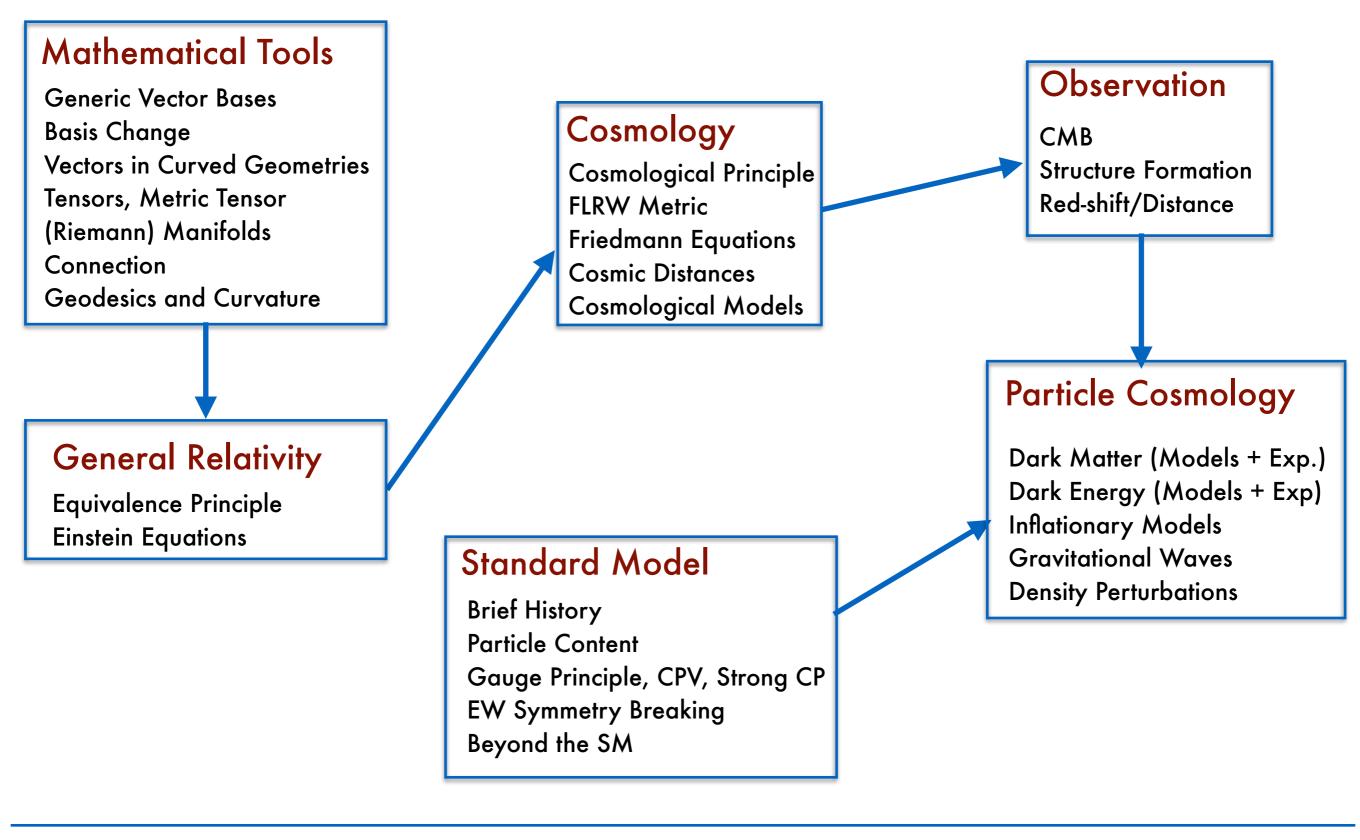
Introductory Particle Cosmology

Luca Doria

Institut für Kernphysik Johannes-Gutenberg Universität Mainz

Lecture 2

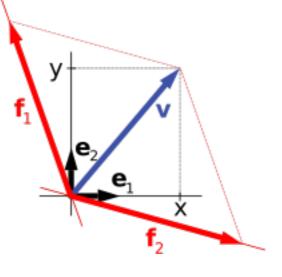


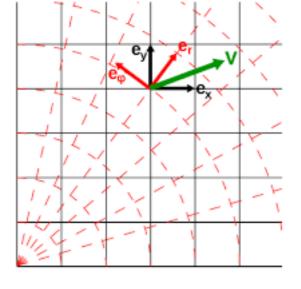
Datum	Von	Bis	Raum	
1 Di, 17. Apr. 2018	10:00	12:00	05 119 Minkowski-Raum	
2 Do, 19. Apr. 2018	08:00	10:00	05 119 Minkowski-Raum	
3 Di, 24. Apr. 2018	10:00	12:00	05 119 Minkowski-Raum	
4 Do, 26. Apr. 2018	08:00	10:00	05 119 Minkowski-Raum	
5 Do, 3. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	
6 Di, 8. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
7 Di, 15. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
8 Do, 17. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	
9 Di, 22. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	H.Minkowski
10 Do, 24. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	(1864-1909)
11 Di, 29. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
12 Di, 5. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
13 Do, 7. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
14 Di, 12. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
15 Do, 14. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
16 Di, 19. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
17 Do, 21. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
18 Di, 26. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
19 Do, 28. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
20 Di, 3. Jul. 2018	10:00	12:00	05 119 Minkowski-Raum	
21 Do, 5. Jul. 2018	08:00	10:00	05 119 Minkowski-Raum	

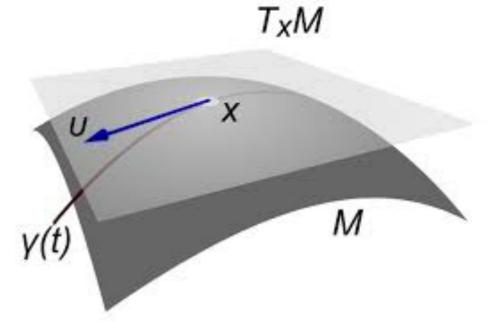
Physics Dept. Building, 5th Floor

Part 1: Mathematical Tools

Vector Spaces (Ortho-normal) bases **Change of Basis** Non-orthonormal bases Covariant and contravariant vectors Tensors **Curved Spaces** Vectors on curved spaces **Covariant Differentiation** Geodetics Curvature







Covariance and Contravariance

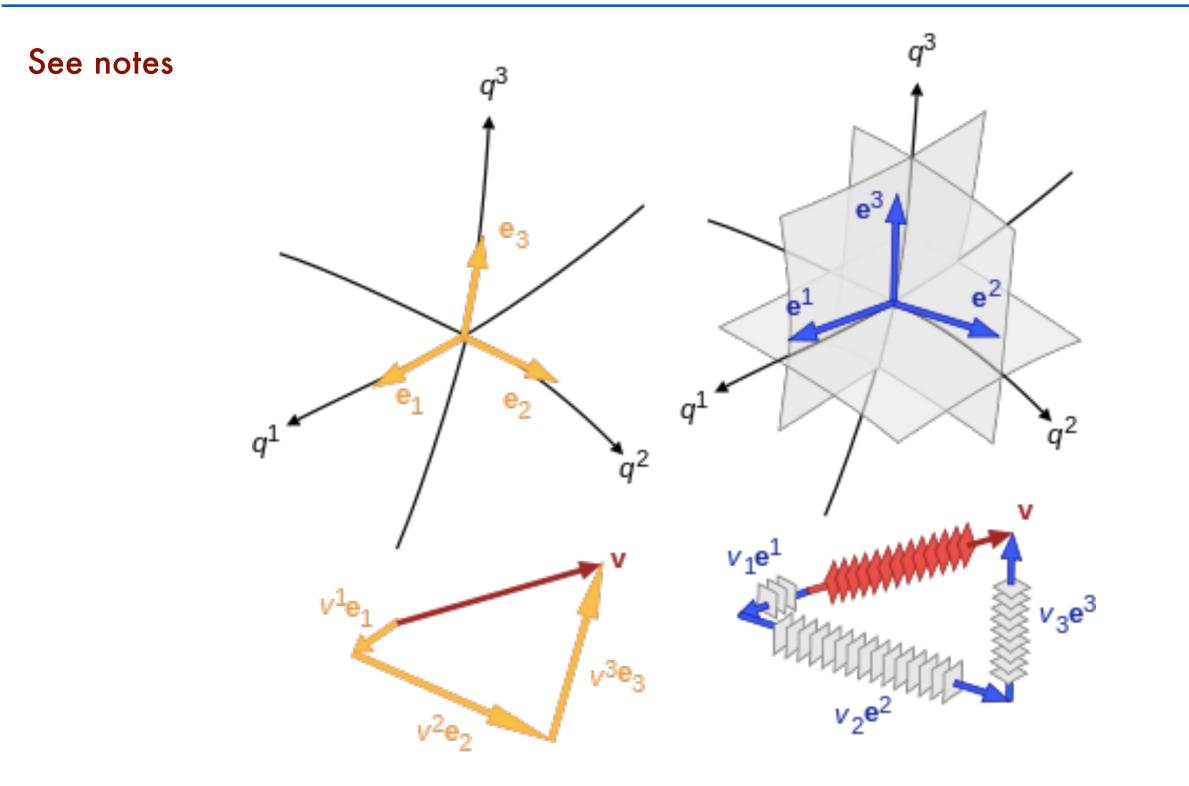


Figure from wikipedia

Tensors

Stress Tensor

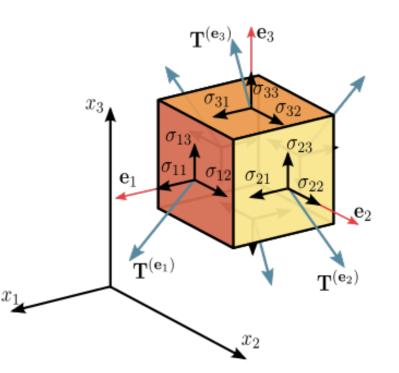
$$T_i = \sigma_{ij} n_j$$

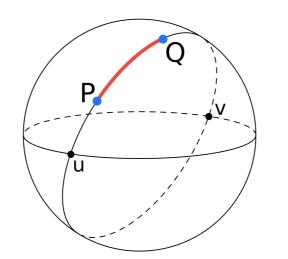
T= stress vector

n= normal to the plane to decompose on e_i

Inertial momentum tensor

 $L_i = I_{ij}\omega_j$





Metric tensor

$$dl^2 = g_{ij}dx^i dx^j$$

Transformations

Contravariant

$$v'^{\mu'} = \frac{\partial x'^{\mu'}}{\partial x^{\mu}} v^{\mu}$$

Covariant $v'_{\mu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} v_{\mu}$

Tensor with two covariant indices

$$X'_{\alpha\beta} = \frac{\partial x^{\gamma}}{\partial x^{'\alpha}} \frac{\partial x^{\delta}}{\partial x^{'\beta}} X_{\gamma\delta}$$

Mixed tensor
$$X_{\beta\gamma}^{'\alpha} = \frac{\partial x^{'\alpha}}{\partial x^{\delta}} \frac{\partial x^{\varepsilon}}{\partial x^{'\beta}} \frac{\partial x^{\mu}}{\partial x^{'\gamma}} X_{\varepsilon\mu}^{\delta}$$

How does a basis vector change in the direction of another basis vector?

$$\nabla_{e_j} e_i = \Gamma_{ij}^k e_k$$

For general vectors and directions

$$\nabla_{v}w = \nabla_{v^{j}e_{j}}(w^{i}e_{i}) = v^{j}\nabla_{e_{j}}(w^{i}e_{i}) = v^{j}w^{i}\nabla_{e_{j}}e_{i} + v^{j}e_{i}\nabla_{e_{j}}w^{i}$$
$$= v^{j}w^{i}\Gamma_{ij}^{k}e_{k} + v^{j}\frac{\partial w^{i}}{\partial x^{j}}e_{i} = \left(v^{j}w^{i}\Gamma_{ij}^{k} + v^{j}\frac{\partial w^{k}}{\partial x^{j}}\right)e_{k}$$

And for a tensor with generic indices

$$(\nabla_{e_c} T)_{b_1..b_r}^{a_1..a_r} = \frac{\partial \nabla_{e_c} T_{b_1..b_s}^{a_1..a_r}}{\partial x^c} + \Gamma_{dc}^{a_1} T_{b_1..b_s}^{da_2..a_r} + \dots + \Gamma_{dc}^{a_r} T_{b_1..b_s}^{a_1..a_{r-1}d} - \Gamma_{b_1c}^{d} T_{db_2..b_s}^{a_1..a_r} - \dots - \Gamma_{b_sc}^{d} T_{b_1..b_{s-1}d}^{a_1..a_r}$$

Christoffel Symbols

Metric compatibility condition: $\nabla_{\rho}g_{\mu\nu} = 0$

implies cycling the indices:

$$\nabla_{\rho}g_{\mu\nu} = \partial_{\rho}g_{\mu\nu} - \Gamma^{\lambda}_{\rho\nu}g_{\lambda\nu} - \Gamma^{\lambda}_{\rho\nu}g_{\mu\lambda} = 0$$

$$\nabla_{\mu}g_{\nu\rho} = \partial_{\mu}g_{\nu\rho} - \Gamma^{\lambda}_{\mu\nu}g_{\lambda\rho} - \Gamma^{\lambda}_{\mu\rho}g_{\nu\lambda} = 0$$

$$\nabla_{\nu}g_{\rho\mu} = \partial_{\nu}g_{\rho\mu} - \Gamma^{\lambda}_{\nu\rho}g_{\lambda\mu} - \Gamma^{\lambda}_{\nu\mu}g_{\rho\lambda} = 0$$

and summing to zero:
$$abla
ho g_{\mu
u} -
abla _{\mu}g_{
u
ho} -
abla _{
u}g_{
ho\mu} = 0$$

we have $\partial_{\rho}g_{\mu\nu} - \partial_{\mu}g_{\nu\rho} - \partial_{\nu}g_{\rho\mu} + 2\Gamma^{\lambda}_{\mu\nu} = 0$

and solving for Gamma multiplying by the metric tensor

$$\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2} g^{\sigma\rho} \left(\partial_{\mu} g_{\nu\rho} + \partial_{\nu} g_{\rho\mu} - \partial_{\rho} g_{\mu\nu} \right)$$

Geodesics

Characterization of a geodesic: the change while transported along its own direction must be zero:

$$\nabla_{T^{\mu}}T^{\nu} = T^{\mu}\nabla_{\mu}T^{\nu} = 0$$

Writing the covariant derivative:

$$\frac{dT^{\mu}}{dt} + \Gamma^{\mu}_{\alpha\beta}T^{\alpha}T^{\beta} = 0$$

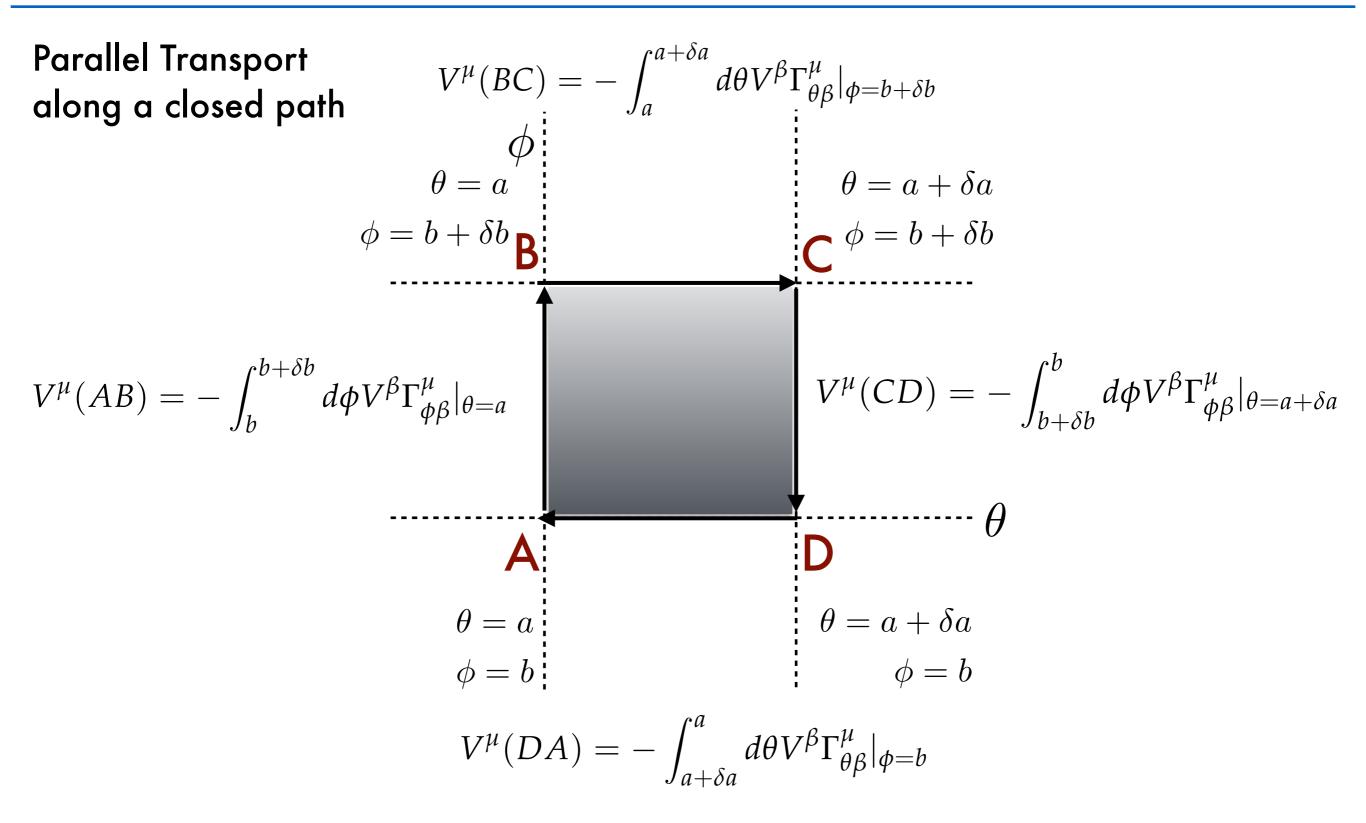
Introducing coordinates and a parameterized curve:

$$\frac{d^2 x^{\mu}}{dt^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{dt} \frac{dx^{\beta}}{dt} = 0$$

Geodesics as extremal curves

Squared curve length
$$L = \int_{t_1}^{t_2} g_{ij} \dot{x}^i \dot{x}^j dt$$

$$\begin{aligned} \text{Variation:} \quad \delta L &= \int_{t_1}^{t_2} \left(\delta g_{ij} \dot{x}^i \dot{x}^j + 2g_{ij} \delta(\dot{x}^i) \dot{x}^j \right) dt = 0 \\ \delta L &= \int_{t_1}^{t_2} \left(\frac{\partial g_{ij}}{\partial x^k} \dot{x}^i \dot{x}^j \delta x^k + 2g_{ij} \dot{x}^i \frac{d}{dt} \delta x^j \right) dt = \\ \int_{t_1}^{t_2} \left(\frac{\partial g_{ij}}{\partial x^k} \dot{x}^i \dot{x}^j - 2\frac{d}{dt} \left[g_{ij} \dot{x}^i \right] \right) \delta x^k dt + g_{ij} \frac{dx^i}{dt} \delta x^j |_{t_1}^{t_2} = 0 \qquad \frac{\partial g_{ij}}{\partial x^k} \dot{x}^i \dot{x}^j - 2\frac{d}{dt} \left[g_{ij} \dot{x}^i \right] \\ &= \left(\frac{\partial g_{ij}}{\partial x^k} - 2\frac{\partial g_{ij}}{\partial x^k} \right) \dot{x}^i \dot{x}^j - 2g_{ij} \frac{d^2 x^i}{dt^2} \\ &= \frac{d^2 x^k}{dt^2} + \frac{1}{2} g^{kl} \left(\frac{\partial g_{il}}{\partial x^j} + \frac{\partial g_{il}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^l} \right) \dot{x}^i \dot{x}^j = 0 \end{aligned}$$



Curvature

$$\begin{split} \Delta V^{\mu} &= \int_{b}^{b+\delta b} d\phi \left[V^{\beta} \Gamma^{\mu}_{\phi\beta} |_{\theta=a+\delta a} - V^{\beta} \Gamma^{\mu}_{\phi\beta} |_{\theta=a} \right] \\ &- \int_{a}^{a+\delta a} d\theta \left[V^{\beta} \Gamma^{\mu}_{\theta\beta} |_{\phi=b+\delta b} - V^{\beta} \Gamma^{\mu}_{\theta\beta} |_{\phi=b} \right] \\ &= - \left[\int_{a}^{a+\delta a} d\theta \delta b \frac{\partial}{\partial \phi} \left(V^{\beta} \Gamma^{\mu}_{\theta\beta} \right) \int_{b}^{b+\delta b} d\phi \delta a \frac{\partial}{\partial \theta} \left(V^{\beta} \Gamma^{\mu}_{\phi\beta} \right) \right] \\ &= -\delta a \delta b \left[\frac{\partial}{\partial \phi} V^{\beta} \Gamma^{\mu}_{\theta\beta} - \frac{\partial}{\partial \theta} V^{\beta} \Gamma^{\mu}_{\phi\beta} \right] \end{split}$$

The vector is parallel along one side:

$$\nabla_i V^{\mu} = \frac{\partial V^{\mu}}{\partial x^i} + \Gamma^{\mu}_{i\beta} = 0$$

Using the definition of partial derivative

$$\begin{split} \Delta V^{\mu} &= -\delta A \left(\frac{\partial V^{\beta}}{\partial \phi} \Gamma^{\mu}_{\theta\beta} + V^{\beta} \frac{\partial \Gamma^{\mu}_{\theta\beta}}{\partial \phi} - \frac{\partial V^{\beta}}{\partial \theta} \Gamma^{\mu}_{\phi\beta} - V^{\beta} \frac{\partial \Gamma^{\mu}_{\phi\beta}}{\partial \theta} \right) \\ &= -\delta A \left(-V^{\nu} \Gamma^{\beta}_{\phi\nu} \Gamma^{\mu}_{\theta\beta} + V^{\beta} \frac{\partial \Gamma^{\mu}_{\theta\beta}}{\partial \phi} + V^{\nu} \Gamma^{\beta}_{\theta\nu} \Gamma^{\mu}_{\phi\beta} - V^{\beta} \frac{\partial \Gamma^{\mu}_{\phi\beta}}{\partial \theta} \right) \\ &= \delta A V^{\beta} \left(\Gamma^{\nu}_{\phi\beta} \Gamma^{\mu}_{\theta\nu} - \frac{\partial \Gamma^{\mu}_{\theta\beta}}{\partial \phi} - \Gamma^{\nu}_{\theta\beta} \Gamma^{\mu}_{\phi\nu} + \frac{\partial \Gamma^{\mu}_{\phi\beta}}{\partial \theta} \right) \end{split}$$

$$R^{\mu}_{\beta\gamma\lambda} = \Gamma^{\nu}_{\lambda\beta}\Gamma^{\mu}_{\gamma\nu} - \frac{\partial\Gamma^{\mu}_{\gamma\beta}}{\partial x^{\lambda}} - \Gamma^{\nu}_{\gamma\beta}\Gamma^{\mu}_{\lambda\nu} + \frac{\partial\Gamma^{\mu}_{\lambda\beta}}{\partial x^{\gamma}}$$

Properties of the Riemann Tensor

Another characterization of the Riemann tensor (cov. deriv. commutator): $\nabla_c \nabla_b V_a - \nabla_b \nabla_c V_c = [\nabla_c, \nabla_b] V_c = R^d_{abc} V_d$

$$R_{abcd} = -R_{bacd} = -R_{abdc} = R_{badc} \text{ (symmetry)}$$

$$R_{abcd} + R_{adbc} + R_{acdb} = 0 \text{ (antisymmetry)}$$

$$R_{abcd} + R_{adbc} + R_{acdb} = 0 \text{ (cyclicity)}$$

Bianchi Identities:

$$\nabla_{e}R_{abcd} + \nabla_{d}R_{abec} + \nabla_{c}R_{abde} = 0$$

$$\nabla_{e}R_{bd} + \nabla_{d}R_{be} + \nabla_{c}R_{bde}^{c} = 0$$

Einstein Tensor:
$$\nabla_{b}(R_{e}^{b} - \frac{1}{2}\delta_{e}^{b}R) = \nabla_{b}G_{e}^{b} = 0$$

The Riemann tensor is <u>unique</u> in the following sense:

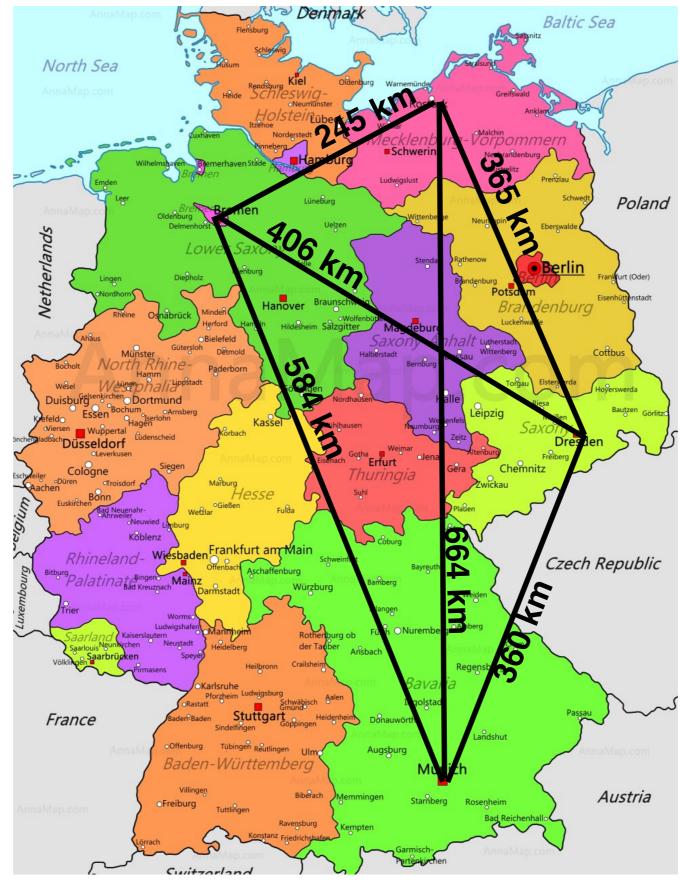
it is the only tensor which can be constructed using only the metric tensor and its first and second derivatives (ant it is linear in the second derivatives).

Sommersemester 2018

Ist Deutschland flach ?

A= Muenchen B= Bremen C = Rostock D= Dresden

AB = 584 km AC = 664 km AD = 360 km BC = 245 km BD = 406 kmCD = 365 km



Exercise: Try to calculate AC with the available data and confront with AC=664 km

Ist Deutschland flach ?

A more elegant way: calculate the volume of the tetrahedron in 3D space

$$V^{2} = \frac{1}{288} det \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & \bar{AB}^{2} & \bar{AC}^{2} & \bar{AD}^{2} \\ 1 & \bar{AB}^{2} & 0 & \bar{BC}^{2} & \bar{BD}^{2} \\ 1 & \bar{AC}^{2} & \bar{BC}^{2} & 0 & \bar{CD}^{2} \\ 1 & \bar{AD}^{2} & \bar{BD}^{2} & \bar{CD}^{2} & 0 \end{pmatrix}$$

with the Cayley-Menger determinant.

If the determinant vanishes, the tetrahedron "collapses" on a plane -> condition for the 4 points to lie on a plane (can you explain why?).

If Germany is not flat, how could you estimate the curvature radius?

For a crude estimate, you can gather some ideas from <u>https://en.wikipedia.org/wiki/Horizon</u>

For a better calculation, use spherical trigonometry.