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Evidence for DM: Galaxy Clusters

F. Zwicky (1898-1974)

Coma Cluster 

Virial Theorem 

If this would be confirmed, we would get the 
surprising result that dark matter is present in 
much greater amount than luminous matter.

hEkini =
1

2
hVgi

p
hv2i ⇡ 80 km/s

R~1 Mly 
M~109 Solar Masses 

Estimate hVgi = (3/5)GM/R

implies

To compare with ~1000km/s from  
Doppler measurements.
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Our Galaxy: The Milky Way
As we see it … .. as it might look like from far away

Diameter ~ 50kpc 
Distance of the Sun from the centre: ~8kpc 
First measurements made by Oort. 
Measurements quite difficult: we live on the disk!
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The Milky Way and Rotation Velocities

mv2r
r

=
GMrm

r2
) vr =

r
GMr

r

vr / 1p
r

Expectation from Newton’s gravity:

Experimental evidence: “flattening” of the rotation 
curves after a certain radius R0

vr(r > R0) ⇠ const.

This would imply Mr / r

and therefore the presence of additional “dark” mass.
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Mr =
rV 2

G
) dM

dr
=

V 2

G

dM

dr
= 4⇡r2⇢(r)

⇢(r) =
V 2

4⇡Gr2

Rotation Velocities and Density Profile
Using Newton’s law for a constant rotation velocity V (“flat” rotation curve):

and mass conservation in symmetric systems

we can derive the density profile

which falls off with the inverse squared of the distance. 
Density profiles based on visible matter fall off even faster than the inverse cubic 
distance, pointing again towards the presence of invisible matter interacting 
gravitationally.
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A phenomenological Density Profile

⇢(r) =
a

b2 + r2

A possible modification of the density profile is

a ⇠ 4.6⇥ 108M�kpc
�1

b ⇠ 2.8 kpc

and a fit of the data yields

This profile will become constant at small radii and decrease “slowly” at large ones. 
Calculating the total mass with the spherical integral

M
tot

=

Z 1

0
4⇡r2dr⇢(r)

we obtain a divergent result, so we have either to truncate the integral or add a fast 
fall-off component. 
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Galactic Rotational Curves

Vera Rubin (1928-2016)

Flat rotational curves are 
observed in a large class of 
galaxies. 

Nowadays observations 
comprehend thousands of 
galaxies.

The first accurate measurements were performed by V. Rubin and collaborators in the 
70s. The curves stay flat as fas as astronomers can measure them.
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The Dark Matter Halo Model

v2DM (r) = v2(r)� v2lum(r) =
GMDM

r
) MDM (r) =

r

G

⇥
v2(r)� v2lum

⇤
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Dark Matter Distribution
Assuming DM as a collisionless gas with an isotropic initial velocity distribution, we 
have the equation of state

P (r) = ⇢(r)h(v � v̄)2i = ⇢ · �

If pressure P and gravity are in equilibrium
dP (r)

dr
= �G

M(r)⇢(r)

r2

and combining the two equations
r2

⇢

d⇢

dr
= �GM

�2

Differentiating wrt the radius

d

dr

✓
r2

d ln ⇢

dr

◆
= � G

�2

dM

dr

and using again the mass conservation equation

⇢(r) =
�2

2⇡Gr2
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Dark Matter Distribution

⇢(r) =
�2

2⇡Gr2

The obtained distribution is a 
spherical, isothermal distribution of 
dark matter. 
In this model, DM is assumed to be 
collisionless.
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Dark Matter Distribution
The Boltzmann equation without collision term for the distribution function f(x,v,t) 

@f

@t

+ v̄

@f

@x

� @�

@x

@f

@v

= 0

assuming an isotropic isothermal spherical profile 1/r2 has solution

f(v̄) / e�
3|v̄|2

2�2

As an upper limit for the velocities, we take the escape velocity, which for the 
Milky Way is estimated to be

ve(r) =
p

2|�(r)| ⇡ 498� 608km/s

The velocity dispersion is connected to the circular speed (the speed at which 
objects on circular orbits orbit the galaxy’s centre )

vc =

r
2

3
� ⇠ 220

km

s
(local value)
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The Structure Formation Argument
Dark Matter is needed for structure formation

Today we observe CMB density fluctuations at 10-4 level 

CMB was produced at z=103

Density perturbations proportional to a (or z).

For structure formation need

Therefore: 
Not enough time has passed for observing today’s inhomogeneities.

Not easy to explain with MOND

�⇢/⇢ > 1
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CHAPTER 8. DARK MATTER

If this would be confirmed we would get the surprising result that dark matter
is present in much greater amount than luminous matter.

8.1 Galaxy Rotation Curves

Until the 1970s, there was not much progress towards the understanding
of this discrepancy attributed to some from of non-luminous matter, until
Vera Rubin and coworkers published their work on rotation curves of
spiral galaxies.
The measurements showed convincingly that the rotational velocities of
the stars as a function of the radius R of the galaxies did not follow the
expected Kepler’s law

v(R) =

r
GM(R)

R
(8.3)

but they rather stayed about constant out to very large R, as showed in
Fig. 8.1. This implied that galaxies were surrounded by a large amount
of invisible matter.

8.2 Barionic Mass Estimation with X-ray Halos

Galaxy clusters are composed by abundant barionic matter which usually
does not emit radiation. If this matter is present within strong gravita-
tional potentials, bremsstrahlung photons can be emitted (usually in the
X-ray band). Measuring these X-rays can lead to an estimation of the
amount of barionic matter contained in a cluster, thus providing a tool
for measuring its dark matter content by subtraction, if the total gravita-
tional mass could be estimated in another way.
Approximating the cluster as a spherically symmetric system in equilib-
rium (v̄ = 0) the hydrodynamical Euler equation

r

dv̄
dt

= �rP � rrf , (8.4)
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Figure 8.1: Rotational curves for different galaxies as measured by Rubin
et al in V.C. Rubin et al., Astrophys. Journal, 255, 107 (1978).

where P is the pressure, r the density, and f the gravitational potential,
becomes

dP
dr

= �GM(r)
r2 r . (8.5)

M(r) is the amount of matter contained within the radius r. Connecting
the pressure P(r) with the temperature T(r) through the law of ideal
gases P = rkBT/m and considering only protons for simplicity (m = mP),
after some algebra we obtain

M(r) =
kBTr
GmP

✓
�d ln r

d ln r
� d ln T

d ln r

◆
. (8.6)

The previous equation allows the measurement of the mass profile M(r)
through the measurement of the temperature and density profiles T(r)
and r(r).
The temperature is determined via the shape of the frequency spectrum
of the X-ray radiation, or through the strength of the emission lines. The
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X-ray surveys
Baryonic matter can accelerate charged particles which emit radiation mainly by 
bremsstrahlung (in the X band). 
Measuring the X radiation gives an estimate of the baryonic matter content of the 
astrophysical object (galaxy cluster usually).

If the cluster is approximated by a spherically symmetric fluid in equilibrium:

using the law of ideal gases

)

P =
⇢kBT

m

we have (using for m the mass of the proton as an approximation)

which gives the mass if we measure the density and temperature profiles as function of the radius. 
The temperature is derived from the X-ray spectra, while the density from the luminosity density.
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Weak Gravitational Lensing
WGL is the bending of light rays from objects behind another one. 
Measurements are statistical, in the sense that the lensing of 
different background objects are needed for reconstructing the mass 
distribution of the foreground object.

Using the FRW metric the deviation angle is 
(see notes for the derivation)

↵ =
4GM

c2b
=

2RS

b

b
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Combining Measurements

This is the famous picture of the Bullet 
Cluster (1E0657-56). 
The regions in blue were reconstructed 
with WGL while the regions in purple were 
reconstructed with X-ray data.

WGL is sensitive to the total mass, while X-rays image areas with baryonic matter. 
In general, a subtraction of the two contributions indicates the amount of dark matter. 

In this case, two clusters are colliding and the image shows that the baryonic part is 
strongly deformed by the collision, while DM stays almost unperturbed. 
This is because DM is concentrated around galaxies which are almost collisionless.
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Other Clusters

X-ray: NASA/CXC/UVic./A.Mahdavi et al. Optical/Lensing: CFHT/UVic./A. Mahdavi et al. (top 
left); X-ray: NASA/CXC/UCDavis/W.Dawson et al.; Optical: NASA/ STScI/UCDavis/ W.Dawson et 
al. (top right); ESA/XMM-Newton/F. Gastaldello (INAF/ IASF, Milano, Italy)/CFHTLS (bottom left); 
X-ray: NASA, ESA, CXC, M. Bradac (University of California, Santa Barbara), and S. Allen (Stanford 
University) (bottom right) 
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Baryonic Density
The bulk of the matter content in the Universe should be constituted by baryons. 
Ways for estimating ⌦0

b =
⇢0b
⇢c

=
⌦b

a3 are

1) X-ray surveys. They return a value ⌦bh
2 ⇠ 0.02

2) Light absorption from distant quasars returns same values as 1). 
    Light absorption depends from how much matter there is between source and 
    observer.
3) CMB spectrum: Rel. height between odd/even peaks and height of the first peak. 
     More baryons enhance the first peak and lower the second. 
     Planck observes ⌦bh

2 ⇠ 0.02225± 0.00023

4) From nuclear physics of BBN: the abundance of Deuterium measurements 
    return ⌦bh

2 ⇠ 0.0205± 0.0.0018

Consistent results involving many branches of physics: nuclear physics, gravitation, 
optics, thermodynamics,….
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Summary of DM Evidence

Diverse astrophysical measurements point towards the existence of Dark Matter: 

Cosmic Microwave background measurements 

X-ray and weak gravitational lensing surveys 

Dynamics of galaxy clusters 

Dynamics of galaxies 

Considerations about timely structure formation

Now the question is: what constitutes DM?

Is it a new form of matter (a new particle?) 
Is a modification of GR (thus, gravity)? 
Or both? 
Or something else?
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DM Properties

Right now, the most promising candidate for DM is a new particle. 
What should be the characteristics of such a particle? 

1) Mass: non very well constrained. If one simply estimates the deBroglie wavelenght 
of a particle confined at galactic scales (~kpc) with typical escape velocities of 
100km/s, we can derive a limit m>10-22eV. 

2) Interaction: being “dark”, it does not interact electromagnetically. This means that i 
cannot radiate, lowering its tendency to clump or accrete around compact objects. 
Some DM models (dark sector) postulate a level of interaction with the SM photon or 
other SM particles (Higgs, neutrino), while other models require DM-DM annihilation 
into SM particles. This might result in relevant astrophysical signals. 

3) Self-Interaction: experimental limits on self-interaction of DM particles allow for 
cross-sections up to the order of the strong interaction.
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The Thermal Relic Paradigm

CHAPTER 8. DARK MATTER

• Interaction: DM should be indeed "dark", i.e. it should not inter-
act electromagnetically. If DM can interact with known particles, it
also depends from the specific model. Since DM cannot radiate, it
is believed to be rather dissipationless: this would restrict its ability
to clump or accrete around compact objects like black holes with
respect to barionic matter. Some models of DM based on the ex-
istence of a "dark sector" propose an interaction with the Standard
Model photon to some level and in this sense some electromagnetic
interaction is allowed. Other models predict the possibility for DM
to annihilate into Standard Model particles and this might represent
a possible astrophysical signal to detect.

• Self-Interaction: Limits to the self-interaction of DM allow for cross-
sections of the order of the strong ones.

8.7 Dark Matter as a Thermal Relic

The idea of thermal decoupling is an appealing framework for the descrip-
tion of DM. Thermal decoupling assumes that DM was in thermodynam-
ical equilibrium in the early Universe. As the Universe expanded and
cooled down, DM density dropped to the point that annihilation basi-
cally stopped, freezing out DM to the density we observe today.
A slightly more quantitative description is the following. As the density
dropped via the expansion, the rate

G = n · s · v (8.11)

of the reaction keeping DM in equilibrium becomes smaller. The Hubble
time 1/H(T) as a function of the temperature T is a measure of the age
of the Universe and the inverse of the reaction rate 1/G tells how long
does it take for the reaction to happen on average. So, if G ⌧ H(T) is,
then the reaction keeping the equilibrium is too slow, since less than one
reaction happens in one age of the Universe. In other words, the rate of
the reaction does not keep up to the expansion rate of the Universe. The
freeze-out temperature Tf o is the temperature at which expansion and
reaction rate are equal

G(Tf o) = H(Tf o) . (8.12)
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92

An appealing idea is considering DM as a thermal relic from the early Universe. 
This means that DM was at the beginning in thermodynamical equilibrium and later, as 
the Universe expanded and cooled, it freezed-out to the density we observe today.

Assuming a reaction rate keeping DM in equilibrium 

The freeze-out happened when the expansion rate equated the reaction rate

Tfo is the freeze-out temperature.

present DM abundance
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The Thermal Relic Paradigm

CHAPTER 8. DARK MATTER

While the Universe expands, G > H, until Tf o is reached. After that,
G < H and the DM density is "frozen" and then it will keep decreasing
with the expansion.

8.8 Hot Thermal Relics and the Example of Neu-
trinos

If thermal relics are relativistic at the decoupling time, they are called
hot thermal relics. Neutrinos are an example of such particles: given their
almost vanishing mass they move at almost the speed of light at the de-
coupling. If they have to be thermal relics, they should have been in
thermodynamical equilibrium, for example through a reaction like

n + n̄ ! f + f̄ , (8.13)

where n(n̄) is a neutrino (antineutrino) and f ( f̄ ) is a fermion (antifermion).
Taking E ⇠ T

n

and for the cross-section the Fermi approximation 1
s ⇠

G2
FT2

n

, at the freeze-out temperature T
n

we require (v = c = 1)

n(T
n

) · s(T
n

) = H(T
n

)) T3
n

G2
FT2

n

=
T2

n

MP
. (8.14)

where we used the Friedmann equation H2 = 8pG
3 r and r ⇠ T4 for rela-

tivistic particles. Solving for the freeze-out temperature

T
n

= (G2
F MP)�1/3 ⇡ 1 MeV . (8.15)

This result is consistent with the relativistic condition m⌧ T assumed at
the beginning, so neutrinos are really an example of hot relics.

8.9 Cold Thermal Relics and WIMPs

Cold thermal relics are non-relativistic at freeze-out, so the appropriate
approximation for the density is

n ⇠ (mT)3/2e�
m
T , (8.16)

1GF ⇠ 10�5GeV�2 and we assume E⌧ mW .
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Thermal relic

At decoupling time:

relativistic

non-relativistic

hot DM

cold DM

HDM example (e.g. neutrinos)

Equilibrium reaction

Considering E / T⌫ � / G2
FT

2
H2 =

8⇡G

3
⇢ ⇢ ⇠ T 4

the freeze-out condition becomes

and the freeze-out temperature is T = (G2
FMP )

�1/3 ⇡ 1MeV

relativistic particlesFriedmann equationweak cross-section

NOTE: the result is compatible with the relativistic condition m<<T
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Cold Dark Matter
CDM example (e.g. a heavy SUSY particle)

CHAPTER 8. DARK MATTER
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In the case of non-relativistic particles

CHAPTER 8. DARK MATTER
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Figure 8.2: Plot of the two sides of Eq. 8.17. The blue dashed line corre-
sponds to the WIMP case 1/(m · MP · s) = 10�14. Other two horizontal
lines at 10�8 and 10�20 are added for reference.

The freeze-out condition ns ⇠ H (we still consider v ⇠ c up to some
factor) in the radiation-dominated phase of the Universe implies n f o ⇠
T2

f o/(sMP).
Defining x = m/T (x � 1 then defines the non-relativistic "cold" regime),
the freeze-out condition becomes

p
xe�x =

1
m · MP · s

. (8.17)

The last equation does not have analytical solutions and must be solved
numerically. A graphical representation of the solution is given in Fig 8.8,
where

p
xe�x is reported together with three cases for 1/(m · MP · s): the

solutions are at the intersection points.
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and in a radiation-dominated Universe (as obtained before with the  
Friedmann equation), the freeze-out condition  
(let’s keep up to some factor v=c=1) is 

n� ⇠ H
n
fo

= T 2
fo

/(�M
P

)

and substituting in [1] gives

[1]

where x = m/T . 
Equation [2] has no analytical solutions, but we can plot (see next slide) it and 
see where the RHS meets the LHS.

[2]
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Cold Dark MatterCHAPTER 8. DARK MATTER
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1

m ·MP · � = 10�14

1

m ·MP · � = 10�8

1

m ·MP · � = 10�20

m = 100GeV

� = G2
Fm

2

imply
1

m ·MP · � = 10�14

“WIMP miracle point”
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The WIMP “miracle”
CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0
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. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition
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0
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The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form
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where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2
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✓

EEW
20
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⇠ 10�8GeV�2 , (8.23)
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where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0

T3
0

=
n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

W
c

=
T3

0
rcMP

x f o

s

. (8.20)

The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form

W
c

0.2
' x f o

20

 
10�8GeV�2

s

!
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0

T3
0

=
n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

W
c

=
T3

0
rcMP

x f o

s

. (8.20)

The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form

W
c

0.2
' x f o

20

 
10�8GeV�2

s

!
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

)

CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0

T3
0

=
n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

W
c

=
T3

0
rcMP

x f o

s

. (8.20)

The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form

W
c

0.2
' x f o

20

 
10�8GeV�2

s

!
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0

T3
0

=
n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

W
c

=
T3

0
rcMP

x f o

s

. (8.20)

The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form

W
c

0.2
' x f o

20

 
10�8GeV�2

s

!
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

CHAPTER 8. DARK MATTER

Let’s try now to calculate the density parameter associated to a cold relic
particle with mass m

c

W
c

=
m

c

n
c

(T0)

rc
. (8.18)

Today, T0 = 2.7K ⇠ 10�4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ⇠ 1/a and n ⇠ 1/a3, so

n0

T3
0

=
n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

W
c

=
T3

0
rcMP

x f o

s

. (8.20)

The dark matter abundance is estimated to be about WDM ⇠ 0.2, so the
last equation can be recast in the more suggestive form

W
c

0.2
' x f o

20

 
10�8GeV�2

s

!
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

sEW ⇠ G2
FT2

f o ⇠
✓

EEW
20

◆2
⇠ 10�8GeV�2 , (8.23)

95

Consider the DM density parameter

In a FLRW Universe

And rewriting in O(1) terms

The typical EW cross section is

Since people expected new physics at the EW scale,  
this looks quite a coincidence (or a “miracle”?)!
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Is it a “Miracle”? (No..)
Which ingredients we used to obtain the previous results: 

1) Cold relic: x>>1 and therefore  

2) A cross section of 10-8 GeV-2

m� · � ·MP >> 1

Using dimensional arguments we can also write � / g2

m2
�

And substituting 2) in 1) we have m� >> 0.1 eV

This means that we do not really need new particles at the ~100 GeV scale. 
As long as the cross section is right, CDM can be as light as 0.1 eV!

CHAPTER 8. DARK MATTER

we obtain the right cross-section which is able to explain the DM abun-
dance. This result is often quoted as an indication that new physics at the
electroweak scale might also explain DM in the form of a cold relic from
the early Universe. Looking at Fig. 8.8, the dashed line describes about
this case with sEW = G2

Fm2
c

and m
c

= 100 GeV, corresponding to x ⇠ 35.
Is this really a "miracle"? The previous result was obtained under the as-
sumption of electroweak cross-sections and the cold relic condition x � 1.
In general, following a dimensional argument, a DM annihilation cross-
section can be written as s ⇠ g4/m2

c

, where g is some coupling constant.
Using Eq. 8.17, x � 1 ) m

c

MPs � 1, and therefore m
c

� 0.1 eV if
s ⇠ 10�8 GeV2. This means that as long as the cross-section is the right
one for explaining the DM abundance, the cold relic mass can be very
small. The conclusion is that the supposed "miracle" can be realized also
without appealing to the electroweak scale.
The argument for understanding the WIMP paradigm can also be restated
as following.
As we have seen,

W
c

µ
1

hvsi ⇠ m2
c

g4
c

. (8.24)

The WIMP miracle states that if we use weak-scale masses and coupling
constants, we can roughly reproduce the observed DM abundance. The
last equation though fixes only the ratio between couplings and masses
and therefore also other combinations might in principle obtain the cor-
rect abundance.

8.10 Mass Ranges for Cold Thermal Relics

General limits can be imposed to the allowed mass range of cold thermal
dark matter. The requirement of unitarity in the calculation of cross-
sections places the approximate bound

s <
4p

m2
c

, (8.25)

and this, together with Eq. 8.21 approximately implies

W
c

0.2
> 10�8GeV�2 ⇥ m2

c

4p

. (8.26)
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Other argument: since one can play with mass and coupling

and obtain the right density parameter.
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Mass Range

Constraint from unitarity
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Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition
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where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section hsvi for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ⇠ c/3 for x ⇠ 20 and this leads to the estimate

hvsi ⇠ 3 ⇥ 10�26 cm3
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. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ⇠ EEW ⇠ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature
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gives approximately
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Since W
c

< 0.2 we have

⇣ m
c

120 TeV

⌘2
< 1 . (8.27)

For a lower limit for WIMPs (s ⇠ G2
Fm2

c

), choosing x f o ⇠ 20 we have

W
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h2 ⇠ 0.1
10�8GeV�2

G2
Fm2
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⇠ 0.1
✓

10 GeV
m

c

◆2
. (8.28)

This lower limit is known as the Lee-Winberg limit. The overall mass
range allowed for WIMPs goes therefore from few GeVs to many TeVs.
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Considering weak-type interactions � ⇠ G2
Fm

2
�

we have the Lee-Weinberg limit


