Relational Algebra

Query Languages and the Relational Model

 Query Languages allow retrieval and manipulation of data from a Database.

- In particular, we will look at the Relational Model:

- Logical foundation based on mathematical logic.
- High query optimization possible

- A Query language is DIFFERENT from a programming language:

- it is not in general Turing Complete.
- must allow easy, fast, efficient access to (large) datasets.
- it is not designed for complex calculations.

Query Languages and the Relational Model

Formally, there are two mathematically defined languages upon which real query languages are built:

- **RELATIONAL ALGEBRA:**

Used for describing the execution plan

- RELATIONAL CALCULUS

Used by users to describe **what** they want, but not the **how**.

A real implementation of the above concepts, is e.g. the SQL language. (Standard Query Language).

Relations and Queries

In a relational database model, all the data is represented in **tuples**. The tuples are organized in **relations**.

Definition:

- A relation is a set of tuples where each element of them is a member of a data domain. (or it is an attribute).

In the SQL language, an instance of a relation, is called a **Table**.

A **query** applied to a relation instance, produces a new relation instance.

Relational Algebra

- Selection: σ
- **Projection**: π
- Set Difference: —
- Union/Inters.: $\cup \cap$
- Join: 🖂
- Division: /

selects a subset of rows from a relation Deletes columns from a relation - Cross Product: X Combines two relations Tuples in relation 1 and not in relation 2. Tuples in relation 1 and in relation 2. **Composite** Operation **Composite** Operation

Every basic operation maps a relation into another relation, therefore the <u>operations can be composed</u>.

In more mathematical words, the relational algebra is <u>closed</u>.

Selection σ

Selects the rows which satisfy a condition.

No duplicates in the result.

ID	Name	Age	City
1	John Smith	44	Kansas City
2	Steven Miller	32	Portland
3	Simon Chan	21	Vancouver
4	Yuri Kirillov	57	Novosibirsk
5	Antonio Esposito	19	Napoli
6	Pierre Daveaux	76	Marseille
7	Antonia Caballero	33	Madrid
8	Alexa Fredrikson	37	Oslo
9	Jack Post	22	New York
10	Shintaro Ito	25	Osaka
4 5 6 7 8 9 10	Yuri Kirillov Antonio Esposito Pierre Daveaux Antonia Caballero Alexa Fredrikson Jack Post Shintaro Ito	57 19 76 33 37 22 25	Novosibirsk Napoli Marseille Madrid Oslo New York Osaka

_	$(\mathbf{T}$	7	
$\sigma_{Aqe<26}$)	

ID	Name	Age	City
3	Simon Chan	21	Vancouver
5	Antonio Esposito	19	Napoli
9	Jack Post	22	New York
10	Shintaro Ito	25	Osaka

Projection π

Deletes attributes not present in the projection list.

ID	Name	Age	City
1	John Smith	44	Kansas City
2	Steven Miller	32	Portland
3	Simon Chan	21	Vancouver
4	Yuri Kirillov	57	Novosibirsk
5	Antonio Esposito	19	Napoli
6	Pierre Daveaux	76	Marseille
7	Antonia Caballero	33	Madrid
8	Alexa Fredrikson	37	Oslo
9	Jack Post	22	New York
10	Shintaro Ito	25	Osaka

ID	Age	City
1	44	Kansas City
2	32	Portland
3	21	Vancouver
4	57	Novosibirsk
5	19	Napoli
6	76	Marseille
7	33	Madrid
8	37	Oslo
9	22	New York
10	25	Osaka

$$\sigma_{City,Age}(T) =$$

Each row of T1 is paired with each row of T2. If the tables have fields with the same name, it is possible to rename them with the renaming operator ρ .

11			
ID	Name	Age	City
1	John Smith	44	Kansas City
2	Steven Miller	32	Portland
8	Alexa Fredrikson	37	Oslo

T2

ID	Date		
1	29 Feb 2016		
2	01 Feb 2016		

$$\rho \left[1 \rightarrow id1, 5 \rightarrow id2, T1 \times T2 \right] =$$

ID1	Name	Age	City	ID2	
1	John Smith	44	Kansas City	1	29 Feb 2016
1	John Smith	44	Kansas City	2	01 Feb 2016
2	Steven Miller	32	Portland	1	29 Feb 2016
2	Steven Miller	32	Portland	2	01 Feb 2016
8	Alexa Fredrikson	37	Oslo	1	29 Feb 2016
8	Alexa Fredrikson	37	Oslo	2	01 Feb 2016

Union, Intersection, Difference : $\bigcup \cap -$

Tables must be union-compatible:

- Same # of fields
- Corresponding fields with the same name.

11	ID	Name	Age	City
	1	John Smith	44	Kansas City
	2	Steven Miller	32	Portland
	8	Alexa Fredrikson	37	Oslo
	10	Shintaro Ito	25	Osaka
	5	Antonio Esposito	19	Napoli

T2	ID	Name	Age	City
	9	Jack Post	22	New York
	8	Alexa Fredrikson	37	Oslo

$T1\cap T2$

ID	Name	Age	City
8	Alexa Fredrikson	37	Oslo

T1 - T2

ID	Name	Age	City
1	John Smith	44	Kansas City
2	Steven Miller	32	Portland
10	Shintaro Ito	25	Osaka
5	Antonio Esposito	19	Napoli

$T1 \cup T2$

ID	Name	Age	City	
1	John Smith	44	Kansas City	
2	Steven Miller	32	Portland	
8	Alexa Fredrikson	37	Oslo	
10	Shintaro Ito 25		Osaka	
5	Antonio Esposito	19	Napoli	
9	Jack Post	22	New York	

Conditional (or theta) Join: $T1 \bowtie_C T2 = \sigma_C(T1 \times T2)$

11				
ID	Name	Age	City	
1	John Smith	44	Kansas City	
2	Steven Miller	32	Portland	
8	Alexa Fredrikson	37	Oslo	

12							
ID	Date						
1	29 Feb 2016						
2	01 Feb 2016						

$T1 \bowtie_A ge < 40T2 = \sigma_{Age < 40}(T1 \times T2) =$

ID1	Name	Age	City	ID2	
2	Steven Miller	32	Portland	1	29 Feb 2016
2	Steven Miller	32	Portland	2	01 Feb 2016
8	Alexa Fredrikson	37	Oslo	1	29 Feb 2016
8	Alexa Fredrikson	37	Oslo	2	01 Feb 2016

Division

$T1/T2_{\mathsf{x}} = \{ x | \exists (x, y) \in T1 \forall y \in T2 \}$

Where x, y are fields and T1, T2 are tables.

The division can be rewritten in terms of basic relational operators:

$$T1/T2_{\mathsf{X}} = \pi_x(T1) - \pi_x((\pi_x(T1) \times T2) - T1)$$

The division is obtained subtracting the disqualified tuples from x in T1.

Disqualified values are x fields where by attaching y from T2 we obtain an xy tuple not in T1.

Relational Algebra Equivalences

$$\begin{split} \sigma_{c_1 \wedge c_2 \wedge \ldots} &= \sigma_{c_1} \left(\sigma_{c_2} \left(\sigma_{c_3} \ldots \right) \right) \right) & \text{cascading select} \\ \sigma_{c1} \left(\sigma_{c2} (T) \right) &= \sigma_{c2} \left(\sigma_{c1} (T) \right) & \text{select commutativity} \\ \pi_{f1} \left(\pi_{f2} (\pi_{f3} \ldots) \right) &= \pi_{f1} (T) & \text{only the last projection matters} \\ T1 &\bowtie_{\theta} T2 &= T2 &\bowtie_{\theta} T1 & \text{theta-join commutativity} \\ (T1 &\bowtie T2) &\bowtie T3 &= T1 &\bowtie (T2 &\bowtie T3) & \text{natural-join associativity} \\ (T1 &\bowtie_{c_1} T2) &\bowtie_{c_2 \wedge c_3} T3 &= T1 &\bowtie_{c_1 \wedge c_3} (T2 &\bowtie_{c_2} T3) & \text{theta-join associativity} \end{split}$$

Union and Intersection are commutative and associative