
Relational Algebra

Query Languages and the Relational Model

-! Query Languages allow retrieval and manipulation of data from a!
 Database.!
!
!
!
!
-! In particular, we will look at the Relational Model:!
 - Logical foundation based on mathematical logic.
 - High query optimization possible
!
!
!
-! A Query language is DIFFERENT from a programming language:!
 - it is not in general Turing Complete.
 - must allow easy, fast, efficient access to (large) datasets.
 - it is not designed for complex calculations.

Query Languages and the Relational Model

Formally, there are two mathematically defined languages upon which real
query languages are built:
!
!
-! RELATIONAL ALGEBRA:!
 Used for describing the execution plan
!
-! RELATIONAL CALCULUS!
 Used by users to describe what they want, but not the how.
!
!
!
!
A real implementation of the above concepts, is e.g. the SQL language.
(Standard Query Language).

Relations and Queries

In a relational database model, all the data is represented in tuples.
The tuples are organized in relations.
!
Definition:
- A relation is a set of tuples where each element of them is a member of a data domain.
 (or it is an attribute).

In the SQL language, an instance of a relation, is called a Table.
!
A query applied to a relation instance, produces a new relation instance.

Relational Algebra

- Selection: selects a subset of rows from a relation
- Projection: Deletes columns from a relation
- Cross Product: Combines two relations
- Set Difference: Tuples in relation1 and not in relation 2.
- Union/Inters.: Tuples in relation1 and in relation 2.
- Join: Composite Operation
- Division: /! ! ! Composite Operation !
!
!
!
Every basic operation maps a relation into another relation, therefore
the operations can be composed.
In more mathematical words, the relational algebra is closed.

�
⇡

⇥
�

[
./

\

Selection
ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
3 Simon Chan 21 Vancouver
4 Yuri Kirillov 57 Novosibirsk
5 Antonio Esposito 19 Napoli
6 Pierre Daveaux 76 Marseille
7 Antonia Caballero 33 Madrid
8 Alexa Fredrikson 37 Oslo
9 Jack Post 22 New York
10 Shintaro Ito 25 Osaka

�
Selects the rows which satisfy
a condition.
No duplicates in the result.

�Age<26(T) =

ID Name Age City
3 Simon Chan 21 Vancouver
5 Antonio Esposito 19 Napoli
9 Jack Post 22 New York
10 Shintaro Ito 25 Osaka

Projection
ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
3 Simon Chan 21 Vancouver
4 Yuri Kirillov 57 Novosibirsk
5 Antonio Esposito 19 Napoli
6 Pierre Daveaux 76 Marseille
7 Antonia Caballero 33 Madrid
8 Alexa Fredrikson 37 Oslo
9 Jack Post 22 New York
10 Shintaro Ito 25 Osaka

⇡
Deletes attributes not present
in the projection list.

�City,Age(T) =

ID Age City
1 44 Kansas City
2 32 Portland
3 21 Vancouver
4 57 Novosibirsk
5 19 Napoli
6 76 Marseille
7 33 Madrid
8 37 Oslo
9 22 New York
10 25 Osaka

Cross-Product⇥
ID Name Age City

1 John Smith 44 Kansas City

2 Steven Miller 32 Portland

8 Alexa Fredrikson 37 Oslo

ID Date
1 29 Feb 2016
2 01 Feb 2016

T1

T2

Each row of T1 is paired with
each row of T2.
If the tables have fields with the
same name, it is possible to
rename them with the renaming
operator .⇢

⇢ [1 ! id1, 5 ! id2, T1⇥ T2] =

ID1 Name Age City ID2
1 John Smith 44 Kansas City 1 29 Feb 2016
1 John Smith 44 Kansas City 2 01 Feb 2016
2 Steven Miller 32 Portland 1 29 Feb 2016
2 Steven Miller 32 Portland 2 01 Feb 2016
8 Alexa Fredrikson 37 Oslo 1 29 Feb 2016
8 Alexa Fredrikson 37 Oslo 2 01 Feb 2016

Union, Intersection, Difference : [
Tables must be union-compatible:
- Same # of fields
- Corresponding fields with the same name.

\ �

ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
8 Alexa Fredrikson 37 Oslo
10 Shintaro Ito 25 Osaka
5 Antonio Esposito 19 Napoli

ID Name Age City
9 Jack Post 22 New York
8 Alexa Fredrikson 37 Oslo

T1 T2

ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
8 Alexa Fredrikson 37 Oslo
10 Shintaro Ito 25 Osaka
5 Antonio Esposito 19 Napoli
9 Jack Post 22 New York

T1 \ T2

T1 [T2

ID Name Age City
8 Alexa Fredrikson 37 Oslo

T1� T2
ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
10 Shintaro Ito 25 Osaka
5 Antonio Esposito 19 Napoli

Join ./
Conditional (or theta) Join:

ID Name Age City

1 John Smith 44 Kansas City

2 Steven Miller 32 Portland

8 Alexa Fredrikson 37 Oslo

ID Date

1 29 Feb 2016

2 01 Feb 2016

T1 T2
T1 ./C T2 = �C(T1⇥ T2)

T1 ./A ge < 40T2 = �Age<40(T1⇥ T2) =

ID1 Name Age City ID2
2 Steven Miller 32 Portland 1 29 Feb 2016
2 Steven Miller 32 Portland 2 01 Feb 2016
8 Alexa Fredrikson 37 Oslo 1 29 Feb 2016
8 Alexa Fredrikson 37 Oslo 2 01 Feb 2016

Division

T1/T2 = {x|9(x, y) 2 T18y 2 T2}
Where x, y are fields and T1, T2 are tables.

x y
a 1
a 2
c 1
d 3

T1 y
1
2

T2 T1/T2 = x
a
c

T1/T2 = ⇡
x

(T1)� ⇡
x

((⇡
x

(T1)⇥ T2)� T1)

The division can be rewritten in terms of basic relational operators:

Disqualified values are x fields where by attaching
y from T2 we obtain an xy tuple not in T1.

The division is obtained subtracting the
disqualified tuples from x in T1.

x

x

http://bandilab.org

Notes

Relations are powerful data structures. A relation consists of a heading and a body (similar to a table).
The heading specifies the attribute names and types (columns), and the attribute values are kept in the
tuples (rows) within the body. Both heading and body are mathematical sets - unique and unordered
collections of elements.

These diagrams illustrate 7 operators from the relational algebra implemented in the Bandicoot system.
Some of them are binary (take 2 relations as input) and some are unary (take 1 relation as input).

Select

Project

Extend

w

h

a
b w

a+b

w

h

a b

)h

a+b

w

h

w

h

extension

Join

w1

w2

Union

h1

h2

Minus (Semidifference)

a

w1

a

Summary (Binary)

w1

a
b

h1

w2 sumw2

h2

w2

h2

h1

w1

h2

h2

h1

w1

w2

h1 h2)h1*h2

w

w

Select

http://bandilab.org

Notes

Relations are powerful data structures. A relation consists of a heading and a body (similar to a table).
The heading specifies the attribute names and types (columns), and the attribute values are kept in the
tuples (rows) within the body. Both heading and body are mathematical sets - unique and unordered
collections of elements.

These diagrams illustrate 7 operators from the relational algebra implemented in the Bandicoot system.
Some of them are binary (take 2 relations as input) and some are unary (take 1 relation as input).

Select

Project

Extend

w

h

a
b w

a+b

w

h

a b

)h

a+b

w

h

w

h

extension

Join

w1

w2

Union

h1

h2

Minus (Semidifference)

a

w1

a

Summary (Binary)

w1

a
b

h1

w2 sumw2

h2

w2

h2

h1

w1

h2

h2

h1

w1

w2

h1 h2)h1*h2

w

w

Project

http://bandilab.org

Notes

Relations are powerful data structures. A relation consists of a heading and a body (similar to a table).
The heading specifies the attribute names and types (columns), and the attribute values are kept in the
tuples (rows) within the body. Both heading and body are mathematical sets - unique and unordered
collections of elements.

These diagrams illustrate 7 operators from the relational algebra implemented in the Bandicoot system.
Some of them are binary (take 2 relations as input) and some are unary (take 1 relation as input).

Select

Project

Extend

w

h

a
b w

a+b

w

h

a b

)h

a+b

w

h

w

h

extension

Join

w1

w2

Union

h1

h2

Minus (Semidifference)

a

w1

a

Summary (Binary)

w1

a
b

h1

w2 sumw2

h2

w2

h2

h1

w1

h2

h2

h1

w1

w2

h1 h2)h1*h2

w

w

Union

Relational Algebra Equivalences

�c1^c2^... = �c1(�c2(�c3 ...)))

�c1(�c2(T)) = �c2(�c1(T))

⇡f1(⇡f2(⇡f3...)) = ⇡f1(T)

T1 ./✓ T2 = T2 ./✓ T1

cascading select

select commutativity

only the last projection matters

theta-join commutativity

(T1 ./ T2) ./ T3 = T1 ./ (T2 ./ T3) natural-join associativity

(T1 ./c1 T2) ./c2^c3 T3 = T1 ./c1^c3 (T2 ./c2 T3) theta-join associativity

Union and Intersection are commutative and associative

