Introduction to LINQ:

Language-Integrated Query

LINQ

What is LINQ?
It is a feature introduced in VS 2008

- |t is a language extension created for interacting with different data
types: it is a declarative extension to an otherwise mostly imperative
language.

- LINQ provides a way to write compact gueries.

- LINQ allows to decouple the query structure from the data type

- LINQ can also filter and modify the data

- Many data types can now interact with LINQ.
- LINQ is supported by IntelliSense: easier query development

- LINQ is supported by the debugger

- LINQ is backward-compatible with “old” data types.

LINQ Logical Layout
C#

LINQ

Enabled Dataset Resources

Other dataset resources are available for connecting to other datasets.
Examples: LINQ to Amazon, LINQ to Excel, LINQ to Flickr, LINQ to Google, ...

http://ADO.NET

LINQ Namespaces

System.Ling
Contains the basic classes and interfaces.

System.Ling.Expressions
Contains classes and interfaces for creating LINQ expressions.

System.Data.Linq
Contains classes and interfaces for SQL database interactions.

System.Data.Ling.Mapping
Contains the elements allowing the mapping from/to and imperative
language like C# and VB to a declarative language like SQL.

System.Data.SqlClient
Allows connections to SQL Server (MySQLserver needs something
else).

System.Xml.Ling
Allows the interaction with data in XML format.

LINQ (Very!) Basic Example of Query Expression

//Create the data structure
String[] my string =
{“Red” ,”Black”,”Blue”,"White"};

//Create the LINQ query

var query =
from a string in my string
select a string + “\n”;

//Display the result:
foreach (var element 1in query)
Console.WriteLine(element);

The FROM-IN-SELECT is the simplest query you can build with LINQ

LINQ: Another Basic Example

//Create the data structure
String[] my string =
{“Red” ,”Black”,”Blue”,"White"};

//Create the LINQ query

var query =
from a string in my string
where a string.Length < 4
select a string + “\n”;

//Display the result:
foreach (var element 1in query)
Console.WriteLine(element);

The role of the IEnumerable Interface

This interface provides access to sequences of items in a collection.
The simplest kind of collection is the array.

LINQ uses the functionalities of IEnumerable to create queries on
collections.

In the previous examples, we used “var” for declaring the query and
leaved to the compiler the task of deciding the right type.

Actually, the right type was:

IEnumerable<String> query = ... ;

Bottom-line: It you create a collection of special objects, be sure to
inherit the |[Enumerable interface and to implement the required
methods for being able to use LINQ on it!

ORDERBY

The data from a query is extracted in the order present in the original data structure.
For changing the output order, on can use the orderby keyword:

var query =

from a string in my string
where a string.Length < 4
orderby a string

Alphabetical sorting
select a string + “\n”;

Consecutive orderby:

var query =

from a string in my string
where a string.Length < 4

orderby a string <+— First alphabetical sorting

orderby a string.Length <«——— and then sort by length
select a string + “\n”;

JOIN

Analogous to the SQL command, join allows to combine data from two sources.
The default join is equivalent to the “inner join” of SQL.

Int32[] vl = {3,6,5,4,6,7};
Int32[] v2 = {3,4,6,7,8,9};

var StandardQuery =
from Queryl in vl
from Query2 in v2
where Queryl == Query?2
select new {Queryl , Query2};

Note the definition of the "new” type which is a couple of values.
The result of the join are the couple of numbers present in both arrays at the same

time. Equivalently, with a join:

var JoinQuery =
from Queryl in vl
join Query2 1in v2
on Queryl equals Query2
select new {Queryl , Query2};

NOTE: You will notice that IntelliSense will suggest you “equals” instead of “==".

Accessing Multiple Output Fields

var JoinQuery =
from Queryl in vl

join Query2 in v2
on Queryl equals Query?2
select new {Queryl , Query2};

foreach (var output pair in JoinQuery){

Console.Write(output pair.Queryl.ToString() +
output pair.Query2.ToString());

LET

There are cases where you should perform a calculation on a number of fields in a
query. Doing such calculation over and over again is inefficient.
The let keyword is designed for storing calculation values.

Int32[] vl = {3,6,5,4,6,7};
Int32[] v2 = {3,4,6,7,8,9};

var LetQuery
from OQueryl in vl
from Query2 in v2
let Square = Queryl * Query?2
where Square > 10
select new {Queryl , Query2 , Square};

The use of let also generally improves the readability of the code.

LINQ and Language Extensions

LINQ supports declarative statements embedded into an imperative language.
For allowing such a possibility, MS provides language extensions to C#.

1) The var keyword:

Allows you to define a variable without specitying the type. The compiler will determine
it for you. Note: it is not possible to initialize var variables to null!

“var” is used to declare variables (see e.g. before with LINQ queries) and within
foreach loops.

2) Extension Methods:
Allows you to add new methods to an existing type without deriving a new type.

3) Object Initializers:
Allow the simultaneous instantiation and initialization of an object.

4) Collection Initializers:
The same as 3) but applied to collections.

5) Lambda Expressions
Used in C# for passing an algorithm to a method (seen before).

6) Query expressions (seen before) 7).... more

Extension Methods: Basic Example

namespace ExtensionMethods
{
public static class MyExtensions {
public static int WordCount(this String str){
return str.Split(new char[] { ' ', "', '?2" },
StringSplitOptions.RemoveEmptyEntries) .Length;

using ExtensionMethods;

string s "Hello Extension Methods";
int 1 = s.WordCount();

Object Initializers

public struct Person

{
public String Name;
public String Address;
public String City;

}

//Instantiate and Initialize:
Person aPerson = new Person
{
Name= “John Doe”;
Address = “123-4567 1lst Ave”;
City = “Springfield”;
}i

Collection Initializers

List<String> Names = new List<String>
{
IIAl n ,
“John”, List of standard types
7] JaCk" ,
i
List<Person> persons = new List<Person>
{
new Person {
Name = “John”,
City = “Vancouver”l
Yo

List of new types

new Person {
Name = “Tony”,
City = “New Westminster”

Lambda Expressions ("Lambda” operator: =>)

//Other examples:

x => x.Length //Use of Lambda expressions:

delegate int del(int 1, int 3j);
static void Main(string[] args)

{

(X,¥,2) => x+y / z

del aDelegate = x => X * y;

X => {
(X,Y) int output = aDelegate(5,7);

1if (x>y) return (x);
else return (y);

//Use with LINO

int[] Nums = {1, 1, 2, 3, 5, 8, 13,

double averageValue = Nums.Where (num == 1) .Average();
Console.WriteLine(averageValue);

IEnumerable and IEnumerable<T>

We saw already what an interface is and the role of the I[Enumerable one.
LINQ uses I[Enumerable, or IEnumerable<T> to create an iterator for performing queries.

String[] mystrings = {“alpha”,”beta”,”gamma”,”delta”,”eta”};

IEnumerable<String> results =
mystrings.Where(value => value.Length > 4);

foreach (String s in results)
Console.WriteLine(s + “\n”");

It you would like to avoid a deferred evaluation of where, you can convert the result into
and array right away:

String[] results =
mystrings.Where(value => value.Length > 4).ToArray();

Query Expressions (seen at the beginning)

Query Expressions are another LINQ language extension which allows to embed
declarative statements into C#.
Remember:

- Always begin with the £rom keyword

- Contains zero or more where, let, from keywords

- Includes zero or more orderby (ascending, descending) keywords
- Ends with select or group

- Can optionally continue with zero or more join keywords.

The query can be written in SQL-like style (see before) or using the “dot-style” notation.

EXAMPLE:

var query =
my string.Where(strval => strval.Length>5).Select
my str => my str + “\n”);

The style of the query depends from the problem at hand and/or from the programmer’s
own style

Deferred Operators

Deferred operators are used to interpret the result of a query dynamically.
A list of the available operators is the tollowing:

AsEnumerable, AsQueryable,
Cast, Concat,
DefaultIfEmpty, Distinct,
Empty, Except,

GroupBy, GroupJoin,
Intersect, Join,

OfType, OrderBy,
OrderByDescending,

Range, Repeat,

Reverse, Select,
SelectMany, Skip,
SkipWhile, Take.

Concat

Allows the concatenation of data from different sources.
EXAMPLE:

String[] sl
String[] s2

{“alpha”,"beta”};
{“gamma” ,"delta”};

var query = sl.Concat<String>(s2);

foreach (String str in query) Console.WriteLine(str+”\n”);

Note: Concat does not remove duplicates.

Filtering with OfType + Where

In some cases, the object you query might contain data of different types.
For selecting only data of a specific type, you can use OfType:

Dictionary<String, Object> myDict =
new Dictionary<String,Object>()

myDict.Add(“First”,1);
myDict.Add(“Second”,”John"”);
myDict.Add(“Third”,"Jack”);
myDict.Add(“Fourth”,55);

var query = myDict.Values.OfType<String>();

foreach (String s in query)
Console.WritelLine(s);

Overcoming Empty Data: DefaultIfEmpty

List<String> data = new List<String>;
var query = from x 1n data select x;
foreach (var s in query.DefaultIsEmpty())

Console.WriteLine(s);

The “default” empty answer can be created.
EXAMPLE:

public static IEnumerable<String>
DefaultIsEmpty(this IEnumerable<String> source)

{
1f (source.Count<String>()>0) return sourc;
else List<String> default = new List<String>;
default.Add(“Empty”);
return default;

Grouping

This is a rather generic example of grouping in a LINQ query:

String[] mystrings = {“alpha”,”beta”,”gamma”,”delta”,”eta”,
“theta”,”x1i"”,"”sigma”,”omicron”,”omega”};

var query =
from str in my strings
group str
by s.SubString(0,1)
into Groups
orderby Groups.Key
select Groups;

//Print the grouping key
foreach (var group in query) Console.Write(group.Key + “\n”);

//Print the search result
foreach (String in query) Console.WriteLine(s);

Distinct, Except, Intersect, Union

String[] Sl {”alpha","beta","gamma","delta"};
String[] Sz — {”alpha","delta","omega","phi"};

var queryl sl.Distinct();

var query?2 sl.Except(s2);

var query3 = sl.Intersect(s2);

var query4 sl.Union(s2);

Non-Deferred Operators

Non-deferred operators calculate and store the result of a query right away, contrary to
the deferred operators which evaluate the query every time the data has changed.
Non-deferred operators are useful in the cases where results must be consistent
throughout the program flow/operation.

Non-deferred operators are:

Aggregate, All,

Any, Average,

Contains, Count,

ElementAt, ElementAtOrDefault,

First, FirstOrDefault,

Last, LastOrDefault,

LongCount, Max, Min,

SequenceEqual, Single, SingleOrDefault,
Sum, ToArray, ToDictionary,

ToList, ToLookup

