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Abstract: We consider a particular example of statistical inference in null recurrent one-
dimensional diffusions. In a first parametric model, we prove local asymptotic mixed normality
(LAMN) and efficiency of the sequence of maximmum likelihood estimates (MLE): its speed of
convergence is n®/? with a ranging over (0,1). In a second semiparametric model (where in
addition an unknown nuisance function with known compact support is included in the drift), we
prove a local asymptotic minimax bound and specify asymptotically efficient estimates for the
unknown parameter.
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Introduction: Problems of statistical inference in one-dimensional ergodic diffusion models
have been studied extensively in the last decade, see Prakasa Rao (1999) or Kutoyants (2001)
for an overview, whereas only few results seem to exist for models where the observed diffusions
are null recurrent. This is due to the fact that existing limit theorems for null recurrent Markov
processes are more complicate, with domain of applicability delimited by additional and someti-
mes really restrictive conditions, and no globally applicable tool (such as the classical martingale

convergence theorem in the ergodic cases) exists.

The aim of this note is to consider some examples of statistical inference in null recurrent diffu-

sions. The observed process is a diffusion

Xy
dX; = <191+Xt2+g(Xt)>dt+oth, t>0, Xp=0

where 9 is an unknown one-dimensional parameter of interest; ¢ > 0 is known and constant, and



g is some function on IR with finite integral [|g|(z)dz < oo which is considered as nuisance func-
tion. We take © = (*”2—2, +%2) as parameter space; this is the maximal open interval on which
the above diffusion is recurrent null. 9 is the parameter which determines speed of convergence
of martingales and integrable additive functionals of X, and is linearly related to the tail index
(in the sense of regular variation) of the invariant measure of X (note that this invariant measure

is of infinite total mass on IR), or of life cycle length distributions of X between suitably defined

successive visits of the diffusion to 0.

In section 1, we state the basic limit theorem (theorem A) from which asymptotic properties
of statistical models and of estimates of ¢ in this null recurrent setting will be deduced. This
limit theorem puts together results due to Khasminskii (1980) and to Touati (1988); for a proof

(general Harris recurrent Markov processes) see Hopfner and Locherbach (2000).

In section 2, we consider the case of the parametric model without nuisance function in the
drift — for the diffusion X, i.e. ¢ = 0. We determine the limit distribution of the maximum
likelihood estimate 1/9\,1 for 1% based on continuous observation of X up to time n: for ¥ € O, we

have convergence in law

- 1
(%) na(®)/2 (19n - 19) L alf)i=5-— €(01), V€O

o2

to a variance mixture of normals

() //\/'(O,j])P(J edj), J=J()

where the mixing variable J (1) is stricly positive and has up to constants specified in theorem 1
below — a Mittag Leffler law of index (1), i.e. J(¥) is a level crossing time for the stable increasing
process of index « (1)) (see Bingham, Goldie and Teugels, 1987, p. 391). Then we discuss the local
structure of the parametric model at fixed reference points 9J: we have local asymptotic mixed
normality (LAMN) with local scale n=®(")/2 at . For the statistical background on LAMN, we
refer to LeCam and Yang (1990), Jeganathan (1988), and Davies (1985). For our problem, we
can apply both the convolution theorem and the local asymptotic minimax theorem to see that
the sequence of estimates (1/9\,7,)”21 is asymptotically efficient for 9 € ©. (We mention also a minor

but handsome variant of the convergence result, in form of random norming

t A Qdf 9y — 0 N(0,0°
/0(1+Xt2> It (1,7,71) — (0,07)




thanks to the fact that the information process in our model does not depend on the parameter).

From an inference point of view, the parametric model for our time-continuously observed dif-
fusion X (with ¢ = 0) shares all its essential statistical features with a certain one-parametric
model for null recurrent birth-and-death processes considered earlier in Hopfner (1990 a): first,
for every value of the parameter 1, the process has i.i.d life cycles between suitably defined suc-
cessive visits to some recurrent point (e.g. state 0), and the expected amount of information
collected over a full life cycle of the process is finite; second, tails of the life cycle distribution
vary regularly at oo with some tail index —«, 0 < a < 1, which depends on ¥ and ranges over the
full interval (0, 1) with varying . See also Hopfner (1990 b, 1993). The first property can be re-
formulated as follows: all information processes are integrable (in the sense of invariant measure)
additive functionals of X. This is the reason why we call the parametric model under conside-

ration (here in its diffusion process version) a reference model for null recurrent Markov processes.

In section 3, we turn to the general semiparametric model where an unknown nuisance function g
is present in the drift of the diffusion X. We suppose that g ranges over the class H. of bounded
measurable functions supported by a known compact [—¢, +c¢|, and consider estimates 1/9\; for o
which retain — out of the trajectory of X observed up to time n — only segments corresponding to
time intervals where | X'| > ¢. Models of this type occur naturally when we work with measurement
devices unable to record ’small’ values of the process, or unreliable below some known threshold ¢
characterizing the measurement device. We prove convergence of 15% in the semiparametric model:
the speed of convergence is again n®(”)/2 and the limit law coincides with (x%) up to a factor of

spread v(1,¢) > 1:
(% * %) n®)/2 (@ ~ 19) - Z(9) ~y(®,¢) /N(O,j])P(J(ﬁ) € dj).

The remarkable point is that (¢, ¢) does not depend on the nuisance function g from class H..
Then we investigate local properties of the semiparametric model. For 9y € © and for nuisance
functions gg with full support supp(gg) = [—c¢,+c¢|, we consider one-parametric submodels in
© x H, parametrized by ¢, passing through (g, gg) in direction (1,g), where g ranges over H.. In
all these, LAMN with local scale n~*(?0)/2 holds at 1y, and 1/9\; is regular at 99y. We spell out one
particular direction which is least informative for +J, and in which 1/9\51 is efficient at 9J¢: in this least
informative submodel, 5% is a maximum likelihood estimate for 9. As a consequence, we have a

local asymptotic minimax theorem at 9. Writing for short @y, ¢¢),n,n,3 for the law of the solution



of dX, = (19]+X;(3 + g(Xt)> dt + odW, when 9 = 9 +n~*@0)/2h and g = gy + n~*0)/2p3,

sup [sup liminf sup Ey, g0).n.h.7 (l (na(ﬁo)/Q (571 — (Jo + n*a(ﬁo)/Qh)») > E(1(Z(%)))

GEM,. |d<oo ™0 |h|<d

for arbitrary sequences of G,-measurable estimates 9, for 9, with Z(Jg) of (x+%); the bound is

attained for o, := 1/9\51. This is - with exact constants etc specified there — theorem 2 in section 3.

1 A limit theorem under null recurrence

A one-dimensional diffusion

dXt = b(Xt)dt + O'(Xt)th

(with drift b : IR — IR and diffusion coefficient o : IR — (0, 00) satisfying Lipschitz and linear

growth conditions) is recurrent if and only if the following function S

sta) = [ sy, o) = (= [ Zian)

a

is a space transformation on IR, i.e.

lim S(z)=—oc0, lim S(zr) =+

rT——00 r— 400

(Khasminskii, 1980, example 2 in section 3.8). In this case, there is a unique (up to multiplication

with a constant) invariant measure p for X

p(dz) == 022(.@) exp (/0 Z—Z(U)dv) dv, z€R

and the process X := (S(X¢))i>0 is a diffusion without drift, with diffusion coefficient ¢ and

invariant measure g given by

oc=(s-0)oS7 ", j(dr)= de, z€lR

o2 (x)
where S1 is the inverse of the space transformation S (with S(0) = S~1(0) = 0). A recurrent

process X is termed positive (ergodic) if u is a finite measure, and null else.

In ergodic cases, it well known that for measurable functions F' with 0 < u(F?) < oc, pairs of

type (martingale, angle brackett)

1 tn 1 tn
— F(X)dW,, — F%*(X,)ds
nl/2 n
0 0 t>0



under linear change of time ¢ — ¢n and y/n-renormalization converge weakly as n — oo in the

Skorohod space D(IR*, IR?) to the limit process

(Va(F?) Be, u(F?) t)

where B is standard Brownian motion. Limit theorems for martingales and integrable additive

>0

functionals of X in null recurrent cases require an additional condition: tails P(R > -) of suitably
defined life cycle length distributions of X have to vary regularly at infinity with some index —a,
0 < a < 1, or integrated tails £ — fﬂt P(R > r)dr have to vary slowly at oo (case a = 1). See
Khasminskii (1980, 2001) for (one-dimensional marginals of) integrable additive functionals of X,
see Touati (1988) for weak convergence of martingales, see also Hopfner and Locherbach (2000,
section 3). (In case @ = 0, limit theorems of different type arise, see Kasahara (1986). The case
of non-integrable additive functionals - known only partially up to now, see Khasminskii (2000) -
also leads to different types of limit results. Index a = 1 arises under ergodicity and in some null
recurrent cases on the frontier to ergodicity.) We are interested in limit theorems if 0 < a < 1.
The following theorem is a combination of results of Khasminskii (1980) and Touati (1988), see

Hopfner and Locherbach (2000, Cor. 3.2 and Ex. 3.5).

The following processes appear in the limit theorem. For 0 < a < 1, the stable increasing process

S® of index « is the PIIS (process with stationary independent increments) with
E(e?5)=e ™ X>0,t>0, S§=0
and with cadlag nondecreasing paths; the Mittag Leffler process W of index «
W =inf{s>0: S >t}, t>0

is the process inverse of S®, with continuous nondecreasing paths; for standard Brownian motion

B which is independent of W, we write
BW*®) = (B(W{))=0

for B time changed by ¢t — W.

Theorem A : Assume that p has infinite total mass, and that for o as above

2
o2 (x)

~ Aglz|?, == oo

(1)




for some 0 < a < 1, with g := -2+ ]E and nonnegative constants Ay such that A, + A > 0.

Then for measurable functions F with 0 < p(F?) < oo, pairs

1 in 1 in
(—2/ F(X,)dW,, —/ FQ(Xs)ds)
ne/2 J, n® Jo >0

converge weakly as n — oo in the Skorohod space D(IR*, IR?) to the limit
(K (@, As, )2 BW®), K(a, Ax, ) W*)

where standard Brownian motion B and Mittag Leffler process W are independent, and

I'l+a) 1
(1 —a)a?> A + A%

K(a, As, F) = u(F?).

Proof : We define life cycles jointly for X and X = S(X) by
R, =inf{t>r,: X; =0}, r,=inf{t>R, 1:X;, =5 11)}, Ry=0.

Khasminskii considered the process X = S(X) and proved (Khasminskii, 1980, theorem 11.2,
corollary, remark 3, theorem 11.3, see also Khasminskii, 2001, theorem 1.1) that condition (1)
implies

2a Aa+Aa
2) PRy R >t) ~ = (43 +4) .

%, t—00.
I'l+a)

Note also that for f € L'(u)
R2 R2 ~
) B ([ o) =B ([ e s Eas) =itro s = utr)
R1 R1
by (Khasminskii, 1980, lemma 10.5). Combining (2) — viewed as tail condition for the process X
with (3), theorem A is a direct application of Hopfner and Locherbach (2000, Cor. 3.2), a result
obtained first by Touati (1988). O

Remark : Theorem A together with the ratio limit theorem

t
h(X,)d h
h,g € LY(p),u(g) >0 : lim Jo h(X,)ds = p(h) P-as.

t=oo [Fg(X,)ds  1(9)

yields joint convergence of martingales and arbitrary integrable additive functionals of X.



2 A reference model for null recurrent diffusions

We consider a statistical model

L 1 it + o ,LL A
! 1 +X112 b ’ 0

where 1 is a one-dimensional parameter of interest; ¢ > 0 is known and constant. Let @)y denote
the law of X under ¥: Qy is a probability measure on the canonical path space C' := C(IR™, IR)

endowed with o-field and filtration generated by the canonical process n = (1;)>0:

= (Gt)t>0 gt:ﬂU{HSZOSSST}, C=o0{ns:s>0}.

r>t

Then the likelihood ratio process L&Y of Q¢ with respect to Qy relative to & is

L8 — exp 519/t s dMﬂl(gﬁ)Q/t 1\ as) L i
! l o Jo 1+m: 0 2 0 Jop \1+n: T

where MV is the Q”-martingale part of 1 (see Liptser and Shiryaev, 1978, Jacod and Shiryaev,

1987, Kutoyants, 1994). Obviously

t 2 2 t 2
Lf/ﬁ = exp £ 9 / 1ls dns — 15 Y / 1ls ds|, t>0,
(72 Jo 1+772 2 (72 Jo 1+773 -

so the score function martingale at  is

L[t s )
At(’l?) = — dMq
0'2 Jo 1+773 s

and the information process is

——/( ) ds, t>0.
14 n?

Note that I does not depend on ¥. The process of maximum likelihood estimates (MLE)
Jy = / N | / ( ) ds, t>0
0 1 + 775 1+ 775

gt—ﬂ:At(ﬁ)/It, tZO

has the representation

Calculating s”, S” as in the beginning of section 1, we see that the canonical process  under Q"

is recurrent if and only if 3—’3 < 1, with invariant measure given by

29 2,[9
(5) \/+2”dr — <1.
g



Here p” has infinite total mass if |[J| < % We restrict attention to the maximal open null

recurrent submodel

o2 o?
0 =(——,+—
-Z.+%)
Proposition 1 : Define
1 9
a)=--—=€(0,1), Je€6.
2 o

With notation f(x) : we have for every 9 € © weak convergence of

o
1422’

1 tn 9 1 tn )
(W' 0 f(ns)dMs ) na(ﬁ) Jo f (ﬂs)d3> 10
under Q¥ as n — oo in D(IRT, IR?) to

(0 K@, N2 By, Ko, fywe)

where the constants I?(ﬁ, f) are given by

~ ' +a) 1 9 B
(6) Kw’f)ilﬂ(l—a)ah Aj‘_—I—ACjM (f?), a=a®)
with o
(7) Ay = A= A®W) = % (1 - i_f> o

Proof : Proceeding as in section 1, the functions S and s as there are given by

9 ) 9 20 [V v =
S%z)= [ s"(y)dy, s"(y)=exp|—— dv ) =+1+y* 77
0 0

o 1+ v?
For 4 € ©, write

29 _1=9() o L 2y(9) W
(@) ==, af) = — A):= -2+ a®) 1=~ o2-29"

g

We have to calculate the diffusion coefficient 67 of 7 = S”(n) under ¥ € ©. Obviously

—1

§"(x) ~ sen(x) |00 (87) 7 (x) ~ sgn(x) (1 7)) |x) D

1 —~(9)

for 2 — 4o0; thus the diffusion coefficient 77 = (0 - s¥) o (Sﬂ)*] of i behaves as
~9 LN () RO
() ~ a|(57) " @I ~ o ((1— (@) |s]) T

as r — +oo. We arrive at

2 2v(9)
~ — (A= @)[2]) T = A ()|



with notation

49

2 27(9) 2 20\ o220
AL) = A(0) 1= = (L=9(0) 0 = 5 (1 _ _> _

o2

Finally, we note that the function f(z) = belongs to L2(u”) for all ¥ € © (this is not a

x
1+22
harmless condition in general, and is violated in our setting for 9 := —I—% € 0, O the closure of
©, on the frontier to transience). We have checked all the conditions of theorem A in section 1,

from which proposition 1 now follows. O

Theorem 1 : For every 9 € ©, we have the following:
a) the MLE under Q? converges to a 'mixed normal’ limit

1 B

no()/2 (ﬁn - 19) - o K(,f) @)
Wi

(weak convergence in IR, as n — 0o), with K (¥, f) given by (6).

b) the sequence of statistical models

(C,G,,{Q"G,:9€®}), n>1

~

is locally asymptotically mixed normal (LAMN) at ¢ € ©, with local scale n=*(")/2 and (9,,),
is asymptotically efficient at ¢ in the sense of the convolution theorem (i.e. in the class of all
asymptotically at ¢ regular estimator sequences).

c) for arbitrary sequences of G,-measurable estimates 571; for subconvex and bounded loss func-

tions [, one has the local asymptotic minimax bound

sup liminf sup Fy, a2y (l (n““(ﬂ)/2 (5,1 — (04 n”’(ﬁ)/Qh))))

d<oco "7 |nl<d
_ B(W()z(ﬂ))
> E(l|o K@, )~ ——2

which is attained by the MLE sequence.

Proof : Part a) follows from proposition 1 and representation of MLE errors. We prove b).

From the representation of the likelihood ratio in our model, we have local representations in

small neighbourhoods of points ¢ € © with radius n—(?)/2:
(94+n=e/2p) 9 1 G
(8) log Ly, =h o Ay (9) 5 ) Iy, , t>0.



Under @7, the processes in (8) converge as n — oo weakly in D(IRT, IR) to

RO gyt - 22 KO0 e

9 h o 2 o2

for arbitrary fixed h € IR, again by proposition 1. Taking ¢ = 1 fixed, this is local asymptotic
mixed normality (LAMN) of (C, G, ,{Q”'|G, : ¥' € ©}) at ¥ as n — o0, with local scale n~*(")/2,
see Davies (1985), Jeganathan (1988), LeCam and Yang (1990, Sect. 5.6).

As a consequence of (8) and (9) with ¢ = 1, the LAMN version of Héjek’s convolution theorem
given in Davies (1985, Cor. 7.2) (note that all assumptions AQ - A7 in Davies (1985) are met in
our case, and see Hajek (1970) for the original LAN version) gives an asymptotic efficiency bound

for regular estimator sequences. In {Q?'|G, : ¥ € ©}, a sequence (¢,,), of estimates is termed

regular at 9 if we have joint convergence

~ 1 i
L (n“(ﬂ)/2 (19” — (94 n*“(ﬁ)/zh)) =) I, | Q"+ (ﬁ)/Zh,)

as n — 0o to a bivariate limit law P which does not depend on the value h € IR of the local
parameter. Write (71, J) for a random variable having law P. The convolution theorem states that

for subconvex loss functions [/, one has necessarily

i(hydP > [ [ Uz)N (0,57 ") (dz) P’ (d).
/ /]

By (9), the variance mixture of normals appearing on the right hand side is the limit law for

rescaled MLE errors appearing in assertion a); since the property

e ~ 1 1

characterizes estimator sequences (5,1)” which are regular at ¥ and efficient in the sense of the
convolution theorem, the proof of assertion b) is complete. Assertion c) is an application of LeCam

and Yang (1990, Thm. 1 in Sect. 5.6). O

Remark 2 : A ’practically’ useful version of the MLE convergence result is obtained with

random norming: we get convergence in law

\/Iin(&nfﬁ) = N (0,1)

under QV as n — oo at every point ¥ € ©. This unified result using random norming — due to the
particular feature of our model that the information process I does not depend on ¥ — remains

: : . 2
true in the larger recurrent’ statistical model {Q” : ¥ < %-}: we do have a convergence theorem

10



at the null recurrent point ¥ = *T(’Z on the frontier to ergodicity (see Hopfner and Locherbach,

2000, section 3.1) even if we are unable to specify the rate function appearing there explicitely

(this function is regularly varying at infinity with index 1), and clearly we have in the ergodic

points 9 < 7%2 the usual martingale convergence theorem (Jacod and Shiryaev, 1987) and strong

law of large numbers at our disposition. We are not able to treat the frontier case from null re-
o

. 2 . .. .
currence to transience ¥y = +%- where non-integrable additive functionals occur, and we do not

) 2 . .
know what happens in cases ¥ > +%- where the observed process is transient.
2

3 Extension: nuisance functions in the drift

Now we consider statistical models of type

Xy
(10) dX; = 191+Xt2+g(Xt) dt+odW,, t>0, Xq=0

where 9 is an unknown one-dimensional parameter of interest; ¢ > 0 is known and constant, and
g is some function IR — IR with the property
+oo
/ lgl(x)dx < o0
— 0o
We write Q79 for the law on (C,C ,@) of the process in (10), and 7 for the canonical process. The
nuisance function g in (10) will appear in limit theorems for martingales and integrable additive

functionals via a weight parameter for right and left tails

(1) comen (5 [Toma) ¢ omew (-2 [ owar)

and via densities p4(y) w.r.to the measure u” defined in (5) meeting p+(y) — 1 as y — Foo:

12)p0) = TomWeso (=25 [“at@iz) o= 10 wmes (5 [ otwas) .

— 00
Presence of g has no qualitative effect on recurrence properties of the canonical process: as before,

n under QY9 is recurrent if and only if 3—’3 < 1, the invariant measure now being

(13) WP9(dn) = (Cp () + Cops () 10(dr), o <1

a

2

e = (—"2—2, —1—%) is the maximal open null recurrent submodel; spaces L? (uﬂ’g), L? (uﬂ) coincide.

11



Proposition 2 : For every 9 € © and g with [ |g|(z)dz < oo, for F € L* (1”), we have weak

1 /tn ) 1 tn
o [ P, o [T, ds>
<naw>/2_0 () e f, Fmds)

under Q"9 as n — oo in D(IR*, IR?) to

convergence of

(o R0, 9, )2 BOWe), K(9, g, Fy W)

where the constants IA((19, g, F) are given by

I'(l+a) 1
'l —a)a?2>A> ¢ + (4

with A(+)) defined in (7).

(14) K@, g,F) = p(F?) . a=a9), A= A®)

Proof : The proof modifies the proof of proposition 1. We start with the space transformation

of section 1: with f(z) = —Z5 we have

]+T

r 20
Sﬂ’g(m) = / sﬂ’g(y)dy, sﬂ’g(y) = exp ( ! / fw)dv — — / v (]1)) = sﬂ(y)
Jo

ipi( )

9

where sY is as in the proof of proposition 1

) = VI

For ¢ € O, writing a(19), 3(¥), v(¥) as in the proof of proposition 1, the diffusion coefficient ¥
of 7 = S§%9(n) under ¥ € O is now

1 _ _
o — (") @)D ~ () 5 ()

+

% 9(z) ~

9

as ¢ — oo, where ¢ is as before

—v()
F(@) ~ o (1—A@)]a) =T, 2o +o0.

Using %(I’U = ﬁ and the definition of 3(19), we arrive at
2

——— ~ = AL(9, z|P)
Eran L0, g)la]

1 1
AL(0,9) =T AWD), A (0,g) =T A()
where A(?) is given in (7). As in the proof of proposition 1, we use (15) and theorem A to con-

clude the proof of proposition 2. O

12



Observations of type (10) induce semiparametric models (C C.E.{Q":9eO,geH }) where
H is a suitable class of bounded measurable functions (for existence of strong solutions to (10)
in this case see Krylov and Zvonkin (1981, p.42)). The estimate (1/9\1;)152[] of section 1 for ¥ € ©
turns out to be inconsistent in such larger models: combining the explicit representation of @t

with proposition 2 and the ratio limit theorem, we have convergence in Q”:9-probability

- J fgdu®s

’191; - J+ W ast — oo
with f(z) = H% In the following, we consider H := H., the class of bounded measurable
functions with support contained in [—c¢, ¢|, and write
(16) fc::(C,C,G,{Qﬂ’g:ﬁG@,gEHC}).

Theorem 2 : a) In the model £, the sequence

x

U= [ rmadn s [CGOP@) s, £0) = g e

is consistent for ¢ € ©, and converges under Q-9 in law to a mixed normal limit
na(9)/2 (5;; - 19) S o KW, fo)1?

where the constant

'l + «)

(7 K@.79 = T(1—a)ae 240

n((F)?), a=a(), A=A()

(cf. (6)+(7)) does not depend on the nuisance function g € H...

b) At every point (g, gg) € O xH,. with the property supp(go) = [¢, +¢], the model £¢ contains

a least favorable one-dimensional submodel — parametrized by ¢ € ©, and passing through (9, go)
such that in the submodel: 1) (52)77 is the MLE sequence for ¢ € ©; ii) LAMN holds at 1y with

local scale n—<(P0)/2, iii) (132)77 is asymptotically efficient at g in the sense of the convolution

theorem or the local asymptotic minimax bound.

. . —a(d 2 —a(d 2p ~ o~
c) Write E(99,90),n,n,5 for expectation under QVotn W0)/2h , gotn =702k , g € He.

For (99, 90) € ©xH,. with supp(gg) = [¢, +¢], the local asymptotic minimax bound at ¥ is

GEH, |d<oc M 9, |h|<d

sup |sup lim inf sup Egg g0)n b5 (l (na(ﬁo)/Q (571 — (Jo + na(ﬂo)/gh)»)]

— H : a(@)/2 (4 _ —a(d)/2
sup lim, inf o Ewo.g0)m b 110 (l (” (’9” (Y0 +n h)>>>
(%)
~ B(W.
- (l (” Koo, £ %»
Wl

13



(with inf over arbitrary G,-measurable estimates for 1J). The bound is attained by O, = 1/9\; which

is regular at ¥y with respect to every fixed ’direction’ g € H..

Proof : 1) Since f¢g = 0 for all g € H,, we have under Q"9 via (10)

N t t
s = /0 Fo(n,) M9 ] /0 ()2 (n,) ds:

since p? has a symmetric density, p_ =1 on (—oc, —¢) and p, = 1 on (4¢, +00), we have also
¥,9 c\2 _ oo c\2 9 _ C* + C‘l‘ [V c\2
pe((f)7) = (Cp (@) + Copy (2)) (F) (@) " () = ——== " (()’)

for g € H.. Hence assertion a) is a consequence of proposition 2 .
2) Fix some reference point (g, gg) € ©xH,. such that the support of gy is the full interval
[—c,+c]. For g € He, —f11_¢ 4 + ¢ is in H,, and arbitrary functions g in H. can be written in

this form: so the scope of possible directions away from (g, gg) in O xH, is described by pairs

(17 _fl[fc,—l—c} =+ gl) ) g/ €H.

Correspondingly, we consider one-dimensional submodels of © X H,. passing through (g, go) which

are parametrized by 1:

(18) Sthoge) = (€-C.E {QUt 0 ety € ©1})

where we call for short ¢’ € H, the ’direction’ of the submodel sY . For fixed ¢, we localize

(%0,90)

the model around ¥, introducing a local parameter h by ¥ = 95 + n~*(?0)/2h and write

(19) QZ — Q190+n70¢(190)/2h,gO+(n70¢(‘l90)/2h)(7f1[—c,+c]+g’) helRst dg+ n—a@)/2p ¢ © .

Y

The log-likelihood ratio process of Q! = Q" (g, go; ¢') to QY relatively to (G )i>0 is

L 0 gy rese Ly L[ U920
p ! s 90,90 _ - 12 p k s >
(20) A 02 '/0 2 dM 5 h —00) /0 = ds, t>0.
By proposition 2, we have LAMN at 1y with local scale n=*(?0)/2 in the submodel Sz;o )" As a
consequence, the local asymptotic minimax bound at 9y in S(ql;o %) is

sup liminf inf sup Egn iy, g0:9) (l (n“(ﬁ“)/z (5,1 — (Yo + nfa(ﬂ“)/Qh))))

d<co ™ 9, |hl<d
(o)
~ _ B(W.
> E (I (()—K(ﬁO:gU:fc_i_gl) 12 g))
Wa(??g)
1
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(the inf is over arbitrary G,-measurable estimates ., for 9) with Q" = Q" (g, go; ¢') of (19). We

have also the LAMN version of the convolution theorem for regular estimates: the optimal limit

gl

(90.90) is the law

distribution at 9, of rescaled estimation errors for regular estimates of ¢ in &

1 B(Wﬁ“””))

(21) L <(7 I? (790; 90, fc+ql) (o)
Wl

of the central variable in the limit of local experiments (19) as n — co. Finally, sequences 9, of

!
are regular and efficient at
90,90)

¥, and achieve the local asymptotic minimax bound, if and only if the rescaled estimation error

G,-measurable estimates for the parameter v in the submodel S(

ne(P0)/2 (571 — 190> admits an expansion

1 - 1 "
2) (s [0+ 970008) (s [0 D@D + 0001

as n — oo. By step 1) we do have the preliminary estimator sequence (1;;),, for ¢ which at

Jg is tight at rate n®(90)/2  From this preliminary sequence we can construct a modified se-

quence (ﬁn)n which is efficient at g in the submodel Sﬂ;o 40)’ i.e. whose rescaled estimation error
n(P0)/2 (ﬁn — 190) has the expansion (22). Hence the above bounds are attainable: we arrive at

sup lim inf sup Egn (g g0.91) (l (na(’90)/2 (5,1 — (Vg + niawo)ﬂh))))

d<oo "7 1;” |h|<d
(%)
N B B(W.
= 5 (1[0 &g g0y 2 BOT)
W

1

See LeCam and Yang (1990, section 5.6), or Davies (1985), or Jeganathan (1988).
3) Now we compare the scaling factors in (21) for different directions ¢’ € H.. Since f¢¢’ = 0 for

all directions ¢’ € H,., we have

_ ot o

(23) o ((f€+g')%) > p?o ((f9)?) 5

((f9)%)
(by (11), the weights (- = (_(g0), (+ = (+(g0) depend on gg); via (14) and (17), (23) yields

min K (90,90, f+9") = K (9090, f) = K (Do, )

where K (g, f¢) does not depend on gq.

Hence the submodel S(O

90.,90) with direction ¢’ = 0 is asymptotically least informative at 9y among

all submodels S(gz;o 70)? ¢' in H.. Since all bounds in step 2) are attainable bounds, this gives

sup | sup im0 sup B, ) (¢ (2 (90— (00407020 ) )
g EHe | d<oo n—00 In ‘h‘<d Qn(1901901g)
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= sup lim inf sup Egn (g g0:0) (l (77,‘1(’90)/2 (577 — (99 + nfawo)/Qh))))

d<oco M 9, |h|<d
a(Yo)
~ B
= E|l|o K, ) '/? BV )Y )
ool

We have obtained an expression which does not depend on the nuisance component gg of the

reference point (g, go) fixed in the beginning of step 2) (except that g has full support [—c¢, +¢|).

4) Consider the estimator sequence (ﬁg)n for 9 in 8890 4)" This is the maximum likelihood estima-
te for 9 in 8(0190190) since f¢gy = 0. From 1) above, rescaled estimation errors n®(%0)/2 (5% — 19())

do have the representation (22) with ¢’ = 0. Hence by step 2), the sequence (1/9\;’,),1 achieves the

0

local asymptotic minimax bound at 9y in the least favorable submodel S(ﬂo )

sup lim sup Egn (g, g0:0) (l (na(ﬁo)/Q ({9\; — (P + nfa(ﬂo)/Qh)>>)

d<oo M7 |hl<d
a(do)
~ B
= E(l{o K, )" B 7))
W]a(790)

0

and also the efficieny bound for regular estimates in 8(790 "

) at Jy. All assertions of parts b) and
¢) of theorem 2 are proved by steps 3) and 4), except that we have not yet studied the estimate
(132),7 in directions other than the least favorable ¢’ = 0.

5) Fix an arbitrary direction ¢’ in H,. and consider (1/9\51),1 as estimate for ¢ in Sg; )- We shall

0,90

show that for convergent sequences h,, — h, the limit distribution in

(24) £ (n2O0/2 (95 — g +n =0 2h,)) | Qi (o, g0 g")) > F
does not depend on the value of the local parameter h. Then (<), is regular for ¥ in S(gz;o 5o) At

¥y; as a consequence, we get

lim  sup Eg(g,.g0:0') (l (n“(ﬁ“)/z (1@2 — (Jo + nf“(ﬁ“)/zh)>))

(%)

~ B

= E[l|o K, )" B )N )
Wla(ﬁo)

for arbitrary ¢’ in H. and all d < oo, and thus the last assertion of theorem 2 c).
Write A" for the log-likelihood ratio process (20) of Q! = Q" (9, go; ¢') to QY relative to (G, )e0,

write Y, for the martingale arising in the rescaled estimation error of ¥¢ under Q9:

1 tn c s
Yn(f) — /0 MdMSﬂO,gO , t> 0.

- na(ﬂo)/Z o2

Since f¢g’ = 0, the quadratic covariation (A",Y,,) of A? and Y,, is
1 tn c\2 s
[,
o) /o

na(d o2
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Using this together with proposition 2, we get for the pairs £ (Al"(1),Y,(1) | Q%) as n — oo

(h, — h) a limit of type

1524 2, 1
/E(W{l(ﬂo))(dj)_/v<< 251.7) (”1.7 Ul”ZéP))
. 0102)p 03]

with suitable o1, 09, —1 < p < 1. The well known mean shift argument in LeCam’s third lemma

then shows that the limit of £ (Ahn(1),Y,(1) | Qi) as n — oo is

Y

o (TN (0% G1osip
[ e, "9°>>(dy>/v(( 2 1.)<1 ‘" 22.)).
0102)p 0102]p 03]

)2 (ns)

Convergence of Y, (1) under Q! gives (after division by na(ll"‘o) Iy (f 272 ds whose limit law un-

der Q" is independent of h) F" = F0 in (24). The proof is complete. O
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