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Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself. 
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,…….

Every number can be factorized in primes: 105 = 3*5*7

Fundamental theorem: the factorization is unique

Goldbach Conjecture: every even integer > 2 can be expressed as the  
sum of two primes (4=2+2, 6=3+3, 8=5+3, …).
Proof ? 

Euclid’s Theorem: the prime numbers are infinite! Largest known: 282.589.933-1
How many are the prime numbers?
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When is a problem “difficult”? (Complexity Theory)
Question: How much TIME (or SPACE) does it take to solve a problem? 
Assume: 
- Every elementary operation takes the same amount of time 
- We are interested in the asymptotic scaling as function of the input

Examples:
- Add N numbers: O(N)
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When is a problem “difficult”? (Complexity Theory)
Question: How much TIME (or SPACE) does it take to solve a problem? 
Assume: 
- Every elementary operation takes the same amount of time 
- We are interested in the asymptotic scaling as function of the input

Examples:
- Add N numbers: O(N)
- Calculate the determinant of an NxN matrix: O(N!)

If you are VERY smart: O(N2.373)

What about “non-polynomial” problems? Example:  
Travelling salesman problem (TSP): visit N cities in a loop taking the shortest path

If you are smart: O(N3)
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When is a problem “difficult”? (Complexity Theory)

FACTORING?

DET(M)
SUM(N)

3SAT KNAPSACK

TSP(Dec)

HALTING

TSP
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Factorization: a “difficult” problem?

Consider two prime numbers p and q and calculate N = qp 
- If you know N, can you factorize it (discover q and p)? 
- How “difficult” is this?

Example: N = 35
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Factorization: a “difficult” problem?

Consider two prime numbers p and q and calculate N = qp 
- If you know N, can you factorize it (discover q and p)? 
- How “difficult” is this?

Example: N = 35 p = 5 , q = 7 (wow..)

What about this? 
1.444.363

Should you try all the combinations of (prime) divisors?

BTW: p = 1181 , q = 1223 

It is believed that  
FACTORING is in NP 
(but not NP-complete!)
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Cryptography
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Back to Roman Times

The “Caesar cipher” is one of the oldest forms of cryptography. 
Idea: Shift a letter by 3 steps in the alphabet: A—>D, B—>F, …, Z—->C
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Back to Roman Times

The “Caesar cipher” is one of the oldest forms of cryptography. 
Idea: Shift a letter by 3 steps in the alphabet: A—>D, B—>F, …, Z—->C

Apparently still in use until 2006…

https://de.wikipedia.org/wiki/Pizzino
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Cryptography with Primes: RSA (simplified)

You Bank
Choose p,q primes

N=pq

3d=1mod((p-1)(q-1))
Find d (private key):

Most commonly: 3—> 65537

d from Extended Euclidean Algorithm

Rivest, R.; Shamir, A.; Adleman, L. Comm. ACM. 21 (2): 120–126 (1978).
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Cryptography with Primes: RSA (simplified)

You Bank
Choose p,q primes

N=pq

c 
(cypher text)

3d=1mod((p-1)(q-1))

X = cd    (mod(N))
Invert:

Find d (private key):

(N,3) 
(public key)Credit card number X

Calculate c = X3mod(N)

“easy” (modular exponentiation)

Most commonly: 3—> 65537

d from Extended Euclidean Algorithm

Modular exponentiation is hard to invert.

Rivest, R.; Shamir, A.; Adleman, L. Comm. ACM. 21 (2): 120–126 (1978).
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Cryptography with Primes: RSA (simplified)
Euler’s Theorem: gdc(a,N) = 1 ) a

�(N) = 1(modN)

�(N) = (p� 1)(q � 1)

N = pq

Period of the modular exponential function

�(N)
f(i) = a

i
modN

is the PERIOD of the function

Factorization

N has common factors with (a�/2 ± 1) ) gdc(N, ar/2 ± 1)

a

�(N)
modN = 1 ) a

�(N) = kN + 1 ) a

�(N)+1 = kNa+ a ) a

�(N)+1 = a(modN)

(a�(N) � 1)modN = 0 ) (a�/2 + 1)(a�/2 � 1)modN = 0
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Cryptography with Primes: RSA (simplified)

Encrypt

Decrypt

c = x

3
modN

x = c

d
modN

Public Key

Private Key

(N, 3)

x = (x3
modN)dmodN = x

3d
modN = x

k�+1 = x

k�
xmodN = x

3dmod(p� 1)(q � 1) = 1

Euler’s Theorem

Knowing the private key d, the inversion really works and is fast:

An eavesdropper can do the same factorizing N in p and q. 
OR: he can try to find the period of the modular exp. function: classically hard.



Luca Doria, JGU Mainz From Primes to QC 15

Quantum Mechanics
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Quantum mechanics (vs Probability Theory)

Classical probability theory:

Event with N possible outcomes: (p1, p2, ..., pN )

1-norm:
X

i

pi = 1 pi � 0 conserved by stochastic matrices (columns add to 1)
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Quantum mechanics (vs Probability Theory)

Classical probability theory:

Event with N possible outcomes: (p1, p2, ..., pN )

1-norm:
X

i

pi = 1 pi � 0 conserved by stochastic matrices (columns add to 1)

Quantum Mechanics:

2-norm:
X

i

|↵i|2 = 1

constructive/destructive interference

conserved by unitary matrices (“operators”)

WF “collapse”: only one component results from a measurement

| i = ↵1|1i+ ↵2|2i+ ...+ ↵N |Ni
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Quantum Computers
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Quantum Computers

1918-1988

1st Conference on Physics and Computation (MIT, 1981)

International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 

Simulating Physics with Computers 
Richard P. Feynman 

Department of Physics, California Institute of Technology, Pasadena, California 91107 

Received May 7, 1981 

1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 

467 

0020-7748/82/0600-0467503.0£1/0 © 1982 Plenum Publishing Corporation 
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Quantum Computers
Classic register

Classic gates
Any functionally complete set of logic gates 

10

(AND,NOT) (NAND) (NOR)…
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Quantum Computers
Classic register

Classic gates
Any functionally complete set of logic gates 

10

(AND,NOT) (NAND) (NOR)…

|1i =
✓

0
1

◆
|0i =

✓
1
0

◆

| i = ↵|0i+ �|1i |↵|2 + |�|2 = 1

Quantum register

Quantum gates
Any functionally complete set of unitary operators 
Example: Hadamard gate:

H =
1p
2

✓
1 1
1 �1

◆
H|0i = |0i+ |1ip

2
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Quantum Circuits

HA

B

|0iA|0iB

1p
2
(|0iA|+ |1iA)|0iB

1p
2
(|0iA|0iB + |1iA|1iB)

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCAH =
1p
2

✓
1 1
1 �1

◆

Swaps the qbit if the other one is |1> 
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Period Finding: Fourier Transform
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Quantum Fourier Transform
X

j

↵j |ji !
X

k

↵̃k|ki ↵̃k =
1p
N

N�1X

j=0

e2⇡ijk/N↵j

|10i ! |00i � |01i+ |10i � |11i

!N = e
2⇡i
N

Example:
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Quantum Fourier Transform
X

j

↵j |ji !
X

k

↵̃k|ki ↵̃k =
1p
N

N�1X

j=0

e2⇡ijk/N↵j

|10i ! |00i � |01i+ |10i � |11i

!N = e
2⇡i
N

Can be implemented iteratively on a QC with two gates!

FFT: O(n2n) gates QFT: O(n2) gates

Example:
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Quantum Fourier Transform
3-qubits example:

H =
1p
2

✓
1 1
1 �1

◆

Rk =

✓
1 0

0 e
2⇡i
2k

◆

H

Rk

Hadamard Gate

Phase-shift Gate
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Quantum Fourier Transform
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Shor’s Algorithm

Peter Shor (1959,-)

General Number Field Sieve

Shor’s Algorithm

O(e1.9(logn)1/3(log logn)2/3)

O((log n)2(log log n)(log log log n))

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. 
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.

Classical computer: 
240-digit number factored (2019) 
900 cores/years



Luca Doria, JGU Mainz From Primes to QC 25

Shor’s Algorithm

Peter Shor (1959,-)

General Number Field Sieve

Shor’s Algorithm

O(e1.9(logn)1/3(log logn)2/3)

O((log n)2(log log n)(log log log n))

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. 
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.

Classical computer: 
240-digit number factored (2019) 
900 cores/years

15=5x3 (2001)
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Shor’s Algorithm

Peter Shor (1959,-)

General Number Field Sieve

Shor’s Algorithm

O(e1.9(logn)1/3(log logn)2/3)

O((log n)2(log log n)(log log log n))

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc. 
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.

21=3x7 (2012)

Classical computer: 
240-digit number factored (2019) 
900 cores/years

15=5x3 (2001)
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Quantum Supremacy

10mm

QS: Show that a quantum computer can be 
asymptotically faster than a classical one on a 
specific task.

Done in 2019 for the first time: 
Google, with the Sycamore chip based on 54 q-bits (“transmons”, a sort of 
non-linear quantum resonators in the few-GHz range realized with 
Josephson junctions) arranged on a 2D lattice.

Classically “Hard” problem: 
Given a randomly chosen quantum circuit, predict the output distribution 
over the possible bit strings. This is very hard to simulate for a classical 
computer.
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Summary

-

 QC: Asymptotically faster on certain (NP) problems. 

 Cannot solve NP-complete problems! 

 Many attempts at construction a QC: different technologies. 

 No, a QC does not try all the possible solutions in parallel: quantum interference. 

 Strong interest from industry (Google, IBM, Microsoft, D-Wave, SW companies..)
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Vielen Dank fuer Ihre Aufmerksamkeit! 
Thank you for your attention!
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Factoring: General Algorithm
N 

even
No

Yes

N

p=2

N=zk Yes p=z

No

Choose a: 1<a<N gcd(a,N)=1

No

p=gcd(a,N)

Yes

Find period r of 
a mod(N)

r even
No

Yes

ar/2mod(N)=-1

Yes

No
Factor: 

p=gcd(ar/2+1,N) 
and/or 

p=gcd(ar/2-1,N) 
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When is a problem “difficult”? (Complexity Theory)
A VERY informal intro to Complexity Classes

P: Decision problems solvable by a TM in polynomial time. 

NP: Decision problems “hard” to solve but verifiable in polynomial time. 

NP-hard: Any NP problem can be efficiently reduced to a problem in this class. 

NP-complete: An NP-hard problem which is also in NP: “hardest problems in NP”.

PSPACE: Problems which need polynomial space (memory!) 

Much more: EXPTIME, EXPSPACE, PSPACE-complete, EXPTIME-complete, …


