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Chapter 1 | Preface

This document contains the notes of the course "Introductory Particle
Cosmology" held in the 2018 Summer Term at the Johannes Gutenberg
University in Mainz (Germany). The course is aimed at last year Bachelor
and Master students which were not exposed before to the concepts of
General Relativity (GR) but had introductory classes on quantum physics
and the Standard Model (SM). In this sense, the course tries to be self-
contained, starting from the mathematical tools and an introduction to
GR and the SM. Often mathematical rigor or a more general treatment
are sacrificed for the sake of clarity needed in an introductory course,
which does not aim to substitute a full-fledged course on GR.
After having mastered some calculational techniques of GR, the appli-
cations to Cosmology are introduced. Emphasis will be devoted to the
current standard cosmological model, its problems and challenges. In
particular, Dark Matter and Dark Energy will be discussed, also in con-
nection with the experimental approaches. The groundbreaking recent
detection of gravitational waves opens a completely new opportunity for
cosmology: the consequences of this new line of research in relation to the
physics of the early universe will be discussed. If time allows, we will in-
troduce the theory of cosmological perturbations, which is a fundamental
tool for linking theory to experimental observations.
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Chapter 2 | Geometrical Tools

In this chapter, we will review the most important tools for understand-
ing GR. In particular, we have to develop a mathematical theory of curved
spaces. We will try to study these topics sometimes abandoning mathe-
matical rigor in favor of a more intuitive understanding, leaving a more
abstract treatment in dedicated appendices. The concepts of vectors, vec-
tor spaces and vector operations are assumed to be known.

2.1 Vectors on a Generic Base

For simplicity, let us consider a two-dimensional space with two reference
axes orthogonal to each other, x and y. We can consider unit basis vectors
relative to these axes ex = (1, 0) and ey = (0, 1). A generic vector v can be
represented in components using the basis vectors:

v = vxex + vyey = vx(1, 0) + vy(0, 1) = (vx, vy) . (2.1)

The scalar product (here represented by a dot "·") can be used to "extract"
a component from a vector. For example, v·ex = vx. Using the latter
relation, we can rewrite the vector as

v = (v · ex)ex + (v · ey)ey . (2.2)

This procedure works, because the basis vectors are orthogonal, i.e. ei ·
ej = 0 for i 6= j and ei · ej = 1 for i = j if the basis is also normalized
to 1. In such cases, the basis is said to be orthonormal and in a space of
arbitrary finite dimension the orthonormality property is expressed as

ei · ej = δij . (2.3)
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CHAPTER 2. GEOMETRICAL TOOLS

The scalar product characterizes also the length of a vector: |v|2 = v · v.
What does it happen when we relax the requirements on our basis? Let’s
start dropping the normality property: now one or more basis vectors do
not have unit length. We can still use the scalar product for expressing the
single components if we take care of the different basis lengths changing
Eq. 2.2 in the following way

v = v · ex

|ex|2
ex + v · ey

|ey|2
ey . (2.4)

as it is easy to directly verify calculating v·ei = vi with i = x, y. The
similarity between Eq. 2.2 and Eq. 2.4 can be pushed further defining
new basis components ei = ei/|ei|2 (i=x,y) obtaining

v = (v · ex)ex + (v · ey)ey . (2.5)

Note that the new basis is indicated with upper indices. The latter ex-
pression can be rewritten identifying (v · ex) and (v · ey) with the new
components vx and vy which are called contravariant, in contrast to co-
variant components with lower indices.
After normality, now we are ready to abandon also the requirement of or-
thogonality. Suppose that the basis {e1, e2} (let’s stay in two dimensions
for simplicity) is not normal nor orthogonal. We have to try to generalize
Eq. 2.4 in such a way that we still can rewrite the vector in contravariant
components. This can be done introducing a proper basis. Since we do
not have an orthogonal basis anymore, the idea is to construct a new ba-
sis {ex, ey} which is orthogonal to the one at hand. This can be achieved
requiring

eiej = δ
j
i . (2.6)

Sometimes this new basis is called reciprocal basis. It is straightforward to
check that with the help of the new basis, we can still extract components
as we did in the orthonormal and orthogonal cases. For example, we can
try to extract vx:

v · ex = (vxex + vyey) · ex = vxex · ex + vyey · ex = vx · 1 + vy · 0 = vx (2.7)

Note that if we consider an orthonormal basis, the reciprocal basis co-
incides with the basis at hand and therefore covariant and contravariant
components are the same. The differentiation makes sense only if the
basis is not orthonormal.

2



CHAPTER 2. GEOMETRICAL TOOLS
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Figure 2.1: Transformations between bases and reciprocal bases.

2.2 Change of Basis

Two bases ei and ui are related by a transformation matrix

ui = a1
i e1 + a2

i e2 + ... = aj
iej (2.8)

Changing notation, we can collect the N basis vectors of N components
in NxN matrices E and U and rewrite the transformation as a matrix
equation U = A · E, where A is the matrix containing the transformation
coefficients aj

i . The rows of E and U are the single basis vectors. Solving
for the transformation matrix:

A = U · E−1 . (2.9)

Up to now we have expressed the new basis as linear combination of the
old one, but also the other way around is possible: E = A−1 ·U. Solving
for the transformation matrix we have A−1 = E ·U−1.

Considering more closely the transformation in Eq. 2.8, we realize
that the coefficients aj

i are just the contravariant components of ui in the
ei basis. As also Eq. 2.9 suggests, we can write

aj
i = uiej , (2.10)

3



CHAPTER 2. GEOMETRICAL TOOLS

where the contravariant basis vectors ei come from the inverse matrix E−1.
The analog relation for the inverse transformation coefficients is

(a−1)
j
i = eiuj . (2.11)

Remembering the previous section, covariant and contravariant compo-
nents belong to "reciprocal" bases, which were orthogonal to each other.
Having now expressed ui with contravariant components, we can ask
how the components of the "reciprocal vector" ui look like. In this case,
the components must be covariant. Using Eq. 2.11

ui = (ui · e1)e1 + (ui · e2)e2 + ... = (a−1)i
je

j (2.12)

The above result means that the reciprocal basis vectors of the new basis
are related to the reciprocal basis vectors of the old basis by the coeffi-
cients of the inverse transformation. If we invert the transformation and
express E as a function of U, then the reciprocal basis transforms with co-
efficients from A and the original basis with A−1. In matrix notation, call-
ing the reciprocal bases UR and ER we have UR = ER A−1 and ER = UR A.
In the reciprocal basis, the columns (and not the rows as for the "normal"
basis) are formed by the basis vectors. Recalling the property of reciprocal
bases (Eq. 2.3) it is easy to verify that URU = ERE = 1.

2.3 Covariant and Contravariant Vectors: Sum-
mary

Covariant and contravariant components are concepts arising naturally
when we consider generic bases which are not orthonormal. The idea
is to regain an orthonormality concept considering the reciprocal basis
which has basis vectors orthogonal to the starting basis. This in turn is
useful for maintaining a way to extract the components. In relation to
basis transformations, all the dualities among bases are summarized in
the diagram of Fig. 2.1. In the case when a basis is orthonormal, the re-
ciprocal basis is exactly identical to the original base (E = ER) and differ-
entiating among contravariant and covariant components is not needed.
As for the nomenclature, the terms "covariant" and "contravariant" are
related to the transformation properties under a change of base. Covari-
ant components transform with the coefficients of A, while contravariant
components transform with A−1.

4



CHAPTER 2. GEOMETRICAL TOOLS

2.4 Curves in the three-dimensional Space

Let’s consider a curve f in the three dimensional space defined paramet-
rically by

f (ξ) =





x = x(ξ)
y = y(ξ)
z = z(ξ)

. (2.13)

The parameter ξ belongs to an open set of R I=(a,b). We require also that
the curve is regular, i.e. ||d f /dξ|| 6= 0 in I and it is a C1 function. We
define the curvilinear abscissa

S(ξ)− S(0) =
∫ ξ

ξ0

∥∥∥∥
d f
dξ

∥∥∥∥ dξ =
∫ ξ

ξ0

√(
dx
dξ

)2

+

(
dy
dξ

)2

+

(
dz
dξ

)2

(2.14)

The curvilinear abscissa S measures distances along the curve starting
from ξ0. What we would like to do now is to define an orthonormal basis
of vectors on the curve. Since in general the curve is not a straight line,
we expect that this basis will be different at different points along the
curve. One of the vectors of this basis can be the tangent vector to the
curve at a given point. The second vector will be the vector orthogonal to
the tangent vector (the normal vector). As a third vector, using the vector
product, we can construct a vector orthogonal to the plane defined by the
tangent and normal vector:

Tangent Vector: t =
d f
dS

Normal Vector: n =
dt
dS

/|| t
dS
||

Binormal Vector: b = t× n

(2.15)

The tangent vector has unit norm by construction, so t(S) · t(S) = 1. If we
show that t is orthogonal to n, we have our orthonormal set of vectors.
This can be done differentiating the latter normality equation:

d
dS

(t(S) · t(S)) = 2t · dt
dS

= 0 . (2.16)

Given the curve f , the defined orthonormal basis is fully determined and
in this sense is called intrinsic.

5



CHAPTER 2. GEOMETRICAL TOOLS

It is now interesting to understand how the basis changes as we move
along the curve. Actually we can picture the three orthonormal vectors
rotating as the origin moves along the curve.
Starting with the binormal vector

db
dS

=
d

dS
(t× n) =

dt
dS
× n + t× dn

dS
= Cn× n + t× dn

dS
. (2.17)

We introduced the new quantity C = dt
dS called curvature of the curve.

Moreover the latter equation states that τ = db/dS is orthogonal to t.
Consider now the normal vector

dn
dS

=
d

dS
(b× t) =

db
dS
× t + b× dt

dS
= τn× t + b×Cn = −τb−Ct (2.18)

τ is called torsion of the curve. We can collect all the previous results in
matrix form

d
dS




t
n
b


 =




0 C 0
−C 0 −τ

0 τ 0






t
n
b


 (2.19)

Note that the obtained transformation matrix is antisymmetric (like the
angular velocity matrix: indeed the three axes "rotate" along the curve).
Curvature and torsion are directly calculable from the parametric equa-
tion of the curve

C =

∥∥∥∥
dP
dS
× d2P

dS2

∥∥∥∥ , (2.20)

τ =
dP
dS
× d2P

dS2 ·
d3P
dS3 . (2.21)

2.5 Vectors in Curved Geometries

In non-relativistic physics, space is assumed to have the natural struc-
ture of a three-dimensional space where there are no particular prob-
lems in defining vectors and operations among them. The same situation
happens in special relativity with only minor complications due to the
Lorentz structure. In curved geometries, vectors have to be defined in a
different way, like also the operations among them. The intuitive idea is
to consider a "tangent space" to a given point of the curved space (where

6



CHAPTER 2. GEOMETRICAL TOOLS

it is locally similar to a flat space) and define vectors there: in this way
we regain the concept of a "flat" space where vectors as we used to know
them can live. Having to deal with the concept of tangent space, we are
forced to consider derivatives and indeed in these situations derivatives
and vectors play basically the same role.
In a flat space, a vector can be described by two points A and B cor-
responding to the "tip" and the "tail" of it. We can look instead at the
vector as a line between the two points, parametrically described by
P(λ) = A + λ(B− A) with λ ∈ [0, 1]. Differentiating

d
dλ

(A + λ(B− A)) = B− A = V(1)−V(0) (2.22)

This suggests that instead of defining a vector as a difference between
two points, we can consider

v =
dP
dλ
|λ=0 . (2.23)

This point of view relates the vector to a single point and is more useful
if we would like to define vectors on a curved space.
From a physical point of view, a vector looks naturally connected to the
concept of derivative. If a body is moving along a generic curve param-
eterized by the time, its velocity can be calculated at every point as the
time derivative of the displacement. So the derivative creates a tangent
vector at every point on the curve.
Another important observation is that it is generally more useful to de-
fine objects on a curved space in a way that does not depend on any
"embedding" (or coordinate charts) of it into a higher-dimensional space.
Taking as curved space the bidimensional surface of a sphere, is easy to
imagine it embedded into a three-dimensional euclidean flat space. What
we would like to do, is to define vectors (or other objects) in a way which
is dependent only from the characteristics of the surface, without the help
of any embedding.
Tangent vectors as directional derivatives are the objects we are looking
for. A tangent vector can be regarded as an infinitesimal displacement
from a specific point of our curved space. All the tangent vectors at a
point form a vector space which is called tangent space. Something like
that is needed, since on a curved space the natual vector space structure

7
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we have in Euclideand space is lost globally, but we can reconstruct it at
least locally.
It can be showed that the tangent space has the same dimension D of the
curved space and it is spanned by D linearly independent vectors which
form a basis for it. If the curved space has coordinates xµ (µ = 1..D), the
directional derivatives at a point are

v = vµ ∂

∂xµ . (2.24)

Notice that this derivative has the structure of a vector, with components
vµ and vectors ∂/∂xµ which can be considered a basis for the tangent
space. This is how we can see vectors on a curved space, without the
need to go "outside" of it with an embedding: these vectors do not "stick
out" from the curved space into a higher-dimension space.
Note that in general, the basis we have now is not orthonormal and this
brings us back to the discussion about covariant and contravariant vec-
tors. First of all, we have to construct the reciprocal basis, which has axes
orthogonal to the ones of the starting basis. Calling dxµ the reciprocal
basis we have formally

dxµ

(
∂

∂xν

)
= δ

µ
ν . (2.25)

We can regard dxµ as a linear function acting on vectors: this connects to
the usual dual vectors known from basic linear algebra. We introduced
the machinery of covariant and contravariant vectors for keeping intact
important relations which otherwise would fail in non orthonormal bases,
for example the extraction of the components. We can see that also in this
case things work as expected. Let’s apply dxµ to the vector v defined in
Eq. 2.24

dxµ(v) = dxµ(vν ∂

∂xν
) = vνdxµ(

∂

∂xν
) = vνδ

µ
ν = vµ . (2.26)

We can see things from another angle. As vectors applied to a function
represent the derivative of the function in the direction of the vector (di-
rectional derivative), covectors (vectors of the reciprocal basis) applied
to a function represent the gradient of it. If you remember from basic
multidimensional analysis, gradients point in the orthogonal direction of

8



CHAPTER 2. GEOMETRICAL TOOLS

the surface where they are calculated, so we see again the idea of or-
thogonality between the normal base (here on the tangent plane) and the
reciprocal base.

2.6 Transformation Properties

Now that we discussed contravariant and covariant representations of
vectors and how these objects look like on a curved space, we have to
study their transformation properties under a change of coordinates. Us-
ing the chain rule from calculus the contravariant components of a vector
transform as

v′µ
′
=

∂x′µ
′

∂xµ vµ , (2.27)

while the covariant components transform as

v′µ′ =
∂xµ

∂xµ′ vµ . (2.28)

NOTE: In all our discussion about curved spaces, we always assumed
that they can locally treated as flat. A generic surface does not necessar-
ily have this property. This is why the curved surfaces we consider are of
a specific kind, called manifolds. We note also that we discussed generic
"curved" spaces appealing to an intuitive understanding of them and we
have given a clear definition of curvature only for one-dimensional curves
in D=3 space. We will see how the curvature is defined for generic mani-
folds later on.

2.7 Tensors

Scalars and vectors are not the only objects representing physical quanti-
ties but actually they can be regarded as specialized forms of more gen-
eral objects called tensors. Here we introduce tensors in an informal way,
leaving the more formal algebraic definition to the many existing text-
books on the subject.
As vectors (contravariant, or covariant co-vectors) can be thought as "rows"

9



CHAPTER 2. GEOMETRICAL TOOLS

of numbers representing their components on a certain basis, we can
build squares of numbers ("matrices") or "cubes" of numbers and so on.
Labeling the components with indices, a vector has one index, matrices
have two and a tensor have in general more indices.
At this point, it is useful to introduce some notation. Contravariant vector
components are written with upper indices (vi) while covariant compo-
nents have lower indices (vi). A tensor with a general number of indices
can have both lower and upper indices: Tα,β,γ,..

i,j,k,... . If a tensor has only lower
(upper) indices is called covariant (contravariant), while tensors with both
kinds of indices are sometimes called mixed tensors. Another notation is
the so-called Einstein convention for the summation of repeated indices.
For example

∑
i

viwi = viwi . (2.29)

The summation symbol is omitted if the sum runs over repeated indices
(covariant and contravariant in this case). The key property of tensors is
their transformation rule as coordinates change. An equation written in
tensor notation does not change if coordinates are changed. The compo-
nents can change, but the relations among tensors do not.

2.8 The Metric Tensor

As first example of tensor, we introduce the metric tensor which enables
to calculate distances (hence the name) on a generic (curved) space. Recall
how we calculate distances s in a flat D=3 euclidean space between two
points x1 and x2

s2 = (x1
1 − x1

2)
2 + (x2

1 − x2
2)

2 + (x3
1 − x3

2)
2 = ∑

i
(xi

1 − xi
2)

2 . (2.30)

This is just Pythagoras’Theorem. A curved space does not have in general
straight lines as we know them in euclidean geometry and it is better
to work with infinitesimal displacements dxi in the neighborhood of a
point, where the space is close to a flat one. The above expression can be
rewritten as

ds2 = ∑
i
(dxi)

2 = δijdxidxj (2.31)

10
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The last step seems unnecessary, but one starts to see its usefulness when
considering different spaces. In special relativity for example, the dis-
tance among events is given by the proper time τ:

τ2 = (x0
1 − x0

2)
2 − (x1

1 − x2
2)

2 + (x2
1 − x2

2)
2 + (x3

1 − x3
2)

2 = ∑
i
(xi

1 − xi
2)

2 .

(2.32)
which in its infinitesimal version is

dτ2 = dx0 −
i=3

∑
i=1

(dxi)
2 = ηµνdxµdxν (2.33)

with ηµν=diag(1,-1,-1,-1) with µ, ν = 0, 1, 2, 3. In a generic curved space,
Pythagoras’Theorem assumes in general a different form:

ds2 = gµνdxµdxν (2.34)

and the tensor gµν is called the metric tensor and tells us how to compute
distances. The euclidean (gµν = δµν) and the Lorentz (gµν = ηµν) cases
have diagonal metric tensors, while a generic curved space can have also
non-zero off-diagonal components which "mix" the coordinates when we
calculate distances.
Notice that the metric tensor has to be a symmetric tensor i.e.: gµν = gνµ.
This is a necessary requirement since the distance ds cannot be different
if we exchange dxµ with dxν.
Expressing vectors on a basis ei, it is clear that the metric tensor can be
written also as

gij = eiej , (2.35)

therefore representing all the possible scalar products among all the com-
ponents of the basis vectors.

2.9 Covariant Differentiation

We would like now to construct the derivatives of tensor quantities on a
general curved space, or in other words understand how tensors change
along a certain direction given by a tangent vector. In this sense, we
would like to generalize the concept of directional derivative from the
classical multidimensional calculus.

11
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Let’s start with the derivative of a vector v in the direction of w, which
is ∇wv(P). The latter expression means that we would like to calculate
the derivative of v in the direction of w and the vector v is applied at the
point P of our generic space. The result of this operation will be another
vector applied in P. The important property we would like to have for ∇
is that the result do not change if we change coordinates. In this sense
this derivative is called covariant derivative.
Another property the new derivative should respect is also the Leibnitz
rule, but again we do not go into too many details here. Thinking about
how we calculated derivatives of vectors in flat spaces, we recognize that
we have to consider the difference of two vectors at two different points
(∇v ∼ (v(x)− v(x + h))/h). The difference can be calculated translating
one vector to the same place of the other one and then calculating the
difference. This procedure does not work in general in a curved space
since we do not have a notion of how to transport vectors from one place
to another keeping it "parallel" to its original location. Therefore we need
a notion of parallel transport on a curved space. The parallel transport
is realized by an affine connection on the curved space. A connection
is called like that because it "connects" vectors living in different tangent
spaces. Here we avoid a general discussion on connections which will
bring us too far and introduce covariant differentiation in a more concrete
(and less general) way using coordinates.

Consider a basis ei = ∂/∂xi for a tangent space at a certain point P. We
would like to understand how a basis vector ei changes in the direction
given by another basis vector ej. In the notation of directional derivatives,
we would like to calculate ∇ej ei. The result of this calculation will be
another vector and in particular, it will be proportional to the combination
of other basis vectors ek:

∇ej ei = Γk
ijek . (2.36)

The three-indices object Γk
ijek is called Christoffel symbol and we antici-

pate here that it is not a tensor (i.e. it does not transform like a tensor).
We know now how a basis vector changes in the direction of another ba-
sis vector: what about the change of a generic vector w in the direction of

12
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another vector v? Let’s calculate it (for the contravariant vector case):

∇vw = ∇vjej
(wiei) = vj∇ej(w

iei) = vjwi∇ej ei + vjei∇ej w
i (2.37)

= vjwiΓk
ijek + vj ∂wi

∂xj ei =

(
vjwiΓk

ij + vj ∂wk

∂xj

)
ek (2.38)

The result is interesting: the part containing the Christoffel symbol tells
us how the basis vectors "turn" as we move them in the direction of v,
while the other part tells us how the components of w change along v.
While the Christoffel symbol is not a vector, it can be proved that the com-
bination present in the covariant derivative has the right transformation
properties.
A general mixed tensor has the following covariant derivative:

(∇ec T)a1..ar
b1..bs

=
∂∇ec Ta1..ar

b1..bs

∂xc (2.39)

+Γa1
dcTda2..ar

b1..bs
+ ... + Γar

dcTa1..ar−1d
b1..bs

(2.40)

−Γd
b1cTa1..ar

db2..bs
− ...− Γd

bscTa1..ar
b1..bs−1d (2.41)

Notice that the derivation of covariant indices brings a negative sign in
front of Γ.

2.10 Calculation of the Christoffel Symbols

Having a procedure for calculating derivatives of tensors along a direction
given by a tangent vector, we need now a way to calculate the Christoffel
symbols.
First, we have to know the following property

∇ρgµν = 0 . (2.42)

The covariant derivative of the metric tensor is zero. This property is
called metric compatibility and it is always assumed valid in our context,
but nothing prevents to develop covariant derivatives without compati-
bility. A physically appealing property of compatibility is that given two
vectors, their mutual angle does not change if they are parallely trans-
ported along a curve by a compatible derivative. In other words, the

13
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scalar product of two vectors does not change during the parallel trans-
port (i.e. the metric is a constant for the covariant differentiation). From
Eq. 2.42, we can write the following three expressions, which are the same
except for a cyclic index permutation (ρ→ µ→ ν)

∇ρgµν = ∂ρgµν − Γλ
ρνgλν − Γλ

ρνgµλ = 0

∇µgνρ = ∂µgνρ − Γλ
µνgλρ − Γλ

µρgνλ = 0

∇νgρµ = ∂νgρµ − Γλ
νρgλµ − Γλ

νµgρλ = 0 .

(2.43)

Calculating ∇ρgµν +∇µgνρ −∇νgρµ = 0 we obtain

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλ
µν = 0gλρ , (2.44)

where we used the symmetry Γk
ij = Γk

ji (evident from Eq. 2.36). Multiply-
ing the last equation by gσρ we can solve for Γ:

Γσ
µν =

1
2

gσρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (2.45)

This very nice result tells us that given the metric tensor we can calculate
the Christoffel symbols. Said in another way, the metric tensor is all what
is needed to calculate covariant derivatives of tensors on a curved space.

2.11 Geodesics

As straight lines are the shortest lines in flat space, we can ask which
curve connecting two points in a curved space is the shortest. These par-
ticular curves are called geodesics and in this sense are the "straight lines"
in curved spaces. One way to see the problem of finding the geodesics
is the following: the most "straight line" between two points is the one
where a tangent vector T on the first point does not change (remains par-
allel to itself) if transported in the direction pointed by the vector itself.
Translating in mathematical language the previous statement:

∇Tµ Tν = Tµ∇µTν = 0 , (2.46)

and substituting the definition of covariant derivative

dTµ

dt
+ Γµ

αβTαTβ = 0 . (2.47)

14
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The components of a tangent vector to a curve parameterized by a param-
eter t are just Tµ = dxµ/dt, therefore we obtain the equation a geodesic
curve must satisfy

d2xµ

dt2 + Γµ
αβ

dxα

dt
dxβ

dt
= 0 . (2.48)

The last result is a coupled system of second order linear differential
equations and we know that there exists an unique solution given initial
values for x and dx/dt.
Another way to obtain the geodesic equation is to directly calculate what
is the shortest path between two points in a curved space. The squared
distance is given by

L =
∫ t2

t1

gij ẋi ẋjdt (2.49)

where t is a parameter describing the curve and ẋ = dx/dt for a more
compact notation. The shortest path is the one with vanishing variation
δL = 0:

δL =
∫ t2

t1

(
δgij ẋi ẋj + 2gijδ(ẋi)ẋj

)
dt = 0 , (2.50)

where we used the symmetry of gij for the second term in the integrand.
Again in the second term, exchanging δ with d/dt and integrating by
parts

δL =
∫ t2

t1

(
∂gij

∂xk ẋi ẋjδxk + 2gij ẋi d
dt

δxj
)

dt = (2.51)

∫ t2

t1

(
∂gij

∂xk ẋi ẋj − 2
d
dt

[
gij ẋi

])
δxkdt + gij

dxi

dt
δxj|t2

t1
= 0 .

The last term calculated at the start and end points of the curve vanishes
because the curve has no variation there (the extrema are kept fixed). The
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last integral must vanish, and this happens when the integrand is zero:

∂gij

∂xk ẋi ẋj − 2
d
dt

[
gij ẋi

]
(2.52)

=

(
∂gij

∂xk − 2
∂gij

∂xk

)
ẋi ẋj − 2gij

d2xi

dt2

=
d2xk

dt2 +
1
2

gkl
(

∂gil

∂xj +
∂gil

∂xi −
∂gij

∂xl

)
ẋi ẋj

=
d2xk

dt2 +
1
2

gklΓk
ij ẋ

i ẋj = 0

We obtained again the geodesic equation as the shortest path between
two points on a curved space. On a side-note, we can observe that if
our space is compact, for every couple of points in it, there is always a
geodesic connecting them.

2.12 Curvature

Up to now we always referred to a generic curved space, but now we have
the tools for clearly defining what the curvature is. We remind that we
defined it for a one-dimensional curve on three-dimensional euclidean
space. It can be showed, that the curvature at a point P is the inverse
of the radius of a circle tangent to P. In this sense, the curvature is also
often called "radius of curvature". The idea is that if the curve is indeed
very "curved" in the neighborhood of a point, the tangent circle will be
"small". A small radius corresponds to a high curvature. Rising the di-
mension by one, a similar concept can be thought about bidimensional
surfaces. In this case the curvature is characterized by two principal curva-
tures, as famously demonstrated by C.F. Gauss in his Theorema Egregium
(1827). The theorem is indeed egregium, since it shows that the curva-
ture is an intrinsic property of a surface and as such it can be calculated
measuring properties on it (like angles and distances), without referring
to an external embedding. In other terms, we do not need to know that
the earth is a sphere immersed in a three-dimensional space: we can just
make measurements on its surface for discovering that it is not flat! In
the following we would like to characterize the concept of curvature to
spaces of arbitrary dimension.
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Figure 2.2: Parallel transport along a closed path.

2.12.1 Parallel Transport in Closed Loops

We start investigating what is happening to a tangent vector transported
on a closed loop. For simplifying the discussion, let’s think about a two-
dimensional surface (e.g. a sphere) where we have two coordinates (longi-
tude θ and latitude φ). In a small neighborhood (where we can use linear
dispacements), let’s consider a closed loop which resembles a square with
sides AB, BC, CD, and DA. We would like to transport a vector Vµ from
A to B and consider its difference:

Vµ(AB) = Vµ(B)−Vµ(A) =
∫ B

A
dφ

∂Vµ

∂φ
|θ=a . (2.53)

The vector is parallel transported along AB, so its covariant derivative is
zero: ∇iVµ = ∂Vµ

∂xi + Γµ
iβVβ = 0 (x1,2 = θ, φ). Using the last formula and

the values of the coordinates (see Fig.2.12)

Vµ(AB) = −
∫ b+δb

b
dφVβΓµ

φβ|θ=a . (2.54)

17
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A similar calculation can be done for the other three segments:

Vµ(BC) = −
∫ a+δa

a
dθVβΓµ

θβ|φ=b+δb ,

Vµ(CD) = −
∫ b

b+δb
dφVβΓµ

φβ|θ=a+δa ,

Vµ(DA) = −
∫ a

a+δa
dθVβΓµ

θβ|φ=b .

Adding together all the four parts of the closed path and using the defi-
nition of partial derivative

∆Vµ =
∫ b+δb

b
dφ
[
VβΓµ

φβ|θ=a+δa −VβΓµ
φβ|θ=a

]
(2.55)

−
∫ a+δa

a
dθ
[
VβΓµ

θβ|φ=b+δb −VβΓµ
θβ|φ=b

]

= −
[∫ a+δa

a
dθδb

∂

∂φ

(
VβΓµ

θβ

)
−
∫ b+δb

b
dφδa

∂

∂θ

(
VβΓµ

φβ

)]

= −δaδb
[

∂

∂φ
(VβΓµ

θβ)−
∂

∂θ
(VβΓµ

φβ)

]
. (2.56)

Substituting again the covariant derivative formula and noting that δA =
δaδb is the small area enclosed in the loop

∆Vµ = −δA

(
∂Vβ

∂φ
Γµ

θβ + Vβ
∂Γµ

θβ

∂φ
− ∂Vβ

∂θ
Γµ

φβ −Vβ
∂Γµ

φβ

∂θ

)
(2.57)

= −δA

(
−VνΓβ

φνΓµ
θβ + Vβ

∂Γµ
θβ

∂φ
+ VνΓβ

θνΓµ
φβ −Vβ

∂Γµ
φβ

∂θ

)

= δAVβ

(
Γν

φβΓµ
θν −

∂Γµ
θβ

∂φ
− Γν

θβΓµ
φν +

∂Γµ
φβ

∂θ

)
.

We discovered that the variation in the vector components after a parallel
transport around a closed loop is proportional to the enclosed area, times
a combination of Christoffel symbols (depending at the end from the
metric tensor). The quantity in parentheses in the last line of the last
equation is actually a tensor and if we generalize it, replacing θ and φ
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with the N coordinates xα of a space of dimension N, we can rewrite it as

Rµ
βγλ = Γν

λβΓµ
γν −

∂Γµ
γβ

∂xλ
− Γν

γβΓµ
λν +

∂Γµ
λβ

∂xγ
(2.58)

The quantity Rµ
βγλ is called the Riemann Tensor and it characterizes the

curvature of a generic multidimensional space. In the obtained form, it
has one contravariant and three covariant indices. If a space is flat, then
all the components of R vanish (and vice-versa), so this is a necessary
and sufficient condition for flatness, with the caveat that we do not have any
information about the topology of the space 1. In the next section, we will see
how this new tensor is connected with the Gaussian curvature.

2.12.2 Properties of the Riemann Tensor

It turns out that the Riemann tensor is the only tensor that can be con-
structed using the metric tensor and its derivatives: in this sense the Rie-
mann tensor is unique. Another characterization of the Riemann tensor
is the following

∇d∇cVa −∇c∇dVa = [∇d,∇c]Va = Ra
bcdVb (2.59)

Therefore, the tensor describes the non-commutativity of covariant deriva-
tives. In a flat space the covariant derivatives are directional derivatives
which commute, so all the tensor components are zero. Other useful
properties are

Rabcd = −Rbacd = −Rabdc = Rbadc (symmetry) (2.60)
Rabcd + Radbc + Racdb = 0 (antisymmetry) (2.61)

Rabcd + Radbc + Racdb = 0 (cyclicity) (2.62)

Another key property of the Riemann tensor is the so-called Bianchi iden-
tity

∇eRabcd +∇dRabec +∇cRabde = 0 (2.63)

1Although a connection to the topology of the manifold can be provided under cer-
tain requirements through the Gauss-Bonnet theorem, which links the integral of the
curvature over the manifold to the Euler characteristic (or the genus) of it.
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Contracting (summing) the indices a and c and remembering that the
covariant derivative of the metric tensor is zero

∇eRbd +∇dRbe +∇cRc
bde = 0 (2.64)

Contracting again b and d

∇eRbd +∇dRbe +∇cRc
bde = ∇b(Rb

e −
1
2

δb
e R) = ∇bGb

e = 0 (2.65)

Let’s rewrite the last equation with other indices’ names and introducing
the metric tensor for having only covariant indices

∇µGµν = ∇µ(Rµν −
1
2

gµνR) = 0 (2.66)

The tensor Gµν is called Einstein Tensor and has the interesting prop-
erty of having zero covariant derivative. This is a central result in the
development of the general theory of relativity.

2.13 A Worked-out Example

If the material covered up to now might have looked too abstract, then it is
time to try a direct application of it to a simple case. Let’s consider a two-
dimensional surface as case study. A further simplification is to consider a
surface of constant curvature, i.e. a surface where the curvature does not
depend from the point where it is calculated. We are going to consider
the surface of a sphere with fixed radius R. The sphere is a manifold
(although we never really discussed its exact definition) and as such it
can be mapped in a smooth way on a flat plane with the aid of at least
two maps (which, in the language of manifolds, form an atlas). The usual
map is 




x = R cos θ sin φ

y = R sin θ sin φ

z = R cos φ ,

with θ ∈ [0◦, 180◦] and φ ∈ [0◦, 360◦). Inverting the map




θ = tan−1 y
x

φ = cos−1(z/R) .

20



CHAPTER 2. GEOMETRICAL TOOLS

The Jacobian of this coordinate transformation is zero at sin θ = 0, so two
points are excluded from the mapping: in this sense a single map is not
sufficient to describe this surface and we need a more complete atlas (ac-
tually in this case the smallest atlas contains two maps). Another way to
see the problem is to recall that it is not possible to map the entire surface
of the earth on a piece of paper: at least two "poles" will always escape
our projection.
Our plan is now to build the metric tensor: this is the only object we need
for deriving the Christoffel coefficients, and calculate covariant deriva-
tives, the Riemann tensor, the Ricci tensor and the curvature scalar.
In a flat space, the squared infinitesimal distance is calculated through
Pythagoras’s Theorem: ds2 = dx2 + dy2 = δijdxidxj. In this case the met-
ric tensor is just the Kronecker δ symbol. If we perform a coordinate
transformation to coordinates yi

ds2 = δij
∂yi

∂xk dxk ∂yj

∂xl
dxl = δij

∂yi

∂xk
∂yj

∂xl dxkdxl =
∂yk

∂xi
∂yk

∂xj dxidxj . (2.67)

where in the last step the δ forces i = j and then we changed the name of
the indices. The last equation tells us how to calculate the metric tensor,
given the coordinate transformations in Eq. 2.67. For example

gθθ =
∂x
∂θ
· ∂x

∂θ
+

∂y
∂θ
· ∂y

∂θ
+

∂z
∂θ
· ∂z

∂θ
= (2.68)

R2 sin2 θ sin2 φ + R2 cos2 θ sin2 φ + 0 = R2 sin2 φ . (2.69)

After calculating also gθφ = gφθ and gφφ we obtain

gij =

(
gθθ gθφ

gφθ gφφ

)
=

(
R2 0
0 R2 sin2 φ

)
(2.70)

Note also that gij = (gij)−1. Having the metric tensor, we can calculate the
Christoffel symbols with Eq. 2.45. For example

Γθθ
θ =

1
2

gθθ

(
∂gθθ

∂θ
+

∂gθθ

∂θ
− ∂gθθ

∂θ

)
= (2.71)

1
2

1
R2 (0 + 0 + 0) = 0 .
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Calculating all the coefficients we have

Γθ
ij =

(
0 0
0 − sin θ cos φ

)
; Γφ

ij =

(
0 cos φ

sin φ
cos φ
sin φ 0

)
(2.72)

This allows us to calculate covariant derivatives (parallel transport of
vectors) on the sphere’s surface and also write the geodesic equations.
Parameterizing a curve on the surface with a parameter t, the geodesic
equations Eq. 2.53 become

d2θ

dt2 + 2
cos φ

sin φ

dθ

dt
dφ

dt
= 0

d2φ

dt2 − sin φ cos φ

(
dθ

dt

)2

= 0 .

We know already intuitively that geodesics on a sphere are maximal cir-
cumferences (meridians) and this can be seen from the obtained equa-
tions, for example fixing one angle and looking at the curve described by
the other.
Let’s try now to calculate the components of the Riemann tensor. In the
two-dimensional case the Riemann tensor has dimension#indices = 24 = 16
components but only one is not zero. Inserting the Christoffel symbols
(Eq. 2.72) into the definition of the Riemann tensor (Eq. 2.58) we find

Rφ
θφθ =

∂Γφ
θθ

∂φ
− Γφ

θθΓθ
θφ = sin2 θ . (2.73)

Contracting the Riemann tensor with the metric tensor we can calculate
the Ricci tensor. The only non-zero components are

Rφφ = gijRiφjφ = gφφRφφφφ = sin2 φ

Rθθ = 1 .

Contracting the Ricci tensor with the metric tensor we obtain the Ricci
scalar 2

R = gijRij = gθθRθθ + gφφRφφ =
2

R2 (2.74)

2It turns out that for two-dimensional surfaces, the Ricci scalar is just twice the Gaus-
sian curvature.
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The Ricci scalar is interpreted as the curvature of the surface: indeed at
high curvatures correspond a small R, or put in another way, we consider
a small sphere more curved than a large one. From another point of view:
if R is very large, the spherical surface looks like a plane and this is what
we experience every day on earth. As a side-note, the Ricci scalar is the
equivalent to the curvature of surfaces found by Gauss in his research
on bidimensional spaces. The Riemann formalism presented here is just
more general and applicable to curved spaces of any dimension.

2.14 A Flatness Test

In his famous book, S. Weinberg proposes a flatness test for Tolkien’s Mid-
dle Earth. In Fig. 2.13, we can try a similar exercise applied to the country
where this course was first given. On the map there are four points corre-
sponding to the cities A=(München), B=(Bremen), C=(Rostock), D=(Dresden).
The distances from each other are:

AB = 584 km
AC = 664 km
AD = 360 km
BC = 245 km
BD = 406 km
CD = 365 km

One way to check if the usual euclidean geometry works, is to calcu-
late one of the distances, for example AC, using the available data and
then confront it with the value AC=664 km. For example, we can calcu-
late the angle at the corner D between the segments AD and DC (without
using AC). After obtaining the angle, we can try to calculate AC with
the Cosines’Theorem and see if it agrees with the data. A more formal
approach is based on the formula for calculating the (square) volume of
a tetrahedron in three dimensions where each side corresponds to one of
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Figure 2.3: Is Germany flat? In the picture four points (A=München,
B=Bremen, C=Rostock, D=Dresden) are showed on the map, with their
reciprocal distances. If the Earth would be flat, the usual euclidean ge-
ometry should not work.
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our city distances

V2 =
1

288
det




0 1 1 1 1
1 0 ĀB2 ĀC2 ĀD2

1 ĀB2 0 B̄C2 ¯BD2

1 ĀC2 B̄C2 0 ¯CD2

1 ĀD2 ¯BD2 ¯CD2 0




(2.75)

If the above determinant (the Cayley-Menger determinant) is zero, the tetra-
hedron collapses and the relations we obtain among the distances are the
conditions for the four cities to lay on a plane.

25



CHAPTER 2. GEOMETRICAL TOOLS

26



Chapter 3 | General Relativity

In this chapter, we review the central concepts at the foundations of Gen-
eral Relativity (GR) and derive its fundamental equations. We will make
use of all the geometrical tools developed in the previous chapter.

3.1 The Equivalence Principle

Gravity has the unique property of impressing the same acceleration to
bodies regardless from their mass. This observation leads to the indistin-
guishably between gravity or an accelerated reference frame. Following
an ideal experiment suggested by Einstein, if we are inside an uniformly
accelerated elevator, we might think to be immersed in a gravitational
field (or the other way around: we think that the elevator is accelerating,
but it just hangs still over the surface of a planet). There is a key obser-
vation to make here: if the elevator is large enough, we can understand if
it is accelerated or at rest into a gravitational field. In the latter case, we
could for example note that the acceleration vectors in the elevator are not
all parallel. For example, if the elevator is immersed in the gravitational
field of a planet, the field lines converge to a single point (the center of
the planet). Therefore, an accelerated reference frame or a gravitational
field are indistinguishable only locally.
We can state now the so called (strong) Equivalence Principle (EP): at
every space-time point in a gravitational field, it is possible to choose a locally
inertial coordinate system such that in a sufficiently small neighborhood of that
point the laws of nature are expressed in the same form as in an unaccelerated
Cartesian (flat) coordinate system. There is also a weaker version of the prin-
ciple, called (weak) Equivalence Principle which instead of referring to
all the laws of nature, it refers only to the laws of motion of free-falling
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bodies. Clearly the strong version implies the weak on but not vice-versa.

3.2 Free-Falling Bodies

Let’s try to translate in mathematical formulas the ideas contained in the
EP. Consider a free-falling body: according to the EP, there must exist lo-
cally a coordinate system where the effect of gravitation vanishes (inside
Einstein’s elevator) and the equation of motion in flat space time is

d2ξµ

dτ2 = 0 , (3.1)

where dτ = −ηµνdξµdξν is the proper time and ηµν the Lorentz metric.
Let’s get out from the elevator and change to new coordinates xµ, which
can be whatever we want (a curvilinear system, an accelerated or rotating
system, etc..)

d
dτ

(
∂ξα

∂xµ

dxµ

dτ

)
=

∂ξα

∂xµ

d2xµ

dτ2 +
∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
= 0 . (3.2)

Multiplying the last equation by ∂xλ/∂ξα and recognizing the presence
of the Christoffel symbol

d2xλ

dτ2 + Γλ
µν

dxµ

dτ

dxν

dτ
= 0 . (3.3)

The last result is quite interesting: the presence of the gravitational field
can be seen as a curvature of space-time where free-falling particles follow
a geodetic in that space. From the coordinate transformation formula and
dτ = −ηµνdξµdξν, it is clear that the metric tensor of the curved space is
related to the Lorentzian flat space by

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ . (3.4)

3.3 Non-Relativistic Limit

So far our calculations were relativistic and now we would like to see if
what we derived can be reduced to the know non-relativistic result, which
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should be classical Newtonian gravity. The non-relativistic limit refers to
velocities smaller than the speed of light (v � c) and weak, stationary
gravitational fields. Remembering the composition of the velocity four-
vector dxµ/dτ = (dt/dτ, dx/dτ), in this limit dx/dτ � dt/dτ so the only
non-zero component of the velocity is µ = 0 and therefore

d2xµ

dτ2 + Γµ
00

(
dt
dτ

)2

= 0 . (3.5)

For a weak stationary gravitational field, the space-time geometry must
be almost flat: gαβ = ηαβ + hαβ with |hαβ| � 1.
Substituting this metric tensor into the Christoffel symbol we obtain

Γα
00 = −1

2
ηαβ ∂g00

∂xβ

. (3.6)

Reinserting the Christoffel symbol in Eq. 3.5 and separating the µ = 0
"time" and µ = 1, 2, 3 "space" parts we have

d2t
dτ2 = 0 ;

d2x
dτ2 −

1
2

(
dt
dτ

)2

∇h00 = 0 . (3.7)

The first equation tells us that dt/dτ is a certain constant K and we choose
K=1. Substituting the first equation in the second and comparing it with
the equation of motion with the gravitational potential d2x/dt2 = −∇φ
we find h00 = −2φ + C where C is another constant. Since the potential
must be zero at infinity, we can fix also the second constant C=0. Rein-
serting the result for h in the original metric tensor we finally have

g00 = −(1 + 2φ) (3.8)

which is its the only non-zero component in the low-velocity, low-gravitational
field approximation. We have showed here that there is a choice of the
metric tensor which in the non-relativistic limit makes the relativistic
geodesic equation is consistent with Newtonian gravity.

3.4 Energy-Momentum Tensor

Our aim is to find general relativistic equations for the gravitational field
which are valid in every reference frame (not only the inertial ones). Such
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equation must have tensorial character, and since gravitational fields are
created by matter and energy distributions, it it meaningful to find a
(relativistic) tensorial description for them. The object we are looking for
is the energy-momentum tensor. We know already from electrodynamics
that in the 4-dimensional formalism charge density and current vector
can be organized in a single four-vector. We are going to do something
similar for the 4-momenta pα of a system of N particles labeled with the
index n. The momentum density is

Tα0 = ∑
n

pα
nδ3(x− xn) . (3.9)

Note that in this definition we are already thinking at the density as the
zeroth-component of a tensor T. In this case T is a tensor with two indices,
since one index spans the 4-vector components, while the other one will
label the density and the three components of the current which we define
as

Tαi = ∑
n

pα
n

dxi
n

dt
δ3(x− xn) . (3.10)

where the latin index i runs only on the "space" coordinates 1,2,3. Merg-
ing the last two equations into a single tensor

Tαβ = ∑
n

pα
n

dxβ
n

dt
δ3(x− xn) = ∑

n

pα
n pβ

n

En
δ3(x− xn) , (3.11)

where we used the known relativistic result v = p/E. From the last ex-
pression, it is clear that Tαβ = Tβα, and therefore the energy-momentum
tensor is symmetric.
As in classical physics the time derivative of the momentum gives the
force, in this context we have

∂Tαβ

∂xβ
= Fα , (3.12)

where Fα is a density of forces’ 4-vector. In absence of forces, ∂Tαβ/xβ = 0
and this represents the energy-momentum conservation law. On a generic
curved space, the partial derivative is substituted by the covariant one:
∇αTαβ = 0.
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3.5 The Einstein Equations

We are now in the position to derive the generally covariant equations
for the gravitational field. The distribution of matter and energy exerts a
gravitational force, and we have seen that gravitation itself is related to
the space-time metric. So we expect that the energy matter distribution
is somehow related to space-time geometry. For guessing the correct
equations, we can list first the requirements they have to obey:

1. The equations have to be tensor equations, thus retaining their form
in any coordinate system. This requirement is connected to the
equivalence principle.

2. In analogy to the other field equations of physics, they have to be
partial differential equations of (at most) second order in the vari-
able expressing the gravitational potential. In this case such variable
is gµν, the metric tensor, as we have seen in the approximate case of
the Newtonian non-relativistic limit.

3. The equations must reduce to the Poisson equation for the gravita-
tional potential in the non-relativistic weak-field limit.

4. Tµν must be the source of the gravitational field, since it encodes the
energy-matter distribution.

5. If the space-time is flat (no gravitational field), then Tµν = 0.

From requirements 1. and 4., the equations must have a form like

Gµν ∝ Tµν . (3.13)

Since we know that from energy-momentum conservation ∇µTµν = 0,
we require that ∇µGµν = 0. Moreover, since T is symmetric, also G must
be symmetric. From the previous chapter, we know already a symmetric,
two-indices tensor which contains gµν and its derivatives up to second
order: the Einstein tensor. So we can guess the following form

Rµν −
1
2

gµνR = k · Tµν . (3.14)

where now we use covariant indices, Rµν is the Ricci tensor, R is the Ricci
scalar and k is a constant. We have to check now if requirement 3. holds.
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We have to use the weak-field and v � c approximations together with
stationarity ∂gµν/∂t = 0. In this limit, the only non-zero component of
the Ricci tensor is R00. The energy-momentum tensor reduces also to
only the energy density component T00 which in the non-relativistic limit
is just the matter density ρ. The approximate equation is therefore

R00 =
1
2
∇2h00 = kρ , (3.15)

which has to be compared to the Poisson equation for the gravitational
potential

∇2φ = 4πGρ . (3.16)

where G is the Newton constant. Calculating the constant k, we can write
the general relativistic Einstein equation (in natural units G = c = 1)

Rµν −
1
2

gµνR = 8πTµν . (3.17)

In "normal units", 8π → 8πG/c4.
The equation has been checked against many astronomical data, and lab-
oratory and satellite experiments, always finding good agreement up to
now.
Eq. 3.17 is not the most general form allowed by our requirements. Since
the covariant derivative of both sides of the equation vanishes and this
happens also for the metric tensor, we can also add a term which is pro-
portional to gµν

Rµν −
1
2

gµνR + Λgµν = 8πTµν . (3.18)

The new constant Λ is called cosmological constant.
Given the symmetry of the tensors in the equation, there are only 10 in-
dependent components. This means that the Einstein equation represents
a coupled system of 10 non-linear second-order partial differential equa-
tions and finding analytical general solutions is possible only in few cases
characterized by high symmetry content. Besides the trivial flat solu-
tion, a particularly important space-time satisfying the Einstein equations
is the Schwarzschild solution which finds wide applications in physics
problems involving a spherically symmetric gravitational field.
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3.6 Trace-Reversed Form of the Einstein Equa-
tions

There is another equivalent form for Eq. 3.18 which can be obtained tak-
ing first its trace

− R + 4Λ = 8πT , (3.19)

where R and T are the traces of the Ricci tensor and energy-momentum
tensor respectively. Multiplying the last trace formula by gµν/2 and sub-
stituting the result again in Eq. 3.18, we obtain the "trace-reversed" form
of the Einstein equations

Rµν −Λgµν = 8π(Tµν −
1
2

Tgµν) . (3.20)

This version of the equation allows some interesting observations. First,
in absence of the cosmological constant, matter and energy we have Rµν =
0, which represent a Ricci-flat space-time. Ricci-flat spacetimes are the
solutions of GR for the completely empty space. The flat space-time is a
trivial example of Ricci-flat space-time. A classical non-trivial example of
vacuum solution is the Schwarzschild solution describing the space-time
around a spherical mass. In absence of matter and energy, and Λ 6= 0 we
have

Rµν = Λgµν , (3.21)

and it is tempting to do the identification Tµν = Λgµν and thinking at the
cosmological constant as the energy content of the vacuum itself.

3.7 Geodesic Deviation

There is another interpretation of the role played by the Riemann tensor
in General Relativity. If a free-falling observer observes a nearby free-
falling object, if there is no gravity, he should see it at rest. If gravity
is present, the observer and the object should move with respect to each
other. The free-falling observer follows the trajectory

d2xµ

dτ2 + Γµ
νλ

dxν

dτ

dxλ

dτ
= 0 . (3.22)
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Another observer is closeby, at xµ(τ) + δxµ(τ) thus following the trajec-
tory

d2

dτ2 (xµ + δxµ) + Γµ
νλ(xµ + δxµ)

d
dτ

(xν + δxν)
d

dτ
(xλ + δxλ) = 0 . (3.23)

The difference between the last two equations at first order in δxµ is

d2δxµ

dτ2 +
∂Γµ

νλ

∂xρ δxρ dxν

dτ

dxλ

dτ
+ 2Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 , (3.24)

which in terms of a covariant derivative along a curve 1 can be written as

D2

Dτ2 δxλ = Rλ
νµρδxµ dxν

dτ

dxρ

dτ
. (3.25)

In absence of gravity, the Riemann tensor is identically zero and two close
geodetics stay "parallel" to each other. If gravity is present, two nearby
particles will not conserve their distance along the motion. In this sense,
the Riemann tensor can be regarded as quantifying the amount of geodesic
deviation. The relative acceleration detected among two nearby particles
can be thought to be caused by a tidal force.

3.8 Summary

Eq. 3.17 was written first by Einstein in 1915 (with Riemann almost con-
temporarily providing a derivation based on a variational method). Gen-
eral Relativity can thus be summarized as follows:

Space-time is described by a manifold M equipped with a Lorentz metric. The
curvature of M (computable from the metric) is related to the matter/energy dis-
tribution in M by the Einstein equation.

Eq. 3.17 represent 10 non-linear partial differential equations of the hyper-
bolic kind (like the wave equation) and they are the gravitational analog
to the Maxwell equations written with the relativistic formalism where

1If Vµ is a vector, its derivative along a curve xµ parameterized by a parameter τ is
DVµ/Dτ = dAµ/dτ + Γµ

νλdxλ/dτAν.
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the scalar and vector potentials are arranged into a fourvector Aµ and
charge density and current into a four-vector Jµ: ∂2Aµ = −4π Jµ. A fun-
damental difference among these two theories is the following: while in
Maxwell theory once the charges/currents are given, all the potentials
can be calculated, in General Relativity the metric enters on both sides of
the equation. This means that we cannot specify Tµν and then calculate
gµν, since also for constructing Tµν we need the metric. Intuitively this
means that gravitation influences the matter/energy distribution, which
in turn modifies the gravitational field ("backreaction"). A famous quote
summarizing the complexity of Einstein equation is "Space tells matter how
to move, matter tells space how to curve" (from Gravitation, Misner, Thorne,
Wheeler).
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Chapter 4 | Cosmological
Models

In this chapter, we will apply the Einstein equations to the Universe as
a whole discussing some possible models and their consequences. The
standard cosmological model presently favored by the available data will
be presented.

4.1 The Cosmological Principle

The Einstein equations allow to calculate the space-time geometry if the
distribution of matter is known. This task is in general quite complex
if we would like to find analytical solutions. Symmetry principles can
simplify the problem greatly. In cosmological applications, the so-called
Cosmological Principle:

The Universe is spatially homogeneous and isotropic

is assumed. With "homogeneous" we mean that the universe is invariant
under spatial translations, while with "isotropic" we assume that the uni-
verse looks the same in every direction, or that it is spherically symmetric
around us. The principle implies that every observer at every point of the
universe observes the same properties (a modern version of the Coperni-
can principle which stated that we do not occupy any privileged position
in the Universe.). Another way to state the principle, is that the universe
can be foliated in space-like surfaces which are spherically symmetric
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about any point.
Of course, on a small scale the universe is not homogeneous, since there
are stars, galaxies and even clusters of galaxies. The Cosmological Prin-
ciple is assumed to be approximately realized on scales larger than - say
- 108 or 109 light-years where many galaxy clusters are contained. The
Cosmological Principle is not a completely proved fact, but it is sup-
ported (besides from our philosophical beliefs) by observations of the
matter distribution on the largest scales and by the existence of a rather
homogeneous cosmic microwave background (which is of cosmological
origin).
If you like to be more mathematically precise, then a space-time is said to
be spatially homogeneous if there exist a one-parameter family of space-
like hypersurfaces Σt foliating the space-time, such that for every t, P and
Q in Σt, there exists an isometry1 of the space-time metric which maps P
into Q.
A space-time is said to be spatially isotropic at each point if there exists a
congruence of time-like curves2 ("observers"), with tangents denoted by
vα filling the space-time and satisfying the following property. Given any
point P and any two unit spatial tangent vectors (orthogonal to vα) sα

1 , sα
2

there is an isometry of the metric which leaves p and uα at P fixed, but
rotates sα

1 , sα
2 . This means that if isotropy is assumed, it is not possible

to construct a preferred tangent vector orthogonal to vα. Constructing a
preferred vector is possible of the tangent space to Σt does not coincide to
the tangent space containing the vectors orthogonal to uα. This fact also
shows that isotropy requires that Σt is orthogonal to uα.

4.2 Metric of Homogeneous and Isotropic Space-
times

The requirements of homogeneity and isotropy from the Cosmological
Principle greatly constrain the class of metrics compatible with it.
The spatial isotropy requirement implies that g0i = 0 (i = 1, 2, 3): in this
way no direction is privileged (we have no "mixing" between directions

1An isometry is a transformation which preserves the lengths.
2A congruence of curves is the set of integral curves of a nowhere-vanishing vector

field.
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and time). We assume that all the observers on a spatial surface are able
to measure the time ("cosmic time") in the same way, so we can choose
g00 = −1 (a constant not depending on the space-time point). It turns out
that all these requirements lead to a space-time with constant curvature
(in particular such space-times are called maximally symmetric3). It can
be showed that the requirements of homogeneity and isotropy in four
dimensions lead to the following metric

− ds2 = g(v)dv2 + f (v)
[

du2 +
k(udu)2

1− ku2

]
, (4.1)

where v is a coordinate and u is a vector of three coordinates and f an
unknown function of v only. This metric is clearly rotationally invariant
as required. Introducing new "spherical coordinates" r, θ, φ for the "space"
variables u and a time coordinate t =

∫
−
√
−g(v)dv we obtain

ds2 = dt2 − R2(t)
[

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
]

, (4.2)

where R(t) function of time to be determined, and k is a constant repre-
senting the curvature. This metric is invariant under the rescaling

R→ R
λ

r → λr

k→ k
λ2 ,

(4.3)

so choosing λ =
√

k, the curvature k can assume only the values k =
−1, 0, 1. The function R(t) is usually normalized to its present value
a(t) = R(t)/R(0). and a(t) is called cosmic scale factor.
Eq 4.2 is called the Friedman-Lemaître-Robertson-Walker metric (FLRW)
and represents the most general homogeneous and isotropic space-time
in four dimensions.
It interesting to look at the spatial geometry. If k = 0, space is flat and
equivalent to a three-dimensional "plane". If k = 1, space is equivalent

3Mathematically, a maximally symmetric space M of dimension D is a space with a
metric admitting D(D+1)/2 Killing vectors. Killing vectors form a vector field describing
the infinitesimal isometric transformations in M.
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Figure 4.1: Comoving Coordinates

to the surface of a sphere with radius a(t). If k = −1, the space is hy-
perbolic. An important observation is that the requirements of homogeneity
and isotropy (the Cosmological Principle) allowed us to write the metric without
solving or considering the Einstein Equations.

4.3 Properties of the FLRW Universe

Considering the FLRW metric for an homogeneous and isotropic uni-
verse, we can directly calculate some relevant geometric quantities. In
the k = 1 case, it is possible to calculate the spatial volume of the uni-
verse

(3)V =
∫ √

| −(3) g|d3x = a3(t)
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ RU

o

r2dr√
1− kr2

,

(4.4)
where RU is the "radius of the universe". RU is finite only in the spherical
k = 1 case, while in the other two cases k = 0,−1 it is infinite. Therefore,
only in the k = 1 case we obtain a finite spatial volume (3)V = 2π2a3(t)
and a(t) can be interpreted as a "radius". A k = 1 Universe is said to be
closed, while the other two cases correspond to open universes.
Let’s discuss now what the coordinates mean in the FLRW metric. These
coordinates are called comoving, because the position of an observed
does not change with respect to them. The idea is clearer looking at
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Fig. 4.2: if the space-time is expanding (or contracting), the coordinates
stretch according to the scale factor a(t) and an object (say, a galaxy) keeps
its position with respect to the axes.
An extremely simplified case is the one where k = 0 and a(t)=constant.
Substituting the FLRW metric in the Einstein Equations gives Tµν = 0,
since the components of the Ricci tensor Rµν are zero (and therefore also
the curvature scalar R). In this case, the equations of General Relativity
describe an empty universe with a Lorentz (flat) metric. This case is
trivial but it is a check that the Einstein Equations have an additional
correct limiting case.

4.4 Friedmann Equations

Now it is time to use the FLRW metric in the Einstein equations. This
will allow us to extract the exact form of the still unknown scale factor
a(t). The left side of the equation contains only the geometric quantities
which can be calculated from the metric gµν which non-zero components
are

g00 = 1

g11 = − a2(t)r2

1− kr2

g22 = −a2(t)r2

g33 = −a2(t)r2 sin2 θ .

(4.5)

From the metric tensor, we can directly calculate the Christoffel symbols
with Eq. 2.45. The non-zero Christoffel symbols are

Γ0
11 =

ȧa
1− kr2 ; Γ0

22 = aȧr2 ; Γ0
33 = aȧr2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ
a

Γ1
22 = −r(1− kr2) ; Γ1

33 = −r(1− kr2) sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
r

Γ2
33 = − sin θ cos θ ; Γ3

23 = Γ3
32 = cot θ ,

(4.6)
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and the Riemann tensor with Eq. 2.58. Contracting the Riemann tensor
we can calculate the Ricci tensor which non-zero components are

R00 = −3
ä
a

R11 =
aä + 2ȧ2 + 2k

1− kr2

R22 = r2(aä + 2ȧ2 + 2kr)

R33 = r2(aä + 2ȧ2 + 2kr) sin2 θ ,

(4.7)

where the "dot" represents the total derivative with respect to the time
(ẋ = dx/dt). Finally, contracting the Ricci tensor (gµνRµν) we obtain the
curvature scalar

R =
6
a2 (aä + 2ȧ2 + k) . (4.8)

Now we have all the ingredients for calculating the left side of the Einstein
equations and we just need Tµν. Again the Cosmological Principle can
help us: an homogeneous and isotropic distribution of matter is the one
corresponding to a perfect fluid with density ρ and pressure P:

Tµν = (ρ + P)vµvν − Pgµν , (4.9)

where v is the four-velocity vector with components v = (1, 0, 0, 0), since
the "fluid" is at rest with respect to the comoving coordinates. Again,
thinking at the fluid as made of point-like galaxies, they retain their
place with respect to the coordinate axes: it is just the distance among
them which changes through a(t). Density and pressure can be time-
dependent, but not space-dependent, otherwise this would be against the
Cosmological Principle.
Consider now the energy-momentum conservation

∇µTµ
ν = ∂µTµ

ν + Γµ
µβTβ

ν − Γβ
µνTµ

β = 0 , (4.10)

and the zero component (i.e. the energy component) of the above equa-
tion

∂0ρ(t) + 3
ȧ(t)
a(t)

(ρ(t) + P(t)) = 0 . (4.11)

This equation expresses energy conservation in the FLRW Universe. No-
tice that for obtaining Eq. 4.11 we had to use the space-time geometry
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through the covariant derivative and this brings us back to the complex-
ity of the Einstein Equations, where curvature and energy/matter distri-
bution are in general directly connected.
At his point we are stuck: we have the scale factor and other two un-
knowns in a single equation. The only way forward is to postulate a
relationship between density and pressure, i.e. an equation of state for
the energy/matter content of the universe. It can be showed that basi-
cally all the cosmologically relevant perfect fluids have an equation of
state like P = wρ where w is a constant characteristic of the specific fluid.
Substituting this generic equation of state in Eq. 4.11 we obtain

ρ̇

ρ
= −3(1 + w)

ȧ
a

, (4.12)

which has solutions like

ρ(t) ∝ a(t)−3(1+w) . (4.13)

Now we have an equation that tells us how the density behaves while the
universe expands or contracts. We still have to determine the dynamics
of the scale factor.
Using the expressions for the Ricci tensor, the curvature scalar and the
energy-momentum tensor, we can substitute them into the Einstein equa-
tions Eq. 3.17 finding (we leave Λ = 0 for the moment)

−3
ä
a
= 4πG(ρ + 3P) for (µ, ν) = (0, 0)

ä
a
+ 2

(
ȧ
a

)2

+ 2
k
a2 = 4πG(ρ− P) for (µ, ν) = (i, j) .

(4.14)

For the spatial components i, j = 1, 2, 3 there is only one equation as it
should be, given the requirement of isotropy. Substituting the second
derivative of a(t) from the first of the Eq. 4.14 into the second we obtain
the Friedmann Equations

ä
a
= −4πG

3
(ρ + 3P)

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 .
(4.15)
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The Friedmann equations are basically the Einstein equations for an ho-
mogeneous and isotropic universe filled with a perfect fluid. For fully
solve them and obtain the function a(t), we need to specify the equation
of state (or - almost equivalently - the parameter w).

4.5 The Cosmological Parameters

The expansion rate (how much a(t) changes in units of a(t) itself) is called
the Hubble Parameter

H(t) =
ȧ(t)
a(t)

. (4.16)

The definition of H makes sense, since the scale of a itself is not important:
in the ratio, we obtain a meaningful measurable quantity. The today’s
value of this parameter is called H0.
It is also useful to rewrite the energy conservation equation in the FLRW
Universe (Eq. 4.11) using the Hubble parameter as

ρ̇ + 3H(ρ + P) = 0 . (4.17)

Another relevant quantity is the deceleration parameter

q = − aä
ȧ2 , (4.18)

which quantifies the rate of change of H. Substituting the Hubble param-
eter in the second Friedmann equation

H2 =
8πG

3
ρ− k

a2 ⇒
8πG
3H2 ρ− 1 =

k
H2a2 . (4.19)

Defining the critical density ρc = 3H2

8πG (today’s value ≈ 10−29g/cm3 ∼
1.05× 10−4 eV/cm3) and the density parameter Ω = ρ/ρc we have

Ω− 1 =
k

H2a2 . (4.20)

The density parameter is quite important since it determines the geome-
try (through the curvature k) of the universe:

ρ < ρc ⇐⇒ Ω < 1⇐⇒ k = −1 (Open)
ρ = ρc ⇐⇒ Ω = 1⇐⇒ k = 0 (Flat)
ρ > ρc ⇐⇒ Ω > 1⇐⇒ k = 1 (Closed)

(4.21)
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4.6 Cosmological Models

In order to treat all the possible cases, we will use the most general form
of the Einstein equations, thus including the cosmological constant Λ.
When the cosmological constant is taken into account, the Friedmann
equations become

ä
a
= Ḣ + H2 = −4πG

3
(ρ + 3P) +

Λ
3

H2 =
8πG

3
ρ− k

a2 +
Λ
3

.
(4.22)

Regarding the equation of state, the most relevant cases are

w = 0⇒ ρ ∼ 1
a3 "Dust"

w = 1/3⇒ ρ ∼ 1
a4 "Radiation"

w = −1⇒ ρ ∼ const. "Vacuum" .

(4.23)

In an universe filled with "dust", i.e. point-like massive particles, there is
not interaction between them so the pressure is zero and therefore w=0.
It is a standard physics result that for a volume filled with radiation only,
P = ρ/3. The last case, where P = −ρ (a sort of negative pressure) can
arise in different models. It is called "vacuum energy" since this equation
of state can arise from quantum field theory. We are now in the position
to discuss some specific cosmological models.

4.6.1 The Einstein Universe

This cosmological model was first proposed by Einstein, who tried to
obtain a static universe without expansion or contraction. This goal can
be achieved only if Λ 6= 0. The static conditions are ȧ = ä = 0 and from
Eq. 4.22 we obtain

a =

√
Λ
k
⇒ k = 1

ρ =
Λ

4πG
.

(4.24)
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The previous equations describe a spherical universe with a constant ra-
dius (scale factor), a constant density and a non-zero cosmological con-
stant. An unpleasant characteristic of this universe is its instability: a
small perturbation would make it expand or contract. In this sense this
model is not as static as its name may imply.

4.6.2 The Matter-dominated Universe
Suppose that the universe is uniformly filled only with non-interacting
bodies. In this case, P = 0 (or w = 0), Λ = 0 and from Eq. 4.13 we have
ρ · a(t)3 = A with A =constant. The second of the Friedman equations
Eq. 4.22 becomes

ȧ2 =
8πG

3
A
a
− k . (4.25)

Introducing the conformal time η instead of the time t such that dη/dt =
1/a(t) the last equation becomes

a′2 =
8πG

3
Aa− ka2 . (4.26)

The apex in a′ indicates differentiation with respect to the conformal time.
The last equation can be easily integrated. For example, choosing as
initial condition a(0) = 0 we have

k = 1⇒ a =
4πGA

3
(1− cos η) ; t =

4πGA
3

(η − sin η)

k = 0⇒ a =
2πGA

3
η2 ; t =

2πGA
9

η3

k = −1⇒ a =
4πGA

3
(cosh η − 1) ; t =

4πGA
3

(sinh η − η) .
(4.27)

In this model, a closed (k = 1) universe expands and eventually collapses
again. Open universes (k <= 1) expand forever. In the boundary case
k = 0, the expansion continues forever, but the expansion rate approaches
zero for infinite times (H → 0 when t→ +∞).

4.6.3 The Radiation-dominated Universe

For radiation, we have already seen that w = 1/3, so ρ = 3P and ρa4 = A
with A=constant. Setting Λ = 0, the second of the Friedman equations
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Eq. 4.22 becomes

ȧ2 =
8πG

3
A
a2 − k . (4.28)

Using the initial condition a(0)=0, the solutions are

k = 1⇒ a =

√

2

√
8πGA

3a2 t− t2

k = 0⇒ a =

√

2

√
8πGA

3a2 t

k = −1⇒ a =

√

2

√
8πGA

3a2 t + t2 .

(4.29)

As in the matter-dominated universe, the closed solution expands and
then recollapses, while the other cases expand forever.

4.6.4 Vacuum-Dominated Universe

In the vacuum-dominated model, there is no matter present, so P = ρ =
0. In this case, only the cosmological constant plays a role (Λ > 0). A
possible interpretation of this model comes from quantum field theory
(QFT), where there are non-zero quantum fluctuations even in the vac-
uum where fields have zero average. QFT predicts a term analogous to
the cosmological constant. In this case the second of the Friedman equa-
tions Eq. 4.22 reduces to

ȧ2 =
Λa2

3
− k , (4.30)

and the solutions are

k = 1⇒ a =

√
3
Λ

cosh

(√
Λ
3

t

)

k = 0⇒ a =

√
3
Λ

exp

(√
Λ
3

t

)

k = −1⇒ a =

√
3
Λ

sinh

(√
Λ
3

t

)
.

(4.31)
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The k = 1 case is also known as deSitter Universe.
The k = 0 case predicts an exponential growth of the Universe and as we
will see later on, this solution has relevance in the framework of inflation-
ary models. If we assume Λ < 0, there are no solutions for k = 0, 1, while
for k = −1

a =

√
− 3

Λ
cos

(√
−Λ

3
t

)
. (4.32)

It can be verified that for Λ = 0 this model reduces to the flat spacetime
case with k = 0 and a =constant.

4.6.5 Mixed Models

The models investigated so far contained only one type of matter/radiation.
A more realistic model could contain different kinds of them in different
proportions. In this case, the energy density will be the sum of the differ-
ent components

ρTOT(a) = ∑
i

ρi(a) = ρC ∑
i

Ωia−3(1+w1) , (4.33)

where ρc is the critical density and ΩTOT = ρTOT/ρC. Considering all the
cases we treated so far and introducing the appropriate critical densities,
the second Friedmann equation (Eq. 4.22) can be rewritten as

k
a2 = H2(ΩTOT − 1) . (4.34)

Introducing in the last equations the density parameters observed today,
together with the present Hubble parameter H0 and the present scale a0
we have

k
a2

0
= H0(Ωm + Ωr + ΩΛ − 1) , (4.35)

where the density parameters describe pure matter (the "dust" universe),
relativistic matter (radiation) and the effect of the cosmological constant.
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Cosmology and the
ΛCDM Model

5.1 Cosmological Red Shift

Most of the information we gather on earth about the cosmos comes in the
form of electromagnetic radiation. Here we would like to investigate how
the universe’s dynamics can affect a generic light signal of wavelength λ
(or frequency ν = c/λ). According to the Cosmological Principle, we
can place the origin of our coordinate system where we would like to, so
we choose r = 0 and for simplicity we forget about the angular coordi-
nates θ and φ (equivalently, we can think of keeping them constant). An
electromagnetic wave traveling from a distant star towards us (in the −r
direction) has the following equation of motion in an FLRW universe

dτ2 = dt2 − a2(t)
dr2

1− kr2 = 0 . (5.1)

If the wave (say, a certain crest of the wave) leaves the star at time t1 and
reaches our telescope at time t0, integrating the last equation we have

∫ t0

t1

dt
a(t)

=
∫ r1

o

dr√
1− kr2

=





sin−1 r1 k = 1
r1 k = 0
sinh−1 r1 k = −1 .

(5.2)

If our star belongs to a galaxy (as basically always it is the case), it has
fixed coordinates, so

∫ t0
t1

dt
a(t) is a time-independent function, as it is clear
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from Eq. 5.2. This means that if we consider another crest of the elec-
tromagnetic wave leaving the star at a slight different time t + δt we will
find the same result as before for the integral

∫ t0+δt0
t1+δt1

dt
a(t) . Subtracting the

two integrals and assuming that a(t) does not vary much between the
two crests,

∫ t0+δt0

t1+δt1

dt
a(t)
−
∫ t0

t1

dt
a(t)

=
∫ δt1

δt0

dt
a(t)

= 0⇒ δt0

a(t0)
− δt1

a(t1)
= 0 (5.3)

and therefore
δt0

a(t0)
=

δt1

a(t1)
(5.4)

Frequencies and times are inversely proportional, so

δt1

δt0
=

a(t1)

a(t0)
=

ν0

ν1
=

λ1

λ0
. (5.5)

We can now introduce the red-shift parameter and relate it to the scale
factor

z =
λ0 − λ1

λ1
=

a(t0)

a(t1)
− 1 . (5.6)

The wavelength λ1 is the original one emitted from the star, as measured
by a nearby observer, while λ0 is what we will observe on the earth (at
r = 0 of our coordinate system).
If z > 0, then λ0 > λ1 : this is called red-shift and corresponds to an
expanding universe.
If z < 0, then λ0 < λ1 : this is called blue-shift and corresponds to a
contracting universe.

5.2 Age of the Universe

We would like to use the Friedmann equations for determining how old
the universe is as a function of the curvature and of the matter/energy
content. The scale factor has no dimension and can be thought as the
ratio of two lengths, or "radii": R(t) at a time t, and R(0) at t = 0 which is
a reference time, for example "today". For t = 0 we have therefore a(0)=1.
Multiplying and dividing the second Friedmann equation by the critical
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density ρc = 3H2
0/8πG (H0 is the Hubble parameter’s value today) we

have

H2 =
8πG

3
ρc

[
∑

i

ρi

ρc
+

ρk
ρc

]
, (5.7)

where we have defined ρk = k/(a2) which looks like a density due to the
global curvature of the universe.
Strictly speaking, this is just a formal analogy, and we should not think at ρk
as a contribution to the energy density: this definition just helps in writing the
equations in a more appealing way.
Remembering how the different energy densities scale (ρ(t) ∝ a−3(1+w))
and introducing the present-day density factors Ω0

x = ρ0
x/ρc, Eq. 5.7 be-

comes

H2 = H2
0

[
Ω0

m
a3 +

Ω0
r

a4 +
Ω0

k
a2 + Ω0

Λ

]
. (5.8)

For making better contact with measurements, we can introduce the red-
shift parameter z = a0/a− 1 (a0 = 1 in our convention):

H2 = H2
0

[
Ω0

m(1 + z)3 + Ω0
r (1 + z)4 + Ω0

k(1 + z)2 + Ω0
Λ

]
. (5.9)

The last equation can be further simplified with the following steps

• We can rewrite H = ȧ/a using the red-shift parameter, obtaining
H = − 1

1+z
dz
dt .

• Approximate Ω0
r ≈ 0 since the era when the universe was radiation-

dominated was much shorter than the matter domination and vacuum-
energy domination.

• Remember that the sum of all the density parameters is equal to 1
by definition, so we set Ω0

k = 1−Ω0
m −Ω0

Λ.

obtaining after some algebra

∆t =
1

H0

∫ z

0

dz′

1 + z′
1√

(1 + Ω0
mz′)(1 + z′)2 − z′(2 + z′)Ω0

Λ

. (5.10)

The integral over the red-shift factor extends from today (z = 0) to some
era when the factor was equal to z. For obtaining the total age of the
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universe, we have to extend the integration to z → ∞. Since the integral
in Eq. 5.10 is of order one, a quick estimate of the age A of the universe
is A ∼ 1/H0 ≈ 14 Gyr.
The exact calculation can be carried out only numerically, but it is inter-
esting to investigate the simple analytic result were the universe is flat
(k = 0⇒ Ω0

Λ = 1−Ω0
m) and just dust-filled (Ω0

Λ = 0):

A =
1

H0

∫ ∞

0

dz′

(1 + z′)5/2 =
2

3H0
∼ 10 Gyr . (5.11)

5.3 Measurement of Cosmological Distances

Measuring distances at the cosmic scale requires different methods, each
of which is appropriate in a certain range. If the various methods partially
overlap, it is possible to construct a distance ladder which calibration can
be checked.
The distance has to be put in correspondence to the cosmological param-
eters and variables we studied so far.
Considering a light source at a certain distance d from us emitting a flux
Φ (power/surface), it scales with the distance as

Φ =
L

4πd2 =
L

4π(a0r)2 =
L

4πa2
0r2(1 + z)2

, (5.12)

where we introduced the actual distance as a function of the FLRW vari-
able r (the "detector" is at r = 0). In the last step, we took into account the
following relativistic effects. The flux has dimensions Energy/(time×surface):
the energy has to be red-shifted (reduced) by a factor a/a0 = 1 + z,
while the time interval at emission that we measure has to be dilatated
by a0/a = 1 + z. Thus, the flux has to be multiplied by an additional
1/(1 + z)2 factor.
We can now introduce the so-called luminosity distance dL

dL = a0r(1 + z) =

√
L

4πΦ
. (5.13)

Knowing the absolute luminosity of an astronomical object and measur-
ing the flux on earth, the distance can be calculated. Now we would like
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to know how the distance depends from the cosmological parameters.
Since we are considering the propagation of light rays (dτ2 = 0), disre-
garding the angular FLRW variables (i.e. looking only along the line of
sight) we have

dt2 = a
dr2

1− kr2 ⇒ (1 + z)dt =
a0

a
dt = a0

dr√
1− kr2

. (5.14)

Using Eq. 5.10 we have

1
H0

∫ z

0

dz′√
(1 + Ω0

mz′)(1 + z′)2 − z′(2 + z′)Ω0
Λ

=
1

H0

∫ z

0
dz′F(z′) =

a0

∫ r

0

dr′√
1− kr′2

= a0S−1
k (r) = a0





sin−1 r (k = 1)
r (k = 0)
sinh−1 r (k = −1)

(5.15)

After choosing k, the last equation can be inverted for extracting r as a
function of H0 and the density parameters. The result for r can finally be
substituted in Eq. 5.13 obtaining the luminosity distance

dL(z, H0, Ω0
m, Ω0

Λ) =
1 + z

H0

√
Ω0

k

Sk

(√
Ω0

k

∫ z

0
dz′F(z′)

)
. (5.16)

Measuring the flux and knowing the absolute luminosity, the density and
Hubble parameters can be determined.

5.4 Cosmography

With the word "Cosmography" we refer to the geography of the Uni-
verse, in the sense that we deal only with the measurement of distances
without making any hypotheses about the matter content. Given a set
of astronomical distance and red-shift data, we can ask what we can say
about the scale factor a(t) without using the Einstein equations, or, equiv-
alently, without postulating a specific form of the energy-momentum ten-
sor. Such a question is interesting, since there is a large number of models
for Tµν, developed for explaining the data.
The idea is to expand the scale factor in power series and then relate it to
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observable quantities (see e.g. M.Visser, gr-qc/0411131).
Defining the following expansion coefficients

H(t) =
1
a

da
dt

Hubble Parameter

q(t) = −1
a

d2a
dt2 /

(
1
a

da
dt

)2

Deceleration

j(t) =
1
a

d3a
dt3 /

(
1
a

da
dt

)3

"Jerk"

s(t) =
1
a

d4a
dt4 /

(
1
a

da
dt

)4

"Snap" (or Jounce)

c(t) =
1
a

d5a
dt5 /

(
1
a

da
dt

)5

"Crackle"

p(t) =
1
a

d6a
dt6 /

(
1
a

da
dt

)6

"Pop"

...

(5.17)

we can write the scale factor as

a(t) = a0

[
1 + H0(t− t0)−

1
2

q0H2
0(t− t0)

2 +
1
6

j0H3
0(t− t0)

3 + ...
]

(5.18)

The red-shift is (here we keep c 6= 1)

1 + z =
a(t0)

a(t0 − D/c)
, (5.19)

where D/c is the time at which the light signal was emitted and D is
the distance traveled since the emission. Substituting the expansion in
Eq. 5.18 in Eq. 5.19 and expanding it in the parameter x = H0D/c with

1
1 + x + ax2/2 + bx3/6 + cx4/24 + ...

=

1− x + (1− a
2
)x2 + (a− b

6
− 1)x3

+
1

24
(6a2 − 36a + 8b− c + 24)x4 +O(x5) ,

(5.20)
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we obtain

z(D) =
H0D

c
+

2 + q0

2
H2

0 D2

c2 +
6(1 + q0) + j0

6
H3

0 D3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0
24

H4
0 D4

c4 + ... ,
(5.21)

and inverting it we can write the distance as a function of the red-shift

D(z) =
cz
H0

[
1−

(
1 +

q0

2

)
z +

(
1 + q0 +

q2
0

2
− j0

6

)
z2

−
(

1 +
3
2

q0(1 + q0) +
5
8

q3
0 −

1
2

j0
5

12
qo j0 −

s0

24

)
z3 + ...

] (5.22)

What is usually measured, is the luminosity distance defined in Sec. 5.3,
so we have to convert the physical distance D to dL. Using Eq. 5.12, the
luminosity distance can be written as

dL =
a2

0r0

a(t0 − D/c)
. (5.23)

where r0 is the "radius" at the detection point (r=0 is the emission point).
The radial coordinate r0 is given by inverting Eq. 5.2 for the three possible
values of the curvature k:

r0(D) =





sin
∫ t0

t0−D/c
A(t)dt k = 1

∫ t0

t0−D/c
A(t)dt k = 0

sinh
∫ t0

t0−D/c
A(t)dt k = −1

(5.24)

with A(t) = cdt/a(t). The last expression can be expanded in Taylor
series with the integral as parameter. Remembering that sin x ∼ x −
1
3! x

3 + 1
5! x

5 − ... and sinh x ∼ x + 1
3! x

3 + 1
5! x

5 + ... we can write

r0(D) =

(∫ t0

t0−D/c
A(t)dt

)
− k

3!

(∫ t0

t0−D/c
A(t)dt

)3

+ ... . (5.25)
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We can substitute the same expansion which lead to Eq. 5.21 (multiplying
and dividing by a0) and obtain

∫ t0

t0−D/c
A(t)dt =

D
a0

[
1 +

1
2

H0D
c

+
2 + q0

6
H2

0 D2

c2 + ...

]
. (5.26)

Combining Eq. 5.22, 5.23, 5.25, and 5.26 we can express the luminosity
distance as a function of the redshift

dL(z) =
cz
H0

[
1 +

1
2
(1− q0)z−

1
6

(
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

)
z2

+
1

24

(
2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0 j0 + s0 +

2kc2(1 + 3q0)

H2
0 a2

0
z3

)

+... .
(5.27)

The last expression relates two measurable quantities (z and dL) with-
out specifying the energy-momentum tensor (the matter-energy content
of the universe). Fitting distance data with Eq. 5.27 allows the estimation
of the Hubble parameter, the deceleration parameter and if the dataset is
precise enough, even higher-order terms (j0,...). Note that if we keep only
the term linear in z, we have the original Hubble law dL ∼ H0z, where
the red-shift is proportional to the distance.
Accurate measurements can therefore (at least in principle) help recon-
structing the scale factor function a(t). This information can be fed back
into the Friedmann equations for extracting the equation of state of the
cosmological fluid, in a sort of inverse process with respect to what is
commonly done (postulate an equation of state and then extract a(t)). In
particular, the present value of the parameter w = P/ρ is connected to the
deceleration parameter q0, while the slope parameter dP/dρ is connected
to the jerk and so on.

5.5 The ΛCDM Model

With ΛCDM Model, we intend the current Standard Cosmological Model
which best fits the available observations. An important source of exper-
imental information is the Cosmic Microwave Background (CMB), which
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we will discuss later on. Since up to now we discussed cosmic distances,
we mention here the most important experimental method which lead to
the estimate of the density parameters.

5.5.1 Type Ia Supernovae

As we have seen, the calculation of the luminosity distance requires the
knowledge of the absolute luminosity of an object. Astronomical objects
for which the absolute luminosity is fairly well known are called standard
candles. One of the most important standard candles are the Type Ia
supernovae. These stars are actually belonging to a binary system where
one of the two companions is a carbon-oxygen white dwarf. The white
dwarf, thanks to its intense gravitational field, accretes matter from the
companion star until a runaway nuclear reaction makes it turning into
a supernova. The supernova explosion is extremely bright and visible
from large distances. The important point is that the efficiency of the
supernova mechanism is dominated by the temperature of the core and
therefore ultimately from the mass of the star. It turns out that the Type
Ia supernovae can happen only in a restricted mass range, so they deliver
always a very similar light curve. That’s why they are useful as standard
candles.

5.5.2 Accelerated Expansion

Fitting the last result of Sec. 5.3 yields estimates for Ω0
m and Ω0

Λ. The
striking result is that if we take into account the CMB result Ω0

m +Ω0
Λ ≈ 1,

Type Ia supernova data suggests

Ω0
m ∼ 0.3

Ω0
Λ ∼ 0.7 ,

(5.28)

leading to an universe dominated by the cosmological constant term,
where matter has a quite smaller weight. In particular, Type Ia super-
nova surveys suggest a negative deceleration parameter q0, which means
that the universe is accelerating its expansion.
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5.5.3 The ΛCDM Model
The ΛCDM is the "concordance model" emerged from data coming from
different experimental approaches. The Λ refers to the accelerated ex-
pansion driven by a term analogous to the cosmological constant. CDM
means "Cold Dark Matter" and refers to a large component of Ωm com-
posed by some kind of matter we did not have identified yet. The normal
observed "barionic" matter (Ωb) is the smallest component. The ΛCDM
model can be summarized by the following values of the density param-
eters

Ω0
b ∼ 0.05

Ω0
CDM ∼ 0.25

Ω0
Λ ∼ 0.7 ,

(5.29)

leading to the puzzling conclusion that most of the universe is filled with
yet unidentified forms of matter/energy, while the matter described by
the Standard Model of particle physics makes up just 5% of its content.
CMB, Dark matter, and Dark Energy will be discussed in the next chap-
ters.
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In this chapter, we will introduce the idea of Inflation. Inflation was put
forward in order to solve various problems of the standard Big-Bang cos-
mological scenario.
Some of these "problems" are the so-called horizon and flatness problems,
which we will describe first (the fact that these are real problems is mat-
ter of still open debate). Besides giving a solution to the aforementioned
problems (and others connected to specific theories like grand-unified
theories (GUTs)), inflation has other advantages. For example, one of the
successes of the inflationary paradigm, is that it provides a mechanism for
generating cosmological fluctuations on microscopic scales which, dur-
ing cosmological evolution, evolve into the perturbations observed in the
large-scale structure of the universe and the anisotropies in cosmic mi-
crowave background (CMB).

6.1 Conformal Time and the Hubble Horizon

As we know already, the Hubble constant is defined as H = ȧ/a which
can be read as the ratio between velocity and space. Considering a parti-
cle traveling at the speed of light (c = 1), we can define the Hubble radius
RH(t) = 1/H(t). In an expanding Universe, two light sources separated
by a distance greater than the Hubble radius, will never be able to com-
municate. Today’s Hubble radius R0 is estimated to be 1/H0 ∼ 4.1 Gpc.
Another useful definition is the comoving Hubble radius

RcH =
1

a(t)H(t)
. (6.1)
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In the previous chapter, we defined the conformal time via dη = dt/a(t).
Using this new variable, the FLRW metric can be rewritten like

ds2 = a2(η)
[
−dη2 + dχ2 + S2

k(χ)dΩ2
]

, (6.2)

where Ω collects the two "angular" variables, dχ2 = dr2/(1− kr2) and

Sk(χ) =





sinh χ k = −1
χ k = 0

sin χ k = 1
(6.3)

The interesting fact about this metric is that besides the conformal factor
a2(η), it looks like a Minkowski space-time in Cartesian coordinates

ds2 = a2(η)ηµνdxµdxν . (6.4)

In conformal coordinates, a light ray propagates along 45◦ lines in a
space-conformal time plot: χ = ±η + C. Using the normal time in a
curved space-time, light would have followed curves instead of straight
lines: that’s the advantage of introducing the conformal time.
The maximum distance a light ray can travel is therefore

∆η = rmax =
∫ t

0

dt′

a(t′)
=
∫ a1

a0

da
aȧ

=
∫ ln a1

ln a0

1
aH

d ln a =
∫ ln a1

ln a0

RcHd ln a .

(6.5)
We have therefore rewritten the "horizon" rmax in terms of the comoving
Hubble radius, or, in other words, the elapsed conformal time depends
from the evolution of the Hubble radius (which in turn is governed by
the Friedmann equations).

6.2 The Particle Horizon "Problem"

The problem is based on trying to find an explanation to the extremely
high present homogeneity of the universe, even among regions which are
causally disconnected. Two regions are said to be causally disconnected
if even light did not have the time to travel from one region to the other
while the universe is expanding. If no causal connection can be estab-
lished among these regions, how is it possible that the universe is so ho-
mogeneous everywhere? Light started to travel free through the universe
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at the recombination time, when the Universe was about 3× 105 years
old and expanding. This light (which today we observe as the cosmic
microwave background) did not had the time to travel to every possible
point of the universe, according to the evolution we can calculate with
GR, but still, the universe is quite homogeneous. This observation might
rise the question: how is it possible that about the same initial conditions
were set everywhere in the same way, so that causally disconnected re-
gions evolved in a very similar way? Like all the fine-tuning "problems",
the fact that it is really a problem we have to solve, it is matter of debate.
Let’s see now more mathematically how such causally disconnected re-
gions arise. A light ray propagates with zero proper time, so considering
only radial rays dτ2 = dt2 − a2(t)dr2 = 0 and therefore integrating by
separation of variables

∫ rmax

0
dr =

∫ t

0

dt′

a(t′)
, (6.6)

where rmax is the maximum r traveled by the light ray in a time t starting
from t = 0. Let’s consider now the time where light started traveling and
the universe was radiation-dominated. From Eq. 4.29 we have a ∼

√
t.

The horizon DH is the distance traveled while the universe is expanding,
so it is r times the scale factor

DH = a(t)
∫ rmax

0
dr = a(t)

∫ t

0

dt′

a(t′)
=
√

t
∫ t

0

dt′√
t′
= 2t . (6.7)

We obtained the following result: if we go back in time, the horizon
shrinks proportionally to the time, while the scale factor (the distances)
shrinks like

√
t. This means that the horizon is getting smaller faster than

the dimension of the universe. In other words, there were portions of
universe which could not "communicate" with each other, but still, the
CMB looks with good accuracy the same everywhere. This is the essence
of the horizon problem.
Now let’s look at the Horizon Problem from another point of view, mak-
ing use of the conformal time and the comoving Hubble radius discussed
previously.
First, we rewrite things as a function of the red-shift a = 1/(1+ z) (a0 = 1)

da
a

= − dz
1 + z

. (6.8)
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This allows to rewrite the the horizon as (a0 = 1)

d(z) =
∫ z2

z1

dz′

H(z′)
. (6.9)

We would like to calculate the angle subtended by the horizon at the
recombination time, which can be approximated by the ratio between the
comoving particle horizon dh at recombination and the comoving angular
diameter distance from us d0 (redshift z=0) to recombination (z∼1090):

θh =
dh
d0

=
ηrec − η∞

η0 − ηrec
=

∫ ∞
zrec

dz
H(z)∫ zrec

0
dz

H(z)

, (6.10)

where we introduced the comoving distance between two red-shifts. H(z)
can be replaced with Eq. 5.8 with the approximate measured values of the
density parameters: Ωm ∼ 0.3, ΩΛ = 1−Ωm, and Ωr ∼ 0. The integrals
can be numerically evaluated, yielding the interesting result θh ∼ 1◦. This
means that if we look at the sky, regions separated by about one degree
were causally disconnected at recombination time, but now they look
quite similar. This is another way to state the horizon problem.

6.3 The Flatness "Problem"

The so-called Flatness Problem is a fine-tuning problem of the Big-Bang
theory based on the FLWR equations. Some people do not regard this as
a real problem to solve, since we do not know the real probability distri-
bution for possible initial conditions of the universe. After this disclaimer,
let’s see what this problem is.
Rearranging the Friedmann Eq. 4.15 introducing the critical density and
the density parameter we can obtain

(
1
Ω
− 1
)

ρca2 = − 3k
8πG

. (6.11)

Considering only matter and radiation as content of the universe, during
the expansion the density ρ(t) drops faster that the growth of the scale
factor a(t). This means that since the right-hand side of Eq. 6.11 is a con-
stant and ρa2 decreases, 1/Ω − 1 increases. Taking as t = 0 the Planck
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time (tP =
√

h̄G
c5 ∼ 0.5× 10−43s), ρa2 should have dropped by a factor

∼ 1060 during the cosmic history until today. In turn, 1/Ω − 1 should
have increased by the same factor.
Today we measure (for example with SN1a surveys and CMB measure-
ments) Ω0 ∼ 1 and therefore 1/(Ω− 1) ∼ 0. Through Eq. 6.11 this means
that the universe is nearly flat and very close to its critical density. This
translates to an extremely tiny value (∼ 10−62) for |Ω− 1| at the Planck
time. This is the essence of the flatness "problem": in order to observe
an almost flat universe today, we have to "fine-tune" the density to the
critical density to high accuracy. Said in other words: if today we observe
a flat universe, in the distant past, it had to be even flatter (by the huge
∼ 1060 factor).
Again, this might be not a problem at all, since we do not know how
natural a similar choice for the initial condition is. At any rate, the intro-
duction of an inflationary phase in the early universe removes the need
of this fine-tuning "problem" predicting a nearly flat universe.

6.4 Dilution of Relics

For completeness, we mention also the so-called magnetic-monopole prob-
lem. Some theories beyond the SM (enlarging it with additional symme-
tries) predict the existence of magnetic monopoles (a sort of analog to the
electric charges for the magnetic field). P.A.M. Dirac was the first putting
this idea forward, deriving the quantization condition

qmqe =
n
2

, (6.12)

where n is an integer number. Theories predicting the existence of mag-
netic monopoles lead to an overabundance of such particles and inflation
is a generic mechanism able to dilute them to the today’s very small (if
any) abundance. The same idea can work for other exotic particle species
predicted theoretically.

6.5 Inflation

Generically, an inflationary phase of the universe is a phase where there
is accelerated expansion, or ä > 0.
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From the Friedmann equation

Ḣ + H2 =
ä
a
= −4πG

3
(ρ + 3P) (6.13)

the inflation condition can be translated to ρ + 3P < 0. Thus, as can be
easily verified, inflation can happen under the equivalent conditions

ä > 0⇐⇒ Ḣ
H2 < 1⇐⇒ ρ + 3P < 0⇐⇒ d

dt

(
1

aH

)
< 0 . (6.14)

The last condition is quite interesting: inflation corresponds to a shrinking
of the Hubble radius. This is exactly what it is needed for fixing the
horizon problem, since otherwise the expansion of the Hubble radius
leads to causally disconnected regions.
The condition ρ + 3P < 0 instead tells that we need a sort of negative
pressure P < −ρ/3.

6.5.1 Solution to the Horizon Problem

Considering the version of the Friedmann equation obtained in Eq. 5.8
for just one generic matter/energy component Ω with equation of state
P = wρ we have

H =
ȧ
a
= H0

√
Ωa−

3
2 (1+w) . (6.15)

If w 6= −1 the solution is a(t) ∝ t2/3(1+w). If w = −1, then a(t) = eHt.
These solutions, using the conformal time (dη = dt/a) are

a(η) ∝





η
2

1+3w w 6= −1

− 1
η

w = −1
(6.16)

This means that η ∝ 2
(1+3w)

a
1
2 (1+3w) and since during inflation 1+ 3w < 0,

η goes to −∞ if a goes to zero. Therefore, the Big Bang is pushed to
negative conformal times. This in turn means that between the initial sin-
gularity and the decoupling time (when light started to be free to travel in
the Universe) there is much more time than previously thought. In other
words, the light cones which were separated at the decoupling time have
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now time to merge.
This is the effect of the decreasing comoving horizon during the infla-
tionary phase which solves the horizon problem. The comoving Hubble
horizon

RcH =
1

aH
=

1
H0

a
1
2 (1+3w) , (6.17)

in the inflationary case 1 + 3w < 0 shrinks, while for normal "fluids",
where 1 + 3w > 0, it always grows.

6.5.2 Solution to the Flatness Problem

From the Friedman equation Ω − 1 = k
a2H2 we see that the density pa-

rameter is connected to the comoving Hubble radius. Since the radius
decreases during inflation, the Universe is driven towards flatness.
A very nice way to see this is combining the two Friedmann equations
with the inflationary condition Ḣ � H2, P = wρ and the definition of the
density parameter, obtaining

dΩ
d(ln a)

= (1 + 3w)Ω(Ω− 1) . (6.18)

Performing a stability analysis of the previous equation, it can be seen
that Ω = 1 is an attractor during inflation (1 + 3w < 0), while it repre-
sents an unstable fixed point otherwise (1 + 3w > 0).
Thus inflation produces naturally a flat universe, provided that the infla-
tionary phase lasts for enough time.
A caveat to this discussion is the following. Inflation does not change
the curvature k of the Universe. For example, if k > 0, this will not be
modified by the inflationary expansion phase. It is the huge expansion of
the Universe which reduces the curvature radius and makes space-time
look almost flat, but the global curvature remains unchanged.

6.6 Scalar Fields

Before describing some inflationary models, we do a digression into the
quantum field theory of a scalar field φ(x), where x is a space-time point.
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The action of a scalar field in a generic space-time is

S =
∫

dx4√−gL =
∫

dx4√−g
[

1
2

gµν∂µφ∂νφ−V(φ)

]
. (6.19)

The field equations (the "equations of motion") can be obtained from the
Euler-Lagrange equations for continuous systems

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
= 0 , (6.20)

and the result is
∂µ∂µφ− dV

dφ
= 0 . (6.21)

For V=0, the usual wave equation is recovered: ∂µ∂µφ = −φ̈ +∇2φ = 0.
The energy-momentum tensor can be obtained (Nöther’s theorem) with

Tµν = −∂µ
∂L

∂(∂µφ)
∂νφ + gµνL . (6.22)

The energy density is the (µ = 0, ν = 0) component of T, while the average
pressure 〈P〉 is the average of the three spacial diagonal components (µ =
ν = 1, 2, 3):

ρ = T00 =
1
2

φ̇2 +
1
2
∇φ2 + V(φ) ,

P =
1
3
(P11 + P22 + P33) =

1
6

φ̇2 − 1
2
∇φ2 + V(φ) .

(6.23)

In the case of spacial homogeneity and isotropy, spacial gradients vanish
and the two last equations are related by P = −ρ. We discover in this way
that the equation of state of an homogeneous scalar field is characterized
by w = −1 and can in principle have the correct characteristics, if domi-
nating over other forms of matter, to drive an inflationary expansion.

6.7 Old Inflation

The first inflationary model was proposed by A. Guth at the beginning
of the 80s. In this work, it was pointed out how an inflationary phase
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could resolve the horizon and flatness problems. Similar observations
were also made by A. Starobinski, who also predicted the generation of
gravitational waves in the early universe. Mukhanov and Chibisiv (1981)
were the first realizing that zero-point fluctuations in an initial vacuum
state would be amplified by the expansion phase, leading to density per-
turbation which will act as seeds for galaxy formation.
The general idea was the one discussed before, i.e. assume a sort of neg-
ative pressure leading to an equation of state with 1 + 3w < 0. The way
this was realized is the following. Guth’s idea was that the Universe be-
gan in a state characterized by higher symmetry, called a false vacuum,
since it was not the lowest energy state allowed by the potential of a
certain quantum field(s). He suggested that the supercooling of a first-
order phase transition (of e.g. GUT models) can drive the inflationary
phase. In this idea, the density ρ of the Universe is dominated by the
difference in energy density between the false-vacuum and true-vacuum
phases ∆ρ ∼ T4

GUT. The energy density ∆ρ can then act as an effective
cosmological constant leading to accelerated expansion.
Using a condensed matter analogy, the false vacuum corresponds to a
superheated fluid, while the "true" vacuum is analogous to the vapor
phase. The thermodynamic fluctuations were in this case the quantum
fluctuations. During the transition to the true vacuum, bubble nucleation
happens (like vapor bubbles in the superheated fluid).
The problem with this mechanism, is that the huge rate of expansion of
the universe dominates the rate of production and growth of bubbles; the
bubbles never merge to fully complete the transition. This means that the
inflationary phase might last too long.
Another problem is that the collision of the nucleated bubbles can lead to
large anisotropies.

6.8 New Inflation

The "new" inflation paradigm is based on a mechanism where the Uni-
verse cannot escape reaching the true vacuum. These new ideas were
first developed by A. Linde (1982) and independently by A. Albrecht and
P.J. Steinhardt (1982). The new inflationary models are based on a slowly
evolving scalar field (the "inflaton").
A typical potential choosen for the scalar field has the the polynomial
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form

V =
1
2

m2φ2 +
λφ

4
φ4 . (6.24)

The field theory defined by the last two equations is renormalizable and
describes a self-interacting scalar field. Choosing for gµν the FLRW met-
ric, the equation of motion for the field is 1

φ̈ + 3Hφ̇− ∇
2φ

a2 +
dV
dφ

= 0 . (6.25)

The energy-momentum tensor is

Tµν =
2√−g

δS
δgµν

= ∂µ∂νφ− gµν

[
1
2
(∂φ)2 −V(φ)

]
. (6.26)

If φ varies slowly as a function of the space-time coordinates, then we
can neglect the derivatives and the energy-momentum tensor is approxi-
mately

Tµν ≈ gµνV(φ) , (6.27)

which resembles a cosmological constant term. After substitution into the
Einstein (Friedmann in this case) equations, it leads to accelerated expan-
sion, as seen in the vacuum-dominated Universe solution (Sec. 4.6.4).
A clear difference between the vacuum-dominated universe and the case
at hand, is that in the former case the term in the energy-momentum ten-
sor is really constant, while in the latter it varies slowly, moving towards
the dV/dφ = 0 equilibrium point. Usually the potential is defined such
that at dV/dφ = 0, V = 0: in this way the vacuum density disappears
and the expansion stops.
A slow variation of the field can be achieved with a large value of the
Hubble parameter H. Neglecting the ∇2 term in Eq. 6.25, the equation of
motion for the inflaton field looks like the Newton equation for a parti-
cle moving through a medium with friction (the 3Hφ̇ term). That’s why
sometimes the large-H assumption is called Hubble friction.
Under this condition, the "velocity" of the field must be small, so we can

1This means that g = det(gµν) = a3 ("cartesian" coordinates) and since we assume
homogeneity and isotropy, spacial gradients are zero and the equation of motion reduces
to 1√−g ∂t(−g∂φ) +

√−gdV/dφ = 0.
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assume φ̈ ≈ 0 =⇒ φ̇ ≈ const. This approximation is called slow-roll
approximation and the equation of motion reduces to

φ̇ = −dV/dφ

3H
. (6.28)

If in the inflationary phase the cosmological density is dominated by the
slowly varying inflaton field, using the first Friedmann Equation with
Ḣ = 0 (true during inflation) and w = −1 (true for a scalar field), we
have

H2 =
8πG

3
V(φ) . (6.29)

From the slow-roll approximation

dt =
3H

(dV/dφ)dφ
, (6.30)

so we can estimate

N =
∫

d(ln a) =
∫

Hdt = 8πG
∫

dφ
V(φ)

dV/dφ
. (6.31)

The number N is the number of e-foldings, which is the number of times
the Universe grew by a factor of e. In order to produce a simple estimate,
we can assume V ∼ gφn/n and calculate the number of e-foldings be-
tween two values of the inflaton field φ1 and φ2 which are respectively
values at the beginning and end of the inflation phase

N =
4πG

n
(φ2

1 − φ2
2) ≈

4πG
n

φ2
1 =

4π

nM2
P

φ2
1 , (6.32)

where we assumed φ2 � φ1 at the end of inflation and MP =
√

1/G ∼
1.2× 1019 GeV/c2 is the Planck mass (h̄ = c = 1).
The largest scales in the CMB are produced at NCMB ∼ 60 before the end
of inflation and therefore N > NCMB for solving the horizon problem.
The inflationary phase can fix the standard cosmological theory problems
if for example N ∼ 70.
This implies the estimate for the initial value of the inflaton of

φ2
1 > 5.6 · n ·M2

P . (6.33)
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6.9 Reheating

During inflation most of the energy density in the universe is in the in-
flaton potential. The inflationary phase ends when the potential becomes
steep and the inflaton field gains kinetic energy. The energy of the in-
flaton has to be transferred to the SM particles. This process is called
reheating and corresponds to the start of the classical hot Big Bang. After
reaching the minimum, the inflation starts to oscillate into it. Let’s assume
V(φ) = m2φ2 in the neighborhood of the minimum. With homogeneity
we have

φ̈ + 3Hφ̇ + m2φ = 0 . (6.34)

The Universe expands and the expansion scale will become larger than
the oscillation period of the inflaton. This situation is described by H−1 �
m−1 and it means that we can disregard the Hubble friction term in
Eq. 6.34 and have oscillations of frequency m.

6.10 Double Scalar Field Inflation

A variant of the slow-roll mechanism introduced before is to consider two
scalar fields φ and χ with the following potential

V(φ, χ) =
1
2
(aφ2 − ν2)χ2 +

b
4

χ4 + V(φ) , (6.35)

where V(φ) is a slow-rolling potential and a, b > 0 are constants.
At the beginning, the inflaton field φ is large and evolves in the potential
"valley" defined by χ ∼ 0.
When φ2 < ν2/a, the second field χ acquires a non-zero vacuum ex-
pectation value χ2 ∼ ν2/b and the effective mass of φ becomes large:
m2

e f f ∼ (a/b)ν2. The large mass drives the inflaton towards the equilib-
rium point at φ = 0. While going to zero, the inflaton converts in other
particles and reheats the Universe starting again the normal expansion
phase.
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6.11 Starobinski R2 Inflation

In this scenario, inflation is realized through a modification of the Einstein
Equations instead of introducing a particular energy-momentum tensor.
The idea of adding higher order terms to the Einstein-Hilbert legrangian
was motivated by the observation that quantum corrections can induce
such terms and quantum effects should have played a non-negligible role
in the very early Universe.
The Einstein Equations can be obtained minimizing an action (the Hilbert
action) S ∝

∫
d4x
√−gR. The idea is to consider higher-order actions and

the simplest consists in adding a new R2 term:

S = − 1
16πG

∫
d4x
√
−gR(1− R

6m2 ) . (6.36)

In the standard Einstein gravity, the Ricci scalar R is connected to the
trace of the energy-momentum tensor

R = −8πGTµ
µ , (6.37)

and therefore it is not a real dynamical variable of the theory. In the new
R2 version of the action, the scalar satisfies the equation of motion

R̈ + 3HṘ + m2(R + 8πGTµ
µ ) = 0 , (6.38)

which looks like a Klein-Gordon equation for a scalar field (sometimes
called the scalaron). The scalaron, in terms of the Hubble parameter is

R = −6Ḣ − 12H2 . (6.39)

In the absence of matter, the above equations describe an exponential
expansion with an almost constant H, thus satisfying the requirements
for inflation. After the inflationary phase, particles and reheating are
produced by the decay of the scalaron.

6.12 Chaotic Inflation

This version of inflation was proposed by A. Linde. At that time, the
motivation for introducing this scenario was to show that inflation is a
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generic prediction of many theories including the Standard Model.
The idea is that during the Planck era, quantum fluctuations randomly
("chaotically") can drive the inflaton out of its minimum energy, starting
inflation.
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Chapter 7 | The Cosmic Microwave
Background

The Cosmic Microwave Background (CMB) is a relic electromagnetic ra-
diation from the early Universe. It was predicted before its discovery in
1948 by R. Alpher and R.Herman. The CMB was finally measured by
A. Penzias and R. Wilson in 1964 with a ground-based antenna, winning
the Nobel price for the discovery in 1978.
Nowadays very precise measurements of the CMB are done with satel-
lites.
The CMB originated at the time where the temperature of the Universe,
through expansion, dropped at the point of allowing the capture of elec-
trons by nuclei. The Universe then bacame transparent to the electromag-
netic radiation, which then was red-shifted from the time of its produc-
tion until now. The cosmological red-shift predicts a much colder relic
radiation today with respect to its original temperature. Alpher and Her-
man gave 5K as the first estimate, which turned out to be not far away to
the presently known value.
The CMB has today a density of about 514 photons per cm3 and they trav-
eled for 99.7% of the age of the Universe until they reached our detectors.
At the time when the CMB was produced, the Universe was about 1000
times smaller and 1000 warmer than now.
The CMB appears as a rather uniform radiation compatible with a black-
body distribution with a temperature of about 2.7K. What is actually in-
teresting are the deviations from this mean temperature as a function of
the angular scale of the sky.
After reading this chapter you have definitely to google "Planck CMB
simulator" or go to "http://strudel.org.uk/planck" and look interactively
how the comological parameters affect the CMB.
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7.1 Recombination

7.2 Multipole Decomposition of the CMB

The CMB has an average temperature (mediated over the whole sky) of
about T0=2.7K. After subtracting this average temperature, we can con-
sider the relative fluctuations around the mean

δT
T0

=
T − T0

T0
(θ, φ) , (7.1)

which depend on the two angles θ and φ which constitute a coordinate
system describing the sky around us. Since we are dealing with small
fluctuations on the surface of a sphere (the sky), we can expand the rela-
tive fluctuations on the spherical harmonics basis Yl,m (this is analogous
to a Fourier series expansion in a "flat" case on the sin / cos basis)

δT
T0

(θ, φ) = ∑
l,m

al,mYl,m(θ, φ) . (7.2)

Since Yl,m is an orthonormal set of functions 1, we can invert the previous
equation obtaining

al,m =
∫

Y∗l,m(θ, φ)
δT
T0

(θ, φ)dΩ , (7.3)

where the integral in dΩ is done over all angles.
Since we subtracted the average temperature T0 and Y0,0=const, we should
have a0,0 = 0 for the lowest multipole (l = 0). For l = 1 we have the dipole
contribution which is due to the Doppler effect caused by the motion of
the Earth with respect to the CMB.
Therefore, the interesting part of the CMB which should contain infor-
mation about its origin at the decoupling time must be contained in the
l > 1 multipoles.
The (in general, complex) components al,m represent fluctuations around
zero, therefore 〈al,m〉 = 0. If they represent Gaussian random variables,
the whole information about them should be contained in the variances

1
∫

Yl,mY∗l′ ,m′dΩ = δl,l′δm,m′
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〈|al,m|2〉 which are connected to the power of the specific (l, m) mode.
Given the isotropic nature of the CMB, we expect the variance to be de-
pendent only from l, which is related to the angular size of the anisotropy
pattern. Remembering the closure relation ∑m |Yl,m|2 = (2l + 1)/4π for
the spherical harmonics, we can define the angular power spectrum

Cl =
1

2l + 1 ∑
m
〈|al,m|2〉 , (7.4)

which is also called the TT power spectrum. Sometimes Cl is indicated
as CTT

l . If we assume that the al,m are independent random variables, we
have for the correlations

〈al,mal′,m′〉 = δl,l′δm,m′Cl . (7.5)

If we assume that the spectrum of the density perturbations in the early
Universe was Gaussian, the angular power spectrum contains all the sta-
tistical information about the CMB anisotropies and therefore we can pro-
ceed in calculating

δT
T0

= 〈∑
l,m

al,mYl,m ∑
l,m

a∗l,mY∗l,m〉 = ∑
l,l′,m,m′

Yl,mY∗l,m〈al,ma∗l,m〉 =

∑
l

Cl ∑
m
|Ylm|2 = ∑

l

(2l + 1)
4π

Cl .
(7.6)

A subtle point here is the following: the averaging 〈〉 should be done
over an ensemble of Universes, while we have only one realization of it.
We can imagine that averaging over different directions might represent
an averaging over an ensemble of different Universes. In practice, the
observed power spectrum is calculated as follows

1
4π

∫ (
δT
T

)2

dΩ = ∑
l

2l + 1
4π

Ĉl , (7.7)

with Ĉl = ∑m |al,m|2/(2l + 1).
So if the theoretical power spectrum the angular average spectrum were
the same, we should have 〈Ĉl〉 = Cl ⇒ 〈Ĉl − Cl〉 = 0. The averaged
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squared difference between theory and observation is called cosmic vari-
ance and a direct calculation yields

〈(Ĉl − Cl)
2〉 = 2

2l + 1
C2

l . (7.8)

The last formula shows that the variance is smaller for large l (small
scales), while it is large for small l (large scales). The cosmic variance
represents a limit on the accuracy of the comparison between theory and
experiment.

7.3 Angular Scales

As we anticipated in the previous section, the multipole number l is con-
nected to the angular scale in the sky. The spherical harmonics have an
oscillatory pattern on the sphere in the following (approximate) sense: in
a full great circle on the spherical surface, there are l wavelengths of os-
cillations. This means that the angular scale corresponding to the mode l
is θ = 2π/l. We can define the angular resolution as the angle connected
to the distance from a crest and a valley of a wave θres = π/l. A detector
must have a resolution at least equal to θres in order to resolve scales up
to l.
For comparison, the first high-resolution satellite mission (COBE) had
θres = 7◦ ⇒ l < 26. The follow-up experiment (WMAP) had θres =
0.23◦ ⇒ l < 783. The latest (at the time of writing) and most precise satel-
lite mission (Planck) improves the angular resolution about three times
over WMAP.
The question we would like to answer now is: if there were density per-
turbations in the early Universe characterized by (comoving) wavenum-
bers k (i.e. a comoving wavelength λ = 2π/k), to which CMB multipole
l will contribute the most? In other words, we would like to link the pri-
mordial perturbations to the pattern measured in the CMB.
Let’s define the angular diameter distance as dA = D/θ, which is the
same as defining the angle θ subtended by an object of width (length per-
pendicular to the line of sight) D placed at a distance dA from us. Taking
into account the expansion of the Universe we can define the comoving

76



CHAPTER 7. THE COSMIC MICROWAVE BACKGROUND

version of the angular diameter distance

dc
A =

Dc

θ
=

(a0/a)D
θ

=
(1 + z)D

θ
= (1 + z)dA . (7.9)

Considering now the comoving wavelength λ (associated with the co-
moving wavenumber k) of a density perturbation, the mode should be
visible in the CMB at an angular size of

θλ =
λ

dc
A
=

2π

kdc
A
=

2π

l
, (7.10)

which gives the relation l = kdc
A. This result follows from a rather sim-

plified treatment, since clearly it is not possible that a single density per-
turbation mode contributes to just one single CMB harmonic. The full
calculation must take into account all the modes but the basic result we
obtained still holds, in the sense that only the modes close to k contribute
significantly.

7.4 CMB Polarization

The CBM can be polarized because of different reasons. Thomson scat-
tering is surely present (scattering of photons from charged particles that
took place at the last scattering surface) and contributes up to ∼ 5%
level which in terms of temperature fluctuations corresponds to few µK.
Thompson (linear) polarization was indeed experimentally detected.
The Thompson cross section is proportional to the photon polarization
direction before (ε̂) and after the scattering (ε̂′)

dσ

dΩ
∝ |ε̂ · ε̂′|2 . (7.11)

Pictorially, the incident photon makes the charged particle (e.g. an elec-
tron) oscillate in the direction of the polarization. The oscillation creates
radiation with polarization mostly parallel to the initial polarization. If
the incident radiation has quadrupole anisotropies, this will result in an
emitted linearly polarized radiation (this can be seen since the incident
orthogonal components are suppressed in Eq. 7.11).
A photon can be polarized only in the two directions orthogonal to its
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propagation. The polatization can always be decomposed in two othogo-
nal modes which are both orthogonal to the direction of propagation. The
superposition of the two polarization states given in general an elliptical
polarization, and linear or circular polarizations are special cases.
Defining the polarization vector ε̂ = ~E/|E| where E is the electric field,
the polarization tensor is defined as the time average (considering E as
an oscillating field in complex representation)

pij = 〈ε̂iε̂
∗
J 〉 . (7.12)

The polarization tensor is traceless

Trp = pii = 〈ε̂iε̂
∗
i 〉 = 〈|ε|〉 = 1 (7.13)

and Hermitian (pij)
∗ = pji. An orthogonal basis for Hermitian matrices

is provided by the three 2 × 2 Pauli matrices σk. The last observation,
combined with the fact that Pauli matrices are trace-less but Trp = 1
leads to the following decomposition

pij =
1
2
(I + Qσ1 + Uσ2 + Vσ3) (7.14)

where I is the identity matrix and

σ1 =

(
1 0
0 −1

)
; σ2 =

(
0 1
1 0

)
; σ3 =

(
0 −i
i 0

)
. (7.15)

The numbers Q,U,V are called Stokes parameters and their nice property
is that they are measurable. For example, if we take a linear polariza-
tion filter and pass polarized light through it and measure the intensity
of light F as a function the filter θ (Fθ) we can verify that Q = F0 − F90,
U = F45 − F135. The "chirality" (the direction where the polarization is
rotating) is V = 2FC − F where FC is the intensity of the light after passig
through a filter which passes circularly polarized light in a certain direc-
tion and F is the total incident intensity. Stokes parameters are usually
defined between -1 and 1, so Q, U, V are normalized to F.
The degree of polarization is sometimes given as r =

√
Q2 + U2 + V2.

The Stokes parameters vary on a spherical surface referred as the Poincare’
sphere.
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The intensity tensor which tells how much intensity there is in each po-
larization mode is analogously defined as

ρij = 〈EiE∗j 〉 =
1
2
(J · I + Qσ1 + Uσ2 + Vσ3) . (7.16)

In this case we did not normalize by the electric field vector length and
thus we have the new factor

J = δijρij = |Ex|2 + |Ey|2 (7.17)

for a certain choice of orthogonal axes x, y while z is the propagation
direction of the wave. J is obviously a geometric invariant (independent
from the coordinate choice). A second invariant is

V = εijρij , (7.18)

while the Stokes parameters Q and U change with the change of coordi-
nates.
Electromagnetic interactions are parity-conserving and this demands that
the helicity must vanish: V=0.
Furthermore, there are two differential invariants (independent from the
orientation of the axes)

S = ∇2PE = ∂i∂jρij

P = ∇2PB = εik∂i∂jρjk
(7.19)

called scalar and pseudo-scalar invariants, respectively. We consider second-
derivatives also because we are dealing with a rank-2 tensor. The other
notation (PE/B) refers to the so-called "E-modes" and "B-modes" respec-
tively, in analogy to the Helmholtz decomposition of a vector V in a curl-
free (irrotational) and divergence-free (solenoidal) parts using a scalar
function ψ and a vector function A: ~V = ~∇ψ + ~∇× ~A.
Actually, the polarization tensor can indeed be decomposed using two
scalar functions A and B: ρij = (∂i∂j − 1

2 ∂2)A + (∂i∂kεkj + ∂j∂kεki)B. We
defined already the TT power spectrum related to the correlation func-
tion of the temperature fluctuations. We can now define also correlation
functions for the polarization fluctiations. Using the decomposition of
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the polarization in E and B modes, the only non-vanishing correlation
functions (including TT calculated before) are

〈T(n̂)T(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CTT
l Pl(cos θ)

〈T(n̂)E(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CTE
l Pl(cos θ)

〈E(n̂)E(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CEE
l Pl(cos θ)

〈B(n̂)B(n̂′)〉 = 1
4π

l=∞

∑
l=0

(2l + 1)CBB
l Pl(cos θ) .

(7.20)

Having E and B opposite parity properties, their cross-correlations van-
ish. The origin of the E/B notation comes from electromagnetism, since
an electric (E) field can be written as the gradient of a scalar field, while
the magnetic field (B) can be written as the curl of a vector field.
Thompson scattering, being a purely electromagnetic process (parity-
conserving), can induce only E-mode polarizations.
B-modes can arise only if P 6= 0 and this can happen for example in the
case of vector perturbations (ρij = ∂iVj − ∂jVi ⇒ P = εij∂

2∂iVj: can be
caused by magnetized interstellar or intergalactic media), tensor pertur-
bations (e.g. from gravitational waves) or second order scalar perturba-
tions.

7.5 CMB Anisotropies

The spherical harmonic expansion in multipoles of the CMB temperature
is formally done from l = 0 to l = ∞. The l = 0 multipole (the monopole) is
just a constant and its physical interpretation is the average temperature
over the whole sky: T0 = 2.7255± 0.0006 K. The temperature can be con-
verted in density of photons n0, density of mass ρ0 or density parameter
Ω0

CMB:

n0 = 411 photons/cm3

ρ0 = 4.64× 10−34g/cm3 = 2.6× 10−10GeV/cm3

Ω0
CMBh2

0 = 2.47× 10−5 .

(7.21)
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Figure 7.1: Planck Spectrum (arXiv:1502.01589).

The l = 1 multipole (the dipole) represents fluctuations on an angular
scale of order π (or 180◦): it is like dividing the sky in two halves and
look for differences. The dominant contribution to the dipole term comes
from the motion of our detector (ultimately of the earth and the sun) with
respect to the CMB frame.
The amplitude of the dipole is T1 = 3.355± 0.008 mK, 103 times smaller
than the monopole: this shows already the rather high uniformity of the
CMB, but the error in the measurement tells us that even small anisotropies
can be measured with good accuracy. The dipole amplitude leads to the
conclusion that the solar system is moving with velocity v ∼ 370 km/s
with respect to the CMB.
Subtracting the l = 0 and l = 1 terms whose origin is clear, we conclude
that the important cosmological information must be encoded into the
l > 1 multipoles, up to an lmax determined by the experimental resolu-
tion. Usually, two classes of fluctuations are considered:
Primary Fluctuations: Produced at the last scattering surface or before.
These anisotropies carry information about the early universe. In princi-
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ple, these anisotropies can be of the scalar, vector or tensor type. Vector
modes are stretched out by the expansion of the universe and are there-
fore expected to be unobservable. Tensor modes decay as they enter the
cosmological horizon, so they are suppressed at angular scales smaller
than the one of the last scattering surface (∼ 1◦). The leave a too small
imprint into the TT spectrum to be detected but they might be observed
in the BB spectrum.
Secondary Fluctuations: These anisotropies araised after the recombina-
tion era: they can provide information about the "normal matter" expan-
sion era.

7.5.1 Primary Anisotropies

Looking at Fig. 7.1, the most prominent characteristic is the presence of
peaks at l > 100. These peaks are the result of the oscillations of the
photon-baryon plasma before recombination. Oscillations happen when
two opposing forces are at work. In this case, the gravitational force tend-
ing to cluster matter (likely around dark matter concentrations) found
opposition from the pressure caused by photons. The amplitude of the
resulting density fluctuations is quite small (δρ/ρ ∼ 10−5). This means
that we can consider a linear evolution of these perturbations as a good
approximantion and in a linear theory every oscillation mode evolves de-
coupled from the others.
When an inhomogeneity of certain wavelenght entered the cosmological
horizon, plasma oscillations started. In the linear approximation, all the
inhomogeneity with the same wavelenght entered the horizon at the same
time, thus adding in phase.
The first (and highest) peak in Fig. 7.1 was generated by perturbations
which entered the horizon at the recombination time. The (smaller) peaks
at higher l are caused by perturbations which entered the horizon before
recombination.
An analysis of the cosmological perturbations shows that the perturba-
tion spectrum is flat: this means that every mode should have the same
amplitude when entering the horizon. Fig. 7.1 shows that the peaks are
decreasing in amplitude: this is due to cosmological expansion, since
high-l peaks entered the horizon before and were stretched more. Af-
ter recombination, no peaks can be produced since there is no oscillating
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plasma.
The location and height of the peaks depends from the cosmological pa-
rameters. The position of the first peak is tightly connected to the total
amount of matter/enegy present in the universe today (Ω0

tot)

l1stpeak ∼
220√
Ωm

. (7.22)

A quick inspection of the data in Fig. 7.1 shows that Ω0
tot ∼ 1. This means

that the Universe today is very close to the critical density and in turn the
geometry is very close to the flat one.
The height of the first peak instead, is tightly connected to the amount of
barionic matter Ω0

B.
Why the position of the first peak has to do with the geometry of the
Universe? A physical argument is the following. The size corresponding
to the first is known, since it is equal to the cosmological horizon (better:
the sound horizon, where the speed of light is replaced with the sound
speed in the plasma) at the recombination time. The angle2 under which
the first peak is observed today depends on the geometry. This angle in
the case of a flat Universe is about ∼ 1◦ which corresponds to l ∼ 220:
exactly where the first peak is.

The plasma oscillations can be seen as the baryons playing the role of
the mass while the photons with their pressure are the string. This sys-
tem oscillates in non-uniform gravitational fields. Following this simple
model, odd number peaks (first, third, ...) are associated with how far the
plasma "falls" into gravitational potential wells (or how much the plasma
compresses). An increase in the amount of baryons enhances these peaks.
The even number peaks (second, fourth,...) are associated with how how
much the plasma rarefies, therefore with more baryons the odd peaks are
enhanced with respect to the even peaks. In summary, baryons make the
first peak larger than the second. The ratio between even and odd peaks
gives an estimate of the cosmological baryon to photon ratio η.

For l > 1000, the peaks are highly suppressed by a mechanism called
Silk damping or diffusion damping. Silk damping describes the diffusion
of photons during and after recombination from "hot" to "cold" parts of

2The angle here is the angle calculated with the triangle given by the distance from
us to the last scattering surface and the particle horizon for points at the surfece.
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the plasma, realizing effectively a damping of the inhomogeneities result-
ing in a more uniform distribution. Silk damping exponentially decreases
the anisotropies in the CMB on small scales (bounded by the Silk scale)
which is much smaller than a degree. The recombination (or decoupling)
era lasted for a very short time, effectively amplifiying Silk damping.

7.5.2 Secondary Anisotropies

Secondary anisotropies are anisotropies originated in the period at and
after recombination. The mechanisms creating these anisotropies are the
Sachs-Wolfe effect, reionization and the Sunyaev-Zeldovich effect.
The Sachs-Wolfe effect affects photons at the last scattering surface and
it is originated by the inhomogeneous gravitational fields present at that
time. The integrated Sachs-Wolfe effect is the result of photons passing
in time-varying gravitational fields. For example a photon can go down a
potential well and blue-shift, while the well becomes shallower over time.
Since the climb will be less steep, there is an overall non-compensating
effect on the photon’s wavelenght.
Reionization happened at about z ∼ 10 after the appearence of the first
stars. The presence of free electrons allowed again the possibility of
Thomson scattering of CMB photons.
The Sunyaev-Zeldovich effect is a distorsion due to the inverse Comp-
ton scattering of CMB photons on electrons accelerated within galaxy
clusters. This effect is indeed used for studiying galaxy clusters.

7.5.3 Polarization Anisotropies

The TE, EE and BB anisotropy spectra can provide important additional
information about the early Universe. The most important information
carried by the TE and EE spectra regards the reionization era. After
recombination (z ∼ 1100) and birth of the CMB, stars started to form and
the energy produced by them re-ionized the hydrogen gas present in the
young Universe (at least before the 1Gyr age, or z ∼ 6− 20). The CMB can
thus re-scatter on the free electrons inducing polarization. The current
best measurement is z = 11.3± 1.1 (about 365 million years after the big-
bang). Polarization is induced by scattering and it usually summarized
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by the optical depth by Thompson scattering

τ(z) = σTn0
e

∫
dz′

cdt
dz′

xe(z′)(1 + z′)3 , (7.23)

which measures the fraction of photons scattered away from the line of
sight.
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Chapter 8 | Dark Matter

Already in 1932, Jan Hendrik Oort found some discrepancies between
the observed rotation curve (the velocity of the stars as a function of the
galactic radius) of our own galaxy and the expected one from luminous
matter.From this observation, he was not able to exclude that this discrep-
ancy may have been caused by an underestimate of luminous matter due
to the presence of absorbing matter. In 1933, Fritz Zwicky’s studies of the
Coma cluster [?] pointed to a significant discrepancy between the amount
of matter deduced from the knowledge of the typical mass-to-light ratio
of galaxies, and the gravitation properties of the system. Under the sup-
position that the Coma system has reached, mechanically, a stationary
state, the Virial Theorem implies

〈Ekin〉 =
1
2
〈Vg〉 (8.1)

where 〈Ekin〉 and 〈Vg〉 denote average kinetic and potential energies. Zwicky
assumed an uniform mass distribution and a cluster radius R∼ 1 Mly
with 800 galaxies with M ∼109 solar masses. The total mass estimate
was ∼ 1.6× 1045g. The average gravitational potential energy was there-
fore 〈Vg〉 = (3/5)GM/R. Using the virial theorem (Eq. 8.1), the average
mean squared velocity can be extracted:

√
〈v2〉 ≈ 80

km
s

(8.2)

This result has to be compared to the observed value of the average
Doppler effect of ∼1000 km/s. The conclusion was that the average den-
sity of the Coma system would have to be at least 400 times larger than
that derived from the observations on luminous matter. Zwicky himself
commented:
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If this would be confirmed we would get the surprising result that dark matter
is present in much greater amount than luminous matter.

8.1 Galaxy Rotation Curves

Until the 1970s, there was not much progress towards the understanding
of this discrepancy attributed to some from of non-luminous matter, until
Vera Rubin and coworkers published their work on rotation curves of
spiral galaxies.
The measurements showed convincingly that the rotational velocities of
the stars as a function of the radius R of the galaxies did not follow the
expected Kepler’s law

v(R) =

√
GM(R)

R
(8.3)

but they rather stayed about constant out to very large R, as showed in
Fig. 8.1. This implied that galaxies were surrounded by a large amount
of invisible matter.

8.2 Barionic Mass Estimation with X-ray Halos

Galaxy clusters are composed by abundant barionic matter which usually
does not emit radiation. If this matter is present within strong gravita-
tional potentials, bremsstrahlung photons can be emitted (usually in the
X-ray band). Measuring these X-rays can lead to an estimation of the
amount of barionic matter contained in a cluster, thus providing a tool
for measuring its dark matter content by subtraction, if the total gravita-
tional mass could be estimated in another way.
Approximating the cluster as a spherically symmetric system in equilib-
rium (v̄ = 0) the hydrodynamical Euler equation

ρ
dv̄
dt

= −∇P− ρ∇φ , (8.4)
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Figure 8.1: Rotational curves for different galaxies as measured by Rubin
et al in V.C. Rubin et al., Astrophys. Journal, 255, 107 (1978).

where P is the pressure, ρ the density, and φ the gravitational potential,
becomes

dP
dr

= −GM(r)
r2 ρ . (8.5)

M(r) is the amount of matter contained within the radius r. Connecting
the pressure P(r) with the temperature T(r) through the law of ideal
gases P = ρkBT/m and considering only protons for simplicity (m = mP),
after some algebra we obtain

M(r) =
kBTr
GmP

(
−d ln ρ

d ln r
− d ln T

d ln r

)
. (8.6)

The previous equation allows the measurement of the mass profile M(r)
through the measurement of the temperature and density profiles T(r)
and ρ(r).
The temperature is determined via the shape of the frequency spectrum
of the X-ray radiation, or through the strength of the emission lines. The
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gas density ρ(r) is proportional to the square root of the luminosity density,
which is another directly measured quantity.

8.3 Gravitational Mass Estimation with
Weak Lensing

Galaxies and clusters of galaxies act as gravitational lenses for the light
coming toward us. This means that the deflection of light must be af-
fected by the total gravitational mass of the astrophysical object under
consideration, including the possible presence of dark matter.
Weak gravitational lensing (WGL) is the deflection of light emitted from
sources behind a massive object (like a galaxy or a cluster of galaxies).
Since the distortion of light is not very strong (in contrast to strong gravi-
tational lensing, where light is so bended to form the characteristic "arcs"),
many measurements of different background objects are needed, so that
a WGL measurement is an inherently statistical process.
The weak-field approximation of the FLRW metric (see e.g. the discussion
in Sec. 3.3) is

ds2 =

(
1 + 2

φ

c2

)
dt2 −

(
1− 2

φ

c2

)
dr2 . (8.7)

For a light ray, ds2 = 0, and the last equation, evaluated at the first order
for φ/c� 1 gives the effective speed of light in a weak gravitational field

c′ = |dr
dt
| = c

(
1 +

2φ

c2

)
. (8.8)

We can also introduce the effective index of refraction n = c/c′ = 1−
2φ/c2 > 1. With reference to Fig.X, we can write the total deviation angle
α as

α =
dx
ds O
− dx

dx S
=
∫ O

S
ds

∂n
∂x

=
2
c2

∫ O

S
∇⊥φ , (8.9)

where the gradient is taken only along the two coordinates orthogonal to
the light ray (gravity acts only there, while longitudinally along z the con-
tributions sum up to zero) and therefore φ in the last integral is viewed
as a vector with 2 components instead of three. Considering the sim-
plified case where the deviating mass is point-like, φ = −GM/r with
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r =
√

x2 + y2 + z2 =
√

b2 + z2 (b2 = x2 + y2 is the impact parameter).
Evaluating Eq. 8.9

α =
2GM

c2 (x̂, ŷ)
∫ +∞

−∞

dz
(b2 + z2)3/2 =

4GM
c2 (x, y)

[
z

b2(b2 + z2)1/2

]∞

0

=
4GM
c2b

(cos ϕ, sin ϕ)

(8.10)
Some interesting points about the deviation due to a gravitational field
are the following

• α is linear wrt the mass M, so the effects of more masses just add
together to the total deviation.

• The same calculation using Newton’s gravity would return an angle
smaller by a factor of two.

• Introducing the Schwartzschild radius Rs = 2GM/c2, we can rewrite
α = 2RS/b.

8.4 Dark Matter from Astrophysical
Measurements

Weak gravitational lensing provides a method for estimating the total
mass of an astronomical object, while X-ray surveys are sensitive mostly
to the baryonic content. If these two mass estimation methods do not
agree, the difference among them should be due to some kin of non-
baryonic matter. The today’s baryonic density parameter is Ω0

b = ρ0
b/ρc

and measurements at different red-shifts are related by ρb/ρc = Ω0
b/a−3,

as we have seen in Ch 4.
Expressing the baryonic density as Ωbh2, where h is the Hubble’s constant
in 100 km/s/Mpc, we have the following different measurements

• From X-ray surveys, Ωbh2 ∼ 0.02.

• From light absorption from far-away quasars (with higher uncer-
tainty), Ωbh2 ∼ 0.02.
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• From the CMB anisotropy measurements, Ωbh2 = 0.02225± 0.00023
(Planck satellite). The density of baryonic matter is deduced from
the relative height of the of the odd and even acoustic peaks. If
Ωb is enhanced, also the fist peak is enhanced, while the second is
suppressed. The enhancement of Ωb shifts also the peaks to higher
l.

• Another method for estimating Ωb is based on the predictions of the
nucleosithesys models based on our knowledge of nuclear physics.
The predicted abundances of light elements match quite well the
observations.

In summary, the surprising result Ωbh2 ∼ 0.02 follows from a variety of
observations which are consistent with each other.
Weak lensing is instead sensitive to Ωm, measuring Ωmh2 ∼ 0.3 as also
other methods:

• Measure for different objects of the mass-to-light ratio as a function
of the scale. This ratio saturates to a limiting value past the galaxy
cluster scale (∼ Mpc). From this, the Ωmh2 ∼ 0.3 result can be
deduced.

• Large-scale surveys for mapping the spectrum of the distribution of
galaxies lead to Ωmh2 ∼ 0.2. While this number is quite different
from 0.3, it is still much bigger than the baryonic density.

• The mapping of the cosmic velocity field combined with the distri-
bution of galaxies leads also to Ωmh2 ∼ 0.3.

• The CMB provides directly Ωmh2 = 0.308± 0.012 (Planck satellite,
Ade et al, Planck Results XIII, Astron.Astroph. 594, A13 (2015)).

The surprising result is that baryons constitute only about 5% of the crit-
ical density, while the total matter content about 30%. Both numbers are
surprising: we would have expected that matter constitutes the bulk of
the Universe’s content, while baryons should have constituted the bulk
of the matter content. Both these expectations are put into question by
many different measurements, which are quite consistent with each other.
Neutrinos are very abundant in the Universe, and as non-baryonic mat-
ter, they could be solve the puzzle. Unfortunately, their contribution is
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estimated to be Ωνh2 ∼ 0.0025 making them irrelevant in the total bal-
ance for Ωm.
In summary, different measurements point to the existence of additional
gravitating matter the exact nature of which we do not know yet.

8.5 Dark Matter and Structure Formation

Although indirect, a very strong argument for the existence of dark mat-
ter is based on considerations related to structure formation. The struc-
tures we observe today (galaxies, clusters of galaxies) should represent
inhomogeneities in the early Universe which acted as "seeds" for grav-
itational instability and aggregation of matter. These density inhomo-
geneities δρ/ρ can be observed measuring the δT/T anisotropies in the
CMB. It turns out that δρ/ρ ∼ 10−4 and δρ/ρ ∼ a where a is the scale
factor, which has grown by a factor equal to the red-shift since recombi-
nation time (z ∼ 1100).
For structures to form, we need δρ/ρ � 1 but since recombination, not
enough time has passed for going from δρ/ρ ∼ 10−4 to the needed size
of the perturbations.
This tells us that considering only barions, there was not enough time
for structures to form and create what we observe today. Therefore, we
need some kind of matter which decoupled from the primordial plasma
much earlier and started to clump and form in time the required density
perturbations.

8.6 Dark Matter Properties

Having estimated by different methods how much Dark Matter (DM) is
present in the Universe, we would like now to know what are its proper-
ties, in the case DM is really a new kind of particle(s).

• Mass: This parameter is not very well constrained and, depending
from the model, can vary within tens of orders of magnitude. Sim-
ply estimating the de Broglie wavelength for a particle confined on
galactic scales (kpc) with a typical escape velocity of 100km/s, we
can derive a lower limit of 10−22 eV.
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• Interaction: DM should be indeed "dark", i.e. it should not inter-
act electromagnetically. If DM can interact with known particles, it
also depends from the specific model. Since DM cannot radiate, it
is believed to be rather dissipationless: this would restrict its ability
to clump or accrete around compact objects like black holes with
respect to barionic matter. Some models of DM based on the ex-
istence of a "dark sector" propose an interaction with the Standard
Model photon to some level and in this sense some electromagnetic
interaction is allowed. Other models predict the possibility for DM
to annihilate into Standard Model particles and this might represent
a possible astrophysical signal to detect.

• Self-Interaction: Limits to the self-interaction of DM allow for cross-
sections of the order of the strong ones.

8.7 Dark Matter as a Thermal Relic

The idea of thermal decoupling is an appealing framework for the descrip-
tion of DM. Thermal decoupling assumes that DM was in thermodynam-
ical equilibrium in the early Universe. As the Universe expanded and
cooled down, DM density dropped to the point that annihilation basi-
cally stopped, freezing out DM to the density we observe today.
A slightly more quantitative description is the following. As the density
dropped via the expansion, the rate

Γ = n · σ · v (8.11)

of the reaction keeping DM in equilibrium becomes smaller. The Hubble
time 1/H(T) as a function of the temperature T is a measure of the age
of the Universe and the inverse of the reaction rate 1/Γ tells how long
does it take for the reaction to happen on average. So, if Γ � H(T) is,
then the reaction keeping the equilibrium is too slow, since less than one
reaction happens in one age of the Universe. In other words, the rate of
the reaction does not keep up to the expansion rate of the Universe. The
freeze-out temperature Tf o is the temperature at which expansion and
reaction rate are equal

Γ(Tf o) = H(Tf o) . (8.12)
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While the Universe expands, Γ > H, until Tf o is reached. After that,
Γ < H and the DM density is "frozen" and then it will keep decreasing
with the expansion.

8.8 Hot Thermal Relics and the Example of Neu-
trinos

If thermal relics are relativistic at the decoupling time, they are called
hot thermal relics. Neutrinos are an example of such particles: given their
almost vanishing mass they move at almost the speed of light at the de-
coupling. If they have to be thermal relics, they should have been in
thermodynamical equilibrium, for example through a reaction like

ν + ν̄←→ f + f̄ , (8.13)

where ν(ν̄) is a neutrino (antineutrino) and f ( f̄ ) is a fermion (antifermion).
Taking E ∼ Tν and for the cross-section the Fermi approximation 1 σ ∼
G2

FT2
ν , at the freeze-out temperature Tν we require (v = c = 1)

n(Tν) · σ(Tν) = H(Tν)⇒ T3
ν G2

FT2
ν =

T2
ν

MP
. (8.14)

where we used the Friedmann equation H2 = 8πG
3 ρ and ρ ∼ T4 for rela-

tivistic particles. Solving for the freeze-out temperature

Tν = (G2
F MP)

−1/3 ≈ 1 MeV . (8.15)

This result is consistent with the relativistic condition m� T assumed at
the beginning, so neutrinos are really an example of hot relics.

8.9 Cold Thermal Relics and WIMPs

Cold thermal relics are non-relativistic at freeze-out, so the appropriate
approximation for the density is

n ∼ (mT)3/2e−
m
T , (8.16)

1GF ∼ 10−5GeV−2 and we assume E� mW .
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x = m/T
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Figure 8.2: Plot of the two sides of Eq. 8.17. The blue dashed line corre-
sponds to the WIMP case 1/(m ·MP · σ) = 10−14. Other two horizontal
lines at 10−8 and 10−20 are added for reference.

The freeze-out condition nσ ∼ H (we still consider v ∼ c up to some
factor) in the radiation-dominated phase of the Universe implies n f o ∼
T2

f o/(σMP).
Defining x = m/T (x � 1 then defines the non-relativistic "cold" regime),
the freeze-out condition becomes

√
xe−x =

1
m ·MP · σ

. (8.17)

The last equation does not have analytical solutions and must be solved
numerically. A graphical representation of the solution is given in Fig 8.8,
where

√
xe−x is reported together with three cases for 1/(m ·MP · σ): the

solutions are at the intersection points.
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Let’s try now to calculate the density parameter associated to a cold relic
particle with mass mχ

Ωχ =
mχnχ(T0)

ρc
. (8.18)

Today, T0 = 2.7K ∼ 10−4eV. In an isoentropic FLRW Universe, for rela-
tivistic particles we have T ∼ 1/a and n ∼ 1/a3, so

n0

T3
0
=

n f o

T3
f o

. (8.19)

Substituting n0 from the last equation into the density parameter equation
and using again the freeze-out condition

Ωχ =
T3

0
ρcMP

x f o

σ
. (8.20)

The dark matter abundance is estimated to be about ΩDM ∼ 0.2, so the
last equation can be recast in the more suggestive form

Ωχ

0.2
' x f o

20

(
10−8GeV−2

σ

)
, (8.21)

where appropriate numerical values normalize each member to O(1).
In a more exact treatment of the problem, the cross-section of the last
equation should be the thermally-averaged cross section 〈σv〉 for reasons
connected to the Boltzmann equation.
Using the equipartition theorem (3/2)T = (1/2)mv2, we can estimate
that v ∼ c/3 for x ∼ 20 and this leads to the estimate

〈vσ〉 ∼ 3× 10−26 cm3

s
. (8.22)

This result is often associated to the so-called WIMP miracle, which con-
sists in the following coincidence. For various reasons, new physics is
expected at the electroweak scale m ∼ EEW ∼ 200 GeV. If we calculate the
electroweak pair-annihilation cross-section at freeze-out temperature

σEW ∼ G2
FT2

f o ∼
(

EEW

20

)2

∼ 10−8GeV−2 , (8.23)
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we obtain the right cross-section which is able to explain the DM abun-
dance. This result is often quoted as an indication that new physics at the
electroweak scale might also explain DM in the form of a cold relic from
the early Universe. Looking at Fig. 8.8, the dashed line describes about
this case with σEW = G2

Fm2
χ and mχ = 100 GeV, corresponding to x ∼ 35.

Is this really a "miracle"? The previous result was obtained under the as-
sumption of electroweak cross-sections and the cold relic condition x � 1.
In general, following a dimensional argument, a DM annihilation cross-
section can be written as σ ∼ g4/m2

χ, where g is some coupling constant.
Using Eq. 8.17, x � 1 ⇒ mχMPσ � 1, and therefore mχ � 0.1 eV if
σ ∼ 10−8 GeV2. This means that as long as the cross-section is the right
one for explaining the DM abundance, the cold relic mass can be very
small. The conclusion is that the supposed "miracle" can be realized also
without appealing to the electroweak scale.
The argument for understanding the WIMP paradigm can also be restated
as following.
As we have seen,

Ωχ ∝
1
〈vσ〉 ∼

m2
χ

g4
χ

. (8.24)

The WIMP miracle states that if we use weak-scale masses and coupling
constants, we can roughly reproduce the observed DM abundance. The
last equation though fixes only the ratio between couplings and masses
and therefore also other combinations might in principle obtain the cor-
rect abundance.

8.10 Mass Ranges for Cold Thermal Relics

General limits can be imposed to the allowed mass range of cold thermal
dark matter. The requirement of unitarity in the calculation of cross-
sections places the approximate bound

σ <
4π

m2
χ

, (8.25)

and this, together with Eq. 8.21 approximately implies

Ωχ

0.2
> 10−8GeV−2 × m2

χ

4π
. (8.26)
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Since Ωχ < 0.2 we have

( mχ

120 TeV

)2
< 1 . (8.27)

For a lower limit for WIMPs (σ ∼ G2
Fm2

χ), choosing x f o ∼ 20 we have

Ωχh2 ∼ 0.1
10−8GeV−2

G2
Fm2

χ

∼ 0.1
(

10 GeV
mχ

)2

. (8.28)

This lower limit is known as the Lee-Winberg limit. The overall mass
range allowed for WIMPs goes therefore from few GeVs to many TeVs.
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