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Introduction

Mathematical Tools

General Relativity

Standard Model

Cosmology
Generic Vector Bases 
Basis Change 
Vectors in Curved Geometries 
Tensors, Metric Tensor 
(Riemann) Manifolds 
Connection 
Geodesics and Curvature

Equivalence Principle 
Einstein Equations 

Cosmological Principle 
FLRW Metric 
Friedmann Equations 
Cosmic Distances 
Cosmological Models

Brief History 
Particle Content 
Gauge Principle, CPV, Strong CP 
EW Symmetry Breaking 
Beyond the SM  

Particle Cosmology

Dark Matter (Models + Exp.) 
Dark Energy (Models + Exp) 
Inflationary Models 
Gravitational Waves 
Density Perturbations

Observation
CMB 
Structure Formation 
Red-shift/Distance 
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Datum Von Bis Raum
1 Di, 17. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
2 Do, 19. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
3 Di, 24. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
4 Do, 26. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
5 Do, 3. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
6 Di, 8. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
7 Di, 15. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
8 Do, 17. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
9 Di, 22. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
10 Do, 24. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
11 Di, 29. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
12 Di, 5. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
13 Do, 7. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
14 Di, 12. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
15 Do, 14. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
16 Di, 19. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
17 Do, 21. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
18 Di, 26. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
19 Do, 28. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
20 Di, 3. Jul. 2018 10:00 12:00 05 119 Minkowski-Raum
21 Do, 5. Jul. 2018 08:00 10:00 05 119 Minkowski-Raum
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Part 3: General Relativity

The Equivalence Principle 
Free-Falling Bodies and Geodesics 
Non-relativistic Limit 
Energy-Momentum Tensor 
Einstein Equations



Sommersemester 2018 Luca Doria, JGU Mainz 5

Brief History of GR
1907: While working at the Bern’s Patent Office, A. Einstein realized how to start  
          generalizing special relativity to generic reference frames. 
1908: First paper about acceleration and relativity by A. Einstein. In this paper he  
          states the Equivalence Principle and derives time dilation caused by   
          gravitational fields. 
1911: Second paper by A. Einstein on time dilation by gravitational fields where  
         also light deviation by massive bodies was approximately derived. 
1912: Einstein consults with M. Grossman about non-euclidean geometry. 
October 1915: First guess: Rij = Tij 
November 1915: Einstein publishes the General Theory of Relativity as we know it  
                          today. D. Hilbert obtained the same equations almost at the  
                          same time. 
1919: Eddington confirms the deviation of light formula from GR using a solar  
         eclipse in Brazil. 
1959: Pound-Rebka Experiment (gravitational red shift) 
1971: Hafele-Keating Experiment (time dilation) 
1974: Hulse-Taylor binary pulsar. 
2004: Gravity Probe-B and frame dragging (published in 2011) 
2016: Direct detection of gravitational waves by LIGO 
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The Equivalence Principle

Accelerated Observer

Observer in an  
uniform gravitational field

How do you tell the difference?
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The Equivalence Principle

What about this case?
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The Equivalence Principle

Strong Equivalence Principle: 
At every space-time point in a gravitational field, it is possible to choose a 
locally inertial coordinate system such that in a sufficiently small 
neighbourhood of that point, the laws of nature can be expressed in the same 
form as in an unaccelerated coordinate system.

Weak Equivalence Principle: 
Change “laws of nature” with “laws of motion of free-fall ing 
bodies” (gravity).
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Free-Falling Bodies

CHAPTER 3. GENERAL RELATIVITY

bodies. Clearly the strong version implies the weak on but not vice-versa.

3.2 Free-Falling Bodies

Let’s try to translate in mathematical formulas the ideas contained in the
EP. Consider a free-falling body: according to the EP, there must exist lo-
cally a coordinate system where the effect of gravitation vanishes (inside
Einstein’s elevator) and the equation of motion in flat space time is

d2
x

µ

dt

2 = 0 , (3.1)

where dt = �h

µn

dx

µdx

n is the proper time and h

µn

the Lorentz metric.
Let’s get out from the elevator and change to new coordinates xµ, which
can be whatever we want (a curvilinear system, an accelerated or rotating
system, etc..)

d
dt

✓
∂x

a

∂xµ

dxµ

dt

◆
=

∂x

a

∂xµ

d2xµ

dt

2 +
∂

2
x

a

∂xµ

∂xn

dxµ

dt

dxn

dt

= 0 . (3.2)

Multiplying the last equation by ∂xl/∂x

a and recognizing the presence
of the Christoffel symbol

d2xl

dt

2 + Gl

µn

dxµ

dt

dxn

dt

= 0 . (3.3)

The last result is quite interesting: the presence of the gravitational field
can be seen as a curvature of space-time where free-falling particles follow
a geodetic in that space. From the coordinate transformation formula and
dt = �h

µn

dx

µdx

n, it is clear that the metric tensor of the curved space is
related to the Lorentzian flat space by

g
µn

=
∂x

a

∂xµ

∂x

b

∂xn

= h

ab

. (3.4)

3.3 Non-Relativistic Limit

So far our calculations were relativistic and now we would like to see if
what we derived can be reduced to the know non-relativistic result, which
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Equation of motion for a free-falling body

Changing to a generic coordinate system:

Equation of motion:
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Non-Relativistic Limit

CHAPTER 3. GENERAL RELATIVITY

should be classical Newtonian gravity. The non-relativistic limit refers to
velocities smaller than the speed of light (v ⌧ c) and weak, stationary
gravitational fields. Remembering the composition of the velocity four-
vector dxµ/dt = (dt/dt, dx/dt), in this limit dx/dt ⌧ dt/tt so the only
non-zero component of the velocity is µ = 0

d2xµ

dt

2 + Gµ

00

✓
dt
dt

◆2
= 0 . (3.5)

For a weak stationary gravitational field, the space-time geometry must
be almost flat: g

ab

= h

ab

+ h
ab

with |h
ab

| ⌧ 1.
Substituting this metric tensor into the Christoffel symbol we obtain

Ga

00 = �1
2

h

ab

∂g00
∂x

b

. (3.6)

Reinserting the Christoffel symbol in Eq. 3.5 and separating the µ = 0
"time" and µ = 1, 2, 3 "space" parts we have

d2t
dt

2 = 0 ;
d2x
dt

2 � 1
2

✓
dt
dt

◆2
rh00 = 0 . (3.7)

The first equation tells us that dt/dt is a certain constant K and we choose
K=1. Substituting the first equation on the second and comparing it with
the equation of motion with the gravitational potential d2x/dt2 = �rf

we find h00 = �2f + C where C is another constant. Since the potential
must be zero at infinity, we can fix also the second constant C=0. Rein-
serting the result for h in the original metric tensor we finally have

g00 = �(1 + 2f) (3.8)

which is its the only non-zero component in the low-velocity, low-gravitational
field approximation. We have showed here that there is a choice of the
metric tensor which in the non-relativistic limit makes the relativistic
geodesic equation is consistent with Newtonian gravity.

3.4 Energy-Momentum Tensor

Our aim is to find general relativistic equations for the gravitational field
which are valid in every reference frame (not only the inertial ones). Such
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Quasi-flat metric:

Corresponding Christoffel symbol (time derivatives vanish):

Substituting into the geodesic equation:
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⌧ dt
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“slow” particles:

The geodesic equation becomes d

2
x

µ

d⌧

2
+ �µ

00
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dt

d⌧

◆2

= 0

From (1)          is a constant and dividing (2) by it …
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d⌧

(1)

(2)
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Non-Relativistic Limit

CHAPTER 3. GENERAL RELATIVITY
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3.4 Energy-Momentum Tensor

Our aim is to find general relativistic equations for the gravitational field
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3.4 Energy-Momentum Tensor
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we have

and thus

with C=0 at infinity

…we obtain

d

2
x̄

dt

2
=

1

2
rh00

—> 
1) The metric tensor plays the role of gravitational potential. 
2) The geodesic equation can have the correct Newtonian limit
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Energy-Momentum Tensor

CHAPTER 3. GENERAL RELATIVITY

equation must have tensorial character, and since gravitational fields are
created by matter and energy distributions, it it meaningful to find a
(relativistic) tensorial description for them. The object we are looking for
is the energy-momentum tensor. We know already from electrodynamics
that in the 4-dimensional formalism charge density and current vector
can be organized in a single four-vector. We are going to do something
similar for the 4-momenta pa of a system of N particles labeled with the
index n. The momentum density is

Ta0 = Â
n

pa

nd

3(x � xn) . (3.9)

Note that in this definition we are already thinking at the density as the
zeroth-component of a tensor T. In this case T is a tensor with two indices,
since one index spans the 4-vector components, while the other one will
label the density and the three components of the current which we define
as

Taß = Â
n

pa

n
dxi

n
dt

d

3(x � xn) . (3.10)

where the latin index i runs only on the "space" coordinates 1,2,3. Merg-
ing the last two equations into a single tensor

Tab = Â
n

pa

n
dxb

n
dt

d

3(x � xn) = Â
n

pa

n pb

n
En

d

3(x � xn) , (3.11)

where we used the known relativistic result v = p/E. From the last ex-
pression, it is clear that Tab = Tba, and therefore the energy-momentum
tensor is symmetric.
As in classical physics the time derivative of the momentum gives the
force, in this context we have

∂Tab

∂xb

= Fa , (3.12)

where Fa is a density of forces’ 4-vector. In absence of forces, ∂Tab/xb = 0
and this represents the energy-momentum conservation law. On a generic
curved space, the partial derivative is substituted by the covariant one:
r

a

T
ab

= 0.
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(relativistic) tensorial description for them. The object we are looking for
is the energy-momentum tensor. We know already from electrodynamics
that in the 4-dimensional formalism charge density and current vector
can be organized in a single four-vector. We are going to do something
similar for the 4-momenta pa of a system of N particles labeled with the
index n. The momentum density is

Ta0 = Â
n

pa

nd

3(x � xn) . (3.9)

Note that in this definition we are already thinking at the density as the
zeroth-component of a tensor T. In this case T is a tensor with two indices,
since one index spans the 4-vector components, while the other one will
label the density and the three components of the current which we define
as

Taß = Â
n

pa

n
dxi

n
dt

d

3(x � xn) . (3.10)

where the latin index i runs only on the "space" coordinates 1,2,3. Merg-
ing the last two equations into a single tensor
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n
dxb
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d
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n

pa

n pb

n
En

d

3(x � xn) , (3.11)

where we used the known relativistic result v = p/E. From the last ex-
pression, it is clear that Tab = Tba, and therefore the energy-momentum
tensor is symmetric.
As in classical physics the time derivative of the momentum gives the
force, in this context we have

∂Tab

∂xb

= Fa , (3.12)

where Fa is a density of forces’ 4-vector. In absence of forces, ∂Tab/xb = 0
and this represents the energy-momentum conservation law. On a generic
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Einstein Equations
Requirements: 
1) It should be a tensor equation (the same in any coordinate system). 
2) In analogy to other situations known in physics, it should be of second order at 

most in the relevant variable (the gravitational potential, or in this case the metric 
tensor). 

3) The equation must reduce to the Poisson equation in the non-relativistic limit. 
4) The source of the gravitational field should be the energy-momentum tensor T. 
5) If T=0, space-time must be flat

First time the Riemann tensor appears in Einstein’s notebooks.
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Einstein Equations

From 1) + 4)
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gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is g

µn

, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµn must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµn = 0.

From requirements 1. and 4., the equations must have a form like

Gµn µ Tµn . (3.13)

Since we know that from energy-momentum conservation r
µ

Tµn = 0,
we require that r

µ

Gµn = 0. Moreover, since T is symmetric, also G must
be symmetric. From the previous chapter, we know already a symmetric,
two-indices tensor which contains g

µn

and its derivatives up to second
order: the Einstein tensor. So we can guess the following form

R
µn

� g
µn

R = k · T
µn

. (3.14)

where now we use covariant indices, R
µn

is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
We have to use the weak-field and v ⌧ c approximations together with
stationarity ∂g

µn

/∂t =. In this limit, the only non-zero component of the
Ricci tensor is R00. The energy-momentum tensor reduces also to only

29

CHAPTER 3. GENERAL RELATIVITY

gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is g

µn

, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµn must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµn = 0.

From requirements 1. and 4., the equations must have a form like

Gµn µ Tµn . (3.13)

Since we know that from energy-momentum conservation r
µ

Tµn = 0,
we require that r

µ

Gµn = 0. Moreover, since T is symmetric, also G must
be symmetric. From the previous chapter, we know already a symmetric,
two-indices tensor which contains g

µn

and its derivatives up to second
order: the Einstein tensor. So we can guess the following form

R
µn

� g
µn

R = k · T
µn

. (3.14)

where now we use covariant indices, R
µn

is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
We have to use the weak-field and v ⌧ c approximations together with
stationarity ∂g

µn

/∂t =. In this limit, the only non-zero component of the
Ricci tensor is R00. The energy-momentum tensor reduces also to only

29

Since then

CHAPTER 3. GENERAL RELATIVITY

gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is g

µn

, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµn must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµn = 0.

From requirements 1. and 4., the equations must have a form like

Gµn µ Tµn . (3.13)

Since we know that from energy-momentum conservation r
µ

Tµn = 0,
we require that r

µ

Gµn = 0. Moreover, since T is symmetric, also G must
be symmetric. From the previous chapter, we know already a symmetric,
two-indices tensor which contains g

µn

and its derivatives up to second
order: the Einstein tensor. So we can guess the following form

R
µn

� g
µn

R = k · T
µn

. (3.14)

where now we use covariant indices, R
µn

is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
We have to use the weak-field and v ⌧ c approximations together with
stationarity ∂g

µn

/∂t =. In this limit, the only non-zero component of the
Ricci tensor is R00. The energy-momentum tensor reduces also to only

29

and since T is symmetric, also G should be. 
The only tensor we know with this properties and also respecting 
condition 2) and 5) is the Einstein tensor, so we can set

we postulate with some tensor G.

CHAPTER 3. GENERAL RELATIVITY

gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is g

µn

, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµn must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµn = 0.

From requirements 1. and 4., the equations must have a form like

Gµn µ Tµn . (3.13)

Since we know that from energy-momentum conservation r
µ

Tµn = 0,
we require that r

µ

Gµn = 0. Moreover, since T is symmetric, also G must
be symmetric. From the previous chapter, we know already a symmetric,
two-indices tensor which contains g

µn

and its derivatives up to second
order: the Einstein tensor. So we can guess the following form

R
µn

� g
µn

R = k · T
µn

. (3.14)

where now we use covariant indices, R
µn

is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
We have to use the weak-field and v ⌧ c approximations together with
stationarity ∂g

µn

/∂t =. In this limit, the only non-zero component of the
Ricci tensor is R00. The energy-momentum tensor reduces also to only

29

The constant k can be fixed thanks to the requirement 3) and 
a direct calculation (see notes) gives k = 
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We have to use the weak-field and v ⌧ c approximations together with
stationarity ∂g

µn

/∂t = 0. In this limit, the only non-zero component of
the Ricci tensor is R00. The energy-momentum tensor reduces also to
only the energy density component T00 which in the non-relativistic limit
is just the matter density r. The approximate equation is therefore

R00 =
1
2
r2h00 = kr , (3.15)

which has to be compared to the Poisson equation for the gravitational
potential

r2
f = 4pGr . (3.16)

where G is the Newton constant. Calculating the constant k, we can write
the general relativistic Einstein equation (in natural units G = c = 1)

R
µn

� 1
2

g
µn

R = 8pT
µn

. (3.17)

In "normal units", 8p ! 8pG/c4.
The equation has been checked against many astronomical data, and lab-
oratory and satellite experiments, always finding good agreement up to
now.
Eq. 3.17 is not the most general form allowed by our requirements. Since
the covariant derivative of both sides of the equation vanishes and this
happens also for the metric tensor, we can also add a term which is pro-
portional to g

µn

R
µn

� 1
2

g
µn

R + Lg
µn

= 8pT
µn

. (3.18)

The new constant L is called cosmological constant.
Given the symmetry of the tensors in the equation, there are only 10 in-
dependent components. This means that the Einstein equation represents
a coupled system of 10 non-linear second-order partial differential equa-
tions and finding analytical general solutions is possible only in few cases
characterized by high symmetry content. Besides the trivial flat solu-
tion, a particularly important space-time satisfying the Einstein equations
is the Schwarzschild solution which finds wide applications in physics
problems involving a spherically symmetric gravitational field.

32
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Einstein Equations
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“Trace-Inverted” Einstein Equations

CHAPTER 3. GENERAL RELATIVITY

3.6 Trace-Reversed Form of the Einstein Equa-
tions

There is another equivalent form for Eq. 3.18 which can be obtained tak-
ing first its trace

� R + 4L = 8pT , (3.19)

where R and T are the traces of the Ricci tensor and energy-momentum
tensor respectively. Multiplying the last trace formula by g

µn

/2 and sub-
stituting the result again in Eq. 3.18, we obtain the "trace-reversed" form
of the Einstein equations

R
µn

� Lg
µn

= 8p(T
µn

� 1
2

Tg
µn

) . (3.20)

This version of the equation allows some interesting observations. First,
in absence of the cosmological constant, matter and energy we have R

µn

=
0, which represent a Ricci-flat space-time. Ricci-flat spacetimes are the
solutions of GR for the completely empty space. The flat space-time is a
trivial example of Ricci-flat space-time. A classical non-trivial example of
vacuum solution is the Schwarzschild solution describing the space-time
around a spherical mass. In absence of matter and energy, and L 6= 0 we
have

R
µn

= Lg
µn

, (3.21)

and it is tempting to do the identification T
µn

= Lg
µn

and thinking at the
cosmological constant as the energy content of the vacuum itself.

3.7 Summary

Eq. 3.17 was written first by Einstein in 1915 (with Riemann almost con-
temporarily providing a derivation based on a variational method). Gen-
eral Relativity can thus be summarized as follows:

Space-time is described by a manifold M equipped with a Lorentz metric. The
curvature of M (computable from the metric) is related to the matter/energy dis-
tribution in M by the Einstein equation.
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Taking the trace of the Einstein equation:

Substituting back in the equation:

Observations: 
- Gravitational part condensed in only the Ricci tensor 
- Energy/Matter side explicitly dependent from the metric 
- The cosmological constant part can be suggestively moved to the RHS:

Rµ⌫ = 8⇡


Tµ⌫ �

✓
T

2
+

⇤

8⇡

◆
gµ⌫

�
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Tidal Forces

Newton’s equation for nearby points

Expanding in series:

Newton’s equation for tidal forces

Tidal Tensor
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Geodesic Deviation and Gravitation
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3.6 Trace-Reversed Form of the Einstein Equa-
tions
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stituting the result again in Eq. 3.18, we obtain the "trace-reversed" form
of the Einstein equations

R
µn

� Lg
µn

= 8p(T
µn

� 1
2

Tg
µn

) . (3.20)

This version of the equation allows some interesting observations. First,
in absence of the cosmological constant, matter and energy we have R

µn

=
0, which represent a Ricci-flat space-time. Ricci-flat spacetimes are the
solutions of GR for the completely empty space. The flat space-time is a
trivial example of Ricci-flat space-time. A classical non-trivial example of
vacuum solution is the Schwarzschild solution describing the space-time
around a spherical mass. In absence of matter and energy, and L 6= 0 we
have

R
µn

= Lg
µn
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and it is tempting to do the identification T
µn

= Lg
µn

and thinking at the
cosmological constant as the energy content of the vacuum itself.

3.7 Geodesic Deviation

There is another interpretation of the role played by the Riemann tensor
in General Relativity. If a free-falling observer observes a nearby free-
falling object, if there is no gravity, he should see it at rest. If gravity
is present, the observer and the object should move with respect to each
other. The free-falling observer follows the trajectory

d2xµ

dt

2 + Gµ

nl

dxn

dt

dxl

dt

= 0 . (3.22)
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Another observer is closeby, at xµ(t) + dxµ(t) thus following the trajec-
tory

d2

dt

2 (xµ + dxµ) + Gµ

nl

(xµ + dxµ)
d

dt

(xn + dxn)
d

dt

(xl + dxl) = 0 . (3.23)

The difference between the last two equations at first order in dxµ is

d2
dxµ

dt

2 +
∂Gµ

nl

∂xr

dxr

dxn

dt

dxl

dt

+ 2Gµ

nl

dxn

dt

dxl

dt

= 0 , (3.24)

which in terms of a covariant derivative along a curve 1 can be written as

D2

Dt

2 dxl = Rl

nµr

dxµ

dxn

dt

dxr

dt

. (3.25)

In absence of gravity, the Riemann tensor is identically zero and two close
geodetics stay "parallel" to each other. If gravity is present, two nearby
particles will not conserve their distance along the motion.

3.8 Summary

Eq. 3.17 was written first by Einstein in 1915 (with Riemann almost con-
temporarily providing a derivation based on a variational method). Gen-
eral Relativity can thus be summarized as follows:

Space-time is described by a manifold M equipped with a Lorentz metric. The
curvature of M (computable from the metric) is related to the matter/energy dis-
tribution in M by the Einstein equation.

Eq. 3.17 represent 10 non-linear partial differential equations of the hyper-
bolic kind (like the wave equation) and they are the gravitational analog
to the Maxwell equations written with the relativistic formalism where
the scalar and vector potentials are arranged into a fourvector A

µ

and
charge density and current into a four-vector J

µ

: ∂

2A
µ

= �4p J
µ

. A fun-
damental difference among these two theories is the following: while in

1If Vµ is a vector, its derivative along a curve xµ parameterized by a parameter t is
DVµ/Dt = dAµ/dt + Gµ

nl

dxl/dtAn.
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Trajectories of two nearby free-falling particles:

Subtracting and keeping only 1st order terms:

Introducing the covariant derivation along the curve:

The Riemann tensor quantifies the amount of geodesic deviation.
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Geodesic Deviation and Gravitation

If Rijkl=0, there is no gravity 
If Rijkl=0, there are no tidal forces. 
—> Tidal forces are the true manifestation of gravity. 

If Rijkl=0, we can always find a coordinate system which makes the metric 
equivalent to the one of a flat space (Minkowski metric). 

Non-uniform gravitational fields are observable through geodesic deviation 
(only locally equivalent to accelerated frames: equivalence principle). 

Uniform gravitational fields can be eliminated by a coordinate 
transformation and are non distinguishable from an uniformly accelerated 
frame.



Sommersemester 2018 Luca Doria, JGU Mainz 20

Properties of the Einstein Equations

- Partial differential equations: 
-10 Equations 
- non linear  
- hyperbolic 
- coupled 

- Analog to the Maxwell equations for the 4-potential A. 
- Fundamental difference: 
- - for EM, given the 4-current, the fields can be   

calculated. 
- for GE, given T, we cannot calculate the metric 

tensor g, since it appears also in T.
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Solution of the Einstein Equations

Cauchy initial condition problem 

ADM Decomposition 

Numerical Methods  
(main recent dev.: adaptive meshes) 

Regge Calculus


