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After 100 years from its discovery, Quantum Mechanics still represents a significant challenge
for students facing it for the first time. Often the obstacle is not represented by the formalism
but from the lack of understanding of the deep reasons that lead to the new mechanics. Following
the suggestion of [1], we try to introduce Quantum Mechanics following the steps which led W.
Heisenberg to the very first version of the theory in 1925. The discussion is simplified and requires a
basic knowledge of Fourier series, linear algebra and the phenomenology of spectroscopy. We avoid
the explicit use of Hamiltonian mechanics, which is usually not taught in introductory courses.

INTRODUCTION

In June 1925, W. Heisenberg published a fundamental
paper which paved the way to the construction of Quan-
tum Mechanics [2] and deeply influenced other contem-
porary physicists. After the initial impact, the paper is
nowadays considered quite obscure and difficult to under-
stand. In [1], the authors present a very clear analysis of
Heisenberg’s paper and argue that it might be pedagogi-
cally useful to present its main results to undergraduate
students approaching Quantum Mechanics for the first
time. Teaching Quantum Mechanics today is of growing
importance also outside physics departments, since it is
becoming part of our everyday life for example through
many engineering applications. Traditionally, Quantum
Mechanics is introduced with the Schrödinger formalism.
Another path which is becoming popular is to follow a
close analogy with classical probability theory and the
introducing complex numbers and L2 norms as the only
meaningful generalization (see e.g. [4]). A more math-
ematical but insightful approach based on axioms as a
starting point is provided by the work of L. Hardy [5].

In this manuscript, following the suggestion of [1], we
try to present in a simplified way the reasoning which
lead Heisenberg to the discovery of “Matrix Mechanics”
through a series of deep observations and calculations.
Right after the initial breakthrough of Heisenberg, Born
and Jordan published a paper where they introduce the
matrix formalism [6]. Heisenberg, Born and Jordan fi-
nally joined forces and published a paper containing the
full formalism of the new mechanics together with a per-
turbation theory and the first attempt towards the quan-
tization of the electromagnetic field [7]. Soon after, W.
Pauli applied the new results to the solution of the hy-
drogen atom, deriving Balmer’s formula for the energy
levels [8]. The work of Pauli greatly contributed to the
acceptance of the new mechanics. For more historical
details, we refer to [9].

FIG. 1: Energy levels are discrete and arranged in a sequence
of states ordered by energy. The Ritz combination principle
encodes the level ordering: the frequency of a photon emitted
in the n → n − α − β transition must be equal to the sum
of the frequencies in the n → n − α and n − α → n − α − β

transitions.

BEFORE JUNE 1925

Planck’s and Einstein’s results on blackbody radiation
and the empirical formulas describing the experimentally
observed spectroscopic lines forced a new view about the
way in which atoms absorb and emit radiation. In partic-
ular, it was realized that the frequency of an emitted or
absorbed photon is connected to the difference between
two energy levels α and β:

ν =
1

h
(Eα − Eβ) . (1)

Other indications were coming from the successful devel-
opment of a dispersion theory consistent with classical
formulas in the case of large quantum numbers (in accor-
dance with Bohr’s correspondence principle). [10–12]

COMBINING FREQUENCIES

The vast amount of spectroscopic data available at the
time led to the so-called combination principle of Ritz
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(1908) which states that the frequency of a spectroscopic
line is equal to the sum or the difference of two other lines’
frequencies. This principle was clearly consistent with
Eq. 1. Apparently, at the atomic level, only certain fre-
quencies were allowed, as they were arranged in a discrete
“ladder”. This observation forces us to introduce a new
way for summing frequencies together. Let us consider a
classical wave associated to a certain state of the system
with label n together with all its harmonics. The fre-
quency of a harmonic will be denoted as ν(n, α) = αν(n),
since it is an integer multiple of n. Classically, the sum
of two harmonics is

ν(n, α) + ν(n, β) = ν(n, α+ β) . (2)

If we now consider atoms and their “ladder” of states, the
sum of frequencies corresponding to different steps (the
“harmonics”) must add in a very different way: making
two consecutive steps must be equivalent to a two-step
jump (see Fig. 1):

ν(n, n−α)+ν(n−α, n−α−β) = ν(n, n−α−β) . (3)

Another way to rewrite the last equation is

ν(n, n−α)+ν(n−α, n−α−β)+ν(n−α−β, n) = 0 , (4)

which led to the conclusion that ν can be written as a
difference of two other quantities, consistent with Eq. 1.

Thus, the sum of classical harmonics differs from the
“quantum” one. Moreover, Eq. 3 is fully consistent with
Eq. 1, while Eq. 2 is not. This is the fist important point
which marks a fundamental difference between classical
and quantum states.

FOCUS ON OBSERVABLES

In his atomic model, Bohr used classical formulas con-
taining also the position of the electron. Heisenberg ar-
gues that experimentally we do not observe electron po-
sitions, but only frequencies and intensities of spectral
lines. His program was to build a theory based only on
observable quantities. To this end, instead of the position
x(n, t) of an electron in a state n at time t, he considered
its Fourier representation

x(n, t) =
+∞∑

α=−∞

Xα(n)e
2πiν(n)αt . (5)

In the last equation, the frequency ν(n) (and its mul-
tiples, or harmonics αν) and the intensities Xα appear
explicitly. Accoring ti Heisenberg, we have to focus our
attention on them disregarding the unobservable position
x (he was not completely right on this point, since in the
final quantum theory x(t) can also be an observable.).

The key idea of Heisenberg was to introduce quantum
transitions in Eq. 5: this means that now amplitudes and
frequencies must depend on two numbers:

x(n, n− α, t) =

+∞∑
α=−∞

Xα(n, n− α)e2πiν(n,n−α)t . (6)

We thus introduce the new “transition amplitudes”
X(n, n− α) from the state n to the state n− α.
Heisenberg observes that radiation is commonly

treated as a multipole expansion where powers of po-
sitions and their derivatives appear. It is therefore nec-
essary to derive expressions for e.g. [x(n, t)]2 or higher
powers. Classically we have:

[x(t)]2 =
∑
α

∑
γ

Xα(n)Xγ(n)e
2πiν(n)(α+γ)t = (7)

=
∑
β

Yβ(n)e
2πiν(n)βt ,

where we relabel β = α + γ. Dropping the exponen-
tials, we can write the following relationship among the
amplitudes:

Yβ(n) =
∑
α

Xα(n)Xβ−α(n) . (8)

Also in this case Heisenberg rewrites the last equation en-
forcing the validity of the combination principle (Eq. 3):

Y (n, n− β) =
∑
α

X(n, n− α)X(n− α, n− β) . (9)

This is probably the most important step in Heisenberg’s
paper. The last equation is the law for multiplying ampli-
tudes in quantum mechanics and he realized right away
that there is a radical difference with respect to the clas-
sical case. If we consider two quantities x(t) and y(t),
the product is classically commutative: xy = yx, as it is
evident from Eq. 8, but this is not generally the case for
Eq. 9 .
Swapping the terms in the righthand side of Eq. 9 will

change the ordering of the states and the result of the
multiplication will be different. Therefore, Heisenberg
discovered that in the quantum theory, observables are
not in general commuting quantities and the key reason
is that quantum observables depend on two indices (they
represent transitions between two states).

MATRICES

Back in 1925, Heisenberg was not aware of matrix al-
gebra. M. Born knew it and looking at Heisenberg result
realized that Eq. 9 was completely analogous to matrix
multiplication, which indeed is not in general a commu-
tative operation. We can rewrite Eq. 9 as

Yαβ = XαγXγβ . (10)
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Let us now consider Bohr’s quantization condition:

∮
pdq =

∫ 1/ν

0

pq̇dt = nh , (11)

which was so successful in explaining some of the atomic
properties. Following Heisenberg, we express the position
q and momentum p as Fourier components

q(τ, t) =
τ=+∞∑
τ=−∞

Qτe
2πiντt ; p(τ, t) =

τ=+∞∑
τ=−∞

Pτe
2πiντt

(12)
Heisenberg comments that Eq. 11 arbitrarily forces the
dependence of the quantum variables on the quantum
number n, while this should be a result of the theory.
The way he removes the dependence is to take the

derivative ∂/∂n on both sides of Eq. 11 in a simplified
situation where p = mq̇. In [6], Born and Jordan consider
a more general case, keeping the two variables q and p
separate. The time derivative of q is q̇ = 2πi

ν τq. Taking
the derivative with respect to n in Eq. 11, transforming
the integral in a sum (the states are discrete), and taking
into account the integration limits [0, 1/ν], we obtain

1 =
2πi

h

τ=+∞∑
τ=−∞

τ
∂

∂n
(QτP−τ ) . (13)

The partial derivative is solved by Heisenberg recalling
his previous work on dispersion relations with Kramer
[11]. Born uses the same technique, which is to replace
the derivative with a finite difference:

1 =
2πi

h

τ=+∞∑
τ=−∞

Q(n+τ, n)P (n, n+τ)−Q(n, n−τ)P (n−τ, n)

(14)
In this way, an expression describing a state is now
changed in an expression describing a transition between

states. Rewriting the last equation in matrix formalism
with relabeled indices we obtain

QαγPγα − PγαQγα = −
h

2πi
δαα , (15)

which confirms the non-commutativity among quan-
tum mechanical observables, generalizing Heisenberg’s
results. Still, the latter result refers only to the diag-
onal elements of the matrix: what about the off-diagonal
terms? Born conjectured that these terms must be zero
and Jordan finally provided an argument in favor of this
intuition (see next section). A more formal proof was
soon provided by Dirac [13].

THE NEW QUANTUM THEORY

Looking for an equation describing how quantum ob-
servables change in time, we can consider the time deriva-
tive of a function f(q, p) where q and p are expressed via

their Fourier decompositions. The derivative will look
like

ḟαβ = 2πiναβfαβ . (16)

Since the term ναβ represents the frequency emitted by a
transition from two states, we have to assume that α 6= β
(or that ν is antisymmetric: ναβ = −νβα). If α = β,

then ḟ = 0. On the other hand, if ḟ = 0 and ναα = 0
we conclude that f must be a diagonal matrix. We can
now rewrite Bohr’s relation (Eq. 1) between frequency
and energy differences in matrix form and substitute it
in Eq. 16:

ḟ =
2πi

h
[(Eαfαβ − fαβEβ ] . (17)

The last equation is what we call today Heisenberg’s
equation of motion, although its first derivation was given
by Born and Jordan.
In the last section, we calculated the diagonal term

of the matrix A = qp − pq (Eq. 15). We can further
prove that the off-diagonal terms of A are zero, proving
that A is diagonal, which is equivalent to Ȧ = 0. Born
and Jordan give a quite general argument based on the
derivation of functions of products of powers of q and
p and the Hamiltonian formalism. A less general and
simplified argument is the following. Let us consider the
time derivative of the matrix A:

Ȧ = q̇p+ qṗ− ṗq − pq̇ . (18)

In a very simple dynamic situation, if p is the momentum,
q the position, m the mass and U(q) a potential, we have
q̇ = p/m and q̇ = −∂U/∂q. Substituting into the last
equation:

Ȧ = −
∂U

∂q
q +

p2

m
−

p2

m
+ q

∂U

∂q
= 0 , (19)

where we used the fact that ∂U/∂q commutes with q.
This (not rigorous) calculation supports the conclusion
that Ȧ = 0 and therefore the matrix A = qp − pq is
diagonal. The final expression is one of the central results
of Quantum Mechanics:

qp− pq = −
h

2πi
I , (20)

where I is the unit matrix. The last equation has far
reaching consequences in our ability to perform measure-
ments, as the fathers of Quantum Mechanics realized
quickly by simple considerations about the mathemat-
ical properties of matrices. Since energy is conserved,
Ė = 0 and E must be a diagonal matrix:

E = δαβEα and hναβ = Eαα − Eββ . (21)

We can assume that the eigenvalues (or equivalently the
diagonal elements if the matrix is diagonal) of a matrix
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representing the observable are the values we measure.
But if two matrices do not commute, we cannot diagonal-
ize them at the same time with the same transformation.
This leads to the conclusion that if we diagonalize q, we
cannot do it for p and thus if we measure precisely the
position of a particle, we cannot measure its momentum
with the same precision. Eq. 20 represents Heisenberg’s
uncertainty principle. Its final form was derived by Born
and Jordan [6].

CONCLUSIONS

Following the papers of Heisenberg, Born, and Jordan
we showed in a simplified way how two central results of
Quantum Mechanics (the equation of motion and the un-
certainty principle) were deduced for the first time. The
key ideas behind these breakthroughs were the following:

• Heisenberg focused his analysis only on what spec-
troscopy experiments were actually measuring: in-
tensities and frequencies. This led him to represent
observable quantities with Fourier series.

• He then enforced the Ritz combination principle
into the Fourier decomposition: frequencies and
amplitudes were now dependent on two numbers
instead of one. This is fundamental for introduc-
ing the idea of transition between two states in the
formalism.

• Investigating the algebra of the new quantities led
him to the non-commutativity of the amplitudes,
which has its roots exactly in the combination prin-
ciple.

• Born, Jordan and Dirac generalized the formalism
recognizing the isomorphisms between Heisenberg’s

new quantities and matrix algebra. The first form
of Quantum Mechanics was born: Matrix Mechan-
ics.

The first picture of Quantum Mechanics was born 100
years ago with the seminal paper of W. Heisenberg. In
the modern teaching of Quantum Mechanics, his line of
reasoning is somewhat lost in favor of the more practi-
cal Schrödinger picture. Heisenberg’s original approach,
though, has the pedagogical advantage of making a clear
connection with experimental facts. Moreover, it is of
great historical interest, and it is an excellent example
of physics reasoning and intuition, which highlights how
new ideas and advancements in physics can take place.
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