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Introduction

Mathematical Tools

General Relativity

Standard Model

Cosmology
Generic Vector Bases 
Basis Change 
Vectors in Curved Geometries 
Tensors, Metric Tensor 
(Riemann) Manifolds 
Connection 
Geodesics and Curvature

Equivalence Principle 
Einstein Equations 

Cosmological Principle 
FLRW Metric 
Friedmann Equations 
Cosmic Distances 
Cosmological Models

Brief History 
Particle Content 
Gauge Principle, CPV, Strong CP 
EW Symmetry Breaking 
Beyond the SM  

Particle Cosmology

Dark Matter (Models + Exp.) 
Dark Energy (Models + Exp) 
Inflationary Models 
Gravitational Waves 
Density Perturbations

Observation
CMB 
Structure Formation 
Red-shift/Distance 



Sommersemester 2018 Luca Doria, JGU Mainz

Plan

Datum Von Bis Raum
1 Di, 17. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
2 Do, 19. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
3 Di, 24. Apr. 2018 10:00 12:00 05 119 Minkowski-Raum
4 Do, 26. Apr. 2018 08:00 10:00 05 119 Minkowski-Raum
5 Do, 3. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
6 Di, 8. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
7 Di, 15. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
8 Do, 17. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
9 Di, 22. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
10 Do, 24. Mai 2018 08:00 10:00 05 119 Minkowski-Raum
11 Di, 29. Mai 2018 10:00 12:00 05 119 Minkowski-Raum
12 Di, 5. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
13 Do, 7. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
14 Di, 12. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
15 Do, 14. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
16 Di, 19. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
17 Do, 21. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
18 Di, 26. Jun. 2018 10:00 12:00 05 119 Minkowski-Raum
19 Do, 28. Jun. 2018 08:00 10:00 05 119 Minkowski-Raum
20 Di, 3. Jul. 2018 10:00 12:00 05 119 Minkowski-Raum
21 Do, 5. Jul. 2018 08:00 10:00 05 119 Minkowski-Raum
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https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933451944,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933451944,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933451944,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936402993,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936402993,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936402993,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933404946,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933404946,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933404946,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936440995,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936440995,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936440995,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936466998,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936466998,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936466998,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933417952,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933417952,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933417952,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933563955,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933563955,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933563955,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936441004,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936441004,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936441004,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933562958,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933562958,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933562958,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936497007,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936497007,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936497007,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933557960,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933557960,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933557960,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933552963,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933552963,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933552963,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936489013,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936489013,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936489013,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933576965,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933576965,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933576965,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936592015,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936592015,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936592015,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933685967,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933685967,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933685967,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936559017,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936559017,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936559017,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933602969,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933602969,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933602969,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936556019,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936556019,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936556019,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933628971,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933628971,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764933628971,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936535021,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936535021,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=COURSEPREP&ARGUMENTS=-N080196064386275,-N001013,-N000000000000000,-N366764936535021,-ACODA,-N366764903171927
https://jogustine.uni-mainz.de/scripts/mgrqispi.dll?APPNAME=CampusNet&PRGNAME=ACTION&ARGUMENTS=-AydFSP.0Ktm3yhcetGmidu.dGkmg21UdwMp1hB6lYta5s25Ld.uvTRk13B50P0Eq2ySDsHmfFCwSe7nRrJkHkaxn2-9P30N-OuZ0FXFSoCiMXd5TQ


Sommersemester 2018 Luca Doria, JGU Mainz 4

Short History

Penzias, A.A.; R. W. Wilson (October 1965). "A Measurement of the Flux Density of CAS A At 4080 Mc/s". 
Astrophysical Journal Letters. 142: 1149–1154. 

Arno A. Penzias (1933-) 
Robert W. Wilson (1936-)

Penzias & Wilson won the Nobel Prize in Physics in 1978 for the discovery of the CMB. 
The 15x6x6 horn antenna they developed was build for satellite communications. 
After the removal of all the known backgrounds and using cryogenic techniques for lowering the 
electronics noise, a microwave component remained present in their data. 
It looked like coming from every direction and corresponded to a temperature they estimated to 
be about 3.5K 

The discovery confirmed a big-bang prediction by Gamow et al. and was made before Princeton 
scientists J. Peebles, R. Dicke, and D. Wilkinson, whom were building an antenna exactly for 
trying to detect the CMB.

Holmdel Horn Antenna, 
New Jersy (USA)
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COBE (1992)

WMAP (2003)

Planck (2013)

Short History
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Short History
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Short History

Mather (1946-) 
Smoot (1945-)

2006 Physics Noble Prize

COBE: First detection of anisotropies CMB Black-body spectrum
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The Cosmic Microwave Background

The CMB has cosmological origin: it is the radiation which started to free-stream 
after recombination. 

The today’s photon density of the CMB is about 500 photons/cm3. 
It’s spectrum is very close to a thermal one with temperature T=2.7K. 
These photons traveled 99.7% of the age of the Universe before reaching us. 
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Source: NASA/WMAP Science Team

O(10-5) perturbations
(+galaxy)

Dipole (local motion)

(almost) uniform 2.726K blackbody

Observations:
the microwave 
sky today

Scalar and Dipole Subtraction

We move at 370km/s 
wrt the CMB frame!
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14 000 Mpc

z~1000

z=0
θ

Angular Scale (Horizon Problem!)
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CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

7.1 Recombination

7.2 Multipole Decomposition of the CMB

The CMB has an average temperature (mediated over the whole sky) of
about T0=2.7K. After subtracting this average temperature, we can con-
sider the relative fluctuations around the mean

dT
T0

=
T � T0

T0
(q, f) , (7.1)

which depend on the two angles q and f which constitute a coordinate
system describing the sky around us. Since we are dealing with small
fluctuations on the surface of a sphere (the sky), we can expand the rela-
tive fluctuations on the spherical harmonics basis Yl,m (this is analogous
to a Fourier series expansion in a "flat" case on the sin / cos basis)

dT
T0

(q, f) = Â
l,m

al,mYl,m(q, f) . (7.2)

Since Yl,m is an orthonormal set of functions 1, we can invert the previous
equation obtaining

al,m =
Z

Y⇤
l,m(q, f)

dT
T0

(q, f)dW , (7.3)

where the integral in dW is done over all angles.
Since we subtracted the average temperature T0 and Y0,0=const, we should
have a0,0 = 0 for the lowest multipole (l = 0). For l = 1 we have the dipole
contribution which is due to the Doppler effect caused by the motion of
the Earth with respect to the CMB.
Therefore, the interesting part of the CMB which should contain infor-
mation about its origin at the decoupling time must be contained in the
l > 1 multipoles.
The (in general, complex) components al,m represent fluctuations around
zero, therefore hal,mi = 0. If they represent Gaussian random variables,
the whole information about them should be contained in the variances

1R Yl,mY⇤
l0 ,m0 dW = dl,l0 dm,m0
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CMB Fluctuations

Temperature fluctuations around the mean

Decomposition in spherical harmonics
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CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

h|al,m|2i which are connected to the power of the specific (l, m) mode.
Given the isotropic nature of the CMB, we expect the variance to be de-
pendent only from l, which is related to the angular size of the anisotropy
pattern. Remembering the closure relation Âm |Yl,m|2 = (2l + 1)/4p for
the spherical harmonics, we can define the angular power spectrum

Cl =
1

2l + 1 Â
m

h|al,m|2i . (7.4)

If we assume that the al,m are independent random variables, we have for
the correlations

hal,mal0,m0 i = dl,l0dm,m0Cl . (7.5)

If we assume that the spectrum of the density perturbations in the early
Universe was Gaussian, the angular power spectrum contains all the sta-
tistical information about the CMB anisotropies and therefore we can pro-
ceed in calculating

dT
T0

= hÂ
l,m

al,mYl,m Â
l,m

a⇤
l,mY⇤

l,mi = Â
l,l0,m,m0

Yl,mY⇤
l,mhal,ma⇤

l,mi =

Â
l

Cl Â
m

|Ylm|2 = Â
l

(2l + 1)
4p

Cl .
(7.6)

A subtle point here is the following: the averaging hi should be done
over an ensemble of Universes, while we have only one realization of it.
We can imagine that averaging over different directions might represent
an averaging over an ensemble of different Universes. In practice, the
observed power spectrum is calculated as follows

1
4p

Z ✓
dT
T

◆2
dW = Â

l

2l + 1
4p

Ĉl , (7.7)

with Ĉl = Âm |al,m|2/(2l + 1).
So if the theoretical power spectrum the angular average spectrum were
the same, we should have hĈli = Cl ) hĈl � Cli = 0. The averaged
squared difference between theory and observation is called cosmic vari-
ance and a direct calculation yields

h(Ĉl � Cl)
2i =

2
2l + 1

C2
l . (7.8)

75

CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

h|al,m|2i which are connected to the power of the specific (l, m) mode.
Given the isotropic nature of the CMB, we expect the variance to be de-
pendent only from l, which is related to the angular size of the anisotropy
pattern. Remembering the closure relation Âm |Yl,m|2 = (2l + 1)/4p for
the spherical harmonics, we can define the angular power spectrum

Cl =
1

2l + 1 Â
m

h|al,m|2i . (7.4)

If we assume that the al,m are independent random variables, we have for
the correlations

hal,mal0,m0 i = dl,l0dm,m0Cl . (7.5)

If we assume that the spectrum of the density perturbations in the early
Universe was Gaussian, the angular power spectrum contains all the sta-
tistical information about the CMB anisotropies and therefore we can pro-
ceed in calculating

dT
T0

= hÂ
l,m

al,mYl,m Â
l,m

a⇤
l,mY⇤

l,mi = Â
l,l0,m,m0

Yl,mY⇤
l,mhal,ma⇤

l,mi =

Â
l

Cl Â
m

|Ylm|2 = Â
l

(2l + 1)
4p

Cl .
(7.6)

A subtle point here is the following: the averaging hi should be done
over an ensemble of Universes, while we have only one realization of it.
We can imagine that averaging over different directions might represent
an averaging over an ensemble of different Universes. In practice, the
observed power spectrum is calculated as follows

1
4p

Z ✓
dT
T

◆2
dW = Â

l

2l + 1
4p
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with Ĉl = Âm |al,m|2/(2l + 1).
So if the theoretical power spectrum the angular average spectrum were
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Angular Power Spectrum
If the direction does not matter

Power spectrum

Inflation predicts a Gaussian distribution for the power spectrum coefficients 
which are therefore Gaussian random variables. If this is true, the correlation 
functions encode all the information about the fluctuations.
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Cosmic Variance
CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

squared difference between theory and observation is called cosmic vari-
ance and a direct calculation yields

h(Ĉl � Cl)
2i =

2
2l + 1

C2
l . (7.8)

The last formula shows that the variance is smaller for large l (small
scales), while it is large for small l (large scales). The cosmic variance
represents a limit on the accuracy of the comparison between theory and
experiment.

7.3 Angular Scales

As we anticipated in the previous section, the multipole number l is con-
nected to the angular scale in the sky. The spherical harmonics have an
oscillatory pattern on the sphere in the following (approximate) sense: in
a full great circle on the spherical surface, there are l wavelengths of os-
cillations. This means that the angular scale corresponding to the mode l
is q = 2p/l. We can define the angular resolution as the angle connected
to the distance from a crest and a valley of a wave qres = p/l. A detector
must have a resolution at least equal to qres in order to resolve scales up
to l.
For comparison, the first high-resolution satellite mission (COBE) had
qres = 7� ) l < 26. The follow-up experiment (WMAP) had qres =
0.23� ) l < 783. The latest (at the time of writing) and most precise satel-
lite mission (Planck) improves the angular resolution about three times
over WMAP.
The question we would like to answer now is: if there were density per-
turbations in the early Universe characterized by (comoving) wavenum-
bers k (i.e. a comoving wavelength l = 2p/k), to which CMB multipole
l will contribute the most? In other words, we would like to link the pri-
mordial perturbations to the pattern measured in the CMB.
Let’s define the angular diameter distance as dA = D/q, which is the
same as defining the angle q subtended by an object of width (length per-
pendicular to the line of sight) D placed at a distance dA from us. Taking
into account the expansion of the Universe we can define the comoving

76

Error in the difference 
btw theory and 
measurement

This error cannot be eliminated: only 1 realization of the CMB to observe!

This error, or “cosmic variance” is larger at small l (large scales) and represents  
a fundamental limit on the knowledge of the CMB fluctuations.
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CMB Polarization

CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

version of the angular diameter distance

dc
A =

Dc

q

=
(a0/a)D

q

=
(1 + z)D

q

= (1 + z)dA . (7.9)

Considering now the comoving wavelength l (associated with the co-
moving wavenumber k) of a density perturbation, the mode should be
visible in the CMB at an angular size of

q

l

=
l

dc
A

=
2p

kdc
A

=
2p

l
, (7.10)

which gives the relation l = kdc
A. This result follows from a rather sim-

plified treatment, since clearly it is not possible that a single density per-
turbation mode contributes to just one single CMB harmonic. The full
calculation must take into account all the modes but the basic result we
obtained still holds, in the sense that only the modes close to k contribute
significantly.

7.4 CMB Polarization

The CBM can be polarized because of different reasons. Thomson scat-
tering is surely present (scattering of photons from charged particles that
took place at the last scattering surface) and contributes up to ⇠ 5%
level which in terms of temperature fluctuations corresponds to few µK.
Thompson (linear) polarization was indeed experimentally detected.
The Thompson cross section is proportional to the photon polarization
direction before (ê) and after the scattering (ê0)

ds

dW
µ |ê · ê

0|2 . (7.11)

Pictorially, the incident photon makes the charged particle (e.g. an elec-
tron) oscillate in the direction of the polarization. The oscillation creates
radiation with polarization mostly parallel to the initial polarization. If
the incident radiation has quadrupole anisotropies, this will result in an
emitted linearly polarized radiation (this can be seen since the incident
orthogonal components are suppressed in Eq. 7.11).
A photon can be polarized only in the two directions orthogonal to its

77

Thompson scattering

incoming/outgoing 
polarization
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propagation. The polatization can always be decomposed in two othogo-
nal modes which are both orthogonal to the direction of propagation. The
superposition of the two polarization states given in general an elliptical
polarization, and linear or circular polarizations are special cases.
Defining the polarization vector ê = ~E/|E| where E is the electric field,
the polarization tensor is defined as the time average (considering E as
an oscillating field in complex representation)

pij = hêiê
⇤
J i . (7.12)

The polarization tensor is traceless

Trp = pii = hêiê
⇤
i i = h|e|i = 1 (7.13)

and Hermitian (pij)⇤ = pji. An orthogonal basis for Hermitian matrices
is provided by the three 2 ⇥ 2 Pauli matrices sk. The last observation,
combined with the fact that Pauli matrices are trace-less but Trp = 1
leads to the following decomposition

pij =
1
2

(I + Qs1 + Us2 + Vs3) (7.14)

where I is the identity matrix and

s1 =

✓
1 0
0 �1

◆
; s2 =

✓
0 1
1 0

◆
; s3 =

✓
0 �i
i 0

◆
. (7.15)

The numbers Q,U,V are called Stokes parameters and their nice property
is that they are measurable. For example, if we take a linear polariza-
tion filter and pass polarized light through it and measure the intensity
of light F as a function the filter q (F

q

) we can verify that Q = F0 � F90,
U = F45 � F135. The "chirality" (the direction where the polarization is
rotating) is V = 2FC � F where FC is the intensity of the light after passig
through a filter which passes circularly polarized light in a certain direc-
tion and F is the total incident intensity. Stokes parameters are usually
defined between -1 and 1, so Q, U, V are normalized to F.
The degree of polarization is sometimes given as r =

p
Q2 + U2 + V2.

The Stokes parameters vary on a spherical surface referred as the Poincare’
sphere.
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The polarization tensor is traceless

Trp = pii = hêiê
⇤
i i = h|e|i = 1 (7.13)

and Hermitian (pij)⇤ = pji. An orthogonal basis for Hermitian matrices
is provided by the three 2 ⇥ 2 Pauli matrices sk. The last observation,
combined with the fact that Pauli matrices are trace-less but Trp = 1
leads to the following decomposition

pij =
1
2

(I + Qs1 + Us2 + Vs3) (7.14)

where I is the identity matrix and

s1 =

✓
1 0
0 �1

◆
; s2 =

✓
0 1
1 0

◆
; s3 =

✓
0 �i
i 0

◆
. (7.15)

The numbers Q,U,V are called Stokes parameters and their nice property
is that they are measurable. For example, if we take a linear polariza-
tion filter and pass polarized light through it and measure the intensity
of light F as a function the filter q (F

q

) we can verify that Q = F0 � F90,
U = F45 � F135. The "chirality" (the direction where the polarization is
rotating) is V = 2FC � F where FC is the intensity of the light after passig
through a filter which passes circularly polarized light in a certain direc-
tion and F is the total incident intensity. Stokes parameters are usually
defined between -1 and 1, so Q, U, V are normalized to F.
The degree of polarization is sometimes given as r =

p
Q2 + U2 + V2.

The Stokes parameters vary on a spherical surface referred as the Poincare’
sphere.
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The intensity tensor which tells how much intensity there is in each po-
larization mode is analogously defined as

rij = hEiE⇤
j i =

1
2

(J · I + Qs1 + Us2 + Vs3) . (7.16)

In this case we did not normalize by the electric field vector length and
thus we have the new factor

J = dijrij = |Ex|2 + |Ey|2 (7.17)

for a certain choice of orthogonal axes x, y while z is the propagation
direction of the wave. J is obviously a geometric invariant (independent
from the coordinate choice). A second invariant is

V = eijrij , (7.18)

while the Stokes parameters Q and U change with the change of coordi-
nates.
Electromagnetic interactions are parity-conserving and this demands that
the helicity must vanish: V=0.
Furthermore, there are two differential invariants (independent from the
orientation of the axes)

S = r2PE = ∂i∂jrij

P = r2PB = eik∂i∂jrjk
(7.19)

called scalar and pseudo-scalar invariants, respectively. We consider second-
derivatives also because we are dealing with a rank-2 tensor. The other
notation (PE/B) refers to the so-called "E-modes" and "B-modes" respec-
tively, in analogy to the Helmholtz decomposition of a vector V in a curl-
free (irrotational) and divergence-free (solenoidal) parts using a scalar
function y and a vector function A: ~V = ~ry + ~r ⇥ ~A.
Actually, the polarization tensor can indeed be decomposed using two
scalar functions A and B: rij = (∂i∂j � 1

2 ∂

2)A + (∂i∂kekj + ∂j∂keki)B. We
defined already the TT power spectrum related to the correlation func-
tion of the temperature fluctuations. We can now define also correlation
functions for the polarization fluctiations. Using the decomposition of
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the polarization in E and B modes, the only non-vanishing correlation
functions (including TT calculated before) are

hT(n̂)T(n̂0)i =
1

4p

l=•

Â
l=0

(2l + 1)CTT
l Pl(cos q)

hT(n̂)E(n̂0)i =
1

4p

l=•

Â
l=0

(2l + 1)CTE
l Pl(cos q)

hE(n̂)E(n̂0)i =
1

4p

l=•

Â
l=0

(2l + 1)CEE
l Pl(cos q)

hB(n̂)B(n̂0)i =
1

4p

l=•

Â
l=0

(2l + 1)CBB
l Pl(cos q) .

(7.20)

Having E and B opposite parity properties, their cross-correlations van-
ish. The origin of the E/B notation comes from electromagnetism, since
an electric (E) field can be written as the gradient of a scalar field, while
the magnetic field (B) can be written as the curl of a vector field.
Thompson scattering, being a purely electromagnetic process (parity-
conserving), can induce only E-mode polarizations.
B-modes can arise only if P 6= 0 and this can happen for example in the
case of vector perturbations (rij = ∂iVj � ∂jVi ) P = eij∂

2
∂iVj: can be

caused by magnetized interstellar or intergalactic media), tensor pertur-
bations (e.g. from gravitational waves) or second order scalar perturba-
tions.

7.5 CMB Anisotropies

The spherical harmonic expansion in multipoles of the CMB temperature
is formally done from l = 0 to l = •. The l = 0 multipole (the monopole) is
just a constant and its physical interpretation is the average temperature
over the whole sky: T0 = 2.7255 ± 0.0006 K. The temperature can be con-
verted in density of photons n0, density of mass r

0 or density parameter
W0

CMB:

n0 = 411 photons/cm3

r

0 = 4.64 ⇥ 10�34g/cm3 = 2.6 ⇥ 10�10GeV/cm3

W0
CMBh2

0 = 2.47 ⇥ 10�5 .

(7.21)
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CMB Polarization

Non-zero cross-correlation spectra

Besides the already defined TT correlations the symmetry (parity) of the EM 
interaction allows for further 3 cross-correlation terms: TE, EE and BB.
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Figure 1: The CMB power spectrum as a function of angular scale. Red line is our best fit to the model, and the

grey band represents the cosmic variance (see text).

Under the Inflation paradigm, the temperature fluctuations are Gaussian, which means that the harmonic
coeffcients have Gaussian distributions with mean zero and variance given by Cℓ. In this case, all we need

to characterise the statistics of our temperature fluctuations field is the power-spectrum - all

higher-point statistics will be zero and contain no extra information. The Gaussian hypothesis is
now being questioned by detections of non-Gaussianity and deviations from isotropy in the WMAP first-year
data. However, none of the detections are yet confirmed to be of cosmological origin and we continue to
assume Gaussianity throughout this lecture.

The sum in equation (3) will generally start at ℓ = 2 and go on to a given ℓmax which is dictated by
the resolution of the data. The reasons why we exclude the first two terms are as follows. The monopole
(ℓ = 0) term is simply the average temperature over the whole sky (Y00 = 1/2

√
π which makes Θ(n̂)ℓ=0 =

1/4π
∫ ∫

Θ(n̂)dφdcosθ ≡ ⟨Θ(n̂)⟩, where the integrals are done over the entire surface), and so from our
definition of Θ(n̂) it should average to zero. The monopole temperature term would be a valuable source of
cosmological information in its own right, but its value can never be determined accurately because of cosmic
variance - essentially we have no way of telling if the average temperature we measure locally is different from
the average temperature of the Universe. The dipole term (ℓ = 1, α ≈ 180◦) is affected by our own motion
across space - CMB photons coming towards us will appear blueshifted and those going away from us will
appear redshifted. This creates an anisotropy at this scale which dominates over the intrinsic cosmological
dipole signal and therefore we normally subtract the monopole/dipole from a CMB map or discard the first
two values of the power spectrum prior to any analysis.

Our best estimate at what the power spectrum of the observed CMB fluctuations looks like can be seen in
Figure 1. It is usually plotted as ℓ(ℓ+1)Cℓ/2π. This is related to the contribution towards the variance of the
temperature fluctuations in a patch of sky of size ∝ 1/ℓ:

〈

Θ2
〉

= ξΘΘ(0) = 1
4π

∑

ℓ(2ℓ+1)Cℓ (since Pℓ(1) = 1).

The contribution over a range of values of ℓ is given approximately given by
∫ ∞

ℓ 2ℓ′Cl′dℓ′ =
∫ ∞

ℓ 2ℓ′2C′
ℓ

dℓ′

ℓ′

(for ℓ ≫ 1) and so 2ℓ2Cℓ is proportional to the contribution to the variance per unit ln ℓ. This gives a flat
plateau at large angular scales, and brings out a lot of the structure at smaller scales (see later).

Relating angular sizes with linear scales

Having had a look at what how we observe the CMB radiation today and having looked at some of the
formalism we need to analyse it, we would like to start relating what we observe to what was happening at
the time of last scattering. One of the first things we can do is to ask how we can relate angular scales in
the sky to linear sizes at the time of last scattering.

We take the LSS as being a spherical surface at a distance zLS from us. We will take the comoving distance
to this surface as being rLS . We want to relate a small angle in the sky θ to the linear comoving distance x

3

Cosmic Variance

TT Angular Power Spectrum 1

CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

plasma.
The location and height of the peaks depends from the cosmological pa-
rameters. The position of the first peak is tightly connected to the total
amount of matter/enegy present in the universe today (W0

tot)

l1stpeak ⇠ 220p
Wm

. (7.22)

A quick inspection of the data in Fig. 7.1 shows that W0
tot ⇠ 1. This means

that the Universe today is very close to the critical density and in turn the
geometry is very close to the flat one.
The hight of the first peak instead, is tightly connected to the amount of
barionic matter W0

B.
Why the position of the first peak has to do with the geometry of the
Universe? A physical argument is the following. The size corresponding
to the first is known, since it is equal to the cosmological horizon (better:
the sound horizon, where the speed of light is replaced with the sound
speed in the plasma) at the recombination time. The angle2 under which
the first peak is observed today depends on the geometry. This angle in
the case of a flat Universe is about ⇠ 1� which corresponds to l ⇠ 220:
exactly where the first peak is.
The even peaks (second, fourth,..)

2The angle here is the angle calculated with the triangle given by the distance from
us to the last scattering surface and the particle horizon for points at the surfece.
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Perturbations entering the 
horizon at recombination time

Perturbations entering the 
horizon before recombination 
and therefore more red-shifted
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TT Angular Power Spectrum 2

Figure 1: The CMB power spectrum as a function of angular scale. Red line is our best fit to the model, and the

grey band represents the cosmic variance (see text).

Under the Inflation paradigm, the temperature fluctuations are Gaussian, which means that the harmonic
coeffcients have Gaussian distributions with mean zero and variance given by Cℓ. In this case, all we need

to characterise the statistics of our temperature fluctuations field is the power-spectrum - all

higher-point statistics will be zero and contain no extra information. The Gaussian hypothesis is
now being questioned by detections of non-Gaussianity and deviations from isotropy in the WMAP first-year
data. However, none of the detections are yet confirmed to be of cosmological origin and we continue to
assume Gaussianity throughout this lecture.

The sum in equation (3) will generally start at ℓ = 2 and go on to a given ℓmax which is dictated by
the resolution of the data. The reasons why we exclude the first two terms are as follows. The monopole
(ℓ = 0) term is simply the average temperature over the whole sky (Y00 = 1/2

√
π which makes Θ(n̂)ℓ=0 =

1/4π
∫ ∫

Θ(n̂)dφdcosθ ≡ ⟨Θ(n̂)⟩, where the integrals are done over the entire surface), and so from our
definition of Θ(n̂) it should average to zero. The monopole temperature term would be a valuable source of
cosmological information in its own right, but its value can never be determined accurately because of cosmic
variance - essentially we have no way of telling if the average temperature we measure locally is different from
the average temperature of the Universe. The dipole term (ℓ = 1, α ≈ 180◦) is affected by our own motion
across space - CMB photons coming towards us will appear blueshifted and those going away from us will
appear redshifted. This creates an anisotropy at this scale which dominates over the intrinsic cosmological
dipole signal and therefore we normally subtract the monopole/dipole from a CMB map or discard the first
two values of the power spectrum prior to any analysis.

Our best estimate at what the power spectrum of the observed CMB fluctuations looks like can be seen in
Figure 1. It is usually plotted as ℓ(ℓ+1)Cℓ/2π. This is related to the contribution towards the variance of the
temperature fluctuations in a patch of sky of size ∝ 1/ℓ:

〈

Θ2
〉

= ξΘΘ(0) = 1
4π

∑

ℓ(2ℓ+1)Cℓ (since Pℓ(1) = 1).

The contribution over a range of values of ℓ is given approximately given by
∫ ∞

ℓ 2ℓ′Cl′dℓ′ =
∫ ∞

ℓ 2ℓ′2C′
ℓ

dℓ′

ℓ′

(for ℓ ≫ 1) and so 2ℓ2Cℓ is proportional to the contribution to the variance per unit ln ℓ. This gives a flat
plateau at large angular scales, and brings out a lot of the structure at smaller scales (see later).

Relating angular sizes with linear scales

Having had a look at what how we observe the CMB radiation today and having looked at some of the
formalism we need to analyse it, we would like to start relating what we observe to what was happening at
the time of last scattering. One of the first things we can do is to ask how we can relate angular scales in
the sky to linear sizes at the time of last scattering.

We take the LSS as being a spherical surface at a distance zLS from us. We will take the comoving distance
to this surface as being rLS . We want to relate a small angle in the sky θ to the linear comoving distance x

3

Sachs-Wolfe Effect
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to the cosmological constant

From Acoustic peaks: 
1) Angular scale 
2) photon/baryon ratio 
3) radiation/matter ratio

Super-horizon

Sub-horizon
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Physics of the TT spectrum
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Gravity forms potential wells (Dark Matter ?). 
Baryons can be seen as masses attached to springs. 
Springs represent the photon pressure. 
When the density increases pressure increases, starting  
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Top of wells —> cold regions 
Bottom of wells —> hot regions 
Landscape of grav. wells vs photon pressure 
starts sound waves in the plasma.
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The CMB power spectrum (always positive 
by definition) should look like this. 
No oscillations are present at very large scales.
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Physics of the TT spectrum
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If the horizon (small after 
inflation) is much smaller 
that the wavelength of the 
oscillation, it cannot be 
detected.

While the horizon grows, 
more and more 
oscillation modes enter 
our “field of view”.



Sommersemester 2018 Luca Doria, JGU Mainz 21

Physics of the TT spectrum
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What we actually observe is a bit different. 
This has to do (besides the Silk damping at 
very small angular scales due to photon 
diffusion after recombination) with the different 
amounts of baryons and photons in the plasma.

Remember the spring-mass model. 
More baryons —> compression modes 
are stronger than decompression modes. 
Therefore: odd peaks generally larger 
than even peaks. 
The odd-even peak ratio is connected to 
the baryon/photon ratio in the Universe.

angular

Inflation sets a flat fluctuation spectrum. 
Small scales start to be processed by  
gravity. 
With time, larger scales start oscillate. 
Recombination freezes the CMB.
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TT Summary
The horizon size at recombination is today at about 1deg which corresponds to and 
angular scale of l~200. At large scales l<200, gravity/pressure has a weaker effect. 

For very small l, like l<50, we can have a picture of the fluctuations generated by 
inflation. 

The predictions from inflation are the following: 

1) The fluctuations are Gaussian 

2) The fluctuation spectrum is scale invariant: 

The fluctuations are equally probable on all scales 

Fitting this to l<50, we can estimate ns and A (tilt parameter and amplitude).

P (k) / kn n = 1

Cl = A

✓
l

l0

◆ns�1
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EE and TE Angular Power Spectra

EE Planck TE Planck

EE and ET polarization spectra can provide information on the reionization era, 
when hydrogen atoms got ionized again by the activity of the first stars. 
The presence of free electrons Thomson re-scattered the CMB. 
EE/ET act also as cross-check for TT and it is sensitive to non-standard perturbations 
like the isocurvature ones (standard perturbations are adiabatic).
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Credit: Anthony Challinor

Dependence from Cosm. Parameters

https://chrisnorth.github.io/planckapps/Simulator/
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BB Correlation Spectrum
Scalar and tensor perturbations were created during inflation. 
The scalar perturbations ultimately lead to structure formation. 
Tensor perturbations were created by primordial gravitational radiation resulted 
from strong variable gravitational fields.  

According to inflation, these fields were created by an amplification mechanism  
called “parametric amplification” which transformed the initial vacuum quantum 
fluctuations in multi-particle states (the waves). 

The measurement of the BB spectrum is considered one of the most important 
goals of modern experimental cosmology, since it contains relevant information 
about inflation. 

BB correlations are also produced by other effects like gravitational lensing, but these 
have nothing to do with early-Universe physics. 

Data usually set limits on the ratio r=scalar/tensor perturbations amplitude which is  
generically ~<0.1. r is connected to the energy scale of inflation. 
The detection of BB modes is quite a challenge.


