµα

∂xµ∂xα
− ηαµ ∂2h

∂xµ∂xα

)
.

(12.20)
The last equation can be rewritten with the trace-inverse h̄ instead of h

Gβν =
1
2

[
∂

∂xβ

∂h̄µ
ν

∂xµ
− ηαµ ∂2h̄βν

∂α∂µ
+

∂

∂xν

∂h̄α
β

∂xα
− ηβνηµξ ∂

∂xµ

∂h̄α
ξ

∂xα

]
. (12.21)

Analogously to the case of electrodynamics, we can choose a Lorentz
gauge1

∂h̄χ
σ

∂xχ
= 0 . (12.22)

1It looks like historically this gauge choice was due to Ludvig Valentin Lorenz (Den-
emark), and not Hendrik Antoon Lorentz (Dutch). Likely, due to the similarity of the
names, the error propagated through the literature. We will keep using “Lorentz” in the
following.
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After this choice, the Einstein tensor reduces to

Gβν =
ηαµ

2
∂2h̄βν

∂xα∂xµ
, (12.23)

which is nothing less but the wave equation. Substituting this result for
the Einstein tensor into the Einstein equation

(∇2 − ∂

∂t2 )h̄
βν = −16πTβν . (12.24)

The result tells us that the linearized version of the Einstein equation is
the wave equation with the energy-momentum tensor as the source term.
This equation thus describes gravitational waves which travel at the speed
of light, and there is no restriction to the allowed frequencies.

12.3 Plane Waves

In empty space, all the components of the energy-momentum tensor are
zero and the obtained wave equation has solutions of the form

h̄µν = Aµν exp(ikχxχ) = Aµνeikixi
e−iωt , (12.25)

where A is the (tensor) amplitude and k is the wave vector and both
quantities are constant. It can be verified that

∂h̄µν

∂xβ
= ikβh̄µν , (12.26)

(∇2 − ∂

∂t2 )h̄µν ≡ �h̄µν = −(kβkβ)h̄µν = 0 , (12.27)

kβkβ = 0 ⇒ ω = ±
√

k2
1 + k2

2 + k2
3 . (12.28)

The wave vector is k = (k0,~k) = (ω,~k) and the wave travels in the direc-
tion of~k. The Lorentz gauge condition implies also

kν Aν
µ = 0 , (12.29)

which is an orthogonality restriction on the components of the amplitude
tensor.
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12.4 The TT gauge

We can further choose a more convenient coordinate transformation for
understanding gravitational waves. In general, the Einstein equations
are 10 and up to now we just choose the Lorentz gauge which gives four
constraints: we still have 6 degrees of freedom left. We can further choose
a coordinate transformation such that

�ξµ = 0 , (12.30)

so that the Lorentz gauge is still respected. We choose ξµ = Bµ exp(ikχrχ),
which respects the gauge constraints. This produces a solution called
TT h̄µν which is called the transverse-traceless solution (see next) and we
have also TT h̄µ

µ = Āµ
µ = 0, where Ā is the amplitude of the TT solution.

We know already how h transforms, so we can use the new coordinate
transformation on it

h̄µ′ν′ ≡TT h̄µν = h̄µν −
∂ξµ

∂xν
− ∂ξν

∂xµ
+ ηµν

∂ξχ

∂xχ
, (12.31)

Inserting the coordinate transformation

Āµν = Aµν − i(Bµkν + kµBν − ηµνBχkχ) (12.32)

Āα
µ = Aα

µ − i(Bµkα + kµBα − δα
µBχkχ) (12.33)

and the traceless condition becomes

0 = Āµ
µ = Aµ

µ− i(Bµkµ + kµBµ− 4Bχkχ) = Aµ
µ + 2iBµkµ ⇒ iBµkµ = −Aµ

µ/2 .
(12.34)

If the trace of A is not zero (Aµ
µ 6= 0), we can choose Bµ in the coordinate

transformation such that the trace of Ā is zero (and therefore TT h̄µ
µ = 0).

This amounts to add four additional constraints (on top of the Lorentz
gauge) and reduce the degrees of freedom to two. We can choose the Bµ

component such that

h0µ = 0 , hi
i = 0 ,

∂hij

∂xi
= 0 . (12.35)
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Figure 12.1: Effect of a GW on a ring of massive particles for the two
polarization states.

The last equations fully define the tranverse-traceless gauge (TT).
Taking a GW propagating along the z direction (kµ = (ω, 0, 0,−ω)) the
solution is

TThµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos[ω(t− z)] . (12.36)

The two degrees of freedom left are associated to the two polarization
states of the GW each with amplitudes h+ and h×.
The line element associated with h is (with φ = ω(t− z))

ds2 = −dt2 + (1 + h+ cos φ)dx2 + (1− h+ cos φ)dy2 + 2h× cos φdxdy .
(12.37)

12.5 Effect on Particles

Assuming τ ≈ t, the linearized geodetic equation is

duµ

dt
= −1

2

(
∂hµα

∂xβ
+

∂hβµ

∂xα
−

∂hαβ

∂xµ

)
uαuβ (12.38)
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Considering a static particle, its four-velocity will be uµ = (1, 0, 0, 0) and
the last equation reduces to

duµ

dt
= −

(
∂hµ0

∂x0
− 1

2
∂h00

∂xµ

)
. (12.39)

Remembering the TT gauge (h00 = hµ0 = 0), we have duµ

dt = 0: a GW does
not affect an isolated particle at first order.
If instead we consider two particles at a space points −x0 and x0 with a
GW travelling in the z direction, the distance between the points will be
described by

ds2 = −g11dx2 = (1− h11)(2x0)
2 = (1− h+)(2xx)

2 ⇒ ∆s ≈
(

1− 1
2

h+ cos ωt
)
(2x0) .

(12.40)
Analogously for two points on the y axis, we will have

s ≈
(

1 +
1
2

h+ cos ωt
)
(2x0) . (12.41)

Considering a ring of particles, according to the rotation in the xy plane
of the last two distances, the result of the change in their positions as a
function of time can be seen in Fig. 12.1.
It is worth noting that this result was obtained in the TT gauge, but it is
actually gauge-independent. The gauge freedom allows to choose a coor-
dinate system for simplifying the calculations but the observable conse-
quences are independent from this choice.

12.6 Observation of gravitational waves with laser
interferometers

The last formula can be approximately rewritten as a fractional lenght
change

δL
L
≈ 1

2
h+ , (12.42)

and sometimes the amplitude h is called the wave strain. This fractional
change is relevant in interferometric experiments measuring gravitational
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waves.
GW interferometers use laser light sent in two different directions to-
wards suspended mirrors. The reflected light from the two paths is tuned
to destructively interfere and give a zero signal on a light detector. Phase
differences are induced by the passage of a GW (which changes the rela-
tive length of the two paths) which makes an interference pattern appear
and the light detector can pick it up.
The GW induces the accumulation of an extra phase

δφ = 4π
δL
λ

, (12.43)

where λ is the wave length and δL is the distance change between the
mirror and the beam-splitter. The last formula is valid if the metric per-
turbation does not change much during the light travel in the interferom-
eter. A more detaild analysis is needed for high-frequency GWs: this case
is relevant for space-based detectors.
Considering L-shaped interferometers along the x and y directions as in
the case if LIGO, using the strain formulas derived before, we can write
for the fractional change of the two arms

δLx

L
≈ 1

2
h+ , (12.44)

δLy

L
≈ −1

2
h+ . (12.45)

From these deformations, we see that the GW acts tidally, shortening one
arm and stretching the other with a time variation given approximately
by a sinusoidal function.
The h× polarization component acts in a similar way, just rotated by 45◦

with respect to the interferometer’s x-y reference frame. In general, since
the GW can have polarization axes which are not aligned with the inter-
ferometer’s arms, we have to expect a GW with a weighted combination
of the two polatization components.
The general working principle of GW interferometers like LIGO is showed
in Fig. 12.2.
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Figure 12.2: Working principle of the LIGO interferometer.

12.7 Gravitational wave energy and amplitude

The energy flux carried by a GW with frequency f and typical amplitude
(for both polarizations) h is

FGW =
π

4
f 2h2 . (12.46)

Restoring the c and G factors and rescaling to realistic values

FGW = 3
mW
m2

(
h

10−22

)2( f
1 kHz

)2

. (12.47)

By comparison, this energy flux is comparable (even higher) to the one
emitted by the full moon.
If we now integrate over a sphere of radius R and assume an emission
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duration T, we have for the typical amplitude

h = 10−21
(

EGW

0.01Msunc2

)1/2( R
20 Mpc

)−1( f
1 kHz

)−1( T
1 ms

)−1/2

.

(12.48)
The latter amplitude is normalized to numbers fitting a gravitational col-
lapse within the Virgo cluster and it also set the sensitivity scale for inter-
ferometric gravitational wave detectors.
The same formula can be applied to binary systems radiating energy with
GWs increasing the parameter T.

12.8 Gravitational Wave Sources

Let’s start considering an “artificial” source of GWs: an aluminum bar
with 1 m width, length L=20 m, and weight 490 tons. Given the properties
of aluminum and the width of the bar, the maximum rotation speed (i.e.
a higher speed will break the bar) around an axis orthogonal to the bar’s
axis and going through its center is ω = 28 rad/s. The rotational energy
of such a system is Erot = (1/2)Iω2 and the power is

Prot = Erot ·ω =
1

24
ML2ω3 (12.49)

where we used the moment of inertia of a bar I = (1/12)ML2.
In natural units, the power is a dimensionless quantity and general rela-
tivity says that the gravitational wae power is approximately

PGW ≈ P2
rot . (12.50)

For restoring the normal units, we need the conversion factor

P0 =
c5

G
≈ 3.6 · 1059 arg/s = 2× 105 ×Msunc2/sec . (12.51)

Combininig the last three equations

PGW ≈ (10−41)2 · P0 ≈ 10−23 erg/s . (12.52)

With some effort such GWs could be created in a laboratory experiment,
but as it is clear from the number, the radiated power will be incredibly
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small and hardly measurable.
We can try again considering an astrophysical system of mass M and
typical spatial extension R.
The virial theorem says that the average kinetic energy of the system will
be K ∼ M2/R and therefore the typical time (e.g. the orbital time of two
pulsars or black holes) will be

T ∼ R√
M/R

=

√
R3

M
. (12.53)

The rotation power of the system is therefore

Prot ∼
K
T
∼
(

M
R

)5/2

. (12.54)

Since GR says that the GW power is the square of the rotation power, in
c.g.i units we have

PGW ∼
(

M
R

)5

P0 . (12.55)

If the considered system is rather symmetric, the quadrupole moment
will be reduced and so will be also for the radiated power which will be
lower than the one estimated with the last formula.
Looking more closely the case of two astrophysical bodies with masses m1
and m2 separated by a distance a and rotating around a common center
of mass, Kepler’s law says that

ω2a3 = m1 + m2 ≡ M . (12.56)

The kinetic energy K and the potential energy V are connected by

K = −1
2

V =
1
2

m1m2

a
. (12.57)

Defining the reduced mass µ = m1m2/M, the radiated power as GWs is
PGW ∼ Kω:

PGW ∼
µ2M3

4a5 P0 , (12.58)

in c.g.s units. The exact result based on GR is

PGW =
32
5

µ2M3

a5 f (ε)P0 , (12.59)
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with

f (ε) =
(

1 +
73
24

ε2 +
37
96

ε4
)(

1− ε2
)−7/2

. (12.60)

The parameter ε is the eccentricity of the orbit. Neglecting GR, our clas-
sical estimate is wrong by roughly one order of magnitude, which is not
too bad, given the intensity of the involved gravitational fields.
The emission of GWs brings the two objects in an inspiraling trajectory.
The change of kinetic energy due to GW emission is

dK
dt

=
1
2

µM
a2

da
dt

= −LGW = −32
5

µ2M3

a5 . (12.61)

Solving the differential equation by separation of variables we can obtain
the variation of the orbital radius with time

a = a0

(
1− t

τ

)1/4

, (12.62)

with

τ =
5

256
a4

0
µM2 . (12.63)

It is interesting to compare some inspiral times due to GW emission:

System Period Spiral time PGW (erg/s) Flux on Earth
(erg/s) (erg/s/cm2)

Sun-Jupiter 11.86 yr 2.5× 1023yr 5.2× 1010 ∼ 0
Sirius A/B 49.94 yr 7.2× 1021yr 1.1× 1015 1.3× 10−24

Black holes 12 sec 3.2 yr 3.2× 1041 2.7× 10−3

The black holes in the table are one solar mass each and at a distance of
1kpc from the Earth. From these values, it is clear that only for extreme
astrophysical objects we have a chance of detecting directly the emitted
gravitational waves.
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Chapter 13 | Cosmological Per-
turbations

13.1 Introduction

Assuming there was an inflationary phase after the birth of the Universe,
right after very small perturbations in the matter density should have
been present. The gravitational force made these initially small perturba-
tions grow and eventually became the structures we observe today (stars,
galaxies, clusters of galaxies,..). Gravitation acts on matter during expan-
sion and thus we have to develop a theory for the evolutions of density
perturbations in a Friedmann Universe.

13.2 Classical Newton’s theory for non-relativistic
matter

In a non-relativistic setting, v � c and the evolution of a self-gravitating
gas with density ρ(r, t), velocity v(r, t), and gravitational potential φ(r, t)
is described by the fluidodynamical equations

∂ρ

∂t
+∇ · (ρv) = 0 Continuity Equation , (13.1)

∂v
∂t

+ (v · ∇)v = −∇P
ρ
−∇φ Euler Equation , (13.2)

∇2φ = 4πGρ Poisson Equation . (13.3)

In the previous equations and in the following, the position r and velocity
v are intended as 3-vectors
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Let’s now consider the expansion with the Hubble law v(r, t) = (ȧ/a)r =
H(t)r. The continuity equation becomes

∂ρ

∂t
+ ρ∇ · v + (v · ∇)ρ =

∂ρ

∂t
+ ρ∇ · v = 0 . (13.4)

Noticing that ∇ · v = ∇(Hr) = 3H we have

∂ρ

∂t
+ 3Hρ = 0 . (13.5)

The term 3Hρ accounds for the expansion of the Universe.
The last result should be familiar since it follows also from evaluating

1
a3

d
dt
(ρa3) = 0 , (13.6)

which simply states that ρ ∝ a−3, as we expect from the diluition of a gas
in an expanding volume.
Considering now a spherically symmetric distribution, in the radial spher-
ical coordinate, the Poisson equation reads

∇2φ =
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= 4πGρ , (13.7)

and the solution is φ = (2πG/3)ρr2. Inserting now the Hubble relation
v = Hr in the Euler’s equation for a “cold” gas (P=0) (and ṙ = 0, where r
is the modulus of the position vector)

r
∂H
∂t

+ H2(r · ∇)r = (Ḣ + H2)r = −∇φ , (13.8)

and inserting the solution for the gravitational potential and remember-
ing that Ḣ + H2 = ä/a we have

ä
a
= −4πG

3
ρ , (13.9)

which is the Friedmann “acceleration” equation. In this sense, the classi-
cal result is not different from the general relativistic result.
If we are in presence of relativistic matter or radiation, then P 6= 0 and
we have to substitute in the previous calculations ρ→ ρ + P/c2.
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13.3 First order perturbations for non-relativistic
matter

For understanding the propagation of fluctuations, we consider small
first-order perturbations around average values denoted with the sub-
script “0” (which are the solutions obtained from the homogeneous ex-
panding Universe of the previous section)

ρ(r, t) = ρ0(t) + δρ(r, t) (13.10)
v(r, t) = v0(r, t) + δv(r, t) (13.11)
φ(r, t) = φ0(r, t) + δφ(r, t) (13.12)

With the perturbed quantities, the continuity equation becomes

∂ρ0

∂t
+

∂δρ

∂t
+ ρ0∇ · v0 + ρ0∇ · δv + δρ∇ · v0 + v0 · ∇δρ = 0 (13.13)

Recognizing the continuity equation for ρ0 and v0 in the last expression
we have (remembering v = Hr)

∂δρ

∂t
+ ρ0∇ · δv + 3Hδρ + v0 · ∇δρ = 0 . (13.14)

For the Euler equation,

∂v0

∂t
+

∂δv
∂t

+ v0 · ∇v0 + v0 · ∇δv + δv · ∇v0 +
∇δP

ρ0
+∇φ0 +∇δφ = 0 .

(13.15)
Again identifying the Euler equation for v0 we have

∂δv
∂t

+ v0 · ∇δv + δv · ∇v0 +
∇δP

ρ0
+∇δφ = 0 . (13.16)

The same can be done with the Poisson equation

∇2φ0 +∇2δφ− 4πGρ0 − 4πGδρ = ∇2δφ− 4πGδρ = 0 . (13.17)

We now change the variables with a small abuse of notation:

δ ≡ δρ

ρ0
. (13.18)

161



CHAPTER 13. COSMOLOGICAL PERTURBATIONS

This implies that

δ̇ =
∂δρ/ρ0

∂t
=

1
ρ0

∂ρ

∂t
− δρ

ρ2
0

∂ρ0

∂t
=

1
ρ0

∂ρ

∂t
+ 3H

δρ

ρ0
(13.19)

∇δ =
1
ρ0
∇δρ (13.20)

(δv · ∇)v0 = (δv0 · ∇)(Hr) = Hδv (13.21)

Using the new variable δ and its properties, the continuity, Euler and
Poisson equations become

δ̇ +∇ · δv + v0 · ∇δ = 0 (13.22)
∂δv
∂t

+ Hδv + (v0 · ∇)δv + c2
s∇δ +∇δφ = 0 (13.23)

∇2δφ = 4πGρ0δ , (13.24)

where we introduced the adiabatic (constant entropy) speed of sound cs
defined as c2

s = ∂P/∂ρ.

13.4 Linear perturbations in comoving coordi-
nates

Introducing “comoving” coordinates which follow the Hubble flow:

x =
r

a(t)
, (13.25)

and the comoving velocity perturbation

u =
δv

a(t)
, (13.26)

we have now the identifications

∂

∂t
=

∂

∂t
|x=const (13.27)

∇r =
1
a
∇x . (13.28)
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The new time derivative is comoving with the Hubble flow

∂

∂t
→ ∂

∂t
+ v0 · ∇r =

∂

∂t
+ Hx · ∇x . (13.29)

With the new coordinates, the continuity equation becomes

δ̇ +∇ · u = 0 . (13.30)

For transforming the Euler equation it is useful first to see how the deriva-
tive of the velocity perturbation changes

∂δv
∂t
→ ∂δv

∂t
− Hx · ∇xδv = a

∂u
∂t

+ aHu− aHx · ∇xu . (13.31)

Using the last result, th Euler equation becomes

a
∂u
∂t

+ aHu− aHx · ∇xu + aHu + (v0 · ∇x)u +
c2

s
a
∇xδ +

1
a
∇xδφ = 0 .

(13.32)
Factorizing and simplifying

a
(

∂u
∂y

+ 2Hu
)
+

1
a

(
c2

s∇xδ +∇xδφ
)
= 0 . (13.33)

Summarizing, the final form of the evolution equations with comoving
variables (dropping the variables indices: ∇x ≡ ∇) are

δ̇ +∇ · u = 0 , (13.34)

u̇ + 2Hu = − c2
s∇δ +∇δφ

a2 , (13.35)

∇2δφ = 4πGρ0a2δ . (13.36)

13.5 Perturbations Analysis

We study now how perturbations evolve in time, obtaining for the last
system of equations an evolution equation for δ. For doing that we have
to eliminate the other variables. Let’s start taking the divergence of the
Euler equation (dropping the second-order term δ∇c2

s )

∇ · u̇ + 2H∇ · u = − c2
s∇2δ +∇2δφ

a2 . (13.37)
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Substituting now into the last result the continuity equation and the Pois-
son equation to eliminate u and δφ

δ̈ + 2Hδ̇︸︷︷︸
expansion

=
c2

s∇2δ

a2︸ ︷︷ ︸
pressure

+ 4πGρ0δ︸ ︷︷ ︸
gravity

. (13.38)

Here we see that the expansion term acts like a damping term, while
the opposing pressure and gravity terms are responsible for the wave
propagation.
The last equation is a second order linear equation and can be analyzed
decomposing it in plane waves (Fourier tranform)

δ(x, t) =
1

(2π)3

∫
δ̂(k, t)e−ik·xd3k . (13.39)

Substituting the parturbation trasformed in momentum space, the initial
equation becomes

¨̂δ + 2H ˙̂δ =

(
4πGρ0 −

c2
s k2

a2

)
δ̂ . (13.40)

Separating the time component of the wave from the spacial one

δ̂(k, t) = δ(k)eiωt , (13.41)

and substituting into the wave equation we obtain the dispersion relation

ω2 − 2iωH = −
(

4πGρ0 −
c2

s k2

a2

)
. (13.42)

Defining the famous “Jeans length”

λJ =
2π

k J
=

2πcs

a
√

4πGρ0
, (13.43)

the dispersion relation becomes

ω2 − 2iωH = − c2
s

a2

(
k2

J − k2
)

. (13.44)
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The last equation implies that

k > k J (λ < λJ) ⇒ ω2 > 0 (13.45)

k < k J (λ > λJ) ⇒ ω2 < 0 (13.46)

The ω2 > 0 case represents oscillatory solutions, while ω2 < 0 represents
exponential decay or growth solutions.
Physically, perturbations on a small scale (below the Jeans wavelength)
tend to oscillate, while perturbations on a large scale (larger than the
Jeans wavelength) tend to grow exponentially (the exponential decays are
not interesting in this context since they just disappear).
The growing modes can thus be written as

δ̂(k, t) = δ(k)eγt , (13.47)

with

γ =

√
4πGρ0 −

c2
s k2

a2 =
cs

a

√
k2

J − k2 , (13.48)

for k < k J . The typical time scale for the growth of a perturbation mode
(the “e-folding” time) is τ = 1/γ. If a gas is very cold, cs ∼ 0 and
τ ∼ 1/

√
4πGρ0: the larger the density, the faster the perturbation will

grow, as expected.

13.6 Large perturbations in an expanding matter-
dominated Universe

We would like to investigate how the perturbations exactly grow in an
expanding Friedmann Universe. Focusing on large scales, where k J � k,
we can neglect the k2 term in Eq. 13.40

¨̂δ + 2H ˙̂δ =

(
4πGρ0 −

c2
s k2

a2

)
δ̂ ≈ 4πGρ0δ̂ =

3
2

H2δ̂ . (13.49)

where we substituted the critical density ρ0 = ρc = 3H2/8πG which is a
reasonable choice for the matter-dominated era, where we know aready
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that H = 2/(3t). Substituting in the previous equation, the equation
describing the evolution of the perturbations becomes

¨̂δ +
4
3

˙̂δ
t
=

2
3

δ̂

t2 . (13.50)

For solving the last equation, we can take a power-law ansatz solution like
δ̂ ∼ tn

n2 +
1
3

n =
2
3

, (13.51)

which has two possible solutions: n = −1 and n = 2/3.
Discarding the negative solution which describes decaying modes we
have

δ̂ ∼ t2/3 ∼ a . (13.52)

The last result shows that within our approximations, the growing modes
are independent from the frequency and they are linearly proportional
to the scale factor. Therefore, in an expanding Universe, perturbations
do not grow exponentially with time, but slower, following a power-law.
These conclusions remain true also in the presence of a cosmological con-
stant.

13.7 Large perturbations in an expanding radiation-
dominated Universe

In the case of radiation domination, we have to perform all the calcu-
lations again, since we cannot neglect the pressure, which actually is
P/c2 = ρ/3.
The pressure gradient term can be neglected and in the large-scale ap-
proximation k� k J we obtain the following equation for the perturbation
dynamics

¨̂δ + 2H ˙̂δ = 4H2δ̂ . (13.53)

From the Friedmann equations, in the radiation-dominated era H = 1/2t
and the equation simplifies to n2 = 1 with solutions n = ±1. Considering
only the positive solution

δ̂ ∼ t ∼ a2 . (13.54)
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Chapter 14 | The Cosmic Microwave
Background

The Cosmic Microwave Background (CMB) is a relic electromagnetic ra-
diation from the early Universe. It was predicted before its discovery in
1948 by R. Alpher and R.Herman. The CMB was finally measured by
A. Penzias and R. Wilson in 1964 with a ground-based antenna, winning
the Nobel price for the discovery in 1978.
Nowadays very precise measurements of the CMB are done with satel-
lites.
The CMB originated at the time where the temperature of the Universe,
through expansion, dropped at the point of allowing the capture of elec-
trons by nuclei. The Universe then bacame transparent to the electromag-
netic radiation, which then was red-shifted from the time of its produc-
tion until now. The cosmological red-shift predicts a much colder relic
radiation today with respect to its original temperature. Alpher and Her-
man gave 5K as the first estimate, which turned out to be not far away to
the presently known value.
The CMB has today a density of about 514 photons per cm3 and they trav-
eled for 99.7% of the age of the Universe until they reached our detectors.
At the time when the CMB was produced, the Universe was about 1000
times smaller and 1000 warmer than now.
The CMB appears as a rather uniform radiation compatible with a black-
body distribution with a temperature of about 2.7K. What is actually in-
teresting are the deviations from this mean temperature as a function of
the angular scale of the sky.
After reading this chapter you have definitely to google "Planck CMB
simulator" or go to "http://strudel.org.uk/planck" and look interactively
how the comological parameters affect the CMB.
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14.1 Recombination

14.2 Multipole Decomposition of the CMB

The CMB has an average temperature (mediated over the whole sky) of
about T0=2.7K. After subtracting this average temperature, we can con-
sider the relative fluctuations around the mean

δT
T0

=
T − T0

T0
(θ, φ) , (14.1)

which depend on the two angles θ and φ which constitute a coordinate
system describing the sky around us. Since we are dealing with small
fluctuations on the surface of a sphere (the sky), we can expand the rela-
tive fluctuations on the spherical harmonics basis Yl,m (this is analogous
to a Fourier series expansion in a "flat" case on the sin / cos basis)

δT
T0

(θ, φ) = ∑
l,m

al,mYl,m(θ, φ) . (14.2)

Since Yl,m is an orthonormal set of functions 1, we can invert the previous
equation obtaining

al,m =
∫

Y∗l,m(θ, φ)
δT
T0

(θ, φ)dΩ , (14.3)

where the integral in dΩ is done over all angles.
Since we subtracted the average temperature T0 and Y0,0=const, we should
have a0,0 = 0 for the lowest multipole (l = 0). For l = 1 we have the dipole
contribution which is due to the Doppler effect caused by the motion of
the Earth with respect to the CMB.
Therefore, the interesting part of the CMB which should contain infor-
mation about its origin at the decoupling time must be contained in the
l > 1 multipoles.
The (in general, complex) components al,m represent fluctuations around
zero, therefore 〈al,m〉 = 0. If they represent Gaussian random variables,
the whole information about them should be contained in the variances

1
∫

Yl,mY∗l′ ,m′dΩ = δl,l′δm,m′
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〈|al,m|2〉 which are connected to the power of the specific (l, m) mode.
Given the isotropic nature of the CMB, we expect the variance to be de-
pendent only from l, which is related to the angular size of the anisotropy
pattern. Remembering the closure relation ∑m |Yl,m|2 = (2l + 1)/4π for
the spherical harmonics, we can define the angular power spectrum

Cl =
1

2l + 1 ∑
m
〈|al,m|2〉 , (14.4)

which is also called the TT power spectrum. Sometimes Cl is indicated
as CTT

l . If we assume that the al,m are independent random variables, we
have for the correlations

〈al,mal′,m′〉 = δl,l′δm,m′Cl . (14.5)

If we assume that the spectrum of the density perturbations in the early
Universe was Gaussian, the angular power spectrum contains all the sta-
tistical information about the CMB anisotropies and therefore we can pro-
ceed in calculating

δT
T0

= 〈∑
l,m

al,mYl,m ∑
l,m

a∗l,mY∗l,m〉 = ∑
l,l′,m,m′

Yl,mY∗l,m〈al,ma∗l,m〉 =

∑
l

Cl ∑
m
|Ylm|2 = ∑

l

(2l + 1)
4π

Cl .
(14.6)

A subtle point here is the following: the averaging 〈〉 should be done
over an ensemble of Universes, while we have only one realization of it.
We can imagine that averaging over different directions might represent
an averaging over an ensemble of different Universes. In practice, the
observed power spectrum is calculated as follows

1
4π

∫ (
δT
T

)2

dΩ = ∑
l

2l + 1
4π

Ĉl , (14.7)

with Ĉl = ∑m |al,m|2/(2l + 1).
So if the theoretical power spectrum the angular average spectrum were
the same, we should have 〈Ĉl〉 = Cl ⇒ 〈Ĉl − Cl〉 = 0. The averaged
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squared difference between theory and observation is called cosmic vari-
ance and a direct calculation yields

〈(Ĉl − Cl)
2〉 = 2

2l + 1
C2

l . (14.8)

The last formula shows that the variance is smaller for large l (small
scales), while it is large for small l (large scales). The cosmic variance
represents a limit on the accuracy of the comparison between theory and
experiment.

14.3 Angular Scales

As we anticipated in the previous section, the multipole number l is con-
nected to the angular scale in the sky. The spherical harmonics have an
oscillatory pattern on the sphere in the following (approximate) sense: in
a full great circle on the spherical surface, there are l wavelengths of os-
cillations. This means that the angular scale corresponding to the mode l
is θ = 2π/l. We can define the angular resolution as the angle connected
to the distance from a crest and a valley of a wave θres = π/l. A detector
must have a resolution at least equal to θres in order to resolve scales up
to l.
For comparison, the first high-resolution satellite mission (COBE) had
θres = 7◦ ⇒ l < 26. The follow-up experiment (WMAP) had θres =
0.23◦ ⇒ l < 783. The latest (at the time of writing) and most precise satel-
lite mission (Planck) improves the angular resolution about three times
over WMAP.
The question we would like to answer now is: if there were density per-
turbations in the early Universe characterized by (comoving) wavenum-
bers k (i.e. a comoving wavelength λ = 2π/k), to which CMB multipole
l will contribute the most? In other words, we would like to link the pri-
mordial perturbations to the pattern measured in the CMB.
Let’s define the angular diameter distance as dA = D/θ, which is the
same as defining the angle θ subtended by an object of width (length per-
pendicular to the line of sight) D placed at a distance dA from us. Taking
into account the expansion of the Universe we can define the comoving
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version of the angular diameter distance

dc
A =

Dc

θ
=

(a0/a)D
θ

=
(1 + z)D

θ
= (1 + z)dA . (14.9)

Considering now the comoving wavelength λ (associated with the co-
moving wavenumber k) of a density perturbation, the mode should be
visible in the CMB at an angular size of

θλ =
λ

dc
A
=

2π

kdc
A
=

2π

l
, (14.10)

which gives the relation l = kdc
A. This result follows from a rather sim-

plified treatment, since clearly it is not possible that a single density per-
turbation mode contributes to just one single CMB harmonic. The full
calculation must take into account all the modes but the basic result we
obtained still holds, in the sense that only the modes close to k contribute
significantly.

14.4 CMB Polarization

The CBM can be polarized because of different reasons. Thomson scat-
tering is surely present (scattering of photons from charged particles that
took place at the last scattering surface) and contributes up to ∼ 5%
level which in terms of temperature fluctuations corresponds to few µK.
Thompson (linear) polarization was indeed experimentally detected.
The Thompson cross section is proportional to the photon polarization
direction before (ε̂) and after the scattering (ε̂′)

dσ

dΩ
∝ |ε̂ · ε̂′|2 . (14.11)

Pictorially, the incident photon makes the charged particle (e.g. an elec-
tron) oscillate in the direction of the polarization. The oscillation creates
radiation with polarization mostly parallel to the initial polarization. If
the incident radiation has quadrupole anisotropies, this will result in an
emitted linearly polarized radiation (this can be seen since the incident
orthogonal components are suppressed in Eq. 14.11).
A photon can be polarized only in the two directions orthogonal to its
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propagation. The polatization can always be decomposed in two othogo-
nal modes which are both orthogonal to the direction of propagation. The
superposition of the two polarization states given in general an elliptical
polarization, and linear or circular polarizations are special cases.
Defining the polarization vector ε̂ = ~E/|E| where E is the electric field,
the polarization tensor is defined as the time average (considering E as
an oscillating field in complex representation)

pij = 〈ε̂iε̂
∗
J 〉 . (14.12)

The polarization tensor is traceless

Trp = pii = 〈ε̂iε̂
∗
i 〉 = 〈|ε|〉 = 1 (14.13)

and Hermitian (pij)
∗ = pji. An orthogonal basis for Hermitian matrices

is provided by the three 2 × 2 Pauli matrices σk. The last observation,
combined with the fact that Pauli matrices are trace-less but Trp = 1
leads to the following decomposition

pij =
1
2
(I + Qσ1 + Uσ2 + Vσ3) (14.14)

where I is the identity matrix and

σ1 =

(
1 0
0 −1

)
; σ2 =

(
0 1
1 0

)
; σ3 =

(
0 −i
i 0

)
. (14.15)

The numbers Q,U,V are called Stokes parameters and their nice property
is that they are measurable. For example, if we take a linear polariza-
tion filter and pass polarized light through it and measure the intensity
of light F as a function the filter θ (Fθ) we can verify that Q = F0 − F90,
U = F45 − F135. The "chirality" (the direction where the polarization is
rotating) is V = 2FC − F where FC is the intensity of the light after passig
through a filter which passes circularly polarized light in a certain direc-
tion and F is the total incident intensity. Stokes parameters are usually
defined between -1 and 1, so Q, U, V are normalized to F.
The degree of polarization is sometimes given as r =

√
Q2 + U2 + V2.

The Stokes parameters vary on a spherical surface referred as the Poincare’
sphere.
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The intensity tensor which tells how much intensity there is in each po-
larization mode is analogously defined as

ρij = 〈EiE∗j 〉 =
1
2
(J · I + Qσ1 + Uσ2 + Vσ3) . (14.16)

In this case we did not normalize by the electric field vector length and
thus we have the new factor

J = δijρij = |Ex|2 + |Ey|2 (14.17)

for a certain choice of orthogonal axes x, y while z is the propagation
direction of the wave. J is obviously a geometric invariant (independent
from the coordinate choice). A second invariant is

V = εijρij , (14.18)

while the Stokes parameters Q and U change with the change of coordi-
nates.
Electromagnetic interactions are parity-conserving and this demands that
the helicity must vanish: V=0.
Furthermore, there are two differential invariants (independent from the
orientation of the axes)

S = ∇2PE = ∂i∂jρij

P = ∇2PB = εik∂i∂jρjk
(14.19)

called scalar and pseudo-scalar invariants, respectively. We consider second-
derivatives also because we are dealing with a rank-2 tensor. The other
notation (PE/B) refers to the so-called "E-modes" and "B-modes" respec-
tively, in analogy to the Helmholtz decomposition of a vector V in a curl-
free (irrotational) and divergence-free (solenoidal) parts using a scalar
function ψ and a vector function A: ~V = ~∇ψ + ~∇× ~A.
Actually, the polarization tensor can indeed be decomposed using two
scalar functions A and B: ρij = (∂i∂j − 1

2 ∂2)A + (∂i∂kεkj + ∂j∂kεki)B. We
defined already the TT power spectrum related to the correlation func-
tion of the temperature fluctuations. We can now define also correlation
functions for the polarization fluctiations. Using the decomposition of
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the polarization in E and B modes, the only non-vanishing correlation
functions (including TT calculated before) are

〈T(n̂)T(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CTT
l Pl(cos θ)

〈T(n̂)E(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CTE
l Pl(cos θ)

〈E(n̂)E(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CEE
l Pl(cos θ)

〈B(n̂)B(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CBB
l Pl(cos θ) .

(14.20)

Having E and B opposite parity properties, their cross-correlations van-
ish. The origin of the E/B notation comes from electromagnetism, since
an electric (E) field can be written as the gradient of a scalar field, while
the magnetic field (B) can be written as the curl of a vector field.
Thompson scattering, being a purely electromagnetic process (parity-
conserving), can induce only E-mode polarizations.
B-modes can arise only if P 6= 0 and this can happen for example in the
case of vector perturbations (ρij = ∂iVj − ∂jVi ⇒ P = εij∂

2∂iVj: can be
caused by magnetized interstellar or intergalactic media), tensor pertur-
bations (e.g. from gravitational waves) or second order scalar perturba-
tions.

14.5 CMB Anisotropies

The spherical harmonic expansion in multipoles of the CMB temperature
is formally done from l = 0 to l = ∞. The l = 0 multipole (the monopole) is
just a constant and its physical interpretation is the average temperature
over the whole sky: T0 = 2.7255± 0.0006 K. The temperature can be con-
verted in density of photons n0, density of mass ρ0 or density parameter
Ω0

CMB:

n0 = 411 photons/cm3

ρ0 = 4.64× 10−34g/cm3 = 2.6× 10−10GeV/cm3

Ω0
CMBh2

0 = 2.47× 10−5 .

(14.21)
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Figure 14.1: Planck Spectrum (arXiv:1502.01589).

The l = 1 multipole (the dipole) represents fluctuations on an angular
scale of order π (or 180◦): it is like dividing the sky in two halves and
look for differences. The dominant contribution to the dipole term comes
from the motion of our detector (ultimately of the earth and the sun) with
respect to the CMB frame.
The amplitude of the dipole is T1 = 3.355± 0.008 mK, 103 times smaller
than the monopole: this shows already the rather high uniformity of the
CMB, but the error in the measurement tells us that even small anisotropies
can be measured with good accuracy. The dipole amplitude leads to the
conclusion that the solar system is moving with velocity v ∼ 370 km/s
with respect to the CMB.
Subtracting the l = 0 and l = 1 terms whose origin is clear, we conclude
that the important cosmological information must be encoded into the
l > 1 multipoles, up to an lmax determined by the experimental resolu-
tion. Usually, two classes of fluctuations are considered:
Primary Fluctuations: Produced at the last scattering surface or before.
These anisotropies carry information about the early universe. In princi-
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Figure 14.2: Satellite mission for the CMB measurement
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ple, these anisotropies can be of the scalar, vector or tensor type. Vector
modes are stretched out by the expansion of the universe and are there-
fore expected to be unobservable. Tensor modes decay as they enter the
cosmological horizon, so they are suppressed at angular scales smaller
than the one of the last scattering surface (∼ 1◦). The leave a too small
imprint into the TT spectrum to be detected but they might be observed
in the BB spectrum.
Secondary Fluctuations: These anisotropies araised after the recombina-
tion era: they can provide information about the "normal matter" expan-
sion era.

14.5.1 Primary Anisotropies

Looking at Fig. 14.1, the most prominent characteristic is the presence of
peaks at l > 100. These peaks are the result of the oscillations of the
photon-baryon plasma before recombination. Oscillations happen when
two opposing forces are at work. In this case, the gravitational force tend-
ing to cluster matter (likely around dark matter concentrations) found
opposition from the pressure caused by photons. The amplitude of the
resulting density fluctuations is quite small (δρ/ρ ∼ 10−5). This means
that we can consider a linear evolution of these perturbations as a good
approximantion and in a linear theory every oscillation mode evolves de-
coupled from the others.
When an inhomogeneity of certain wavelenght entered the cosmological
horizon, plasma oscillations started. In the linear approximation, all the
inhomogeneity with the same wavelenght entered the horizon at the same
time, thus adding in phase.
The first (and highest) peak in Fig. 14.1 was generated by perturbations
which entered the horizon at the recombination time. The (smaller) peaks
at higher l are caused by perturbations which entered the horizon before
recombination.
An analysis of the cosmological perturbations shows that the perturba-
tion spectrum is flat: this means that every mode should have the same
amplitude when entering the horizon. Fig. 14.1 shows that the peaks
are decreasing in amplitude: this is due to cosmological expansion, since
high-l peaks entered the horizon before and were stretched more. Af-
ter recombination, no peaks can be produced since there is no oscillating
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plasma.
The location and height of the peaks depends from the cosmological pa-
rameters. The position of the first peak is tightly connected to the total
amount of matter/enegy present in the universe today (Ω0

tot)

l1stpeak ∼
220√
Ωm

. (14.22)

A quick inspection of the data in Fig. 14.1 shows that Ω0
tot ∼ 1. This

means that the Universe today is very close to the critical density and in
turn the geometry is very close to the flat one.
The hight of the first peak instead, is tightly connected to the amount of
barionic matter Ω0

B.
Why the position of the first peak has to do with the geometry of the
Universe? A physical argument is the following. The size corresponding
to the first is known, since it is equal to the cosmological horizon (better:
the sound horizon, where the speed of light is replaced with the sound
speed in the plasma) at the recombination time. The angle2 under which
the first peak is observed today depends on the geometry. This angle in
the case of a flat Universe is about ∼ 1◦ which corresponds to l ∼ 220:
exactly where the first peak is.
The even peaks (second, fourth,..)

2The angle here is the angle calculated with the triangle given by the distance from
us to the last scattering surface and the particle horizon for points at the surfece.
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