
The Standard Query Language

(MySQL Implementation)

General Aspects

SQL (or “sequel”) means Standard Query Language.
It is designed for creating queries to a Relational Database.
A Database is a collection of relations instances called Tables.
It is a declarative (not imperative) programming language.
Aspects of SQL are:
!
DML (Data Manipulation Language): SQL allows the creation and submission of
queries to a database.!
!
DDL (Data Definition Language): SQL provides commands for the creation and
modification of tables.
!
Triggers: It is possible to define automatic procedures in response to operations on
the database, for ensuring the integrity of the DB’s structure.!
!
Client-Server Features: SQL supports communication to a remote database, the
management of the transactions, their security and concurrency.!

Working with more tables

Primary and Foreign Keys

Relational Integrity

What does it happen when we modify/insert/delete records in a table
belonging to a multi-table Database?
!
These operations, carried out on one table, might leave records in other
tables unreferenced (“orphaned”).
!
Such problems break the “relational integrity” of the database.
!
Relational Integrity must be enforced either by functions or automatic
procedures (“triggers”).

Relational integrity is a property of databases which requires every
value of one attribute (column) of a table to exist as a value of another
attribute in a different (or the same) table.

“CRUD”, or the functions of Persistence Storage

CREATE!
!
RETRIEVE!
!
UPDATE !
!
DELETE

- Origins date back to about 1994.
- It is an open-source Database Management System.
- The source code is available under the GNU licence agreement.
- Supports the client-server architecture.
- Very popular for internet applications.
- Now owned by Oracle.
- We are now (2015-2016) to version 5.
- No native graphical interface: we will use phpmyAdmin (another free software).

The structure of a simple query

SELECT [DISTINCT] <fields>
FROM <tables>
WHERE <conditions> Selection �

- Upper case is not mandatory (but recommended).
- SELECT and FROM clauses are the only mandatory commands in a query.
- DISTINCT is optional and avoids duplicated records.
- The wildcard “ * ” is available (e.g. SELECT *).
- The WHERE clause contains a logical expression (AND,OR,NOT,=,<,>)
- SQL implements closely the relational algebra.

Projection ⇡

Product ⇥

Example ID Name Age City
1 John Smith 44 Kansas City
2 Steven Miller 32 Portland
3 Simon Chan 21 Vancouver
4 Yuri Kirillov 57 Novosibirsk
5 Antonio Esposito 19 Napoli
6 Pierre Daveaux 76 Marseille
7 Antonia Caballero 33 Madrid
8 Alexa Fredrikson 37 Oslo
9 Jack Post 22 New York
10 Shintaro Ito 25 Osaka

SELECT Name,City
FROM T
WHERE Age<23

Table T

Name City
Simon Chan Vancouver

Antonio Esposito Napoli
Jack Post New York

SELECT V.Name,V.City
FROM T as V
WHERE V.Age <= 23

Or using a range variable:

Example

- Open MySQL
- Open the example database:

! source U:\\lucad\testdatabase.sql!
!
Check if the database is there and use it:
!
show databases: use <dbname>;
!
Look at the tables in it: show tables;
!
Look at the properties of a table:
!
describe <tablename>;

ClassicModels

Database

More complex queries

SELECT !
 column_1, column_2, ...!
FROM!
 table_1!
[INNER | LEFT |RIGHT] JOIN table_2 ON conditions!
WHERE!
 conditions!
GROUP BY column_1!
HAVING group_conditions!
ORDER BY column_1!
LIMIT offset, length;

INNER JOIN!
For each row in the T1 table, the MySQL INNER JOIN
clause compares it with each row of the T2 table to check
if both of them satisfy the join condition. When the join
condition is matched, it will return the row that combine
columns in both T1 and T2 tables.

LEFT JOIN!
When we join the T1 table to the T2 table using the LEFT
JOIN clause, if a row from the left table T1 matches a row
from the right table T2 based on the join condition (T1.c1 =
T2.c1), this row is included in the result set. In case the row
in the left table does not match the row in the right table, the
row in the left table is also selected and combined with a
“fake” row from the right table. The fake row contains NULL
values for all corresponding columns in the SELECT clause.

RIGHT JOIN!
LEFT <-> RIGHT

Set Operations
SQL “set operations” are indeed quite similar to operations usually carried out on
general sets. In SQL, set operations are applied to tables.
UNION:!
Combines the results of two SQL queries into a single table of all matching rows. The
two queries must result in the same number of columns and compatible data types in
order to unite. Any duplicate records are automatically removed unless UNION ALL is
used. UNION does not respect ordering and ORDER BY should be included if needed.
!
INTERSECT!
The SQL INTERSECT operator takes the results of two queries and returns only rows
that appear in both result sets. For purposes of duplicate removal the INTERSECT
operator does not distinguish between NULLs. The INTERSECT operator removes
duplicate rows from the final result set. The INTERSECT ALL operator does not remove
duplicate rows from the final result set.
!
MINUS / EXCEPT!
The SQL EXCEPT operator takes the distinct rows of one query and returns the rows
that do not appear in a second result set. The EXCEPT ALL operator does not remove
duplicates. For purposes of row elimination and duplicate removal, the EXCEPT
operator does not distinguish between NULLs.
!
Some DBMSs provide a MINUS operator which is functionally equivalent to the SQL
standard EXCEPT DISTINCT operator

UNION in MySQL

SELECT column1, column2
UNION [DISTINCT | ALL]
SELECT column1, column2
UNION [DISTINCT | ALL]

Try this in our example DB:
SELECT customerNumber id, contactLastname name!
FROM customers!
UNION!
SELECT employeeNumber id,firstName name!
FROM employees!

UNION combines the results of the two SELECT clauses in one single result.

MySQL doesn’t support the INTERSECT and MINUS set operators.
We can rewrite these queries by using the JOIN operator:

SELECT x, y FROM table_a!
MINUS!
SELECT x, y FROM table_b;

SELECT a.x, a.y!
FROM table_a a LEFT JOIN table_b b!
ON a.x = b.x AND a.y = b.y!
WHERE b.x IS NULL;

SELECT x, y FROM table_a!
INTERSECT!
SELECT x, y FROM table_b;

SELECT a.x, a.y!
FROM table_a a JOIN table_b b!
ON a.x = b.x AND a.y = b.y;

Set Operations in MySQL

DIVIDE in MySQL
This operation is not directly supported in MySQL.
DIVIDE is not a basic relational algebra operator, so it should be possible to construct it.
Recall the algebraic definition:
!
!
This kind of operator answers the questions with an “ALL” into them.
Example:
“Which employees of a certain kind work in ALL the projects listed in table T ?”
“Which boys are registered on those courses that are taken by ALL the girls?”
“Which girls are registered on ALL the courses taken by student nr. 999?”
!
The logical operator behind division is the implication. We can rephrase one of the above
sentences as:
!
For which girls is it true that:
IF 999 is registered in a course THEN the girl is registered in the same course?
!
OR, in a “double negation” logic:
!
Find all the “girls” rows where is NOT true that the student 999 is NOT registered in
the same course.

T1/T2 = ⇡
x

(T1)� ⇡
x

((⇡
x

(T1)⇥ T2)� T1)

DIVIDE in MySQL
“Which girls are registered on ALL the courses taken by student nr. 999?”
OR:

SELECT DISTINCT Name, StNumber!
FROM Students AS S!
WHERE Sex=GIRL AND!
! ! NOT EXISTS !
! ! ! (!
! ! ! ! SELECT Course!
! ! ! ! FROM CourseRegistrations!
! ! ! ! WHERE StNumber = 999 AND Course NOT IN!
! ! ! ! ! ! (!
! ! ! ! ! ! ! SELECT Course!
! ! ! ! ! ! ! FROM CourseRegistrations as C!
! ! ! ! ! ! ! WHERE S.StNumber = C.StNumber!
! ! ! ! ! !)!
! ! !)

Find all the “girls” rows where is NOT true that the student 999 is NOT registered in
the same course.

Resulting fields

Girls and no student not registered in the same course

NOTE: There are ways for expressing divisions without double negations.

Example
1) Table T1 with job candidates and their skills.
2) Table T2 with jobs with skills requirements.
3) Task: find candidates which have ALL the skills required for a job.
4) Solution: Relational division T1/T2

Candidate 1 has all the skills plus one.
Selected in relational division with reminder.
!
Candidate 2 has exactly the requirements.
Only result if no reminder is asked for.

T1(CandidateID,SkillID)/T2(SkillID)= CandidateIDs

