
Query Optimization

and

Relational Integrity

(Keys)

Is it possible to express a query in multiple ways?

Example:

©Silberschatz, Korth and Sudarshan 1.3 Database System Concepts - 6th Edition

Introduction

� Alternative ways of evaluating a given query

z Equivalent expressions

z Different algorithms for each operation

©Silberschatz, Korth and Sudarshan 1.3 Database System Concepts - 6th Edition

Introduction

� Alternative ways of evaluating a given query

z Equivalent expressions

z Different algorithms for each operation

Evaluation Plans

- There is not in general an unique way for evaluating a query.
- What is the difference between the different ways?
- What if a choice is particularly “expensive”?
- Need for an evaluation plan !
!
How to evaluate the “cost” of a query?!
!
- Statistical informations:

- How many fields?
- How many records?

- Statistical informations of the intermediate results.
- Computational cost of algorithms.

Relational Equivalences (from previous lectures)

�c1^c2^... = �c1(�c2(�c3 ...)))

�c1(�c2(T)) = �c2(�c1(T))

⇡f1(⇡f2(⇡f3...)) = ⇡f1(T)

T1 ./✓ T2 = T2 ./✓ T1

cascading select

select commutativity

only the last projection matters

theta-join commutativity

(T1 ./ T2) ./ T3 = T1 ./ (T2 ./ T3) natural-join associativity

(T1 ./c1 T2) ./c2^c3 T3 = T1 ./c1^c3 (T2 ./c2 T3) theta-join associativity

Union and Intersection are commutative and associative

Graphical Representations Examples

©Silberschatz, Korth and Sudarshan 1.10 Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan 1.9 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
 E1 T E2 = E2 T E1

6. (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 T1 E2) T2� T3 E3 = E1 T1� T3 (E2 T2 E3)

 where T2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan 1.9 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
 E1 T E2 = E2 T E1

6. (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 T1 E2) T2� T3 E3 = E1 T1� T3 (E2 T2 E3)

 where T2 involves attributes from only E2 and E3.

Query Optimizer

- Databases have query optimizers built in.
!
- Algorithmically complex: for complicated queries the possible

equivalences are many.
!

- The number of equivalences must be “weighted” by the
statistics of the tables.
!

- Non-trivial problem: still subject of active research!

What can we do as programmers?

Writing optimal queries to begin with is always a good practice:
- Less optimization needed
- Faster execution

Some general rules:!
!
1) Avoid the use of “*” if you know the fields you want
2) Minimize the amount of subqueries
3) > (or<) is in general better than “!=“
4) Avoid mathematical calculations if you can do them in advance
5) When WHERE-in strings: use LIKE instead of SUBSTR()=‘’
6) Use BETWEEN in stead of AND with “> / <”.
7) Try to write a single query instead of JOIN-ing results from multiple

queries.
8) Use LIMIT if needed
9) Use indices for speeding up SELECT/WHERE

Primary Keys

A primary key is a column or a set of columns that uniquely identifies each row in the
table. A primary key must satisfy the following rules:
!
- Must contain unique values. If the primary key consists of multiple columns, the

combination of values in these columns must be unique.
!
- A primary key column cannot contain NULL values. It means that you have to

declare the primary key column with the NOT NULL attribute. If you don’t, MySQL
will force the primary key column as NOT NULL implicitly.

 A table has only one primary key.

NOTE:!
MySQL works faster with integers, so the data type of the primary key column should be
the integer e.g.,
INT, BIGINT, TINYINT, SMALLINT.
Make sure that the type can contain all your records.

NOTE: Identity columns vs Primary Keys: An identity column may be a primary key, but a
primary key is not an identity column: it is a set of columns that you define that determine
what makes the data in your table unique. It defines your data and it may be an identity
column, it may be a varchar column or a datetime column or an integer column, or it may
be a combination of multiple columns (-> Composite Primary Keys).

Primary Keys

CREATE TABLE users(!
 user_id INT AUTO_INCREMENT PRIMARY KEY,!
 username VARCHAR(40),!
 password VARCHAR(255),!
 email VARCHAR(255)!
);!

CREATE TABLE users(!
 user_id INT AUTO_INCREMENT,!
 username VARCHAR(50),!
! password VARCHAR(255),!
 email VARCHAR(255)!
 PRIMARY KEY(user_id,…)!
);

Or:

The second syntax is mandatory when more than one field composes the primary key.

ALTER TABLE table_name!
ADD PRIMARY KEY(primary_key_column);Addition after creation

Foreign Keys

A foreign key is a field in a table that matches another field of another table.
A foreign key places constraints on data in the related tables, which enables MySQL to
maintain referential integrity.
!
A table may have more than one foreign key, and each foreign key in the child table
may refer to a different parent table.
!
Sometimes, the child and parent tables are the same. The foreign key refers back to the
primary key of the table

CONSTRAINT constraint_name!
FOREIGN KEY foreign_key_name (columns)!
REFERENCES parent_table(columns)!
ON DELETE action!
ON UPDATE action

Foreign Keys Creation in MySQL

The CONSTRAINT clause defines the constraint name for the foreign key constraint.
If not declared, MySQL will generate a name automatically.
!
The FOREIGN KEY clause specifies the columns in the child table that refers to
primary key columns in the parent table. You can put a foreign key name after
FOREIGN KEY clause or leave it to let MySQL create a name for you.
MySQL automatically creates an index with the foreign_key_name name.
!
The REFERENCES clause specifies the parent table and its columns to which the
columns in the child table refer. The number of columns in the child table and parent
table specified in the FOREIGN KEY and REFERENCES must be the same.
!
ON… : Specifies what happens to the child table’s rows when parent’s rows are
deleted or updated.

CREATE DATABASE IF NOT EXISTS test;!
 !
USE test;!
 !
CREATE TABLE student(!
 st_id int not null auto_increment primary key,!
 st_name varchar(255) not null,!
 st_description text!
) ENGINE=InnoDB;!
 !
CREATE TABLE courses(!
 c_id int not null auto_increment primary key,!
 c_name varchar(355) not null,!
 c_price decimal,!
 st_id int not null,!
 FOREIGN KEY fk_cat(st_id)!
 REFERENCES categories(st_id)!
 ON UPDATE CASCADE!
 ON DELETE RESTRICT!
)ENGINE=InnoDB;

Full Example (MySQL)

Storage Engine
(more on this later)

Add a Foreign Key

ALTER table_name!
ADD CONSTRAINT constraint_name!
FOREIGN KEY foreign_key_name(columns)!
REFERENCES parent_table(columns)!
ON DELETE action!
ON UPDATE action;

It is also possible to add a foreign key after the creation of a table:

ALTER TABLE table_name !
DROP FOREIGN KEY constraint_name;!

Or to remove one:

Other Useful Commands

SHOW CREATE TABLE table_name;

Prints out the creation code.

SET foreign_key_checks = 0 (or 1);

Disables (or enables) the action of foreign keys:

