Introductory Particle Cosmology

Luca Doria

Institut für Kernphysik Johannes-Gutenberg Universität Mainz

Lecture 5

Introduction

Datum	Von	Bis	Raum	
1 Di, 17. Apr. 2018	10:00	12:00	05 119 Minkowski-Raum	
2 Do, 19. Apr. 2018	08:00	10:00	05 119 Minkowski-Raum	
3 Di, 24. Apr. 2018	10:00	12:00	05 119 Minkowski-Raum	
4 Do, 26. Apr. 2018	08:00	10:00	05 119 Minkowski-Raum	
5 Do, 3. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	
6 Di, 8. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
7 Di, 15. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
8 Do, 17. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	
9 Di, 22. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
10 Do, 24. Mai 2018	08:00	10:00	05 119 Minkowski-Raum	(1004-1909)
11 Di, 29. Mai 2018	10:00	12:00	05 119 Minkowski-Raum	
12 Di, 5. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
13 Do, 7. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
14 Di, 12. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
15 Do, 14. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
16 Di, 19. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
17 Do, 21. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
18 Di, 26. Jun. 2018	10:00	12:00	05 119 Minkowski-Raum	
19 Do, 28. Jun. 2018	08:00	10:00	05 119 Minkowski-Raum	
20 Di, 3. Jul. 2018	10:00	12:00	05 119 Minkowski-Raum	
21 Do, 5. Jul. 2018	08:00	10:00	05 119 Minkowski-Raum	

Physics Dept. Building, 5th Floor

Cosmological Red-shift Estimation of the Age of the Universe Cosmological Distances Cosmography Standard LambdaCDM Model

The Cosmological Red-shift

Light ray in the FLRW space-time:
$$d\tau^2 = dt^2 - a^2(t) \frac{dr^2}{1 - kr^2} = 0$$

The Red-shift

Red-shift Parameter

$$z = \frac{\lambda_0 - \lambda_1}{\lambda_1} = \frac{a(t_0)}{a(t_1)} - 1$$

 $z>0 \Rightarrow \lambda_0>\lambda_1$ Red-shift

The Universe is expanding

 $z < 0 \Rightarrow \lambda_0 < \lambda_1$ Blue-shift

The Universe is contracting

Hubble Parameter and Densities

Second Friedmann equation

ATTENTION: just a formal analogy!

Introducing the present-day critical density (and the present-dat Hubble parameter H₀)

The previous formula can be rewritten using the red-shift parameter

$$H^{2} = H_{0}^{2} \left[\Omega_{m}^{0} (1+z)^{3} + \Omega_{r}^{0} (1+z)^{4} + \Omega_{k}^{0} (1+z)^{2} + \Omega_{\Lambda}^{0} \right]$$

since
$$H=-rac{1}{1+z}rac{dz}{dt}$$
 and $\Omega^0_rpprox 0$ so $\Omega^0_k=1-\Omega^0_m-\Omega^0_\Lambda$

we obtain the approximate formula

$$\Delta t = \frac{1}{H_0} \int_0^z \frac{dz'}{1+z'} \frac{1}{\sqrt{(1+\Omega_m^0 z')(1+z')^2 - z'(2+z')\Omega_\Lambda^0}}$$

where the integral extends from today (z=0) to some epoch characterized by z.

Sommersemester 2018

Age of the Universe

$$\Delta t = \frac{1}{H_0} \int_0^z \frac{dz'}{1+z'} \frac{1}{\sqrt{(1+\Omega_m^0 z')(1+z')^2 - z'(2+z')\Omega_\Lambda^0}}$$

This integral is O(1), so Age of the Universe $\approx~1/H_0 \approx 14$ Gyr

Simple analytical case: flat Universe with no cosmological constant:

$$A = \frac{1}{H_0} \int_0^\infty \frac{dz'}{(1+z')^{5/2}} = \frac{2}{3H_0} \sim 10 \text{ Gyr}$$

Cosmological Distances

Astrometric Methods

Parallax

Within the Milky woy Extragalactic

AU range

Main Sequence Fitting

Close galaxies, $\sim 10^7$ ly

Cepheids

up to 20000 ly

with space telescopes

Galactic Properties

~10¹⁰ ly

Type la Supernovae

3Gpc

Hubble Law

An (incomplete) list of distance estimation methods

Luminosity Distance

Cosmological Distances

Expand the scale factor
$$a(t) = a_0 \left[1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2 + \frac{1}{6}j_0H_0^3(t - t_0)^3 + \dots \right]$$

Relation to redshift

$$1 + z = \frac{a(t_0)}{a(t_0 - D/c)}$$

$$d_L = \frac{a_0^2 r_0}{a(t_0 - D/c)}$$
Measurable

Luminosity distance

Fit to the d_{L} / z data:

$$d_L(z) = \frac{cz}{H_0} \left[1 + \frac{1}{2}(1 - q_0)z - \frac{1}{6} \left(1 - q_0 - 3q_0^2 + j_0 + \frac{kc^2}{H_0^2 a_0^2} \right) z^2 + \frac{1}{24} \left(2 - 2q_0 - 15q_0^2 - 15q_0^3 + 5j_0 + 10q_0j_0 + s_0 + \frac{2kc^2(1 + 3q_0)}{H_0^2 a_0^2} \right) + \dots \right]$$

JG U Discovery of the Accelerated Expansion

Photo: Belinda Pratten, Australian National University

Brian P. Schmidt

Adam G. Riess

Written in the stars

Nobel Prize 2011 in Physics

 $(\Omega_M \Omega_\Lambda) = (0, 1)$ (0.5,0.5) (0, 0) $\begin{array}{c} 1, & 0 \\ 1.5, -0.5 \end{array} (2, 0)$ 1, 0) 24 $\Lambda = 0$ Flat 22 Supernova Cosmology effective m_B 80 Project Calan/Tololo 16 (Hamuy et al, A.J. 1996) (a) 14 1.5 $(\Omega_{M}, \Omega_{\Lambda}) =$ 1) (0, (0.28, 0.72) 0) 0.5) 0.25 (0.75. (1, 0) (b)

Photo: Roy Kaltschmidt. Courtesy: Lawrence Berkeley National Laboratory

Saul Perlmutter

Type 1a Supernovae

Type 1a supernovae are used as standard candles.

SNe Ia occur in binary systems where one of the two stars is a carbon-oxygen white dwarf.

The efficiency of the explosion after accretion is determined by the core temperature and ultimately by the mass of the star

The peak luminosity can be used as standard candle, since this type of stars have similar masses.

The progenitor of a Type Ia supernova				
Two normal stars are in a binary pair.	The more massive star becomes a giant	secondary star, causing it to expand and become engulfed.		
The secondary, lighter star and the core of the giant star spiral inward within a common envelope.	The common envelope is ejected, while the separation between the core and the secondary star decreases.	The remaining core of the giant collapses and becomes a white dwarf.		
The aging companion star starts swelling, spilling gas onto the white dwarf.	The white dwarf s mass increases until it reaches a critical mass and explodes	causing the companion star to be ejected away.		

Image from : NASA, ESA and A. Feild (STScI)

Recent Data

