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Abstract: The paper deals with information transmission in large systems of neurons.

We model the membrane potential in a single neuron belonging to a cell tissue by a non time-homogeneous
Cox-Ingersoll-Ross type diffusion; in terms of its time-varying expectation, this stochastic process can
convey deterministic signals.

We model the spike train emitted by this neuron as a Poisson point process compensated by the occupation
time of the membrane potential process beyond the excitation threshold.

In a large system of neurons 1 < i < N processing independently the same deterministic signal, we prove
a functional central limit theorem for the pooled spike train collected from the N neurons. This pooled

spike train allows to recover the deterministic signal, up to some shape transformation which is explicit.
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1. Introduction

A neuron in a cell tissue receives synaptic input from a large number of other neurons. The total
number of synapses contacting a single neuron is ~ O(10%); most of these are exciting synapses,
contacting the dendrites of the receiving neuron, the remaining smaller part (of the order of 10 %)
are inhibitory synapses, concentrating near the soma of the receiving neuron.

In a single synaptic connection, incoming spikes (action potentials generated by other neurons)
cause a release of transmitter molecules at the synaptic endpoint, and create some small post-
synaptic current.

A large number of synaptic connections being active at different locations and at different times,
according to a complex spatio-temporal pattern, a large number of small postsynaptic currents —

decayed and delayed, with varying signs and amplitudes — adds up in the soma of the receiving



neuron, and decays at some rate. This corresponds to fluctuation in time of the membrane
potential in the receiving neuron. As a function of time, neurophysical recordings of the membrane

potential look very much like trajectories of stochastic processes of diffusion type.

When the membrane potential exceeds some excitation threshold, the neuron is able to ’fire’:
in its axon, it generates spike trains (single spikes, sequences of spikes with varying interspike

intervals, spike bursts, ...) which transmit information to a large number of other neurons.

In vivo, for a neuron in a cell tissue receiving information from a large number of other neurons,
there is a need for stochastic modelization of both membrane potential and spike train generation.
It has been observed e.g. in cortical neurons that neuronal response is higly variable, 'noisy’ and
irregular; in particular, identical stimuli do not lead to identical responses on repeated trials (see
e.g. [M 00], [S-S-F 99], [S-N 98]). Shadlen and Newsome [S-N 98] have investigated in repeated
measurements spike trains in the visual cortex of an alert monkey in response to some fixed
visual stimulus (a certain moving picture): the same experiment being repeated 200 times, there
is evidence for a random structure in the observed 200 spike trains. This randomness is visible
in particular (see [S-N 98, Fig 1]) in the interspike intervals (ISI) over short time windows where

histograms of observed ISI’s fit surprisingly well to exponential distributions.

In a first part of this paper, we will view the membrane potential in the single neuron belonging to
a cell tissue as a continuous stochastic processes V' = (V;);>0, solving some stochastic differential
equation. Its structure has to be compatible with two main features of a membrane potential, i.e.
1) additivity with respect to the input, and ii) exponential decay. These two requirements lead na-
turally to a Cox-Ingersoll-Ross (CIR) type model for the membrane potential where incremental
variances are proportional to the present state of the process. Assumed non time-homogeneous,
the time-varying expectation of the CIR-type diffusion process plays the role of a given ’determi-
nistic signal’, thus the stochastic process of membrane potential can be understood as 'random

noise conveying a deterministic signal’.

We will view the spike train generated by the single neuron belonging to a cell tissue as a random
point measure. The exponential-like IST histograms recorded by [S-N 98, Fig 1] indicate that one
should think first of Poisson random measure; since the membrane potential is modelled by a
stochastic process and since spikes can be emitted when the membrane potential exceeds some

excitation threshold, we need a 'doubly stochastic’ random measure. Hence we model the spike



train generated by the single neuron as Poisson random measure compensated by the sojourn
time of the membrane potential process above the excitation threshold (up to multiplication with
some parameter). This provides a powerful framework for mathematical treatment of information
transmission. In some aspects questionable from a biological point of view (this model for spike
generation does not take into account the reduction of membrane potential after spike emission),
it incorporates however interesting features of observed spike trains such as the exponential-like

structure of observed ISI’s in short time windows (remark 3.4).

So far, we have considered a single neuron receiving synaptic input from a large number of other

neurons, and transmitting information to other neurons via a spike train.

In a second part of this paper, we consider a large number of stochastically independent neurons
1 = 1,..., N processing the same deterministic signal, in form of the time-varying expectation
of their membrane potentials. Our main result is a functional central limit theorem (theorem
3.5) for the collection of spike trains sent out by the neurons ¢ = 1,..., N. Comparable to the
Glivenko-Cantelli theorem in classical statistics, it shows that a weighted counting process for
the pooled spike train is close — up to terms of stochastic order Op(N~1/2) - to a certain de-
terministic function, the response, which represents a shape transformation of the signal. Up to
this transformation from signal to response which is explicit (remark 3.6), the pooled spike train
collected from neurons i = 1,..., N allows to recover the deterministic signal asymptotically as

N — co. Also subthreshold signals can be transmitted in this way.

There are error terms of stochastic order Op(N~1/2) between the observed quantity — the weigh-
ted counting process for the pooled spike train from N neurons — and the response. We have a
limiting Gaussian process for these. Two independent sources of error appear in the limit: first
a Brownian motion time-changed by the response function, and second some Gaussian process

whose covariance kernel measures dependency in the CIR type process of membrane potential.

The paper is organized as follows: in section 2, we present the CIR-type model for the membrane
potential in the single neuron (from [B-H 04]). In section 3.1, we formulate a simple ’doubly sto-
chastic’ Poisson model for the spike train emitted by one neuron. Section 3.2 contains the main
result (theorem 3.5) on signal transmission in large systems of neurons; this theorem is proved

in section 5. Finally, section 4 proposes some methods for model check and parameter estimation.



2. A stochastic model for the membrane potential

We discuss a time-inhomogenous diffusion process of Cox-Ingersoll-Ross (CIR) type modelling
two important properties of membrane potentials: i) additivity in the input, and ii) exponential
decay. In subsection 2.1, we recall the classical CIR diffusion (no biologically relevant scaling,
time-constant input only), see [C-I-R 85|, [I-W 89, p. 235], and e.g. [O-R 97|, [O 98]. Biologically

relevant scaling and the effects of time-varying input will be the topic of subsection 2.2.

In neuronal models, CIR diffusions appear already in [L-L 87, (4.12) and Thm. 4], [G-L-N-R 88,
(3.10), (3.27), Sect. 4], [L-S-T 95, (18)]; initially, the feature of restricted state space seemed to
be of main interest. With unbounded state space, Ornstein-Uhlenbeck (OU) models have been
widely used for the membrane potential, see [D-L 05], [L-S 01], [S-S-F 99], [L-S 99], [L-L 87]
and the literature quoted there. OU models map well the property ii) (exponential decay) of
membrane potentials, but are questionable with respect to property i) (additivity in the input):
synaptic input from a large number of stochastically active sources should imply that incremental
variances of the membrane potential are proportional to the present state. CIR diffusions realize

both requirements i) and ii).

2.1. Preliminaries

Consider some time constant 7 > 0, and parameters a > 0, 02 > 0 such that

2a
)

(1)

g

For constants f > 0 representing some time-constant level of ’input’, we write ¢ = &/ for the

real-valued stochastic process ({{ )¢ solution to the stochastic differential equation (SDE)
1
2) del = [a+f—£{] (rdt) + o [g{vo]2 (T%th)

on some time interval [0, 7], with driving standard Brownian motion W. We prescribe some de-
terministic starting point &’; > 0, or some initial law concentrated on (0, 00). Up to the somewhat
unusual parametrization, (2) is the well known CIR (or mean reverting) diffusion. See [M 82] and

[K-S 91] for background on stochastic processes and SDE’s.



We recall known properties of this process. Under (1), trajectories of £/ are continuous functions
[0,7] — (0,00) (cf. [I-W 89, p. 235-237]), and we suppress truncation by 0 in the diffusion
coefficient of (2). Viewed on the time interval [0, cc0), the process (fg )t>0 is ergodic; the invariant

law is the Gamma distribution

2 2
®) (Za+n.5) o0
(see e.g. the first pages of [K 03]). Mean and variance of (3)
o2
(a + f) ’ ? (a + f)

are linear in the input f. We think of the case f = 0 (no input) as remaining randomness in a
system at rest. For constant f > 0, we will always consider the CIR diffusion (5{ )¢ in (2) as a

stationary process, taking as initial condition the invariant law (3).

Note that the invariant law (3) is free of the time constant 7. Large values of 7 correspond to
rapid oscillations in the trajectory of (f{ ):. As a rate of decay, T represents a backdriving force
reorienting trajectories towards (a + f). Note that a time constant 7 for the process £ — solving a
Wiener driven SDE — must affect both dt and the angle brackett d(M¢); of the martingale part

M¢ of £. The inverse of 7 is the membrane time constant in the biological sense.

2.2. Time-inhomogeneous CIR diffusion as a model for the membrane potential

Commonly, the potential difference at the membrane K in a neuron ’at rest’ is put to —70 mv,
and the excitation threshold Kg to —50 mv. In fact, there exists a broad variety of values accor-
ding to different types of neurons and different experimental conditions (e.g., levels of pharmaka

administrated to a cell tissue under observation). Hence we start from constants
Kr < Kg
for a resting level and an excitation threshold.
Consider first the case f = 0 (no input) in SDE (2). A neuron belonging to a cell tissue will
always remain exposed to some network activity ’at rest’. We introduce a linear scaling

(4) Sy) = so+s1y, so€R,s1>0



with coefficients such that the stationary process (S (&7)), with f = 0 is a reasonable model for
the membrane potential in a neuron ’at rest’, i.e.

1) some left endpoint sy for the support of £ (S ({?)) is specified;

ii) the constant K is understood as expected value of £ (S (£?)):

(5) E(S(?)):50+31a = Kpg;

iii) the variance is adapted to realistic fluctuations of a membrane potential ’at rest’:
0 20 2 ! .. .
(6) Var (S (ft )) = s o) a = some empirically assessed quantity .

As an example, having observed a (stationary process of) membrane potential ’at rest’ over a
long time interval, almost continuously in time (i.e. on some fine grid of time points), we dispose

of an occupation time measure whose support, mean and variance correspond to i)-iii).

We turn to time-varying input f in SDE (2). Consider a function f : [0,7] — [0,00), right-
continuous and piecewise Lipschitz. This allows e.g. for input of type 'on/off’ like
f@t):=c if ton <t <tomr, f(t) :==0 else,

£(t) == c-sin <7r ttﬂ%t) if fon <t < tog, f(t) =0 else .

The following has been proposed in [B-H 04] as a model for the membrane potential in a neuron

belonging to a cell tissue under time-varying input.

2.1 Definition: For f : [0,7] — [0, 00) right-continuous and piecewise Lipschitz, the CIR model

for the membrane potential under input f is the stochastic process
vl = s(d)

with S(-) of (4), where (Etf ) is solution to the SDE with time-varying coefficients
¢

(7) vi= (th)te[O,T]

®) def = [a+ F(t) —g{] (rdt) + o [5{]% (T%dwt) on [0, 7]
with initial law

() =t (5 @rrons) .

The processes (V;f ) ot are strongly Markov, time-inhomogeneous, and (sg, co)-valued. Up to
t
- 2

now, by (7)+(8), the membrane potential at rest V? is parametrized by so, s1a, s1% , 7,



and time-varying input f(-) appears in the SDE for V/ in the form s;f(-). There are no intrinsic

norming constants for the input functions, hence we may reparametrize and put
(9) S1 = 1

in all equations of this subsection, and in the sequel: then S(-) in (4)—(6) is a shift, V/ solves

1
(10) av/ = [KR+ f(t)—v;f] (rdt) + o [V;f —30]2 (T%th) on [0, 77,
and the law of the process (Vt )Ogth is uniquely determined from

o2
(11) S0, @, 5, T and f(-).

2.2 Remark: We speak of a fast diffusion V7 if the time constant 7 is large compared to 1+ L,
L some Lipschitz constant for f(-) on its continuity intervals. In fast diffusions, we observe locally
at continuity points of f a close-to-stationary behaviour of the process V7, in the sense of good
approximations

0.2

E(V/) ~ S+ /W) = Kn+ (), Var (V) ~ T (a+ 1),
P(theA) ~ F(%(a+f(t)),%> (A—sy), AeB(R),

at continuity points # of f(-). Simulated trajectories of V/ will allow to judge the accuracy of

such approximations; an illustration is in [B-H 04, Fig. 2-3].

2.3 Definition: We call the function
i 01>t — E(Vj) € [Kr, o)

signal contained in the membrane potential (V;f ) vrer” A signal I { is called subthreshold if
<t<

sup E(V;f) < Kg,
0<t<T

with Kg the excitation threshold as in the beginning of this subsection.

A subthreshold signal corresponds to some input f not strong enough to lift the expected value

of the membrane potential beyond the excitation threshold. The membrane potential itself — as



a stochastic process V/ according to (7)—(8) — will always spend with positive probability some
amount of time beyond the excitation threshold. Even the system at rest — case f(-) = 0 — will
produce from time to time (perhaps extremely rarely) some spikes. This is the reason why sto-
chastic neuron models — in contrast to deterministic models — are able to explain information

transmission in large systems of neurons, even for signals which are subthreshold.

3. Spike generation and information transmission: a Poisson model

The spike trains recorded by [S-N 98, Fig. 1] in the visual cortex — repeated measurements of
spike trains in response to the same stimulus, evaluated in small time windows where a spike
density per time unit seems locally homogeneous — yield histograms of interspike intervals (IST)
which are close to an exponential distribution. This motivates to study a simple Poisson model
for spike generation. This model is certainly questionable from a biological point of view (for
example, it does not take into account the reduction of membrane potential after spike emission,
see [G-L-N-R 88], [L-S-T 95], or e.g. [S-S-F 99, section 4], [D-L 05] in OU-framework). However,
it provides a framework for mathematical study of information transmission in large systems of

neurons.

3.1. The single neuron: a simple Poisson model for spike generation

We consider a single neuron belonging to a cell tissue, and take its membrane potential as a CIR

type diffusion (th ) wlo] as in (7)—(11), for some fixed input function f : [0,7] — [0,00). A

spike train generated by the neuron in the time interval [0, 7] is a random sequence
0<Ti<...<Ty <T

of time points in [0, 7], of random length M € INy, written equivalently as a random measure

M
(12) uldy) =Y ery)(dy) on ([0,7],5([0,T7)) .

=1

3.1 Definition: p in (12) is called a Poisson spike train if

p is Poisson random measure (PRM) with intensity A1y ssg,(s) ds on [0,7]



with K the excitation threshold, for some parameter A > 0.

In a Poisson spike train, spikes are generated at the jump times of a Poisson process whose com-
pensator is (up to multiplication with the parameter A > 0) the occupation time of the membrane

potential V7 beyond the excitation threshold.

3.2 Definition: We call the function
B 015 t— PV >Ks) €01

response of a neuron with membrane potential V7.

3.3 Remark: In fast diffusions and at continuity points ¢ of f(-), the value I{ (t) of the response
is close to the proportion of time per time unit which a trajectory of V7 is expected to spend

beyond the excitation threshold near time ¢; we have an approximation by remark 2.2

1) ~ T (5t 50), 5 ) (e - 50,00)

3.4 Remark: In Poisson spike trains emitted by a single neuron, interspike intervals (ISI)
generated conditionally on a 'fast’ or on a ’slow’ diffusion V/ will exhibit a remarkable difference.
We think of a signal lf which remains subthreshold or at the threshold.

a) Slow diffusions: a substantial amount of excursions of V/ beyond the excitation threshold
will be "long’ excursions during which several spikes can be emitted. The corresponding ISI’s are
exponentially distributed with parameter .

In contrast to these, ISI’s intersecting different excursions of V/ tend to be essentially longer.
In repeated measurements from the same neuron, with same input f and independent realizations
of the pair (i, V/), ISI’s recorded in some fixed time window (as in [S-N 98, fig. 1]) will correspond
statistically to a mixture model which delivers with some probability 0 < ¢ < 1 exponentially-
A-distributed waiting times, and with probability 1 — ¢ waiting times of a different structure.
Among ISI’s observed in a short time window, the first ones tend to be predominant.

b) Fast diffusions: excursions of the membrane potential V/ above the excitation threshold will
be extremely short and will alternate rapidly with visits below. In this case, by definition of I {

and by 3.3, the empirical distribution function of ISI’s collected near ¢ will be close to an expo-



nential law with parameter A - Ig (t).

3.2. Signal processing by a large number of neurons:

a functional central limit theorem for pooled Poisson spike trains

Consider stochastically independent neurons i processing the same input f. Write V%/ for the
membrane potential in neuron 4, and '’ for the spike train emitted by neuron i. With fixed values

of the parameters which are common to all neurons under consideration, we thus have iid pairs
(Viiu) , i>1

defined on some (€2, .A, P). We introduce a weighted counting process

N
1 .
\I/N(t,(U) = N E Ml(wa[oat])a weQ, 0<t<T
=1

for the pooled spike train collected from neurons 1 <4 < N, and introduce processes

t
A (tw) = /1[KE700) (Vid(w) ds, 1<i<N
0
1 X
Oy (t,w) = WZAZ’f(t,w)
=1

t
3't) = E (A}f) = / (s)ds .
0
With A the Lebesgue measure, we will work on the (Polish) path space
IL := L?([0,T],B([0,T]),N) with Borel o-field denoted by B(IL)

1/2
of measurable functions h : [0,7] — IR with ||k := ( fOT |h|2(t)dt) < 00. All processes above
are measurable in (#,w), and their paths are bounded functions [0,7] — IR. This implies that

w— ¥y(,w), w— Py(-,w) etc. are random variables on (£2,.4) taking values in (IL, B(L)).

The following — a Glivenko-Cantelli type theorem for weighted counting processes of pooled spike

trains — is the main result of this paper.

3.5 Theorem: We have

VN (Iy — A®F) — W (weak convergence in I, as N — o)



where W = (W})e[o,77 is @ Gaussian process with covariance kernel

t1 to
K(tl,tg) = A'(I){l/\tz + )\2/ / dridry Kf(Tl,TQ),
0 0
2
Kf(ri,ro) == P(VI>Kg,i=12) - [[P(Vi]>Kg) .
=1

The proof of theorem 3.5 will be given in section 5.

The covariance kernel of W in 3.5 is a sum of two terms. The first one is the covariance kernel of
VX B time-changed by t — ®/(t), where B is standard Brownian motion. Standing alone, this
would be the limiting process if instead of the pooled spike train from N neurons, NV independent

Poisson processes with deterministic intensity \ - I2f (-) were observed (see e.g. [K 98]).

The second term in the covariance kernel is due to the ’doubly stochastic’ character of the mo-
del in subsection 3.1. It integrates K7/(-,-) as a measure of dependency between variables VT’:,

r1,72 € [0,T]. In the limit of fast diffusions, this second contribution will disappear.

3.6 Remark: a) As a consequence of theorem 3.5, large systems of stochastically independent
neurons — processing the same time-dependent input f via a pair (u*, V/#) — are able to transmit
(subthreshold) signals. In this transmission, the signal undergoes some structural deformation of
its shape, described by the passage from the function I { to the function A - Ig . The pooled spike
train from neurons 1 < ¢ < N allows to recover Ig in integrated form, multiplied by A, up to

error terms of stochastic order 1/v/N.

b) Comparing 3.5 and 3.4 a), a remarkable consequence arises. In case of slow diffusions V/ —
which seems to be the more relevant case for biological observations — interspike times obtained
from repeated measurements in a single neuron in restriction to some small time window (data
sets as in [S-N 98, fig. 1] or as in [S-S-F 99, fig. 2]) will not allow to recover the function IQf in
this time window, hence will not allow to recover the signal I 1f . This is possible only through the

pooled spike train from a large number of neurons, in virtue of 3.5.



4. Methods for model check

This is a discussion section devoted to methods for model check and parameter estimation related
to subsections 2.2 and 3.1. Suppose we observe a neuron which in successive experiments is expo-
sed artificially (e.g. by administration of suitable pharmaka or by injection of current) to different
regimes of time-constant input such that the main characteristics of the cell, in particular the

value of its excitation threshold, remain unaffected.

Measuring in K different regimes the membrane potential at n discrete time points with small

step size A, we dispose of a data set
(13) Xg, XK, X5, ..., XFx, 1<k<K.

For 1 < k < K, introduce empirical means and variances

1 n 1 n
my = EZX;CA’ dy = ;Z(X;Z—mﬁ)z ,
=1

=1

occupation measures (with notation ¢, for Dirac measure sitting in a)

1 n
(14) - 2; “(xk)

and relative frequencies for visits beyond the excitation threshold

1 n
D SETIE N
=1

If the model of subsection 2.2 for the membrane potential is appropriate, the following holds:

Model hypothesis (H): For every k, the data set X¥, XZ, cee, XSA stems from a stationary process

(V;f ) observed at times t = A, 2A,...,nA where nA = T, for some value of a time-constant
t

input f(-) = f > 0 which varies with k. The parameters s, a "72 , 7 in (11) as well as the

value K of the excitation threshold do not change with k.

Under (H), by stationarity of V7, the following quantites do not depend on 0 <t < T

o2

(15) E(V/) = so+(at+)) = Kn+f, Var (V) = T(a+),



(16) PQ?eA)z;r&%m+n,%>gyw@, AeB(R),

(17) (B(W).P (VW >Ke)) = i)
which is the pair signal-response of 2.3 and 3.2 for time-constant input f. In the simple setting

of (H), we can sharpen remark 3.6: there is a transfer function T : [Kg, Kg] — (0,1), smooth

and strictly increasing, with the property T(z'l) = 12 for arbitrary constant f > 0; it is given by

(18) T(iE) = F<2 (.Z'—S()) :)([KE 80,00)) y KRS.Z‘SKE

Of course, for n sufficiently large, all occupation measures (14) taken separately should be close
to suitably shifted Gamma densities. The following allows to validate (or to invalidate) the model

of subsection 2.2 for the membrane potential in the subthreshold domain.

4.1 Model check: Under (H), for A small and n large,

a) a plot of empirical variances against empirical means in the data set (13)
(19) (mh,df), 1<k<K

should present a convincing close-to-linear structure, cf. (15);
b) by linear regression in (19) — explaining the empirical variances by the empirical means — we
estimate ”2—2 by the slope of the regression line Zn, and sy by the zero of Zn;
c) we estimate the time constant 7 by the solution of

1 K n . i 9 1 0_2 K
(20) 3 Z Z [Xm - X(i—l)A] Ty T Z — 50]

k=1 =1 k=1

with estimated values from b) plugged in for sy and "2—2 (note that the inverse % should represent

a biologically plausible value for a membrane time constant);

d) a plot of relative frequencies of visits beyond Kg against empirical means in the data set (13)
(mk ek) , 1<k<K

should be close to the graph of the transfer function, with estimated values from b) replacing the
parameters sy and %2 in (18);
2

e) from a given value of Kr = so + a, we estimate by b) all three parameters sy , a , %

determining the stationary law of the membrane potential at rest.



Sketch of proof: Assertions a) and c¢) require some comments.

a) For constant f, the discrete-time processes (V;];) - are ergodic with invariant law given
by (16). By the strong law of large numbers for ergodiéi\/[’ayr.l.{.ov chains, the quantities % Z?;l V;];
and % Z;il (1/1];)2 converge a.s. as n' — oo to the first and second moment of £(V;'), inde-
pendent of ¢ by the stationarity assumption.

With notation £(z) = "72(r — 59) we have Var(V;/) =+ (E(V;f)> in (15), for arbitrary values of
constant f > 0. Hence under (H), for every fixed value of A and for 1 < k < K, we will have
good approximations df ~ ¢ (mfl) for the empirical quantites when n is large.

¢) i) Under (H) and continuous-time observation, the quadratic variation process [£/] of the

semimartingale ¢/ solving (2) is compensated by the predictable quadratic variation (¢/)

t
<£f>t = 702 /0 5.{ d37 tE[O,T].

In terms of V7, this reads

1 0.2 t
§<vf>t = T?/ VI —s0] ds, t€0,T].
0

For A tending to 0 and n tending to oo such that 7' = An remains fixed, the quadratic variation
[Vf ] can be approximated by a sum of quadratic increments, and the last integral by a discrete

sum; hence we solve an approximate martingale estimating equation
1 n
k
DI
i=1

with estimated values - from b) - plugged in for sy and %2 .

1< k k 2 0 o’
(21) 3 Z [Xm —XG_pal = 7 5 T
i—1

ii) Up to now, we have used any one of the data sets (X fA) . (20) is obtained in the same

1=0,...,n

way as (21), working for 1 < k < K on all data sets simultaneously. O

In 4.1, we never need explicit values for the constants f > 0 in equation (2); it it is sufficient to
have data under different regimes f. Any specification of a value corresponding to a particular

regime and its biophysical background may remain unknown as long as (H) holds.
The following allows to check the Poisson spike train model considered in subsection 3.1.
4.2 Model check: Assume (H) validated for the membrane potential. In addition to data (13),

suppose we have counted in every measurement 1 < k < K the total number Mé‘i of spikes

emitted by the neuron over the time interval [0, T'].



Under (H), for fixed A and n large (hence also T' = nA large), the set of points

(22) (mk, M%/T)1§k<K

should allow for a convincing fit with respect to the one-parameter family

(23) (mE, x-ek) A>0;

1<k<K *

we estimate A through a best approximation (least squares, or some minimum distance approach).

Sketch of proof: Using the model for spike generation in subsection 3.1 with constant f on [0, c0),

the strong law of large numbers for (V,/ )t>0 gives with notation of (17)
s s
;A () — X-iy as.ast—oo.

In measurement 1 < k < K, write M*(r) for the total number of spikes counted up to time 7.

The martingale convergence theorem applied to the sequence of martingales

(% (Mk(st)—AAf(st)))  to oo

s>0

(with f associated to k) shows weak convergence in ID as t — oo to

Vil

with standard Brownian motion B. Hence for large t, +M*(t) will be close to +A/(t) — and thus
close to )\ig — up to terms of stochastic order 1/v/. It remains to replace zg by the empirical

quantity ef discussed in 4.1 d). O

5. Proof of theorem 3.5

Write E = IR¢, for some d > 1, and Ly = L2%([0,T],B([0,T]), N) for the space of all measurable
1/2
functions h : [0,7] — E such that ||h] = (f0T|h|2(s)ds) is finite. Let X®, n > 1, X be

E-valued processes on (2, .4, P), measurable in (¢,w), with paths in ILg. Then
(24) X" — X (weak convergence in ILg, as n — 00)

is implied (see [C-K 86, theorem 2 and remark|, or [G 76, theorem 3] in case E = IR) by the

following two conditions i) and ii):



i) there is a Borel set N C [0, 7] of Lebesgue measure 0 such that
L(XP,..., X)) | P) — L((Xy,...,Xy,) | P) (weak convergence in E', as n — 00)

for all [ > 1 and arbitrary t1,t9,...,¢ in [0,7] \ N;
ii) there is some function f € L}([0,7T7],8([0,T7]), X) such that for ¢ € [0,T]\ N

sup B (IX7°) < /() and lim B (X7) = B(1X7)

The proof of theorem 3.5 — via some auxiliary results — will be completed in 5.3; all notations

and assumptions are as subsection 3.2.

5.1 Proposition: We have
VN (B — @) — W (weak convergence in IL, as N — o)

where W = (W) (0,17 is @ Gaussian process with covariance kernel

t1 t2 .
K(tl,tg) = / / dridry Kf(Tl,TQ) , ti,10 € [O,T] .
0 0

Proof: 1) Since (t1,t3) — K (t1,12) is symmetric and continuous on [0,T] x [0, 7], a real-valued
(centred) Gaussian process W = (Wt)te[O,T] with covariance kernel K (-,-) exists (see [L 63, p.
478), [G-S 74, chapter IV.3], [Z 75]).

2) We prove convergence as N — oo of finite-dimensional distributions of

N
WV = VN (oy - /) = %Z(Ai:f_q)f)

to those of W. Consider arbitrary [ > 1, t1,...,¢; in [0,7; write ¥ := (IN((tr,t,J))K o
77‘77"7

Using Cramér-Wold, we have to prove for all a = (v, ..., q;) € IR

! l
(25) E(Zar Wg) — N(0,a'Za) = 5(2% Wt,) , N — 0.
r=1 r=1

Define

T l
R, = / ds (ZaTl[(),tr](s)) (Lo (V) = PV > Kg)) , i>1.
0 i=1



1/
Then R;, 7+ > 1, are iid, bounded and centred, so the classical central limit theorem shows

Z a, Wt, f ZR —  N(0,Var(R;)) (weaklyin IR, as N — o)

where

Var(Ry) = / / dsds’ (ZQT 0t,> Kfss (Zar’ Ot/> s')

r'=1

= Z TK(tT,trl) Q= a'Ya.

ror'=1
Hence (25) is proved, and convergence of finite dimensional distributions follows.
3) The function f(t) := K(t,t) is bounded on [0,T]. As a particular case of the calculation of

Var(R;) in step 2), we have

(26) E ((’Wtf) - K(tt) = E ((Wth) for all N .

With (25) and (26), all conditions of [C-K 86, theorem 2] or [G 76, theorem 3] are satisfied, and

proposition 5.1 is proved. O

5.2 Proposition: We have
VN ( Uy —A®y) — VA-Bo® = W (weak convergence in L, as N — o)

where B = (B;)>0 is a standard Brownian motion independent of the limit process w appearing

in 5.1, and where B o ®/ denotes B time-changed by the deterministic function ¢ — ®7(¢).

Proof: 1) Note that ¢ — ®/(¢) is continuous and stricly increasing on [0,T]. The covariance

kernel of W = (Wt)te[o,T] is

K(t,ty) = N®F(ty Aty), t1,t2 €[0,T].

2) Prepare a new probability space (21,41, P;) supporting a Poisson random measure ji with

constant intensity A on [0, 00). Consider processes

By(t) = —— (H([0,t-N]) = A-t-N), t>0

1
VN
on (21, A1, P1), and filtrations

FY = (FY) . B = o Bals):0<s<t) = o(@(0.):0<s <t N)



in Ay, for N > 1. For every N, By is an ﬁ?N—martingale with deterministic angle brackett
(27) (BN = A-t, t>0

and with jumps bounded by \/—% It is well known that by the martingale convergence theorem

(Jacod and Shiryaev [J-Sh 87, VIII.3.11])
(28) By — VA-B (weak convergence in ID, as n — 00)

where B is standard Brownian motion. ID is the Skorohod space of cadlag functions [0, c0) — IR,
see [J-Sh 87, Ch. 6].
3) On the probability space (£2,.4, P) which supports the iid pairs (V/+*, u?), i > 1, of subsection

3.2, we focus on the membrane potential processes (A{ ’i)te[o,T]- Introduce filtrations in A

& = (GN) GV = No(A :s<r,1<i<N), te[0,T]

r>t

te[0,T]

related to neurons 1 <4 < N.

4) We lift all processes, sub-o-fields ... considered so far to the product space

(LAP), Q:=0x0, A:=A®A , P:=PxP .

We will use the following filtrations F'V in A:

FN = (F) o, FY = G\ FY, t>0.

Thus on ((NZ, JZ(, ﬁ), for every N, the martingale properties of By hold with respect to IF'V, and
all variables ® (), r € [0, 7], are IFN-stopping times.

Write E := IR? and consider on (SNZ, .,Z, 13) the sequence of E-valued processes
Xy = (BNocbf,'WN) ON>1

with WV =N (<I>N — <I>f) as in 5.1. Since by construction on (ﬁ, JZ, ]5) the processes By and

& are independent, since &/ is a deterministic function, we have
(29) By o ®/ and WV are independent under P, for every N .

Combining (28), (29) and step 2) of the proof of proposition 5.1, we have convergence of finite

dimensional distributions of X to those of the E-valued process

X = (\/X -Bo®/, W) . with B and W independent



where B is the standard Brownian motion of (28), and W the Gaussian limit process of 5.1.

Also we get from (27), (29) and step 3) of the proof of proposition 5.1
E (|XN(t)|2) = X0+ K(tt) = E (\X(t)|2) , N>1.
So all assumptions of [C-K 86, theorem 2] are satisfied, and we get
X, — X (weak convergence in ILg, as N — 00) .
5) We turn to the processes VN (U — A ® ) in the assertion of proposition 5.2. For every N > 1,

(\/N(xpN _ADy) ,@N,WN) on (, A, P)

is equal in law to

(BNOQ)N,(DN,WN) on (ﬁ,./z(,ﬁ) .
We will work on (Q, 4, P). Fix some t € [0, T]. With ®y(¢) also
ON = (I>N(t)/\<I)f(t) , TN = <I>N(t)v<I>f(t)

are IFV-stopping times. By is a square integrable IF"V-martingale, hence on (S~2, Z, ]3)

E ( E[SUP |Bn(r) —BN(UN)|2) < ¢cE({(Bn)ry — (Bn)oy) = cA-E(Tn —on)

re([on,Tn]]
for some constant ¢ > 0. The last expectation vanishes as N — 0o, by dominated convergence:

first, the strong law of large numbers gives
dy(t) — ®/(t) P-as. as N — oo, for every ¢ € [0,7] ,
second, by definition of the processes A»/, one has
™~ —oy = |®n(t)—®/(t)] < T, forall N>1andallte(0,7T].
Thus we have proved that for arbitrary ¢ € [0, 7] fixed
Byo®n(t) = Byo®/(t) + 0o5(1), N —o0.

6) As a consequence of the last assertion, finite-dimensional distributions of the processes Byo® y
and By o ®/ coincide asymptotically as N — co. Proceeding now in analogy to step 4) above,

we obtain

(30) (BNo@N,WN) X = (\/X-Boqw‘,W) (weakly in Lg, as N — o) .



Using again the beginning of step 5), (30) implies the assertion of proposition 5.2. The proof ist
finished. =

5.3 Proof of theorem 3.5: With notations of the preceeding proof, for every N, the process
VN (Iy —28) = VN (Ty —20y) + A-VN (& — @) on (2,4, P)

is equal in law to

BNO(bN—i-)\WN On(ﬁ,.;(,ﬁ).

For E = IR?, the mapping Lg 3 (g1,92) — g1 + g2 € Lk is continuous. So the continuous

mapping theorem combined with (30) gives
Byo®y + A WY — W = VA-Bo® + \-W (weakly in L, as N — 00)
with B and W independent. Hence weak convergence in IL
VN (Iy —2®) — W, N-o

is proved. This concludes the proof of theorem 3.5.
We remark that we do have convergence of finite-dimensional distributions, i.e. exceptional set

N = in i)+ii) following (24), as a consequence of (29) and step 5) of the proof of 5.2. O
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