
Introductory Particle Cosmology
Luca Doria 

Institut für Kernphysik 
Johannes-Gutenberg Universität Mainz

Lecture 6



Sommersemester 2018 Luca Doria, JGU Mainz 2

Introduction

Mathematical Tools

General Relativity

Standard Model

Cosmology
Generic Vector Bases 
Basis Change 
Vectors in Curved Geometries 
Tensors, Metric Tensor 
(Riemann) Manifolds 
Connection 
Geodesics and Curvature

Equivalence Principle 
Einstein Equations 

Cosmological Principle 
FLRW Metric 
Friedmann Equations 
Cosmic Distances 
Cosmological Models

Brief History 
Particle Content 
Gauge Principle, CPV, Strong CP 
EW Symmetry Breaking 
Beyond the SM  

Particle Cosmology

Dark Matter (Models + Exp.) 
Dark Energy (Models + Exp) 
Inflationary Models 
Gravitational Waves 
Density Perturbations

Observation
CMB 
Structure Formation 
Red-shift/Distance 
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Datum Von Bis Raum
1 Di, 17. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
2 Do, 19. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
3 Di, 24. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
4 Do, 26. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
5 Do, 3. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
6 Di, 8. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
7 Di, 15. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
8 Do, 17. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
9 Di, 22. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
10 Do, 24. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
11 Di, 29. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
12 Di, 5. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
13 Do, 7. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
14 Di, 12. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
15 Do, 14. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
16 Di, 19. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
17 Do, 21. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
18 Di, 26. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
19 Do, 28. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
20 Di, 3. Jul. 2018 10:00 12:00 05 119 Minkowski-Raum
21 Do, 5. Jul. 2018 08:00 10:00 05 119 Minkowski-Raum
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Inflation

Quick Standard Model Summary 
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Standard Model Particle Content

Image from wikipedia
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The Standard Model
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Brief History
1964 Murray Gell-Mann and George Zweig tentatively put forth the idea of quarks. Mesons and 
baryons are composites of three quarks or antiquarks, called up, down, or strange (u, d, s) with spin 
0.5 and electric charges 2/3, -1/3, -1/3, respectively Since the fractional charges had never been 
observed, the introduction of quarks was treated more as a mathematical explanation of flavor 
patterns. 

1964 Since leptons had a certain pattern, several papers suggested a fourth quark carrying another 
flavor to give a similar repeated pattern for the quarks, now seen as the generations of matter. Sheldon 
Glashow and James Bjorken coin the term "charm" for the fourth (c) quark. 

1965 O.W. Greenberg, M.Y. Han, and Yoichiro Nambu introduce the quark property of color charge. 

1966 The quark model is accepted rather slowly because quarks hadn't been observed. 

1967  Steven Weinberg and Abdus Salam separately propose a theory that unifies electromagnetic and 
weak interactions into the electroweak interaction. Their theory requires the existence of a neutral, 
weakly interacting boson (now called the Z0) They also predict an additional massive boson called the 
Higgs Boson that has not yet been observed. 

1968-69 At the SLAC, in DIS on protons, the electrons appear to be scattering off small hard cores 
inside the proton. James Bjorken and Richard Feynman analyze this data in terms of a model of 
constituent particles inside the proton .
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Brief History
1970 Sheldon Glashow, John Iliopoulos, and Luciano Maiani recognize the importance of a fourth type of 
quark. A fourth quark allows a theory that has flavor-conserving Z0-mediated weak interactions but no 
flavor-changing ones. 

1973 Donald Perkins, re-analyzes some old data from CERN and finds indications of weak interactions with 
no charge exchange (those due to a Z0 exchange.) 

1973 A QFT of strong interaction is formulated. This theory of quarks and gluons is similar in structure to 
QED. Quarks carry a color charge. Gluons are massless quanta of the strong-interaction field. The theory 
was first suggested by Harald Fritzsch and Murray Gell-Mann. 

1973 David Politzer, David Gross, and Frank Wilczek discover that QCD has "asymptotic freedom." 

1974 In a summary talk for a conference, John Iliopoulos presents the Standard Model. 

1974 (Nov.) Burton Richter and Samuel Ting, leading independent experiments, announce on the same the 
discovered of the J/Psi particle. The J/psi particle is a charm-anticharm meson. 

1976 Gerson Goldhaber and Francois Pierre find the D0 meson (anti-up and charm quarks). 

1976 The tau lepton is discovered by Martin Perl and collaborators at SLAC. 
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Brief History
1977 Leon Lederman and collaborators at Fermilab discover the “bottom” quark. 

1978 Charles Prescott and Richard Taylor observe a Z0 mediated weak interaction in the scattering of 
polarized electrons from deuterium which shows a violation of parity conservation, as predicted by the 
Standard Model. 

1979 Strong evidence for a gluon radiated by the initial quark or antiquark if found at PETRA at DESY 

1983 The W± and Z0 intermediate bosons are observed by two experiments using the CERN synchrotron 
using techniques developed by Carlo Rubbia and Simon Van der Meer. 

1989 Experiments carried out in SLAC and CERN strongly suggest that there are three and only three 
generations of fundamental particles. This is inferred by showing that the Z0-boson lifetime is consistent 
only with the existence of exactly three very light (or massless) neutrinos. 

1995 CDF and D0 experiments at Fermilab discover the top quark at the unexpected mass of 175 GeV. 

2012 Almost half a century after Peter Higgs predicted a Higgs boson the ATLAS and CMS experiments 
at the CERN lab discover the Higgs boson.
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Gauge Invariance

and strong interactions. In the case of weak interactions the presence
of very heavy weak gauge bosons require the new concept of sponta-
neous breakdown of the gauge symmetry and the Higgs mechanism
[63, 64, 65]. On the other hand, the concept of asymptotic freedom
[89, 90] played a crucial rôle to describe perturbatively the strong in-
teraction at short distances, making the strong gauge bosons trapped.
The Quantum Chromodynamics (QCD), the gauge theory for strong in-
teractions, is the subject of Mangano’s lecture at this school.

1.2.1 Gauge Invariance in Quantum Mechanics

The gauge principle and the concept of gauge invariance are already
present in Quantum Mechanics of a particle in the presence of an elec-
tromagnetic field [4]. Let us start from the classical Hamiltonian that
gives rise to the Lorentz force (F⃗ = qE⃗ + qv⃗ × B⃗),

H =
1

2m

(

p⃗− qA⃗
)2

+ qφ , (1.9)

where the electric and magnetic fields can be described in terms of the
potentials Aµ = (φ, A⃗),

E⃗ = −∇⃗φ−
∂A⃗

∂t
; , B⃗ = ∇⃗ × A⃗ .

These fields remain exactly the same when we make the gauge trans-
formation (G) in the potentials:

φ→ φ′ = φ−
∂χ

∂t
, A⃗→ A⃗′ = A⃗ + ∇⃗χ . (1.10)

When we quantize the Hamiltonian (1.9) by applying the usual pre-
scription p⃗→ −i∇⃗, we get the Schrödinger equation for a particle in an
electromagnetic field,

[

1

2m

(

−i∇⃗ − qA⃗
)2

+ qφ

]

ψ(x, t) = i
∂ψ(x, t)

∂t
,

which can be written in a compact form as

1

2m
(−iD⃗)2ψ = iD0ψ , (1.11)
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and now both ψ and ψ′ describe the same physics, since |ψ|2 = |ψ′|2. In
order to get the invariance for all observables, we should assure that
the following substitution is made:

∇⃗ → D⃗ ,
∂

∂t
→ D0 ,

For instance, the current

J⃗ ∝ ψ∗(∇⃗ψ)− (∇⃗ψ)∗ψ ,

becomes also gauge invariant with this substitution since

ψ∗ ′(D⃗′ψ′) = ψ∗ exp (−iqχ) exp (iqχ) (D⃗ψ) = ψ∗(D⃗ψ) .

After we have shown how to obtain a gauge invariant quantum de-
scription of a particle in an electromagnetic field, could we reverse the
argument? That is: when we demand that a theory is invariant under
a spacetime dependent phase transformation, can this procedure im-
pose the specific form of the interaction with the gauge field? In other
words, can the symmetry imply dynamics?

Let us examine what happens when we start from the Dirac free
Lagrangian

Lψ = ψ̄(i ̸∂ −m)ψ ,

that is not invariant under the local gauge transformation,

ψ → ψ′ = exp [−iα(x)]ψ ,

since

Lψ → L′
ψ = Lψ + ψ̄γµψ(∂µα) ,

However, if we introduce the gauge field Aµ through the minimal
coupling

Dµ ≡ ∂µ + ieAµ ,

and, at the same time, require that Aµ transforms like

Aµ → A′
µ = Aµ +

1

e
∂µα . (1.15)

21
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we have

Lψ → L′
ψ = ψ̄′ [(i ̸∂ − e A̸′)−m]ψ′

= ψ̄ exp(+iα)

[

i ̸∂ − e

(

A̸ +
1

e
̸∂α
)

−m

]

exp(−iα)ψ

= Lψ − eψ̄γµψAµ . (1.16)

The coupling between ψ (e.g. electrons) and the gauge field Aµ (pho-
ton) arises naturally when we require the invariance under local gauge
transformations of the kinetic–energy terms in the free fermion La-
grangian.

Since, the electromagnetic strength tensor

Fµν ≡ ∂µAν − ∂νAµ , (1.17)

is invariant under the gauge transformation (1.15), so is the Lagrangian
for free gauge field,

LA = −
1

4
FµνF

µν , (1.18)

This Lagrangian together with (1.16) describes the Quantum Electro-
dynamics.

We should point out that a hypothetical mass term for the gauge
field,

Lm
A = −

1

2
AµA

µ ,

is not invariant under the transformation (1.15). Therefore, something
else should be necessary to describe massive vector bosons in a gauge
invariant way, preserving the renormalizability of the theory.

1.2.2 Gauge Invariance for Non–Abelian Groups

As suggested by Heisenberg [91] in 1932, under nuclear interac-
tions, protons and neutron can be regarded as degenerated since their
mass are quite similar and electromagnetic interaction is negligible.

22
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In classical electrodynamics the fields 

do not change if

In QED

the U(1) local field transformation

changes the lagrangian as
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Gauge Invariance
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where we can define the covariant derivative

and the field A (the “potential”) must transform as

The gauge invariance requirement fixes how 
fermion fields are couplet to photons 

NOTE: The name “covariant derivative” is not causal: the charge space can indeed be thought as a 
curved space where the derivative must be “compensated” for the curvature. The field tensor plays the 
role of curvature tensor. Thus gauge theories have a geometric interpretation.
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Quantum Electrodynamics (QED)

Lagrangian

Fermion field

Gauge boson (photon)-fermion coupling 
from U(1) gauge invariance

Photon field

Basic Diagram Blocks Higher order Loop Effects
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Quantum Chromodynamics (QCD)

Lagrangian

Covariant derivative

Gluon Field

SU(3) Algebra

Basic Diagram Blocks (+ Propagators)
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QCD: Jets, Gluons, Confinement
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Electroweak Unification

For the conjugate spinors we have,

ψ̄L = (Lψ)†γ0 = ψ†L†γ0 = ψ†Lγ0 = ψ†γ0R = ψ̄R

ψ̄R = ψ̄L .

Let us make some general remarks. First of all, we should notice
that fermion mass term mixes right– and left–handed fermion compo-
nents,

ψ̄ψ = ψ̄RψL + ψ̄LψR . (2.2)

On the other hand, the electromagnetic (vector) current, does not mix
those components, i.e.

ψ̄γµψ = ψ̄Rγ
µψR + ψ̄Lγ

µψL . (2.3)

Finally, the (V − A) fermionic weak current can be written in terms of
the helicity states as,

ψ̄Lγ
µψL = ψ̄RγµLψ = ψ̄γµL2ψ = ψ̄γµLψ =

1

2
ψ̄γµ(1− γ5)ψ , (2.4)

what shows that only left–handed fermions play a rôle in weak inter-
actions.

2.1.3 Choosing the gauge group

Let us investigate which gauge group would be able to unify the
electromagnetic and weak interactions. We start with the charged
weak current for leptons. Since electron–type and muon–type lepton
numbers are separately conserved, they must form separate represen-
tations of the gauge group. Therefore, we refer as ℓ any lepton flavor
(ℓ = e, µ, τ ), and the final Lagrangian will be given by a sum over all
these flavors.

From Eq. (2.4), we see that the weak current (1.5), for a generic
lepton ℓ, is given by,

J+
µ = ℓ̄γµ(1− γ5)ν = 2 ℓ̄LγµνL . (2.5)

38

Lepton current (chiral)
If we introduce the left–handed isospin doublet (T = 1/2),

L ≡
(

ν
ℓ

)

L

=

(

L ν
L ℓ

)

=

(

νL

ℓL

)

, (2.6)

where the T3 = +1/2 and T3 = −1/2 components are the left–handed
parts of the neutrino and of the charged lepton respectively. Since,
there is no right–handed component for the neutrino ∗, the right–handed
part of the charged lepton is accommodated in a weak isospin singlet
(T = 0)

R ≡ R ℓ = ℓR . (2.7)

The charged weak current (2.5) can be written in terms of leptonic
isospin currents:

J i
µ = L̄ γµ

τ i

2
L ,

where τ i are the Pauli matrices. In a explicit form,

J1
µ =

1

2
(ν̄L ℓ̄L) γµ

(

0 1
1 0

)(

νL

ℓL

)

=
1

2

(

ℓ̄LγµνL + ν̄LγµℓL
)

,

J2
µ =

1

2
(ν̄L ℓ̄L) γµ

(

0 −i
i 0

)(

νL

ℓL

)

=
i

2

(

ℓ̄LγµνL − ν̄LγµℓL
)

,

J3
µ =

1

2
(ν̄L ℓ̄L) γµ

(

1 0
0 −1

)(

νL

ℓL

)

=
1

2

(

ν̄LγµνL − ℓ̄LγµℓL
)

.

Therefore, the weak charged current (2.5), that couples with inter-
mediate vector boson W−

µ , can be written in terms of J1 and J2 as,

J+
µ = 2

(

J1
µ − iJ2

µ

)

.

In order to accommodate the third (neutral) current J3, we can de-
fine the hypercharge current by,

JY
µ ≡ −

(

L̄ γµ L + 2 R̄ γµ R
)

= −
(

ν̄LγµνL + ℓ̄LγµℓL + 2 ℓ̄RγµℓR
)

.
∗At this moment, we consider that the neutrinos are massless. The possible mass

term for the neutrinos will be discussed later, Sec. 2.4.

39

Left-handed doublet

If we introduce the left–handed isospin doublet (T = 1/2),
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parts of the neutrino and of the charged lepton respectively. Since,
there is no right–handed component for the neutrino ∗, the right–handed
part of the charged lepton is accommodated in a weak isospin singlet
(T = 0)

R ≡ R ℓ = ℓR . (2.7)

The charged weak current (2.5) can be written in terms of leptonic
isospin currents:

J i
µ = L̄ γµ

τ i

2
L ,

where τ i are the Pauli matrices. In a explicit form,

J1
µ =

1

2
(ν̄L ℓ̄L) γµ
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0 1
1 0

)(

νL

ℓL

)

=
1

2

(

ℓ̄LγµνL + ν̄LγµℓL
)
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J2
µ =

1

2
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0 −i
i 0
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νL

ℓL
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=
i

2

(
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)
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µ =

1

2
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1 0
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νL
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)

=
1

2

(
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)
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(
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µ − iJ2

µ

)

.
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(
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(
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)

.
∗At this moment, we consider that the neutrinos are massless. The possible mass

term for the neutrinos will be discussed later, Sec. 2.4.
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i
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µW k
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Electroweak Unification
we can write the free Lagrangian for the gauge fields following the
results (1.18) and (1.20),

Lgauge = −
1

4
W i

µνW
i µν −

1

4
BµνB

µν . (2.9)

For the leptons, we write the free Lagrangian,

Lleptons = R̄ i ̸∂ R + L̄ i ̸∂ L

= ℓ̄R i ̸∂ ℓR + ℓ̄L i ̸∂ ℓL + ν̄L i ̸∂ νL

= ℓ̄ i ̸∂ ℓ+ ν̄ i ̸∂ ν . (2.10)

Remember that a mass term for the fermions (2.2) mixes the right– and
left–components and would break the gauge invariance of the theory
from the very beginning.

The next step is to introduce the fermion–gauge boson coupling via
the covariant derivative, i.e.

L : ∂µ + i
g

2
τ i W i

µ + i
g′

2
Y Bµ , (2.11)

R : ∂µ + i
g′

2
Y Bµ , (2.12)

where g and g′ are the coupling constant associated to the groups SU(2)L

and U(1)Y respectively, and

YLℓ
= −1 , YRℓ

= −2 . (2.13)

Therefore, the fermion Lagrangian (2.10) becomes

Lleptons −→ Lleptons + L̄ iγµ

(

i
g

2
τ iW i

µ + i
g′

2
Y Bµ

)

L

+ R̄ iγµ

(

i
g′

2
Y Bµ

)

R . (2.14)

Let us first pick up just the “left” piece of (2.14),

LL
leptons = −g L̄ γµ

(

τ 1

2
W 1

µ +
τ 2

2
W 2

µ

)

L− g L̄ γµ τ
3

2
L W 3

µ −
g′

2
Y L̄ γµ

L Bµ .
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Goldstone Mechanism

Gauge bosons are massless. Higgs mechanism based on SSB provides masses to W 
and Z bosons. Let’s start with the Goldstone mechanism.A new interesting phenomenon happens when a continuous sym-

metry is spontaneously broken. Let us analyze the case of a charged
self–interacting scalar field,

L = ∂µφ
∗∂µφ− V (φ∗φ) , (1.24)

with a similar potential,

V (φ∗φ) = µ2(φ∗φ) + λ(φ∗φ)2 . (1.25)

Notice that the Lagrangian (1.24) is invariant under the global phase
transformation

φ→ exp(−iθ)φ .

When we redefine the complex field in terms of two real fields by

φ =
(φ1 + iφ2)√

2
,

the Lagrangian (1.24) becomes

L =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)− V (φ1,φ2) , (1.26)

which is invariant under SO(2) rotations,
(

φ1

φ2

)

−→
(

cos θ − sin θ
sin θ cos θ

) (

φ1

φ2

)

.

For µ2 > 0 the vacuum is at φ1 = φ2 = 0, and for small oscillations,

L =
2
∑

i=1

1

2

(

∂µφi∂
µφi − µ2φ2

i

)

,

which means that we have two scalar fields φ1 and φ2 with mass m2 =
µ2 > 0.

In the case of µ2 < 0 we have a continuum of distinct vacua [see Fig.
4 (a)] located at

< |φ|2 >=
(< φ1 >2 + < φ2 >2)

2
=
−µ2

2λ
≡

v2

2
. (1.27)
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Simple example: scalar field

invariant under the global U(1) transformation

redefining then

which is (equivalently) invariant under the global SO(2) rotation
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Since λ should be positive to guarantee that H is bounded, the min-
imum depends on the sign of µ. For µ2 > 0, we have just one vacuum at
φ0 = 0 and it is also invariant under (1.23) [see Fig. 3 (a)]. However, for
µ2 < 0, we have two vacua states corresponding to φ±

0 = ±
√

−µ2/λ [see
Fig. 3 (b)]. This case corresponds to a wrong sign for the φ mass term.
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Fig. 3: Scalar potential (1.22) for µ2 > 0 (a) and for µ2 < 0 (b).

Since the Lagrangian is invariant under (1.23) the choice between
φ+

0 or φ−
0 is irrelevant ∗. Nevertheless, once one choice is made (e.g.

v = φ+
0 ) the symmetry is spontaneously broken since L is invariant but

the vacuum is not.

Defining a new field φ′ by shifting the old field by v =
√

−µ2/λ,

φ′ ≡ φ− v ,

we verify that the vacuum of the new field is φ′
0 = 0, making the the-

ory suitable for small oscillations around the vacuum state. The La-
grangian becomes:

L =
1

2
∂µφ

′∂µφ′ −
1

2

(

√

−2µ2
)2
φ′ 2 − λ v φ′ 3 −

1

4
λφ′ 4 .

This Lagrangian describes a scalar field φ′ with real and positive mass,
Mφ′ =

√

−2µ2, but it lost the original symmetry due to the φ′ 3 term.
∗For an interesting discussion discarding the invariant state (φ+

0 ±φ−
0 ) as the true

vacuum see Ref. [93]

27
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For small oscillations around the minimum
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µ2 < 0, we have two vacua states corresponding to φ±

0 = ±
√

−µ2/λ [see
Fig. 3 (b)]. This case corresponds to a wrong sign for the φ mass term.
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Fig. 3: Scalar potential (1.22) for µ2 > 0 (a) and for µ2 < 0 (b).

Since the Lagrangian is invariant under (1.23) the choice between
φ+

0 or φ−
0 is irrelevant ∗. Nevertheless, once one choice is made (e.g.

v = φ+
0 ) the symmetry is spontaneously broken since L is invariant but

the vacuum is not.

Defining a new field φ′ by shifting the old field by v =
√

−µ2/λ,

φ′ ≡ φ− v ,

we verify that the vacuum of the new field is φ′
0 = 0, making the the-

ory suitable for small oscillations around the vacuum state. The La-
grangian becomes:

L =
1

2
∂µφ

′∂µφ′ −
1

2

(

√

−2µ2
)2
φ′ 2 − λ v φ′ 3 −

1

4
λφ′ 4 .

This Lagrangian describes a scalar field φ′ with real and positive mass,
Mφ′ =

√

−2µ2, but it lost the original symmetry due to the φ′ 3 term.
∗For an interesting discussion discarding the invariant state (φ+

0 ±φ−
0 ) as the true

vacuum see Ref. [93]
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The vacuum structure is also SO(2), but it is broken if we choose a particular one.

Goldstone Mechanism
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Fig. 4: The potential V (φ1,φ2) (a) and its contour plot (b)

We can see from the contour plot [Fig. 4 (b)] that the vacua are also
invariant under SO(2). However, this symmetry is spontaneously bro-
ken when we choose a particular vacuum. Let us choose, for instance,
the configuration,

φ1 = v ,

φ2 = 0 .

The new fields, suitable for small perturbations, can be defined as,

φ′
1 = φ1 − v ,

φ′
2 = φ2 .

In terms of these new fields the Lagrangian (1.26) becomes,

L =
1

2
∂µφ

′
1∂

µφ′
1 −

1

2
(−2µ2)φ′ 2

1 +
1

2
∂µφ

′
2∂

µφ′
2 + interaction terms .
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we have 

massive field massless field

Goldstone Mechanism

Goldstone theorem: if an exact continuous GLOBAL symmetry is spontaneously 
broken (i.e. the vacuum is not invariant wrt to it), then the theory contains a massless 
scalar particle for each broken generator of the original group.
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Higgs Mechanism
The Higgs mechanism works in a similar way to the Goldstone’s, but in this case we 
require that the lagrangian is initially invariant under a LOCAL gauge transformation. 
In this case we have to introduce the covariant derivative and the gauge field 
transformations

transformations. This feature fits very well in the requirements for a
gauge theory of electroweak interactions where the short range char-
acter of this interaction requires a very massive intermediate particle.

In order to see how this works let us consider again the charged
self–interacting scalar Lagrangian (1.24) with the potential (1.25), and
let us require a invariance under the local phase transformation,

φ→ exp [i q α(x)]φ . (1.29)

In order to make the Lagrangian invariant, we introduce a gauge
boson (Aµ) and the covariant derivative (Dµ), following the same prin-
ciples of Section 1.2

We introduce a gauge boson (Aµ) and the covariant derivative (Dµ),
so that the Lagrangian becomes invariant, following the same princi-
ples of Section 1.2

∂µ −→ Dµ = ∂µ + iqAµ , with Aµ −→ A′
µ = Aµ − ∂µα(x) .

The spontaneous symmetry breaking occurs for µ2 < 0, with the
vacuum < |φ|2 > given by (1.27). There is a very convenient way of
parametrizing the new fields, φ′, that are suitable for small perturba-
tions, i.e.,

φ = exp

(

i
φ′

2

v

)

(φ′
1 + v)√

2
≃

1√
2

(φ′
1 + v + iφ′

2) = φ′ +
v√
2

. (1.30)

Therefore the Lagrangian (1.24) becomes,

L =
1

2
∂µφ

′
1∂

µφ′
1 −

1

2
(−2µ2)φ′ 2

1 +
1

2
∂µφ

′
2∂

µφ′
2 + interact.

−
1

4
FµνF

µν +
q2v2

2
AµAµ + qvAµ∂

µφ′
2 . (1.31)

This Lagrangian presents a scalar field φ′
1 with mass Mφ′

1
=
√

−2µ2,
a massless scalar boson φ′

2 (the Goldstone boson) and a massive vector
boson Aµ, with mass MA = qv.

However the presence of the last term in (1.31), which is propor-
tional to Aµ∂µφ′

2 is quite inconvenient since it mixes the propagators of
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With the parameterization 

the lagrangian becomes
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with one massive scalar field (the Higgs boson) and a massive gauge boson.
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Higgs Mechanism
Aµ and φ′

2 particles. In order to eliminate this term, we can choose the
gauge parameter in (1.29) to be proportional to φ′

2 as

α(x) = −
1

qv
φ′

2(x) .

In this way, the field φ (1.30) becomes,

φ = exp

[

iq

(

−
φ′

2

qv

)]

exp

(

i
φ′

2

v

)

(φ′
1 + v)√

2
=

1√
2

(φ′
1 + v) .

With this choice of gauge (called unitary gauge) the Goldstone boson
disappears, and we get the Lagrangian

L =
1

2
∂µφ

′
1∂

µφ′
1 −

1

2
(−2µ2)φ′ 2

1 −
1

4
FµνF

µν +
q2v2

2
A′

µA
µ ′

+
1

2
q2 (φ′

1 + 2v)φ′
1A

′
µA

µ ′ −
λ

4
φ′ 3

1 (φ′
1 + 4v) . (1.32)

Where is φ′
2, the Goldstone boson? To answer this question, it is

convenient to count the total number of degrees of freedom from the
initial (1.24) and final (1.32) Lagrangians:

Initial L (1.24) Final L (1.32)

φ(∗) charged scalar : 2 φ′
1 neutral scalar : 1

Aµ massless vector : 2 A′
µ massive vector : 3

4 4

As we can see, the corresponding degree of freedom of the Gold-
stone boson was absorbed by the vector boson that acquires mass. The
Goldstone turned into the longitudinal degree of freedom of the vector
boson.
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For removing the last “bad” term mixing propagators for the 
gauge field and the scalar field we can choose the gauge
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1∂
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1 −
1

4
FµνF
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A′
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In this way, the field redefinition becomes
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and the final lagrangian (now without Goldstone massless field) becomes

We started with 2 dof of charged scalar fields and two dof of the gauge field A 
(4 doc in total) and we ended up with one scalar field (1 dof) and a massive 
gauge field (3 dof) therefore, one scalar field was “eaten up” by A while 
gaining its mass!
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The Standard Model

LSM =
1

4
Wµ⌫W

µ⌫ � 1

4
Bµ⌫B

µ⌫ � 1

4
Ga

µ⌫G
µ⌫
a

L̄�µ(i@µ � 1

2
g⌧Wµ � 1

2
g0Y Bµ)L+ R̄�µ(i@µ � 1

2
g0Y Bµ)R

1

2
|(i@µ � 1

2
g⌧Wµ � 1

2
g0Y Bµ)�|2 � V (�)

g00(q̄�µTaq)G
a
µ + (G1L̄�R+G2L̄�cR+ h.c.)

Kinetic energies / self interactions of the gauge bosons

Kinetic energies and electroweak interactions of fermions

W,Z, Gamma, Higgs masses and couplings

Quark-gluon interaction Fermion masses and coupling to the Higgs field

+

+

+
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GUTs
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Scalar Fields

CHAPTER 6. INFLATION

this was realized is the following. Guth’s idea was that the Universe be-
gan in a state characterized by higher symmetry, called a false vacuum,
since it was not the lowest energy state allowed by the potential of a
certain quantum field(s). He suggested that the supercooling of a first-
order phase transition (of e.g. GUT models) can drive the inflationary
phase. In this idea, the density r of the Universe is dominated by the
difference in energy density between the false-vacuum and true-vacuum
phases Dr ⇠ T4

GUT. The energy density Dr can then act as an effective
cosmological constant leading to accelerated expansion.
Using a condensed matter analogy, the false vacuum corresponds to a
superheated fluid, while the "true" vacuum is analogous to the vapor
phase. The thermodynamic fluctuations were in this case the quantum
fluctuations. During the transition to the true vacuum, bubble nucleation
happens (like vapor bubbles in the superheated fluid).
The problem with this mechanism, is that the huge rate of expansion of
the universe dominates the rate of production and growth of bubbles; the
bubbles never merge to fully complete the transition. This means that the
inflationary phase might last too long.
Another problem is that the collision of the nucleated bubbles can lead to
large anisotropies.

6.7 New Inflation

The "new" inflation paradigm is based on a mechanism where the Uni-
verse cannot escape reaching the true vacuum. These new ideas were
first developed by A. Linde (1982) and independently by A. Albrecht and
P.J. Steinhardt (1982). The new inflationary models are based on a slowly
evolving scalar field (the "inflaton").
The action of a scalar field in curved space-time is

S =
Z

dx4p�g


1
2

gµn

∂

µ

f∂

n

f � V(f)

�
, (6.17)

where V(f) is a potential function for the field f and it has usually the
polynomial form

V =
1
2

m2
f

2 +
l

f

4
f

4 . (6.18)
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in the inflationary case 1 + 3w < 0 shrinks, while for normal "fluids",
where 1 + 3w > 0, it always grows.

6.5.2 Solution to the Flatness Problem

From the Friedman equation W � 1 = k
a2H2 we see that the density pa-

rameter is connected to the comoving Hubble radius. Since the radius
decreases during inflation, the Universe is driven towards flatness.
A very nice way to see this is combining the two Friedmann equations
with the inflationary condition Ḣ ⌧ H2, P = wr and the definition of the
density parameter, obtaining

dW
d(ln a)

= (1 + 3w)W(W � 1) . (6.16)

Performing a stability analysis of the previous equation, it can be seen
that W = 1 is an attractor during inflation (1 + 3w < 0), while it repre-
sents an unstable fixed point otherwise (1 + 3w > 0).
Thus inflation produces naturally a flat universe, provided that the infla-
tionary phase lasts for enough time.
A caveat to this discussion is the following. Inflation does not change
the curvature k of the Universe. For example, if k > 0, this will not be
modified by the inflationary expansion phase. It is the huge expansion of
the Universe which reduces the curvature radius and makes space-time
look almost flat, but the global curvature remains unchanged.

6.6 Scalar Fields

Before describing some inflationary models, we do a digression into the
quantum field theory of a scalar field f(x), where x is a space-time point.
The action of a scalar field in a generic space-time is

S =
Z

dx4p�gL =
Z

dx4p�g


1
2

gµn

∂

µ

f∂

n

f � V(f)

�
. (6.17)

The field equations (the "equations of motion") can be obtained from the
Euler-Lagrange equations for continuous systems

∂

µ

∂L
∂(∂

µ

f)
� ∂L

∂f

= 0 , (6.18)
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and the result is
∂

µ

∂

µ

f � dV
df

= 0 . (6.19)

For V=0, the usual wave equation is recovered: ∂

µ

∂

µ

f = �f̈ + r2
f = 0.

The energy-momentum tensor can be obtained (Nöther’s theorem) with

Tµn = �∂

µ

∂L
∂(∂

µ

f)
∂

n

f + gµnL . (6.20)

The energy density is the (µ = 0, n = 0) component of T, while the average
pressure hPi is the average of the three spacial diagonal components (µ =
n = 1, 2, 3):

r = T00 =
1
2

ḟ

2 +
1
2
rf

2 + V(f) ,

P =
1
3
(P11 + P22 + P33) =

1
6

ḟ

2 � 1
2
rf

2 + V(f) .
(6.21)

In the case of spacial homogeneity and isotropy, spacial gradients vanish
and the two last equations are related by P = �r. We discover in this way
that the equation of state of an homogeneous scalar field is characterized
by w = �1 and can in principle have the correct characteristics, if domi-
nating over other forms of matter, to drive an inflationary expansion.

6.7 Old Inflation

The first inflationary model was proposed by A. Guth at the beginning
of the 80s. In this work, it was pointed out how an inflationary phase
could resolve the horizon and flatness problems. Similar observations
were also made by A. Starobinski, who also predicted the generation of
gravitational waves in the early universe. Mukhanov and Chibisiv (1981)
were the first realizing that zero-point fluctuations in an initial vacuum
state would be amplified by the expansion phase, leading to density per-
turbation which will act as seeds for galaxy formation.
The general idea was the one discussed before, i.e. assume a sort of neg-
ative pressure leading to an equation of state with 1 + 3w < 0. The way
this was realized is the following. Guth’s idea was that the Universe be-
gan in a state characterized by higher symmetry, called a false vacuum,
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ḟ

2 +
1
2
rf

2 + V(f) ,

P =
1
3
(P11 + P22 + P33) =

1
6

ḟ
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Distances
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Distances
The proper distance as a function of the red-shift is therefore

d(z) =
1

1 + z

Z z

0

dz0

H(z0)

which is the proper distance at the time the light left the astrophysical object. 
The comoving distance light has travelled since the beginning of the Universe is  

d(z) =

Z 1

0

dz0

H(z0)

The “sphere” defined by the last equation is called the “particle horizon” and it 
represents the maximum distance we can observe. 
The “event horizon” instead characterizes how far in the future light can travel. 
The “Hubble distance” 1/H is also called “horizon”.
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Hubble Horizon
Hubble Radius (or Hubble Horizon)

It is the distance from the observer at which the recession velocity of a galaxy 
would equal the speed of light.  
In other words, the Hubble radius is the radius of the observable Universe.  
If the Hubble constant is about 70 km/s/Mpc, the Hubble radius is about 14 Bly.

v = H ·R ) RH =
c

H
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Particle Horizon
Particle Horizon
The particle horizon (or cosmological horizon), is the maximum distance from 
which particles could have traveled to the observer in the age of the universe. Its 
magnitude nowadays defines the size of the observable universe.

CHAPTER 6. INFLATION

In the previous chapter, we defined the conformal time via dh = dt/a(t).
Using this new variable, the FLRW metric can be rewritten like

ds2 = a2(h)
h
�dh

2 + dc

2 + S2
k(c)dW2

i
, (6.2)

where W collects the two "angular" variables, dc

2 = dr2/(1 � kr2) and

Sk(c) =

8
><

>:

sinh c k = �1
c k = 0

sin c k = 1
(6.3)

The interesting fact about this metric is that besides the conformal factor
a2(h), it looks like a Minkowski space-time in Cartesian coordinates

ds2 = a2(h)h

µn

dxµdxn . (6.4)

In conformal coordinates, a light ray propagates along 45� lines in a
space-conformal time plot: c = ±h + C. Using the normal time in a
curved space-time, light would have followed curves instead of straight
lines: that’s the advantage of introducing the conformal time.
The maximum distance a light ray can travel is therefore

Dh = rmax =
Z t

0

dt0

a(t0)
=

Z a1

a0

da
aȧ

=
Z ln a1

ln a0

1
aH

d ln a =
Z ln a1

ln a0
RcHd ln a .

(6.5)
We have therefore rewritten the "horizon" rmax in terms of the comoving
Hubble radius, or, in other words, the elapsed conformal time depends
from the evolution of the Hubble radius (which in turn is governed by
the Friedmann equations).

6.2 The Particle Horizon "Problem"

The problem is based on trying to find an explanation to the extremely
high present homogeneity of the universe, even among regions which are
causally disconnected. Two regions are said to be causally disconnected
if even light did not have the time to travel from one region to the other
while the universe is expanding. If no causal connection can be estab-
lished among these regions, how is it possible that the universe is so ho-
mogeneous everywhere? Light started to travel free through the universe
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The maximum distance a light ray can travel is

Comoving Hubble radius
In an accelerating universe, if two particles are separated by a distance greater than the Hubble radius, 
they will never be able to communicate. If they are outside of each other's particle horizon, they could 
have never communicated.
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The Horizon Problem

CHAPTER 6. INFLATION

at the recombination time, when the Universe was about 3 ⇥ 105 years
old and expanding. This light (which today we observe as the cosmic
microwave background) did not had the time to travel to every possible
point of the universe, according to the evolution we can calculate with
GR, but still, the universe is quite homogeneous. This observation might
rise the question: how is it possible that about the same initial conditions
were set everywhere in the same way, so that causally disconnected re-
gions evolved in a very similar way? Like all the fine-tuning "problems",
the fact that it is really a problem we have to solve, it is matter of debate.
Let’s see now more mathematically how such causally disconnected re-
gions arise. A light ray propagates with zero proper time, so considering
only radial rays dt

2 = dt2 � a2(t)dr2 = 0 and therefore integrating by
separation of variables

Z rmax

0
dr =

Z t

0

dt0

a(t0)
, (6.6)

where rmax is the maximum r traveled by the light ray in a time t starting
from t = 0. Let’s consider now the time where light started traveling and
the universe was radiation-dominated. From Eq. 4.29 we have a ⇠ p

t.
The horizon DH is the distance traveled while the universe is expanding,
so it is r times the scale factor

DH = a(t)
Z rmax

0
dr = a(t)

Z t

0

dt0

a(t0)
=

p
t
Z t

0

dt0p
t0

= 2t . (6.7)

We obtained the following result: if we go back in time, the horizon
shrinks proportionally to the time, while the scale factor (the distances)
shrinks like

p
t. This means that the horizon is getting smaller faster than

the dimension of the universe. In other words, there were portions of
universe which could not "communicate" with each other, but still, the
CMB looks with good accuracy the same everywhere. This is the essence
of the horizon problem.
Now let’s look at the Horizon Problem from another point of view, mak-
ing use of the conformal time and the comoving Hubble radius discussed
in the previous section.
We would like to calculate the angle subtended by the horizon at the re-
combination time, which can be approximated by the ratio between the
comoving particle horizon dh at recombination and the comoving angular
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0
dr =

Z t

0

dt0

a(t0)
, (6.6)

where rmax is the maximum r traveled by the light ray in a time t starting
from t = 0. Let’s consider now the time where light started traveling and
the universe was radiation-dominated. From Eq. 4.29 we have a ⇠ p

t.
The horizon DH is the distance traveled while the universe is expanding,
so it is r times the scale factor

DH = a(t)
Z rmax

0
dr = a(t)

Z t

0

dt0

a(t0)
=

p
t
Z t

0

dt0p
t0

= 2t . (6.7)

We obtained the following result: if we go back in time, the horizon
shrinks proportionally to the time, while the scale factor (the distances)
shrinks like

p
t. This means that the horizon is getting smaller faster than

the dimension of the universe. In other words, there were portions of
universe which could not "communicate" with each other, but still, the
CMB looks with good accuracy the same everywhere. This is the essence
of the horizon problem.
Now let’s look at the Horizon Problem from another point of view, mak-
ing use of the conformal time and the comoving Hubble radius discussed
in the previous section.
We would like to calculate the angle subtended by the horizon at the re-
combination time, which can be approximated by the ratio between the
comoving particle horizon dh at recombination and the comoving angular
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Light rays )

In a radiation-dominated universe

Horizon:  
distance travelled while the Universe is expanding

The horizon is getting larger faster than the expansion of the Universe. 
Some portions of the Universe did never communicate between each other.
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coming from p and q “know” that they should be at almost exactly the same temperature? The

same question applies to any two points in the CMB that are separated by more than 1 degree

in the sky. The homogeneity of the CMB spans scales that are much larger than the particle

horizon at the time when the CMB was formed. In fact, in the standard cosmology the CMB is

made of about 104 disconnected patches of space. If there wasn’t enough time for these regions

to communicate, why do they look so similar? This is the horizon problem.
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Figure 2.2: The horizon problem in the conventional Big Bang model. All events that we currently observe
are on our past light cone. The intersection of our past light cone with the spacelike slice labelled CMB
corresponds to two opposite points in the observed CMB. Their past light cones don’t overlap before they
hit the singularity, a = 0, so the points appear never to have been in causal contact. The same applies to
any two points in the CMB that are separated by more than 1 degree on the sky.

2.2 A Shrinking Hubble Sphere

Our description of the horizon problem has highlighted the fundamental role played by the

growing Hubble sphere of the standard Big Bang cosmology. A simple solution to the horizon

problem therefore suggests itself: let us conjecture a phase of decreasing Hubble radius in the

early universe,
d

dt
(aH)�1 < 0 . (2.2.10)

If this lasts long enough, the horizon problem can be avoided. Physically, the shrinking Hubble

sphere requires a SEC-violating fluid, 1 + 3w < 0.

2.2.1 Solution of the Horizon Problem

For a shrinking Hubble sphere, the integral in (2.1.5) is dominated by the lower limit. The Big

Bang singularity is now pushed to negative conformal time,

⌧i =
2H�1

0

(1 + 3w)
a

1
2
(1+3w)

i

ai!0 , w<� 1
3�����������! �1 . (2.2.11)

This implies that there was “much more conformal time between the singularity and decoupling

than we had thought”! Fig. 2.3 shows the new spacetime diagram. The past light cones of

figure from Daniel Baumann
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diameter distance from us d0 (redshift z=0) to recombination (z⇠1090):

qh =
dh
d0

=
hrec � h•

h0 � hrec
=

R •
zrec

dz
H(z)R zrec

0
dz

H(z)

, (6.8)

where we introduced the comoving distance between two red-shifts. H(z)
can be replaced with Eq. 5.8 with the approximate measured values of the
density parameters: Wm ⇠ 0.3, WL = 1 � Wm, and Wr ⇠ 0. The integrals
can be numerically evaluated, yielding the interesting result qh ⇠ 1�. This
means that if we look at the sky, regions separated by about one degree
were causally disconnected at recombination time, but now they look
quite similar. This is another way to state the horizon problem.

6.3 The Flatness "Problem"

The so-called Flatness Problem is a fine-tuning problem of the Big-Bang
theory based on the FLWR equations. Some people do not regard this as
a real problem to solve, since we do not know the real probability distri-
bution for possible initial conditions of the universe. After this disclaimer,
let’s see what this problem is.
Rearranging the Friedmann Eq. 4.15 introducing the critical density and
the density parameter we can obtain

✓
1
W

� 1
◆

rca2 = � 3k
8pG

. (6.9)

Considering only matter and radiation as content of the universe, during
the expansion the density r(t) drops faster that the growth of the scale
factor a(t). This means that since the right-hand side of Eq. 6.9 is a con-
stant and ra2 decreases, 1/W � 1 increases. Taking as t = 0 the Planck
time (tP =

q
h̄G
c5 ⇠ 0.5 ⇥ 10�43s), ra2 should have dropped by a factor

⇠ 1060 during the cosmic history until today. In turn, 1/W � 1 should
have increased by the same factor.
Today we measure (for example with SN1a surveys and CMB measure-
ments) W0 ⇠ 1 and therefore 1/(W � 1) ⇠ 0. Through Eq. 6.9 this means
that the universe is nearly flat and very close to its critical density. This
translates to an extremely tiny value (⇠ 10�62) for |W � 1| at the Planck
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Consider the Friedmann equation

constant

With only matter and radiation, 
density drops faster than scale factor

Must increase for compensating 
for the density drop 

Since the Planck time, the density x a2 should have decreased by a factor 1060. 
This means that 1/Omega-1 should have increased 1060 times. 
Today, we measure a nearly flat Universe, so Omega=1. 
This means that at the beginning, the Universe should have been fine-tuned to flatness at the 1060 level! 

Is this really a signal that something is wrong or that it requires an explanation?
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time. This is the essence of the flatness "problem": in order to observe
an almost flat universe today, we have to "fine-tune" the density to the
critical density to high accuracy. Said in other words: if today we observe
a flat universe, in the distant past, it had to be even flatter (by the huge
⇠ 1060 factor).
Again, this might be not a problem at all, since we do not know how
natural a similar choice for the initial condition is. At any rate, the intro-
duction of an inflationary phase in the early universe removes the need
of this fine-tuning "problem" predicting a nearly flat universe.

6.4 Dilution of Relics

For completeness, we mention also the so-called magnetic-monopole prob-
lem. Some theories beyond the SM (enlarging it with additional symme-
tries) predict the existence of magnetic monopoles (a sort of analog to the
electric charges for the magnetic field). P.A.M. Dirac was the first putting
this idea forward, deriving the quantization condition

qmqe =
n
2

, (6.10)

where n is an integer number. Theories predicting the existence of mag-
netic monopoles lead to an overabundance of such particles and inflation
is a generic mechanism able to dilute them to the today’s very small (if
any) abundance. The same idea can work for other exotic particle species
predicted theoretically.

6.5 Inflation

Generically, an inflationary phase of the universe is a phase where there
is accelerated expansion, or ä > 0.
From the Friedmann equation

Ḣ + H2 =
ä
a

= �4pG
3

(r + 3P) (6.11)
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the inflation condition can be translated to r + 3P < 0. Thus, as can be
easily verified, inflation can happen under the equivalent conditions

ä > 0 () Ḣ
H2 < 1 () r + 3P < 0 () d

dt

✓
1

aH

◆
< 0 . (6.12)

The last condition is quite interesting: inflation corresponds to a shrinking
of the Hubble radius. This is exactly what it is needed for fixing the
horizon problem, since otherwise the expansion of the Hubble radius
leads to causally disconnected regions.
The condition r + 3P < 0 instead tells that we need a sort of negative
pressure P < �r/3.

6.5.1 Solution to the Horizon Problem
Considering the version of the Friedmann equation obtained in Eq. 5.8
for just one generic matter/energy component W with equation of state
P = wr we have

H =
ȧ
a

= H0
p

Wa� 3
2 (1+w) . (6.13)

If w 6= �1 the solution is a(t) µ t2/3(1+w). If w = �1, then a(t) = eHt.
These solutions, using the conformal time (dh = dt/a) are

a(h) µ

8
><

>:

h

2
1+3w w 6= �1

� 1
h

w = �1
(6.14)

This means that h µ 2
(1+3w) a

1
2 (1+3w) and since during inflation 1 + 3w < 0,

h goes to �• if a goes to zero. Therefore, the Big Bang is pushed to
negative conformal times. This in turn means that between the initial sin-
gularity and the decoupling time (when light started to be free to travel in
the Universe) there is much more time than previously thought. In other
words, the light cones which were separated at the decoupling time have
now time to merge.
This is the effect of the decreasing comoving horizon during the infla-
tionary phase which solves the horizon problem. The comoving Hubble
horizon

RcH =
1

aH
=

1
H0

a
1
2 (1+3w) , (6.15)
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ä > 0Inflation condition

the Friedmann acceleration equation

implies

1 + 3w < 0 ) w < �1/3

“special” fluid needed

The comoving Hubble radius is decreasing! 
—> Solution of the horizon problem
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the inflation condition can be translated to r + 3P < 0. Thus, as can be
easily verified, inflation can happen under the equivalent conditions
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dt
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Since inflation requires then if a—> the conformal time goes to -infinity. 

This means that inflation introduces much more conformal time between the decoupling 
time and the initial singularity.
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Figure 2.3: Inflationary solution to the horizon problem. The comoving Hubble sphere shrinks during
inflation and expands during the conventional Big Bang evolution (at least until dark energy takes over at
a ⇡ 0.5). Conformal time during inflation is negative. The spacelike singularity of the standard Big Bang is
replaced by the reheating surface, i.e. rather than marking the beginning of time it now corresponds simply
to the transition from inflation to the standard Big Bang evolution. All points in the CMB have overlapping
past light cones and therefore originated from a causally connected region of space.

widely separated points in the CMB now had enough time to intersect before the time ⌧i. The

uniformity of the CMB is not a mystery anymore. In inflationary cosmology, ⌧ = 0 isn’t the

initial singularity, but instead becomes only a transition point between inflation and the standard

Big Bang evolution. There is time both before and after ⌧ = 0.

2.2.2 Hubble Radius vs. Particle Horizon

A quick word of warning about bad (but unfortunately standard) language in the inflationary

literature: Both the particle horizon �ph and the Hubble radius (aH)�1 are often referred to

simply as the “horizon”. In the standard FRW evolution (with ordinary matter) the two are

roughly the same—cf. eq. (2.1.9)—so giving them the same name isn’t an issue. However, the

whole point of inflation is to make the particle horizon much larger than the Hubble radius.

The Hubble radius (aH)�1 is the (comoving) distance over which particles can travel in the

course of one expansion time.3 It is therefore another way of measuring whether particles are

causally connected with each other: comparing the comoving separation � of two particles with

(aH)�1 determines whether the particles can communicate with each other at a given moment

(i.e. within the next Hubble time). This makes it clear that �ph and (aH)�1 are conceptually

very di↵erent:

3The expansion time, tH ⌘ H�1 = dt/d ln a, is roughly the time in which the scale factor doubles.

figure from Daniel Baumann

Inflation and the Horizon Problem
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in the inflationary case 1 + 3w < 0 shrinks, while for normal "fluids",
where 1 + 3w > 0, it always grows.

6.5.2 Solution to the Flatness Problem

From the Friedman equation W � 1 = k
a2H2 we see that the density pa-

rameter is connected to the comoving Hubble radius. Since the radius
decreases during inflation, the Universe is driven towards flatness.
A very nice way to see this is combining the two Friedmann equations
with the inflationary condition Ḣ ⌧ H2, P = wr and the definition of the
density parameter, obtaining

dW
d(ln a)

= (1 + 3w)W(W � 1) . (6.16)

Performing a stability analysis of the previous equation, it can be seen
that W = 1 is an attractor during inflation (1 + 3w < 0), while it repre-
sents an unstable fixed point otherwise (1 + 3w > 0).
Thus inflation produces naturally a flat universe, provided that the infla-
tionary phase lasts for enough time.
A caveat to this discussion is the following. Inflation does not change
the curvature k of the Universe. For example, if k > 0, this will not be
modified by the inflationary expansion phase. It is the huge expansion of
the Universe which reduces the curvature radius and makes space-time
look almost flat, but the global curvature remains unchanged.

6.6 Old Inflation

The first inflationary model was proposed by A. Guth at the beginning
of the 80s. In this work, it was pointed out how an inflationary phase
could resolve the horizon and flatness problems. Similar observations
were also made by A. Starobinski, who also predicted the generation of
gravitational waves in the early universe. Mukhanov and Chibisiv (1981)
were the first realizing that zero-point fluctuations in an initial vacuum
state would be amplified by the expansion phase, leading to density per-
turbation which will act as seeds for galaxy formation.
The general idea was the one discussed before, i.e. assume a sort of neg-
ative pressure leading to an equation of state with 1 + 3w < 0. The way

65

During inflation Ḣ < H2 and approximating Ḣ ⇠ 0

and combining the two Friedmann equations we can obtain an equation for 
the evolution of the density parameter 

An analysis of this equation shows that if 1+3w<0, ⌦ = 1 is an attractor
solution for the evolution of the parameter. If 1+3w>0 it is instead an unstable fixed 
point. Therefore, inflation naturally drives the Universe towards an apparent flatness. 

NOTE: Inflation does not imply k=0, but just that locally the Universe looks flat.
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“Old Inflation”

False vacuum

True vacuum

Guth’s Inflation: 
- First order phase transition 
- A scalar field (correct equation of state) 

initially trapped in a false vacuum starts to 
“fall down” into the true one. 

- Bubbles of true vacuum enucleate in a 
“sea” of false vacuum. 

- The energy difference between true and 
false vacuum acts like a cosmological 
constant, driving inflation.

- Condensed matter analogy: the false vacuum is like a superheated fluid and the true 
vacuum is the “vapour” phase. During the transition, bubble enucleation happens.

- PROBLEM: the fast expansion of the Universe never allows the bubbles to merge and 
thermalize. Collision of bubbles might also lead to large anisotropies.

- This scenario fails in two requirements for inflation: thermalization and reheating.
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form

V =
1
2

m2
f

2 +
l

f

4
f

4 . (6.24)

The field theory defined by the last two equations is renormalizable and
describes a self-interacting scalar field. Choosing for g

µn

the FLRW met-
ric, the equation of motion for the field is 1

f̈ + 3Hḟ � r2
f

a2 +
dV
df

= 0 . (6.25)

The energy-momentum tensor is

Tµn =
2p�g

dS
dg

µn

= ∂

µ

∂

n

f � gµn


1
2
(∂f)2 � V(f)

�
. (6.26)

If f varies slowly as a function of the space-time coordinates, then we
can neglect the derivatives and the energy-momentum tensor is approxi-
mately

Tµn ⇡ gµnV(f) , (6.27)

which resembles a cosmological constant term. After substitution into the
Einstein (Friedmann in this case) equations, it leads to accelerated expan-
sion, as seen in the vacuum-dominated Universe solution (Sec. 4.6.4).
A clear difference between the vacuum-dominated universe and the case
at hand, is that in the former case the term in the energy-momentum ten-
sor is really constant, while in the latter it varies slowly, moving towards
the dV/df = 0 equilibrium point. Usually the potential is defined such
that at dV/df = 0, V = 0: in this way the vacuum density disappears
and the expansion stops.
A slow variation of the field can be achieved with a large value of the
Hubble parameter H. Neglecting the r2 term in Eq. 6.25, the equation of
motion for the inflaton field looks like the Newton equation for a parti-
cle moving through a medium with friction (the 3Hḟ term). That’s why
sometimes the large-H assumption is called Hubble friction.
Under this condition, the "velocity" of the field must be small, so we can

1This means that g = det(g
µn

) = a3 ("cartesian" coordinates) and since we assume
homogeneity and isotropy, spacial gradients are zero and the equation of motion reduces
to 1p�g ∂t(�g∂f) +

p�gdV/df = 0.

68

Equation of motion of a scalar field in the FRW metric + space homogeneity

1p
�g

@t(�g@t�) +
p
�g

@V

@�
= 0

Hubble “friction”

Energy-Momentum tensor
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f

a2 +
dV
df

= 0 . (6.25)

The energy-momentum tensor is

Tµn =
2p�g

dS
dg

µn

= ∂

µ

∂

n

f � gµn


1
2
(∂f)2 � V(f)

�
. (6.26)

If f varies slowly as a function of the space-time coordinates, then we
can neglect the derivatives and the energy-momentum tensor is approxi-
mately

Tµn ⇡ gµnV(f) , (6.27)

which resembles a cosmological constant term. After substitution into the
Einstein (Friedmann in this case) equations, it leads to accelerated expan-
sion, as seen in the vacuum-dominated Universe solution (Sec. 4.6.4).
A clear difference between the vacuum-dominated universe and the case
at hand, is that in the former case the term in the energy-momentum ten-
sor is really constant, while in the latter it varies slowly, moving towards
the dV/df = 0 equilibrium point. Usually the potential is defined such
that at dV/df = 0, V = 0: in this way the vacuum density disappears
and the expansion stops.
A slow variation of the field can be achieved with a large value of the
Hubble parameter H. Neglecting the r2 term in Eq. 6.25, the equation of
motion for the inflaton field looks like the Newton equation for a parti-
cle moving through a medium with friction (the 3Hḟ term). That’s why
sometimes the large-H assumption is called Hubble friction.
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If the field varies slowly as a function of the space-time coordinates

CHAPTER 6. INFLATION

form

V =
1
2

m2
f

2 +
l

f

4
f

4 . (6.24)

The field theory defined by the last two equations is renormalizable and
describes a self-interacting scalar field. Choosing for g

µn

the FLRW met-
ric, the equation of motion for the field is 1

f̈ + 3Hḟ � r2
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can neglect the derivatives and the energy-momentum tensor is approxi-
mately
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which resembles a cosmological constant term. After substitution into the
Einstein (Friedmann in this case) equations, it leads to accelerated expan-
sion, as seen in the vacuum-dominated Universe solution (Sec. 4.6.4).
A clear difference between the vacuum-dominated universe and the case
at hand, is that in the former case the term in the energy-momentum ten-
sor is really constant, while in the latter it varies slowly, moving towards
the dV/df = 0 equilibrium point. Usually the potential is defined such
that at dV/df = 0, V = 0: in this way the vacuum density disappears
and the expansion stops.
A slow variation of the field can be achieved with a large value of the
Hubble parameter H. Neglecting the r2 term in Eq. 6.25, the equation of
motion for the inflaton field looks like the Newton equation for a parti-
cle moving through a medium with friction (the 3Hḟ term). That’s why
sometimes the large-H assumption is called Hubble friction.
Under this condition, the "velocity" of the field must be small, so we can

1This means that g = det(g
µn

) = a3 ("cartesian" coordinates) and since we assume
homogeneity and isotropy, spacial gradients are zero and the equation of motion reduces
to 1p�g ∂t(�g∂f) +

p�gdV/df = 0.

68

structure similar to a cosmological constant

Difference: V is not constant but varies slowly, moving towards its minimum and  
thus stopping inflation.
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assume f̈ ⇡ 0 =) ḟ ⇡ const. This approximation is called slow-roll
approximation and the equation of motion reduces to

ḟ = �dV/df

3H
. (6.28)

If in the inflationary phase the cosmological density is dominated by the
slowly varying inflaton field, using the first Friedmann Equation with
Ḣ = 0 (true during inflation) and w = �1 (true for a scalar field), we
have

H2 =
8pG

3
V(f) . (6.29)

From the slow-roll approximation

dt =
(dV/df)df

3H
, (6.30)

so we can estimate

N =
Z

Hdt = 8pG
Z

df

V(f)
dV/df

. (6.31)

The number N is the number of e-foldings, which is the number of times
the Universe grew by a factor of e. In order to produce a simple estimate,
we can assume V ⇠ gf

n/n and calculate the number of e-foldings be-
tween two values of the inflaton field f1 and f2 which are respectively
values at the beginning and end of the inflation phase

N =
4pG

n
(f

2
1 � f

2
2) ⇡ 4pG

n
f

2
1 =

4p

nM2
P

f

2
1 , (6.32)

where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The inflationary phase can fix the standard cosmological theory problems
if N ⇠ 70.
This implies the estimate for the initial value of the inflaton of

f

2
1 > 5.6 · n · M2

P . (6.33)
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Ḣ = 0 (true during inflation) and w = �1 (true for a scalar field), we
have

H2 =
8pG

3
V(f) . (6.29)

From the slow-roll approximation

dt =
(dV/df)df

3H
, (6.30)

so we can estimate

N =
Z

Hdt = 8pG
Z

df

V(f)
dV/df

. (6.31)

The number N is the number of e-foldings, which is the number of times
the Universe grew by a factor of e. In order to produce a simple estimate,
we can assume V ⇠ gf

n/n and calculate the number of e-foldings be-
tween two values of the inflaton field f1 and f2 which are respectively
values at the beginning and end of the inflation phase

N =
4pG

n
(f

2
1 � f

2
2) ⇡ 4pG

n
f

2
1 =

4p

nM2
P

f

2
1 , (6.32)

where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
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f
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P . (6.33)
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where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The inflationary phase can fix the standard cosmological theory problems
if N ⇠ 70.
This implies the estimate for the initial value of the inflaton of

f
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P . (6.33)
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A slowly-varying field can be achieved with a large Hubble parameter

)

Slow-roll approximation

Friedmann acceleration equation during inflation:
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The number N is the number of e-foldings, which is the number of times
the Universe grew by a factor of e. In order to produce a simple estimate,
we can assume V ⇠ gf
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where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The largest scales in the CMB are produced at NCMB ⇠ 60 before the end
of inflation and therefore N > NCMB for solving the horizon problem.
The inflationary phase can fix the standard cosmological theory problems
if for example N ⇠ 70.
This implies the estimate for the initial value of the inflaton of

f

2
1 > 5.6 · n · M2

P . (6.33)
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With the above equations we can calculate the number of e-foldings

dt =
3H(dV/d�)

d�
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where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The inflationary phase can fix the standard cosmological theory problems
if N ⇠ 70.
This implies the estimate for the initial value of the inflaton of
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where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The inflationary phase can fix the standard cosmological theory problems
if N ⇠ 70.
This implies the estimate for the initial value of the inflaton of
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For fixing ideas, we can take

and the e-foldings become

where we assumed �2 ⌧ �1 at the end of inflation.

The largest scales in the CMB are created at N=60 before the end of inflation. 
This means that N>60 for fixing the horizon problem and

CHAPTER 6. INFLATION
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The number N is the number of e-foldings, which is the number of times
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where we assumed f2 ⌧ f1 at the end of inflation and MP =
p

1/G ⇠
1.2 ⇥ 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The largest scales in the CMB are produced at NCMB ⇠ 60 before the end
of inflation and therefore N > NCMB for solving the horizon problem.
The inflationary phase can fix the standard cosmological theory problems
if for example N ⇠ 70.
This implies the estimate for the initial value of the inflaton of

f
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6.9 Reheating

During inflation most of the energy density in the universe is in the in-
flaton potential. The inflationary phase ends when the potential becomes
steep and the inflaton field gains kinetic energy. The energy of the in-
flaton has to be transferred to the SM particles. This process is called
reheating and corresponds to the start of the classical hot Big Bang. After
reaching the minimum, the inflation starts to oscillate into it. Let’s assume
V(f) = m2

f

2 in the neighborhood of the minimum. With homogeneity
we have

f̈ + 3Hḟ + m2
f = 0 . (6.34)

The Universe expands and the expansion scale will become larger than
the oscillation period of the inflaton. This situation is described by H�1 ⌧
m�1 and it means that we can disregard the Hubble friction term in
Eq. 6.34 and have oscillations of frequency m.

6.10 Double Scalar Field Inflation

A variant of the slow-roll mechanism introduced before is to consider two
scalar fields f and c with the following potential

V(f, c) =
1
2
(af

2 � n

2)c

2 +
b
4

c

4 + V(f) , (6.35)

where V(f) is a slow-rolling potential and a, b > 0 are constants.
At the beginning, the inflaton field f is large and evolves in the potential
"valley" defined by c ⇠ 0.
When f

2 < n

2/a, the second field c acquires a non-zero vacuum ex-
pectation value c

2 ⇠ n

2/b and the effective mass of f becomes large:
m2

e f f ⇠ (a/b)n

2. The large mass drives the inflaton towards the equilib-
rium point at f = 0. While going to zero, the inflaton converts in other
particles and reheats the Universe starting again the normal expansion
phase.

70
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6.9 Reheating

During inflation most of the energy density in the universe is in the in-
flaton potential. The inflationary phase ends when the potential becomes
steep and the inflaton field gains kinetic energy. The energy of the in-
flaton has to be transferred to the SM particles. This process is called
reheating and corresponds to the start of the classical hot Big Bang. After
reaching the minimum, the inflation starts to oscillate into it. Let’s assume
V(f) = m2

f

2 in the neighborhood of the minimum. With homogeneity
we have

f̈ + 3Hḟ + m2
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where V(f) is a slow-rolling potential and a, b > 0 are constants.
At the beginning, the inflaton field f is large and evolves in the potential
"valley" defined by c ⇠ 0.
When f
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2/a, the second field c acquires a non-zero vacuum ex-
pectation value c
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2/b and the effective mass of f becomes large:
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2. The large mass drives the inflaton towards the equilib-
rium point at f = 0. While going to zero, the inflaton converts in other
particles and reheats the Universe starting again the normal expansion
phase.
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Starobinski R2 Inflation

CHAPTER 6. INFLATION

6.11 Starobinski R2 Inflation

In this scenario, inflation is realized through a modification of the Einstein
Equations instead of introducing a particular energy-momentum tensor.
The Einstein Equations can be obtained minimizing an action (the Hilbert
action) S µ

R
d4x

p�gR. The idea is to consider higher-order actions and
the simplest consists in adding a new R2 term:

S = � 1
16pG

Z
d4x

p�gR(1 � R
6m2 ) . (6.36)

In the standard Einstein gravity, the Ricci scalar R is connected to the
trace of the energy-momentum tensor

R = �8pGTµ

µ

, (6.37)

and therefore it is not a real dynamical variable of the theory. In the new
R2 version of the action, the scalar satisfies the equation of motion

R̈ + 3HṘ + m2(R + 8pGTµ

µ

) = 0 , (6.38)

which looks like a Klein-Gordon equation for a scalar field (sometimes
called the scalaron). The scalaron, in terms of the Hubble parameter is

R = �6Ḣ � 12H2 . (6.39)

In the absence of matter, the above equations describe an exponential
expansion with an almost constant H, thus satisfying the requirements
for inflation. After the inflationary phase, particles and reheating are
produced by the decay of the scalaron.

6.12 Chaotic Inflation

This version of inflation was proposed by A. Linde. At that time, the
motivation for introducing this scenario was to show that inflation is a
generic prediction of many theories including the Standard Model.
The idea is that during the Planck era, quantum fluctuations randomly
("chaotically") can drive the inflaton out of its minimum energy, starting
inflation.

71

Consider a modification of RG with a R2 term 
(motivated by quantum corrections)
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This looks like the equation of a scalar field (called the “scalaron”) which in terms of 
the Hubble parameter looks like 

The scalaron can drive an inflationary phase and its subsequent decay generates 
the other particles.
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Predictions from Inflation
Provide a mechanism for primordial perturbations generation: quantum fluctuations 
stretched by the exponential expansion. 

Solves the horizon problem and produces a flat Universe 

Predicts an almost scale-invariant perturbation spectrum 

Predicts primordial gravitational waves (—> B-modes in the CMB)

P (k) / kn n = 1


