
ADO.NET

Transactions

ADO.NET Objects Architecture

Dataset

Data Table Data Adapter

Command

Connection
Database Server

Database

.NET Data Provider

http://ADO.NET

Transactions

Frequently, some DB operations are depending on other operations.
Back to out Students DB, for example you do not want to add a new empty
Course,
so first you will add the students enrolled in it.
!
In such common situations, we use TRANSACTIONS.
!
Transactions are groups of SQL commands which have to be executed all
together as a single logical unit.
!
With transactions:
1) You can check that all the commands can be executed, before

committing it
2) If one or more commands in the transactions cannot be executed, you

can roll back to the previous state. A rollback can be complete or
partial, with the use of save points.

!

Create and use Transactions
MySqlConnection conn;//Create the connection!
conn.Open(); //you have to open first!!
MySqlTransaction tr;!
tr = conn.BeginTransaction() //create the transaction object!
!
//Create a command (with a parameter in this case)!
string s1 = “DELETE FROM T1 WHERE field1 = @name”;!
MySqlCommand cmd1 = new MySqlCommand(conn,s1);!
cmd1.Parameters.Add(“@name”,MySqlDbType.VarChar,50);!
cmd1.Connection = conn;!
cmd1.Transaction = tr;//associate the transaction to the command!
! ! ! ! ! ! //you can associate more commands to it.!
cmd1.Parameters[“@name”].Value = “John”;!
cmd1.ExecuteNonQuery();!
tr.Save(“name1”); //Set a SAVE POINT!
!
cmd1.Parameters[“@name”].Value = “Jack”;!
cmd1.ExecuteNonQuery();!
tr.Save(“name2”);//Set a SAVE POINT!
!
tr.Rollback(“name1”); //Rollback to the first command!
!
tr.Commit(); //finally commit the transaction

Concurrency and Locking

When more than one user accesses the same DB concurrency
problems can occur.
!
- Retrieving data generally do not lead to concurrency problems.
- Updating procedures are different!

 EXAMPLES:
 - Add table/record/field
 - Delete table/record/field
!
Concurrency problems are usually treated with LOCKING.
It consists in preventing modifications to a DB while another transaction
is performing modifications.
!
Most modern DBMS provide locking procedures.

The Concurrency Problems

Lost Updates: !
Two transactions update a row at the same time and only the last
update will remain in effect.
!
Dirty Reads: !
It happens when a query selects data not yet committed by another
transaction. The first transaction will read an outdated row.
!
Nonrepeatable Reads: !
If an update occurs between two successive SELECT queries, the
result of the queries will be different.
!
Phantom Reads: !
This happens when during a DELETE or UPDATE on a group of rows
when another transaction is doing INSERT or DELETE that affect at
least one of the latter rows.

Isolation Levels

connection.BeginTransaction(IsolationLevel.LEVEL)

LEVEL:

ReadUncommitted!
All concurrency problems are allowed!
!
ReadCommitted!
Prevents dirty reads only!
!
RepeatableRead!
Prevents dirty reads, lost updates, non repeatable reads.!
!
Snapshot!
Prevents all problems using “row versioning” (no locking)!
!
Serializable!
Prevents all concurrency problems.

With “Row versioning”, the data retrieved are always consistent with the data before the transaction.
This is achieved by maintaining a snapshot of the original data to compare with.

