
Introduction to

ADO.NET

http://ADO.NET

Introduction

- ADO.NET: ActiveX Data Objects .NET
!
It is the primary data access API (Application Program Interface) of the .NET
framework.
!
It provides a set of classes needed for developing database applications with C# or
other .NET languages (e.g. VisualBasic).
!
The latest version of ADO.NET is 4.
!
ADO.NET provides consistent access to data sources such as SQL Server, MySQL,
Oracle and XML.
Applications can use ADO.NET to connect to these data sources and retrieve, handle,
and update the data that they contain.
!
ADO.NET separates data access from data manipulation into discrete components
that can be used separately or together.
!
ADO.NET includes data providers for connecting to a database, executing
commands, and retrieving results. Those results are either processed directly, placed
in an ADO.NET DataSet objects, or combined with data from multiple sources.

http://ADO.NET

ADO.NET Objects Architecture

Dataset

Data Table Data Adapter

Command

Connection
Database Server

Database

.NET Data Provider

The dataset contains one or more
data tables that store the data
retrieved from the database.

The data provider provides the
classes needed for creating
objects used in retrieving data
from a database.

The data adapter is able to
issue a “select” statement
stored in a “command” object.

Then, the command object uses
a “connection” object to connect
to the DB and retrieve the data.

Disconnected Data Architecture: When you use a data adapter, the data provider remains
connected to the DB only for the time needed to perform the task (update, retrieve, ..). After
that, it disconnects from the DB and the application works with her own dataset object.
Performance improvement: limited request from the server.

http://ADO.NET

Handling of Concurrency
Client-Server applications naturally pose the problem of concurrency.
More clients can access a database and a specific table at the same time.
!
Problem:!
- User 1 opens a connection, retrieves data and stores them in a local .NET object

and then closes the connection. After working on the data, s/he re-opens the
connection for updating the table.

- Meanwhile, User 2 completed a similar task.
!
If the two operations “collide”, in the sense that User 1 modified the table in a way
which is inconsistent with the operation of User 2, how will this situation be handled?

DB Server

Table
User 1 User 2

Table Table

Handling of Concurrency

There are two main procedures for concurrency handling:
!
1) Optimistic Concurrency: It this modality, each DB row will be

checked for changes since it was retrieved. If a change is detected,
a concurrency exception will be thrown. The program must be able
to catch the exception and react to it.

!
2) “Last in Wins”: In this modality, no checks are made. The row
updated by the last user overwrites the changes of the previous user.
!
“Last in Wins” easily results in DB corruptions, so optimistic
concurrency is used by most programmers.
!
We will discuss concurrency more in details later.

Handling of Concurrency

Simple programming techniques for dealing with concurrency are:
!
- Update the DB frequently, so other users will find your changes.
!
- Refresh your local dataset frequently so it incorporates changes by

other users.
!
- Retrieve and work on just one row at a time: in this way the

probability of collision with another user is reduced.

ADO.NET Data Providers

Object Description

Connection Builds the connection to the DB

Command Represents a single SQL command or stored procedure that can be executed on the
DB.

Data Reader Provides read-only access to the DB

Data Adapter Provides a link between the command and the connection objects and the dataset
object.

Provider Namespace Description

SQL Server System.Data.SqlClient SQL Server Access

OLE DB System.Data.OleDb OLE DB Access

ODBC System.Data.Odbc ODBC Access

We are going to use the corresponding provider for MySQL.
(Not native in the .NET framework)

http://ADO.NET

The SQLConnection Class

Before working on a DB, you have to establish a connection to it. The SQLConnection
class helps you in realizing such a connection with the DB server.
The most important component of SQLConnection is the connection string which
specifies where the server is, on which DB you would like to work and with which user.
!
EXAMPLE:

string server = “SERVER=140.555.123.321;”;!
string database = “DATABASE=databasename;”;!
string user = “UID=student;”;!
string passwd = “PASSWORD=‘mypasswd’;”;!
!
!
string connectionstring = !
! ! ! ! ! server+database+user+passwd;

string connectionstring = @“SERVER= …”;!

Or simply:

The Connection String

The connection string can be prepared by the user (see previous slide) or can be
automatically formed with the aid of a specialized class:

System.Data.SqlClient.SqlConnectionStringBuilder bld =!
 new System.Data.SqlClient.SqlConnectionStringBuilder();!
!
 bld.DataSource = "140.555.123.321";!
 bld.UserID = "username";!
 bld.Password = "passwd";!
 bld.InitialCatalog = "databasename";!
 Console.WriteLine(bld.ConnectionString);//try it

The Connection String Methods

Property Description

ConnectionString This is the connection string
DataSource Address/name of the DB server
InitialCatalog Name of the database

IntegratedSecurity
False: user ID and password are included in the
connection string.!
True: Windows integrated security will be used.!

UserID Username
Password Password

PersistSecurityInfo False by default. True if the password is
returned as part of the connection.

WorkstationID Name of the user’s workstation

Not all the properties are mandatory. Using the connection string builder can have
some programming advantages: the syntax completions system (IntelliSense) suggests
you all the available fields and moreover it is simpler to create connection strings at
runtime.

The SQLConnection Class

! ! ! ! ! ! using MySql.Data.MySqlClient! !
 ………
 MySqlConnection conn = null;!
!
 try //try to connect!
 {!
 conn = new MySqlConnection(cstring);!
 conn.Open();!
! ! ! ! ! !! ……!
! ! ! ! ! ! ! ! conn.Close();!
! ! ! ! ! ! }!
! ! ! ! ! ! catch (MySqlException e)!
! ! ! ! ! ! {!
! ! ! ! ! ! ! ! ! Console.WriteLine(e.ToString());! ! ! ! ! ! ! !
! ! ! ! ! ! }!

Basic opening procedure:

Prepare the Database

1) Open an instance of Citrix with the WAMP server
2) Create your DB
3) Create an user and provide the necessary privileges:

CREATE USER ‘user’@‘%’ IDENTIFIED BY ‘password’;!
!
GRANT ALL PRIVILEGES ON *.* TO ‘user’@‘%’;!
!
FLUSH PRIVILEGES;

Refer to the chosen user and password in your C# code.

Building the first connection with MySQL

1) Open and instance of Citrix with MS Visual Studio
!
2) Obtain the DLL for MySQL
!
3) Create a new C# project: eventually it must be a Windows application.
!
4) Add the DLL to the references in your C# program.
!
5) Check if you can include the MySQL namespace (see previous slide).
!
6) Following the C# code in the previous slides, try to realize a connection to

your databalse.
!
7) Add a success/error statement in the two code blocks of “try” and “catch”.
!
8) Remember to “Close()” your connection at the end.

Pinging the Server

bool pingtest = conn.Ping();!
Console.WriteLine("Ping Test = {0}",pt);

You can try also to “ping” the server from your program:

The Ping() method returns “true” or “false” after having tried the ping.

Related Documentation

For more informations on Data Providers:!
https://msdn.microsoft.com/en-us/library/a6cd7c08(v=vs.110).aspx

ADO.NET Architecture:!
https://msdn.microsoft.com/en-us/library/27y4ybxw(v=vs.110).aspx

Code examples (for SQL Server)!
https://msdn.microsoft.com/en-us/library/dw70f090(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/a6cd7c08(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/27y4ybxw(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dw70f090(v=vs.110).aspx

Project Reminder

1) Start thinking at your final project.
!
2) Choose a colleague to form a group (if you want to).
!
3) Is your DB ready?
!
4) Start building your applications ad Windows applications (graphic GUI).
!
5) The “connection” phase we have seen today will be eventually placed in

an appropriate class: think object-oriented!

