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Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Luca Doria, JGU Mainz From Primes to QC



Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7

Luca Doria, JGU Mainz From Primes to QC



Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7

Fundamental theorem: the factorization is unique

Luca Doria, JGU Mainz From Primes to QC



Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7
Fundamental theorem: the factorization is unique

How many are the prime numbers?

Luca Doria, JGU Mainz From Primes to QC



Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7
Fundamental theorem: the factorization is unique

How many are the prime numbers?
Euclid’s Theorem: the prime numbers are infinite! Largest known: 282-587.933.]

Luca Doria, JGU Mainz From Primes to QC



Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7
Fundamental theorem: the factorization is unique

How many are the prime numbers?
Euclid’s Theorem: the prime numbers are infinite! Largest known: 282-587.933.]
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Prime Numbers (Primzahlen)

Prime number: divisible (reminder = 0) only by 1 and itself.
Examples: (1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.......

Every number can be factorized in primes: 105 = 3*5*7
Fundamental theorem: the factorization is unique

How many are the prime numbers?

Euclid’s Theorem: the prime numbers are infinite! Largest known: 282-587.933.]

Goldbach Conjecture: every even integer > 2 can be expressed as the
sum of two primes (4=2+2, 6=3+3, 8=5+3, ...).
Proof 2
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?
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Prime Numbers (Primzahlen)
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?

Prime Number Theorem p, ~ nlogn
X

Asymptotic distribution law: 7T (x) ~ log 2

1 I 1

Sum of the inverses: Z — =3 | 3 L =

primes n

O
1 1 1 1 1 1 1
Sum of the twins: Z o <3 | 5>+(5 | 7)+(11 | 13>+...:

twins
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?

Prime Number Theorem p,, ~ nlogn

L
Asymptotic distribution law: 7(x) ~
log x
Sum of the inverses: Zl—l'l' = OO
um of the inverses: =5 tgt..=

primes n

1 1 1 1 1 1 1
Sum of the twins: Z . <3 | 5> + (5 | 7) + (11 | 13> + ... = 1.90216...

twins
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?

Prime Number Theorem p, ~ nlogn
X

Asymptotic distribution law: W(CE) ~ logz e

Sum of the inverses: g ~ =5 | : L= OO pentium~ |

primes n

: L, ] 11 1 1 e
Sum of the twins: Z — = (3 | 5> T (5 | 7) + (11 | 13) L — 1.90216...

twins
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?

Prime Number Theorem p, ~ nlogn
X

Asymptotic distribution law: W(CE) ~ logz e

1

1
Sum of the inverses: Z —

T

pmmes mn

1
f . Z 1 —I_ 1 I 1 —I_ o 1 53‘2”21
Sum of the twins: - 71 13 .= 1.
0O

twins

Riemann’s z-function: C(S) —
nS
n=1
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Prime Numbers (Primzahlen)

Primes are infinitel Can we say (at least!) something about their
asymptotic behaviour?

Prime Number Theorem p, ~ nlogn
X

Asymptotic distribution law: 7(x) ~

Z%

1
X0
y
primes mn
1 N 11 N
5 11 13
o0

(=3 —=1II —

n—1 D Prime

log x
1

Sum of the inverses:

Sum of the twins:

twms

Riemann’s z-function:
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Complexity
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When is a problem “difficult”2 (Complexity Theory)

Question: How much TIME (or SPACE) does it take to solve a problem?
Assume:

- Every elementary operation takes the same amount of time

- We are interested in the asymptotic scaling as function of the input

Examples:

- Add N numbers: O(N)
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- Every elementary operation takes the same amount of time
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- Add N numbers: O(N)
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If you are smart: O(N?)
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When is a problem “difficult”2 (Complexity Theory)

Question: How much TIME (or SPACE) does it take to solve a problem?
Assume:

- Every elementary operation takes the same amount of time

- We are interested in the asymptotic scaling as function of the input

Examples:

- Add N numbers: O(N)
- Calculate the determinant of an NxN matrix: O(N!)

If you are smart: O(N3)
If you are VERY smart: O(N?%-73)

What about “non-polynomial” problems2 Example:
Travelling salesman problem (TSP): visit N cities in a loop taking the shortest path
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When is a problem “difficult”2 (Complexity Theory)

A
HALTING
NP-Hard NP-Hard
3SAT KNAPSACK
NP-Complete
TSP(Dec)
P = NP
.......... = NP-Complete

P # NP P = NP
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When is a problem “difficult”2 (Complexity Theory)

HALTING

NP-Hard

3SAT KNAPSACK

NP-Complete

TSP(Dec)

--------
........
- ..
- .
" ~
- 'S
* ot

A

Complexity

NP-Hard

P=NP
= NP-Complete
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Factorization: a “difficult” problem?

Consider two prime numbers p and g and calculate N = gp

- If you know N, can you factorize it (discover q and p)?
- How “difficult” is this?

Example: N = 35
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Factorization: a “difficult” problem?

Consider two prime numbers p and g and calculate N = gp

- If you know N, can you factorize it (discover q and p)?
- How “difficult” is this?

Example: N = 35 p=5,q=7 (wow..)
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Factorization: a “difficult” problem?

Consider two prime numbers p and g and calculate N = gp

- If you know N, can you factorize it (discover q and p)?
- How “difficult” is this?

Example: N = 35 p=5,q=7 (wow..)
What about this?
1.444.363

Should you try all the combinations of (prime) divisors?
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Factorization: a “difficult” problem?

Consider two prime numbers p and g and calculate N = gp

- If you know N, can you factorize it (discover q and p)?
- How “difficult” is this?

Example: N = 35 p=5,q9=7(wow..) It is believed that

FACTORING is in NP
What about this? (but not NP-complete!)
1.444.363

Should you try all the combinations of (prime) divisors?

Luca Doria, JGU Mainz From Primes to QC



Factorization: a “difficult” problem?

Consider two prime numbers p and g and calculate N = gp

- If you know N, can you factorize it (discover q and p)?
- How “difficult” is this?

Example: N = 35 p=5,q9=7(wow..) It is believed that

FACTORING is in NP
What about this? (but not NP-complete!)
1.444.363

Should you try all the combinations of (prime) divisors?

BTW: p= 1181, q = 1223
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Cryptography
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Back to Roman Times

The “Caesar cipher” is one of the oldest forms of cryptography.
ldea: Shift a letter by 3 steps in the alphabet: A—>D, B—>F, ..., Z—>C
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Back to Roman Times

The “Caesar cipher” is one of the oldest forms of cryptography.
ldea: Shift a letter by 3 steps in the alphabet: A—>D, B—>F, ..., Z—>C

A5-BL-¢c5-D&-¢E4
§FFG=3H-31-
LOL- |5 - ik - 130
Apparently still in use until 2006... (55 110 p-i75
19T=43U-20V
¥

https://de.wikipedia.org/wiki/Pizzino
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Cryptography with Primes: RSA (simplified)

Rivest, R.; Shamir, A.; Adleman, L. Comm. ACM. 21 (2): 120-126 (1978).
You Bank

Choose p,q primes

N=pq
Find d (private key):

3d=1mod((p-1)(q-1))
d from Extended Euclidean Algorithm

Most commonly: 3—> 65537
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Rivest, R.; Shamir, A.; Adleman, L. Comm. ACM. 21 (2): 120-126 (1978).
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(N,3) Choose p,q primes

Credit card number X M N=pq

Find d (private key):
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d from Extended Euclidean Algorithm
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Cryptography with Primes: RSA (simplified)
Euler’s Theorem: gdc(a, N) =1 = a® V) — 1(modN) N = pq
G(N)=(p—1)(¢g—1)

Period of the modular exponential function

a®NmodN =1 = a®WN) = kN +1 = a®W ! = ENa 4 a = o®WNV) T = a(modN)

@(IN) is the PERIOD of the function f (i) = a‘modN

Factorization

(a®N) — 1)modN =0 = (a?/? +1)(a®/? — 1)modN = 0
N has common factors with (a¢/2 T 1) = gdC(N, ar/z T 1)
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Cryptography with Primes: RSA (simplified)
Euler’s Theorem: gdc(a, N) =1 = a® V) — 1(modN) N = pq
G(N)=(p—1)(¢g—1)

Period of the modular exponential function

a®NmodN =1 = a®WN) = kN +1 = a®W ! = ENa 4 a = o®WNV) T = a(modN)

@(IN) is the PERIOD of the function f (i) = a‘modN

Factorization

(a®N) — 1)modN =0 = (a?/? +1)(a®/? — 1)modN = 0
N has common factors with (agb/2 T 1) = gdC(N, ar/z T 1)

Factorize N <——>  Find the period of
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Cryptography with Primes: RSA (simplified)

Encrypt C = r>modN Public Key  (V,3)

Decrypt = c*modN Private Key  3dmod(p —1)(¢g —1) =1

Knowing the private key d, the inversion really works and is fast:

r = (2°modN)*modN = x°*modN = 2" = 2" rmodN = z

Euler’s Theorem

An eavesdropper can do the same factorizing N in p and q.
OR: he can try to find the period of the modular exp. function: classically hard.
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Quantum Mechanics
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Quantum mechanics (vs Probability Theory) =

Classical probability theory:

Event with N possible outcomes: (pl,pg, ...,pN)

1-norm: Zpi =1 p;, >0 conserved by stochastic matrices (columns add to 1)
()
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Quantum mechanics (vs Probability Theory) -

Classical probability theory:

Event with N possible outcomes: (pl,pg, ...,pN)

1-norm: Zpi =1 p; =0 conserved by stochastic matrices (columns add to 1)
Quantum ZIv\echc:mics:

) = a1|l) + a2]2) + ... + an|N)

2-norm: Z |Oz7;|2 — ] conserved by unitary matrices (“operators”)

1
constructive/destructive interference

WF “collapse”: only one component results from a measurement
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Quantum Computers
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Quantum Computers

] st Conference on Physms and Computahon (MIT 1981)

1918-1988

Simulating Physics with Computers
Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7, 1981
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Quantum Computers
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Quantum Computers
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Quantum Circuits

S O

0)410) 5
" 1)
\_| /
é(\om 1) .4)[0)5 ;5<|0>A\O>B £ 1) 4l1) )

1 0
1 ] 1 0 1

_ CNOT =
N \/§<1 —1) 0 ¢

Swaps the gbit if the other one is | 1>
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Period Finding: Fourier Transtorm
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Quantum Fourier Transform

Example: |10) — |00) — |01) + [10) — |11)

1 1 1 1 1
1 W w* w* w1
1 1 (> o 0 Ww2(N-1) 5 i
Fy = — 3 6 9 3(N-1) WwnNy = €e N
VN 1 W W W’ Wt
1 V-1 20N-1) | 3(N-1) W N-1)(N-1)
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Quantum Fourier Transform

1 N—1
(. = R E : 627szk/Na3
7=0

1 1 1 1 1
1 w w* w3 N1
1 w? iy b e 2AN-T) 5
Fv = JN |1 & oS 7 IR 1. £ ) WN =€V
1 WVl 2V-1) B(N-1) o (N-1)(N-1)

Can be implemented iteratively on a QC with two gates!
FFT: O(n2") gates QFT: O(n?) gates
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Quantum Fourier Transform

3-qubits example:  |z;)
T9) ’
x3) ¢ @

1
_®— H = 7 ( } _11 ) Hadamard Gate

1 0
—— Ry, = ( ) L ) Phase-shift Gate
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Quantum Fourier Transform

®
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Shor’s Algorithm

Classical computer:
240-digit number factored (2019)
900 cores/years

General Number Field Sieve
0(61.9(10g n)1/3(log log n)2/3)

Time

250
Peter Shor (1959,-)

200
150

i
i
i
i
i
i
i
i
i
i
i
i
i
|
100 v

Shor’s Algorithm

O((logn)?(loglog n)(logloglog n))
I

llIllll|llllIllll|llll|llll|llll|llll|llll|llll

100 200 300 400 500 600 700 800 900 1000
Problem Instance Dimension

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc.
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.
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Shor’s Algorithm

Time

250

200

150

100

General Number Field Sieve
0(61.9(10g n)1/3 (log log n)2/3)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
v

Shor’s Algorithm

O((logn)?(loglog n)(logloglog n))
S

llIllllIllllIllllIllll|llll|llll|llll|llll|llll

100 200 300 400 500 600 700 800 900 1000
Problem Instance Dimension

Classical computer:
240-digit number factored (2019)
900 cores/years

15=5x3 (2001)

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc.
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.

Peter Shor (1959,-)
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Shor’s Algorithm

Classical computer:
240-digit number factored (2019)
900 cores/years

General Number Field Sieve
0(61.9(10g n)1/3 (log log n)2/3)

Time

250

200

150

|
|
|
|
|
|
|
|
|
|
|
|
|
|
v

100

Shor’s Algorithm
O((logn)?(loglog n)(logloglog n)) 15=5x3 (200])

— 21=3x7 (2012)

50

llIllllIllllIllllIllll|llll|llll|llll|llll|llll

100 200 300 400 500 600 700 800 900 1000
Problem Instance Dimension

P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proc.
35th ann. symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134.

Peter Shor (1959,-)
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Quantum Supremacy

QS: Show that a gquantum computer can be
asymptotically faster than a classical one on a
specific task.

Done in 2019 for the first time:

Google, with the Sycamore chip based on 54 g-bits (“transmons”, a sort of
non-linear quantum resonators in the few-GHz range realized with
Josephson junctions) arranged on a 2D lattice.

Classically “Hard” problem:

Given a randomly chosen quantum circuit, predict the output distribution
over the possible bit strings. This is very hard to simulate for a classical
computer.

nature

QUANTUM
UPREMACY |
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Summary

3k QC: Asymptotically faster on certain (NP) problems.

3k Cannot solve NP-complete problems!

3k Many attempts at construction a QC: different technologies.
2% No, a QC does not try all the possible solutions in parallel: quantum interference.

3k Strong interest from industry (Google, IBM, Microsoft, D-Wave, SW companies..)

Luca Doria, JGU Mainz From Primes to QC
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Vielen Dank fuer lhre Aufmerksamkeit!
Thank you for your attention!

HOW'S YOUR
QUANTUM COMPUTER

THE PROJECT EXISTS
IN A STMULTANEOUS
STATE OF BEING BOTH
TOTALLY SUCCESSFUL
AND NOT EVEN

CAN I THATS
OBSERVE A TRICKY

PROTOTYPE COMING
177

§ 1742 22002 Scott Adams, NG, /Dat by Unsess Ucios
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Factoring: General Algorithm

N —> ‘—»
Yes

55 pz p=gcd(a,N)

e

SR -

Yes

Yes

No

Yes
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When is a problem “difficult”2 (Complexity Theory)

A VERY informal intro to Complexity Classes

P: Decision problems solvable by a TM in polynomial time.

NP: Decision problems “hard” to solve but verifiable in polynomial time.

NP-hard: Any NP problem can be efficiently reduced to a problem in this class.
NP-complete: An NP-hard problem which is also in NP: “hardest problems in NP”.
PSPACE: Problems which need polynomial space (memory!)

Much more: EXPTIME, EXPSPACE, PSPACE-complete, EXPTIME-complete, ...
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