Experimental Search for Dark Matter

Luca Doria

Institut für Kernphysik Johannes-Gutenberg Universität Mainz

Part 2: Dark Matter Direct Detection

Introduction

Review of DM evidence and properties

Galaxy Clusters Galactic Rotation Curves Gravitational Lensing and X-ray surveys Structure Formation DM Candidates

Basic Principles of Direct Detection

Scattering Rates Corrections Spin Dependence

Experimental Techniques

Overview of the detection principles Current experimental activity Noble liquids, cryogenic detectors, bubble chambers Accelerator-based DM production and detection

Dark Matter Detection Methods

Direct Detection

The Principle of Direct Detection

 $\begin{array}{ll} \gamma e \rightarrow \gamma e & \mbox{Need to separate N-recoils from e-recoils} \\ nNe \rightarrow nN & \mbox{Same signature as the signal} \\ N \rightarrow N' + \alpha \ , \ e^{\pm} & \mbox{Nuclear decays / natural or induced radioactivity} \\ \nu N \rightarrow \nu N & \mbox{Very small but it depends on your sensitivity} \end{array}$

What to Expect

Sommersemester 2018

Luca Doria, JGU Mainz

Rate Calculation

Nuclear Recoils

If we set up a detector for the detection of DM via nuclear recoils, what is the energy scale of those?

Consider the (WIMP) case $m_\chi \sim m_M \sim 100 GeV/c^2$.

and the average DM halo velocity $v\sim 220km/s=0.75 imes 10^{-3}c$

The average nuclear recoil energy is then $\langle E_R
angle = rac{1}{2} m_\chi v^2 = rac{30 keV}{2}$

We need quite sensitive detectors with very low backgrounds!

Rate Calculation

In order to calculate the expected DM rate in our detector, we have to take into account the DM characteristics, and those of the detector. For referring to a concrete case, we consider WIMP DM here.

- 1) WIMPS have a velocity distribution inside the Milky Way f(v).
- 2) The detector moves with the Earth/Sun system wrt to the galaxy.
- 3) The cross-section depends on the type of interaction (spin-dependent or not)
- 4) DM scatters on nuclei which have a finite size -> Form Factors
- 5) We have to take into account the detector inefficiency in converting the recoil energy in visible energy (quenching).
- 6) Detectors have a finite energy resolution

Direct Detection Techniques

Deep Underground Labs

SURF

Gamma rays from natural radioactivity:

- Target self-shielding
- Selected materials
- Discrimination and multiple-scattering detection

Neutrons (cosmics-induced or from natural fission)

- Deep underground labs
- Passive shielding / active shielding
- Selected Materials

Neutrinos (from the Sun, atmosphere, supernovae)

- Elastic neutrino-electron scattering
- Coherent neutrino-nucleus scattering

Internal Backgrounds (from the target itself)

- ⁸⁵Kr
- Radon (Rn)
- In Argon: ³⁹Ar (565 keV endpoint, 1Bq/kg), ⁴²Ar
- In <u>Xenon</u>: 136 Xe (double beta decay with $T_{1/2}=2.2 \times 10^{21}$ yr)

Surface Backgrounds (in the containing materials)

- Cosmic activation (underground construction)
- Germanium/Silicon (high-purity powders/melts)
- Surface events from alpha/beta decays

- DM searches using only scintillating materials use inorganic crystals, in particular NaI(TI) and CsI(TI).
- Room-temperature operation.
- Operated in arrays of many crystals.
- Very high stability.
- Low intrinsic radioactivity.

Famous Example: DAMA

- High-purity Nal crystals
- No ability to discriminate nuclear recoils from electron recoils.
- Detected an annual modulation signal in the 2%6 keV region with very high significance (>9sigma): what is it?

IG

Challenging the DAMA result

- A CsI-based experiment (KIMS at YangyanLab, Corea) does not see the DAMA signal.
- A new Nal-based experiment is ramping up: SABRE

- The case of Germanium detectors

Cryogenic operation at LN temperatures Very high energy resolution (<1% at 1 MeV) No PID Pulse-shape for rejecting multiple scatters.

The CoGeNT signal (2011)

Detected an excess + annual modulation Independent analysis did not find it Other Ge detectors did not find it

- CDEX (China)
- TEXONO (Taiwan)

CoGeNT, Phys. Rev. Lett. 106 131301 (2011) Davis, 1405.0495 & Aalseth et al., 1401.6234 TEXONO, Phys. Rev. Lett. 110, 261301 (2013)

Cryogenic Bolometers Basic Principles of mK Cryoge

The idea is to detect phonons (quanta of lattice vibrations).

Cryogenic temperatures needed.

Energy resolution in semiconductor detectors $\frac{\sigma(E)}{E} = \sqrt{\frac{F\epsilon}{E}}$

F: Fano factor (~0.1 in Si), ϵ in Si is 3.6 eV/eh pair, band-gap ~1.2 eV. $\Delta T = \frac{E}{C(T)}e^{-\frac{t}{\tau}}, \quad \tau = \frac{C(T)}{G(T)}$

Since the maximum phonon energy in Silicon is ~60 meV, many phonons are created per e/h pair.

In detectors for DM searches:

- Measurement of thermal phonons (temperature increase) Basive astirenie as for the many several states and the states of the many several states of the sta
 - Use of superconductors (s.c. energy gap ~ meV).

The energy deposit produces an increase in temperature.

 $\Delta T = \frac{E}{C(T \text{ Basic Prince constant}} C(T) = \frac{E}{C(T)} e^{-\frac{t}{\tau}}$

VVH

where C is the heat capacity and G the thermal conductance of the channel between the absorber and the heat bath at T₀.

For dielectric crystals C(

-///-

$$T) \sim \frac{m}{M} \left(\frac{T}{\Theta_D}\right)^3 J K^{-1} \qquad \begin{array}{c} \mathsf{m}^{\mathsf{m}} \\ \mathsf{M} \\ \mathsf{th} \end{array}$$

n=detector mass A = molecular weight of the detector heta0 = Debye temperature

For example, at T=10mK, an energy deposit of 1keV on a 100g detector gives 1 microK temp increase. Measuring increases in the <u>microK range is possible</u>, e.g. with superconductor-based detectors.

Cryogenic Bolometers

Silicon and Germanium Detectors Located at Sudan and soon at SNOLab Ionization + Phonons (TES) Two detector types:

- iZIP: threshold<1keV
- HV: LN phonons, threshold<0.1keV

CaWO₄ Crystals at Located at Gran Sasso Labs Scintillation + Phonons (TES)

Advantages:

- Possibility to build large targets (ton-scale)
- Single and Double phase detectors
- 3D positon reconstruction -> Fiducialization
- Transparent to their own scintillation light
- High stopping power (high Z and density)
- Efficient and fast scintillators
- Good ionization yield
- Small quenching factor

High background rejection capability:

- Fiducialization
- PDS or light/ionization correlation
- Coupling with active veto detectors

	LNe	LAr	LXe
Z (A)	10 (20)	18 (40)	54 (131)
Density [g/cm ³]	1.2	1.4	3.0
Scintillation λ	78 nm	125 nm	178 nm
BP [K] at 1 atm	27	87	165
loniz. [e ⁻ /keV]*	46	42	64
Scint. [γ /keV]*	7	40	46

Single Phase Detectors

Main Example: the DEAP-3600 detector

Two-Phase Detectors (Ar/Xe)

Concept:

Xe/Ar Dual-phase Detectors

XENON100 Located at LNGS 161 kg mass 34 kg fiducial

LUX Located at SURF, SD 370 kg Xe mass 118 kg fiducial

Panda-X Located in China 450 kg Xe mass 300 kg fiducial Similar to LUX

XENON-1T Located at LNGS Goal ~10⁻⁴⁷ cm²

DarkSide-50

Located at LNGS Mass 50kg depl. Argon PSD+S1+S2 Goal ~10⁻⁴⁵ cm²

ArDM

Located at Canfranc (Spain) Mass 2ton Argon Tech. Demonstrator TPC with siMs

Superheated Fluid Detectors

Bubble chambers filled with a superheated fluid (e.g. C_3F_8) kept in a metastable state.

If the energy deposited exceeds a threshold, an expanding bubble is detected by cameras and piezo-acustic sensors.

WIMP Search Status & Projections

2018 Best Limit from XENON-1T

Spin-Dependent Limits

DM-Neutron Limits

The ultimate background for direct detection experiments are neutrinos. Possible solution to reject this background: directional search. In gases with P<100 Torr, the range of recoils goes into the <u>mm range</u> Detector technology: TPC

DRIFT - m³ experiment

Other experiments: MAMIC, DMTPC, NEWAGE Other technology: emulsion detectors

Accelerators and Direct Detection experiments are producing increasingly stringent limits.

DD experiments ultimately limited by neutrino background: new techniques needed (directionality?)

LXe technology the most sensitive so far.

LAr is a cheaper solution for scaling to multi-ton detectors

Many projects for the future reaching the neutrino floor.

Cryogenic bolometers are best suited for low-mass WIMPS (lower threshold)

WIMPS do not exhaust the possible DM models!

Stronger activity towards considering electron recoils.

Not discussed here: indirect detection techniques (cosmic rays/neutrinos, satellites, ...).