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0.1 Von Neumann Growth Model

In the 1937 John von Neumann published (originally in German [1]) a
simple linear model to describe optimal economic growth. Von Neumann
introduced many simplifications to make equilibrium possible: constant
returns to scale, pure and perfect competition, unlimited quantities of
goods available through the productive process, no savings from workers
who are depicted as very simple agents, and no consumption from pro-
ducers who save the totality of their income. Production is considered
a temporal process of transforming one set of goods into another. For
simplicity, von Neumann also assumed that the cost of production of one
good depends on the value of the goods necessary for its production, plus
the interest rate.
He introduced a system in which N “technologies” can operate by com-
bining M “commodities”. Said in other words, N possible production
processes act on M possible goods for producing other goods.
We define a matrix Bcp where p = 1..N and c = 1..M and represents,
for a given process p, how much of the compound c it uses. Assuming
B represents the “inputs” to a production process, an analog matrix Acp
will represent the “outputs”, i.e. A describes how much of the compound
j, the process i outputs. Another assumption of the model is linearity, in
the following sense: if a process is run at scale s, then sB inputs will pro-
duce sA outputs. We further assume that alla the matrix elements and
the scales sp are zero or positive.
In a perfect supply-demand equilibrium (and forgetting for now about
the scales s), considering a specific compound c we have the proportion-
ality

∑
p

Acp = ρ ∑
p

Bcp . (1)

Considering compound prices pc, we can now calculate the cost of run-
ning a certain process p: ∑p ppBpc, which generates a revenue ∑p pp Apc
(the vector p contains the prices). In equilibrium we expect

∑
p

pp Acp = σ ∑
p

ppXcp . (2)

While the parameter ρ represents the grow factor, σ = 1 + r is connected
to the interest rate r one pays for borrowing the money for realizing the
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production process (which has to be returned after each step).
The von Neumann growth problem is a relaxation of the latter equilib-
rium formulas and it is given by the dual optimization problem

maxρ>0(ρ) :
N

∑
p
(Apc − ρBpc)sp ≥ 0 ∀c (3)

minσ>0(σ) :
M

∑
c

pc(Apc − σBpc) ≤ 0 ∀p (4)

with p ≥ 0, s ≥ 0.
Intuitively, the first problem (the “technological expansion problem”) says
that we would like to maximize the output of the economy and we have
to find the maximum ρ and intensity of the processes s (the “optimal
intensity vector”) such that the output As exceeds the input Bs. The solu-
tion does not trivially correspond to choose a large ρ (the “technological
expansion rate”), otherwise A− ρB will be negative.
The second (dual) problem requires that what we gain from the output is
at most equal to what we spend for the input ,finding the optimal σ (the
“optimal economic expansion rate”) and p (the “optimal price vector”).
It can be showed that generally the solutions ρ̄ and σ̄ respect ρ̄ ≥ σ̄ and
with some more restrictive conditions ρ̄ = σ̄ [2].
Another way to see the two dual problems is that the first is a resource
allocation problem, while the second is a resource valuation problem.

0.2 Production Functions

A production function (PF) is a function F : RN
+ → R+ which connects

the output of an activity to its production factors. The “activity” could be
also the whole economy of one or more countries. A common example is
the production function connecting the output Y to capital K and labor L
: Y = F(K, L). More in general, Y = F(x1, x2, x3, ..).
A property of the PF which is generally assumed is constant return to scale

λY = F(λx1, λx2, ..) , (5)

so that if all the production factors are scaled by a quantity λ, also the
output is scaled by the same quantity. Constant return to scale can be
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applied only to some of the production factors: the typical example is
the PF Y = F(K, L, A), where A is an “efficiency” applied to one of the
factors. Constant return to scale is applied only to K and L.
Relevant quantities characterizing a PF are the derivatives with respect to
the production factors

Fxi =
∂F
∂xi

. (6)

Economically relevant properties of a PF are

∂F
∂xi

> 0 (7)

Hij =
∂2F

∂xi∂xj
negative semidefinite (8)

which mean that F is a (monotonically) growing function of its inputs and
that the growth rate decreases as the inputs increase (“law” of decreasing
returns).
The latter properties describe F as a concave, growing function of the
production factors.
Often other assumed properties are the so-called Inada conditions

f (0) = 0 (9)
lim
x→0

Fxi = +∞ (10)

lim
x→+∞

Fxi = 0 . (11)

Intuitively, the PF rises sharply as soon as we “switch on” a production
factor xi and then, as the factor increases, the PF levels off towads a zero
growth regime.

0.3 Elasticity of Substitution

Elasticity of substitution (EoS) for a PF with two production factors is
defined as

σ =
d(x2/x1)/(x2/x1)

d(Fx1/Fx2)/(Fx1/Fx2)
. (12)

EoS is the ratio of percentage change of a production factor ratio to the
percentage change of the output changes. The most common production
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factors are capital (x1 = K) and labor (x2 = L) and in the following we
will stick to this specific choice.
Dividing the PF by L, F(K, L) → F(K/L, 1) and using the constant re-
turn tu scale property, Y/L = F(K/L, 1). Introducing the capital intensity
k=K/L (the capital per unit labor) and renaming y = Y/L, the PF reduces
to

Y
L
= F

(
K
L

, 1
)
⇒ y = f (k) . (13)

We would like now to relate the partial derivatives of F to the derivative
of f. To this aim, we introduce first Euler’s theorem. We start from the def-
inition of an homogeneous function of degree θ, which has the defining
property

λθY = F(λK, λL) . (14)

If θ = 1 we are clearly in the constant returns to scale case.
Theorem (Euler): if F(K,L) is homogeneous of degree θ, then

θF(K, L) = FKK + FLL . (15)

Proof: Differentiating the definition of homogeneous function with re-
spect to λ

∂F
∂(λK)

∂λK
∂λ

+
∂F

∂(λL)
∂λL
∂λ

= θλθ−1F(K, L) (16)

∂F
∂(λK)

K +
∂F

∂(λL)
L = θλθ−1F(K, L) (17)

and fixing λ = 1 concludes the proof.
We can now go back to the problem of finding the relationship between
derivatives of F and f.
Differentiating Y/L = F(K, L)/L = f (k) with respect to K:

FK =
∂F
∂K

= L · f ′(k) · 1
L
= f ′(k) , (18)

where f ′(k) = d f /dk.
Using Euler’s theorem together with Eq. 18

y = Y/L = FKk + FL = f ⇒ ∂F
∂L

= FL = f (k)− k f ′(k) (19)
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Applying the definition of EoS (Eq. 12), we can obtain a differential equa-
tion for the elasticity:

σ =
d(K/L)/(K/L)

d(FL/FK)/(FL/FK)
=

dk/k

d
(

f−k f ′
f ′

)/
(

f − k f ′

f ′

)
, (20)

which can be rearranged as

σ =
1
k

f − k f ′

f ′ d
dk

(
f−k f ′

f ′

) . (21)

Calculating the derivative in the denominator we arrive at the form

σ =
f ′( f − k f ′)
−k f f ′′

. (22)

A relevant case considered in the economic literature is the one where
σ is a constant (constant elasticity of substitution case, CES): Eq. 22 rep-
resents a second order differential equation which solutions will be dis-
cussed in the next section.

0.4 CES Production Functions

A production function is a relation between the output of an economy
and its aggregate factors, like capital, labour, land, etc.. . In general, the
output Y can be written as a function of the production factors Xi as

Y = F(X1, X2, X3, ..) . (23)

A class of production functions can have specific properties connected
with the elasticity of substitution (ES). ES of a variable X with respect to
another variable Y is the ratio of their relative change:

ES(X, Y) =
dX/X
dY/Y

=
dX
dY

Y
X

=
d(ln X)

d(ln Y)
. (24)

ES is a convenient definition since it is the ratio of dimensionless quanti-
ties.
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Another useful case is when we would like to calculate the ES of a func-
tion f with respect of one of its variables x:

ES( f (x, y, z, ..), x) =
d f / f
dx/x

=
xd f / f x

f
=

x f ′

f
. (25)

An interesting class of production functions is the one where ES is con-
stant (usually the class is called CES: constant ES):

Y(X1, X2, X3, ..) = A

(
∑

i
aiX

ρ
i

)k/ρ

. (26)

with A > 0, k > 0, ai ≥ 0, and ∑i ai = 1. The constants a are the factor
shares and determine how much weight the single production factors X
have in the total output Y.
We can show that the ES is σ = 1/(1− ρ):

0.5 The Cobb-Douglas Production Function

A particularly simple (and convenient in the calculations) production
function is the Cobb-Douglas form (CD). The CD function in its simplest
form has only two production factors, for example capital K and labor L:

Y = KαLβ . (27)

By direct calculation we can show that CD has constant elasticity of sub-
stitution with respect to both the factors:

E(Y, K) =
∂Y
∂K

K
Y

= α (28)

E(Y, L) =
∂Y
∂L

L
Y

= β (29)

The returns to scale condition aY = f (aK, aL) (the production increases
by an amount a if the factors increase by the same amount) forces the
identification β = 1− α.
It is easy also to show that the CD respects also the Inada conditions.
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Since the CD has the CES property, it must be contained in the family of
functions defined by Eq. 26. Indeed, the CD results in the limit ρ→ 0:

lim
ρ→0

(αKρ + (1− α)Lρ)1/ρ = KαL1−α (30)

This can be proven taking the logarithm of the limiting function and then
apply de L’Hopital’s theorem. By comparison between the CD and the
general CES function, α and 1− α are the factor shares.
More in general, a CD production function can be written as

Y = TKαL1−α . (31)

where the constant T is the “total factor productivity”.

0.6 The Harrow-Domar Model

The production function output depends only from the capital K:

Y = F(K) , (32)

and Y(0)=0 (no output with no capital). The marginal product of capital
is assumed to be constant:

dY
dK

= c , (33)

and if constant returns to scale is assumed
dY
dK

=
Y
K

. (34)

If s is the fraction of the output which goes into savings S, it is assumed

sY = S = I , (35)

where I are the investments. It is therefore assumed that all the savings
go into investments. If δ is the depreciation of the capital K, the variation
in capital is

∆K = I − δK . (36)

From Eq. ??, and Eq. 34, Y = cK ⇒ log Y = log c + log K. Taking the
time derivative of the last “log” equation,

Ẏ
Y

=
K̇
K

. (37)
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Using now Eq 35 and Eq. 36

K̇
K

=
I
K
− δ = s

Y
K
− δ , (38)

which yields the final dynamical equation of the model for the output
rate as a function of the parameters

Ẏ
Y

= sc− δ . (39)

0.7 The Solow-Swan Model

The Solow model builds on the Harrow-Domar model including labor
L as an additional variable. Moreover, the labor “intensity” A is also
considered and measures the efficiency with which labor is employed.
The production function is thus

Y = F(K, L, A) = F(K, AL) , (40)

where the factor A enters only multiplicatively with the labor. In general,
the production factors are functions of time (e.g. K=K(t)).
Assuming constant returns to scale,

Y
AL

= F
(

L
AL

, 1
)
=

1
AL

F(K, AL) . (41)

Defining y=Y/AL and k=K/AL,

y = f (k) . (42)

Assuming a Cobb-Douglas form for F (which respects constant returns to
scale and the Inada conditions)

F(K, AL) = Kα(AL)1−α , (43)

we can now to specify the time evolution of A and L. A common choice
is a constant growth rate

L̇ = nL⇒ L(t) = L(0)ent , (44)
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Ȧ = gA⇒ A(t) = A(0)egt , (45)

where n and g are given (“exogenous”) constants.
The capital evolution can be written as

K̇ = sY− δK , (46)

where s is the fraction of output saved for investments, and δ is the exist-
ing capital depreciation.
For deriving the time evolution, we can derive the “capital intensity” k =
K/AL with respect to time

k̇ =
d
dt

(
K

AL

)
=

K̇
AL
− K

AL
L̇
L
− K

AL
Ȧ
A

=
sY− δK

AL
− kn− kg , (47)

where we used Eq. 44, 45, 46. Using again the capital intensity definition
and that Y/AL = f (k) = kα we obtain the dynamical equation for the
Solow model (for a Cobb-Douglas production function)

k̇ = skα − (n + g + δ)k . (48)

The last equation says that the change in capital per effective labor is
equal to the difference between investments per effective labor and the
“breakeven investment”. The breakeven investment is the minimal in-
vestment needed for keeping k at the existing level.
The solution of the Solow equation converges to an asymptotic capital
intensity k = k∗, which can be calculated considering when k does not
change anymore, or k̇ = 0:

k∗ =
(

s
n + g + δ

)1/(1−α)

. (49)

Considering the output intensity at k∗

y∗ =
(

s
n + g + δ

)α/(1−α)

, (50)

and taking the ratio eliminating AL

K
Y

=
s

n + g + δ
, (51)
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which states that the capital/output ratio depends only from the growth
constants of the model.
When k = k∗, since K = ALk and AL grows at rate (n + g), so does K.
From the constant returns assumption, since A, L, and K grow at constant
rate, so does the output Y. One of the main conclusions of the model is
that on the “balanced growth path” (i.e. when k = k∗), all the variables
grow at a constant rate, and this will happen regardless from the starting
point.

0.8 Analytic solution of the Solow Model

In the case of a Cobb-Douglas production function Y = AKαL1−α (with
0 < α < 1), the Solow model

k̇ = sAkα − (n + g + δ)k . (52)

admits an analytic solution.
Noting that the previous equation is a Bernouilli-type differential equa-
tion, it can be solved with the standard substitution z = Ak1−α obtaining
a non-homogeneous linear differential equation for z(t):

ż = (1− α)A2s− (1− α)(n + g + δ)z = (1− α)(A2s−ωz) . (53)

where ω = n + g + δ. This equation has an economic interpretation since
z(t) is the capital-output ratio. Therefore, the capital-output ratio in the
Solow model with Cobb-Douglas production obeys a simple linear differ-
ential equation.
Eq. 53 can be solved by separation of variables:

dz
(A2s−ωz)

= (1− α)dt , (54)

and integrating both sides

− 1
ω

ln(A2s−ωz) = (1− α)t + C , (55)

where C is an integration constant. After some algebra we obtain the
solution

z(t) =
sA2

ω
+ Ce−ω(1−α)t . (56)
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Restoring the original capital intensity variable k = zα−1/A and fixing
the initial condition k(0) = k0 we find for the integration constant

C = Ak1α
0 −

sA2

ω
. (57)

The analytic solution of the model is finally

k(t) =
[

sA2

ω
+

(
Ak1−α

0 − sA2

ω

)
e−ω(1−α)t

] 1
1−α

. (58)

For large times, the exponential term goes to zero and the solution con-
verges to a constant k∗ which is exactly what we calculated in the previous
section (Eq. 49) with the condition k̇ = 0

0.9 The Mankiw-Romer-Weil Model

Along the lines of the Solow model, one can consider a third production
factor, for example the human capital H, and the (Cobb-Douglas) produc-
tion function becomes

Y = KαHβ(AL)1−α−β . (59)

Assuming that H depreciates with the same rate as K and a similar dy-
namical law as for the capital (see the Solow model), the resulting dy-
namics is given by

k̇ = sKkαhβ − (n + g + δ)k (60)

ḣ = sHkαhβ − (n + g + δ)h (61)

0.10 A model with four production factors

The production function can in principle contain even more factors. One
example is a model where we consider capital, labor, available land T,
and natural resources R

Y = KαRβTγ(AL)1−α−β−γ . (62)
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Since land cannot grow, Ṫ = 0 and since resources should diminish with
time we assume Ṙ = −bR with b > 0.
The model is now more complicated and there is no convergence to a
fixed capital intensity k∗. The analysis strategy for this model is to look
for a balanced growth path where K and Y grow at a constant rate. From
the capital change equation

K̇ = sY− δK ⇒ K̇
K

= s
Y
K
− δ , (63)

thus the growth rate for K is constant only if Y/K is constant, i.e. the
growth rate of Y and K must be the same. We can use the production
function to see when this happens. Taking the logarithm of the produc-
tion function we have

ln Y = α ln K + β ln R + γ ln T + (1− α− β− γ)(ln A + ln L) , (64)

and differentiating with respect to time we convert logs into growth rates

gY = αgK + βgR + γgT + (1− α− β− γ)(gA + gL) . (65)

Substituting the grow rates we decided for our model

gY = αgK + βb + γgT + (1− α− β− γ)(n + g) . (66)

Since on the balanced growth path Y and K grow at the same rate, gY =
gK we have

g∗Y =
(1− α− β− γ)(n + g)− βb

1− α
(67)

From the last equation,

g∗Y/L = g∗Y− g∗L =
(1− α− β− γ)(n + g)− βb

1− α
−n =

(1− α− β− γ)g− βb− (β + γ)n
1− α

.

(68)
The last equation indicates that the income per worker (Y/L) can have
positive or negative values. The limitations in land and resources can
limit or invert the income/worker growth rate.
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0.11 The Utility Function (simplified treatment)

In the following we describe a simple (“neoclassical”) consumption model
based on a rational consumer who maximizes its utility.
For simplifying the analysis, we consider only two “times”: the present
and the future, assuming that the past does not influence the consumer’s
choices.
We define the financial wealth of an individual at time t with ft. For ex-
ample, the present wealth is ftoday and the future one f f uture. Analogously,
the labor income is ytoday (ytomorrow).
If the consumption of the individual is c, then we have the two budgetary
constraints:

ctoday = ytoday − ( f f uture − ftoday) (69)

c f uture = y f uture − (1 + R) f f uture (70)

The two latter equations refer to different point in time but have the same
form as:

Consumption equals income - savings

with R the interest rate. Substituting f f uture in the second equation into
the first we obtain the intertemporal budget constraint

ctoday +
c f uture

1 + R
= ftoday + ytoday +

y f uture

1 + R
(71)

The equation simply states that consumption must equal the total wealth
1. Future incomes and consumptions are discounted by the interest rate.
We define now the “utility” which the consumer obtains from consump-
tion as a function u(c)

U = u(ctoday) + βu(c f uture) (72)

1A caveat to this equation is that y should be interpreted as income after taxes. The
Ricardian Equivalence assumes that a change in timing of the taxes does not affect
consumption. In the present model, the Ricardian equivalence is respected, since the
total wealth W = ftoday + ytoday +

y f uture
1+R does not change if taxes are subtracted today

and added in the future or the other way around.
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where we distinguished present and future consumption and a possible
different weight between the two indicated by β. Following the diminish-
ing marginal utility assumption, we expect u(c) to have a decreasing first
derivative with respect to c. We assume that the target of the consumer is
to maximize its utility under the budgetary constraint, so the problem is

max
ctoday,c f uture

u(ctoday) + βu(c f uture) (73)

ctoday +
c f uture

1 + R
= W (74)

where W is the total (lifetime) wealth (see Eq. 71). Solving the constrained
optimization problem we obtain

u′(ctoday) = β(1 + R)u′(c f uture) , (75)

which is called the Euler Equation for the consumption.
The equation says that the consumer is indifferent in consuming one
“unit” today or saving it for the future or the other way around.
A possible (respecting the diminishing marginal utility) very simple for
for the utility function is u(c) = log(c). With this form, the Euler equation
is c f uture

ctoday
= β(1 + R) . (76)

The left-hand side is the growth rate of consumption and the equation
says that it is equal to the interest rate (modified by his propensity to
consume more or less in the future through the parameter β). Thus the
less weight on future utility (β < 1), the lower the consumption grows.
If the growth rate is the one of the whole economy, as for example the
one described in a Solow-like model, then the Euler equation establishes
its connection with the interest rate for the consumers.
The general consideration here is that growth rates and interest rates are
tightly related.

0.12 The Utility Function

The “instantaneous” utility function u(c) is a function of the consump-
tion c. Its absolute value has no significance, so u is in general defined
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modulo an affine transformation.
What characterizes the utility function the most is its concavity (con-
vexity) which differentiates among risk-averse or risk-affine agents. The
higher the curvature, the high the risk-aversion (affinity), thus the second
derivative of u contains the aversion information. Since the absolute value
of u does not matter and a quantity describing risk should not be depen-
dent from affine transformations and the unit of measure, we define the
Arrow-Pratt relative risk aversion as

RRA = −c
u′′(c)
u′(c)

. (77)

Renaming for now RRA=k, the previous definition is equivalent to the
differential equation

u′′ +
k
c

u′ = 0 . (78)

Defining v(c) = u′(c) the equation becomes v′+(k/c)v = 0, which can be
resolved by separation of variables. Restoring the original utility function
u(c) by integration, the solution for a constant RRA is

u(c) =
c(t)1−θ − 1

1− θ
, (79)

By direct calculation from the definition in Eq. 77, for the CRRA function
we have RRA = θ.
Another interesting property is the elasticity of intertemporal substitu-
tion (EIS). As defined before, the elasticity is the ratio of two relative
changes. In the consumption case, the EIS is the relative change in con-
sumption rate for a relative change of the interest rate (or the change in
utility rate)

EIS = − ∂(ċ/c)
∂(u̇′/u′)

= − ∂(ċ/c)
∂u′′ · c/u′

= − ∂(ċ/c)
∂(RRA · ċ/c)

=
1

RRA
= − u′

u′′c
,

(80)
where the dots are time derivatives and primes are derivatives with re-
spect to the consumption. For the CRRA function therefore,

EIS =
1

RRA
=

1
θ

. (81)

Another observation is that for θ = 1, the CRRA function reduces to
u(c) = log c.
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0.13 A very basic DSGE Model

Dynamical Stochastic General Equilibrium models are an evolution of
the RBC models including a stochastic dynamics for some of their vari-
ables. Here we take a look at one of their simplest forms. In general, the
problem consists in maximizing the utility function subject to a budget
constraint. The utility u is a function of the consumption at time t ct,
which is a stochastic variable:

max
c(t)

∞

∑
t=0

βtE[u(ct)] . (82)

The problem is formulated in discrete time and the utility is maximized
over the lifetime [0, ∞], while β is the discount factor. The operator E[] is
the expectation value.
The budget constraint is

ct + kt+1 = f (kt) + (1− δ)kt , (83)

where f is a production function depending on the capital k. For ex-
ample, we can take f = Atkα, where the productivity At is a stochastic
variable, i.e. At is known, but At+1 is not. The parameter δ is the capital
depreciation. The budget constraint means that one can choose between
consumption today, or more capital tomorrow (t+1) and their sum must
be equal to the production plus the previous capital level (1− δ)kt.
The constrained optimization problem to solve is thus

L = E

[
∞

∑
t=0

βt [u(ct)− λt(ct + kt+1 − f (kt)− (1− δ)kt)]

]
. (84)

Before solving the maximization problem, we notice first that the expecta-
tion value operator is linear (E[ax + by] = aE[x] + bE[y] if x,y are stochas-
tic and a,b numbers). This means that the operator acts on all the terms
in the sum over times and βt, being a number can be factored out.
Second, when taking the derivatives with respect to a variable at a certain
time, all the terms at different times vanish. The first order conditions
are the derivatives of the Lagrangian Eq. 84 with respect to the variables
ct and kt+1, plus the derivative with respect to the constraint λt. The
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most involved calculation involves kt+1 and we will give here some more
details about that:

dL
dkt+1

=
d

dkt+1
E

[
∞

∑
t=0
−λt(ct + kt+1 − f (kt)− (1− δ)kt)

]
= (85)

= E

[
−βtλt

dkt+1

dkt+1
− d

dkt+1

t=∞

∑
t=0

(
βtλt(− f (kt)− (1− δ)kt)

)]
= (86)

− λtβ
t + ... +

d
dkt+1

E
[

βt+1(λt+1 f (kt+1) + 1− δ) + ...
]
= (87)

= −λtβ
t + βt+1E

[
λt+1 f ′(kt+1) + 1− δ

]
. (88)

where we dropped the u(ct) and ct terms since they do not depend on k
and we used the linearity of E. The terms of the sum marked with “...”
are zero under the action of the derivative.
We can write now the first order conditions:

dL
dct

= u′(ct)− λt = 0 , (89)

dL
dkt+1

= −λt + βE
[
λt+1[ f ′(kt+1) + 1− δ]

]
= 0 , (90)

dL
dλt

= ct + kt+1 − f (kt+1)− (1− δ)kt = 0 . (91)

Combining the first two equations, we obtain the so-called Euler equation
(compare with Eq. 75)

u′(ct)

βE[u′(ct+1)]
= E[ f ′(kt+1) + 1− δ] . (92)

0.14 A simple DSGE Model

The following is a more concrete model than the sketch before but still
is based on simple assumptions. For example, there are only households
and firms and no role for the government or monetary policy. Moreover,
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there are no delays or stickyness in prices and wages.
The household compartment is described by the maximization

max
Ct,Lt

Et

{
βt ∑

t
u(Ct, Lt)

}
= max

Ct,Lt
Et

{
∑

t
βt(log Ct + γ log Lt)

}
, (93)

where u(Ct, Lt) is the household utility function. The utility is a balance
between consumption Ct and leasure Lt, where the parameter γ represent
the leasure share.
The logarithmic form of u is a simple form among the possible choices.
The intertemporal discount factor β models how future is important in
the utility.
The household is subject to the budget constraint

Ct + St︸ ︷︷ ︸
Expenses

= WtHt + RtKt︸ ︷︷ ︸
Income

, (94)

where Ht are the hours worked, Kt is the capital, It the investments, Rt
the return on capital, and Wt the wages. Leasure and work are connected
by Lt = 1 − Ht. Furthermore, we assume that all the savings go into
investment (St = It) and the capital obeys the dynamic equation

Kt+1 = It + (1− δ)Kt , (95)

where δ is the capital depreciation. The budget constraint becomes

Ct + Kt+1 = WtHt + (1 + Rt − δ)Kt . (96)

The household constrained optimization problem is thus

max
Ct,Ht,Kt+1

L = max
Ct,Ht,Kt+1

Et

{
∑

t
βt [u− λt (Ct + Kt+1 −WtHt − (1 + Rt − δ)Kt)]

}
.

(97)
Solving the maximization conditions

∂L
∂Ct

= βt
(

1
Ct
− λt

)
= 0⇒ λt = 1/Ct

∂L
∂Ht

= βt
(
− γ

1−Ht
+ Wtλt

)
= 0⇒ γt = (1− Ht)λtWt

∂L
∂Wt+1

= βtλt + βt+1λt+1(1 + Rt+1 − δ) = 0

(98)
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Combining the first two equation,

Ht =
Wt − Ctγ

Wt
, (99)

and combining the first with the third we obtain the so-called Euler equa-
tion for the intertemporal consumption

Ct+1

Ct
=

βt+1

βt (1 + Rt+1 − δ) = β(1 + Rt+1 − δ) . (100)

The last two equations represent the main results of the household utility
maximization problem.
Turning now to the firms problem, we assum an output described by the
Cobb-Douglas function

Yt = AtKα
t H1−α

t . (101)

For the productivity At, we choose a first-order autoregressive process

log(At+1) = ρ log At + et+1 , (102)

where e are productivity shocks modeled with a Gaussian distribution
N(0, σ2) and ρ ∈ (0, 1). This is the only stochastic component of the
model.
The budget constraint is Yt = WtHt + RtKt such that the production
equates the expenses for wages and the return on capital. The maxi-
mization problem is

max
Kt,Ht

L = max
Kt,Ht

AtKα
t H1−α

t −WtHt − RtKt . (103)

The maximization conditions are{
∂L
∂Kt

= αAtKα−1
t H1−α

t − Rt = 0
∂L

∂Ht
= (1− α)AtKα

t H−α
t = 0

(104)

Solving the two last equations yields the results for the firms maximiza-
tion problem

Rt =
αYt

Kt
, (105)
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Wt = (1− α)
Yt

Ht
, (106)

where we used the Cobb-Douglas function to simplify the expressions.
We are now in the presence of a competitive equilibrium where house-
holds maximize utility while firms maximize profit. The economic fea-
sibility condition is Yt = Ct + It: the total output must be equal to con-
sumption and investments.
Summarizing, the DSGE model is represented by the following 8 equa-
tions for 8 dynamic variables

Yt = Ct + It (107)
Ct+1 = β(1 + Rt+1 − δ)Ct (108)
Kt+1 = It + (1− δ)Kt (109)

Ht = (Wt − γCt)/Wt (110)
Rt = αYt/Kt (111)
Wt = (1− α)Yt/Ht (112)

Yt = AtKαH1−α
t (113)

log(At+1) = ρ log At + et+1 . (114)

The parameter ρ is fitted on the data, while the other parameters (α, β, γ, δ)
are calibrated on various datasets. Typical values from the literature are

α ∼ 0.33 (115)
β ∼ 0.98 (116)
γ ∼ 3.3 (117)

δ ∼ 0.03 (118)
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