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We explain local asymptotic normality (LAN) in the sense of Le Cam, and give the main theorems on

comparison of estimators under LAN. I will not give the proofs. All results below admit an extension

to the –important and more general– setting of local asymptotic mixed normality (LAMN), but I will

give only some very few hints in this direction. Key references are

� Le Cam, L.: Théorie asymptotique de la décision statistique. Montreal 1969.

� Hájek, J.: A characterization of limiting distributions for regular estimators.

Zeitschrift f. Wahrscheinlichkeitstheorie u. verw. Geb. 14, 232–330 (1970)

� Le Cam, L.: Limits of experiments. Proc. 6th Berkeley symposium on mathematical statistics and

probbability. Vol. I, 245–261. Univ. Calif. Press 1972.

� Davies, R.: Asymptotic inference when the amount of information is random.

In: LeCam, L., Olshen, R., Eds: Proc. of the Berkeley Symposium in in honor of J. Neyman and J.

Kiefer, Vol. II: Wadsworth, 1985.

� Le Cam, L., Yang, G.: Asymptotics in statistics: some basic concepts. Springer 1990.

See also the books

� Hájek, J., Sidak: Theory of rank tests. Academic Press 1967.

� Strasser, H.: Mathematical theory of statistics. deGruyter 1985.

� Pfanzagl, J.: Parametric statistical theory. deGruyter 1994

� Liese, F., Miescke, K.: Statistical decision theory. Springer 2008.

� Höpfner, R.: Asymptotic statistics with a view to stochastic processes. deGruyter 2014.

When I give precise links (to proofs, background results, or LAMN) I will refer to the last title.

Quoting the work of Le Cam and of Hájek up to ≈ 1975, the russian school took a different road to a

local asymptotic minimax theorem:

� Ibragimov, I., Khasminskii, R.: Statistical estimation. Springer 1981.

� Kutoyants, Y.: Statistical inference in ergodic diffusion processes. Springer 2004.
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6 L2-differentiable statistical models and iid experiments

This section deals with iid models. Consider dominated experiments

E := ( Ω , A , P := {Pϑ : ϑ ∈ Θ} ) , P << ν , fϑ :=
dPϑ
dν

, Θ ⊂ Rd open

and n-fold product experiments

En :=

(
Ωn :=

n
X
j=1

Ω , An :=
n
⊗
j=1
A , Pn :=

{
Pnϑ :=

n
⊗
j=1

Pϑ : ϑ ∈ Θ

})
and let X = (X1, . . . , Xn) denote the canonical statistics on (Ωn,An).

Definition : E is called L2-differentiable at ϑ with derivative Vϑ if there is some

Rd-valued random variable Vϑ with components Vϑ,1, . . . , Vϑ,d in L2(Ω,A, Pϑ)

such that

1

|ξ − ϑ|2

∫
Ω

∣∣∣∣ f1/2
ξ − f1/2

ϑ − 1

2
f

1/2
ϑ (ξ − ϑ)>Vϑ

∣∣∣∣2 dν −→ 0 as ξ → ϑ .

We call

J(ϑ) := Eϑ

(
V >ϑ Vϑ

)
Fisher-Information in ϑ (when L2-differentiability holds, Vϑ does not depend on the choice of the

dominating measure, and is centred: Eϑ(Vϑ) = 0 in all components).

Example: i) Consider a location model E on (R,B(R)) with Lebesgue densities

fϑ(x) =
1

2
e−|x−ϑ| , ϑ ∈ Θ := R , x ∈ R .

E is L2-differentiable at every ϑ with derivative Vϑ(x) := sign(x− ϑ) .

The Fisher information is J(ϑ) = Eϑ(V 2
ϑ ) = 1 for all ϑ ∈ Θ.

ii) In smoothly parametrized models we can prove L2-differentiability under mild assumptions,

with derivative Vϑ of type ∂
∂ϑ log fϑ(·) .
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’2nd Le Cam lemma’ : Consider a point ϑ where E is L2-differentiable with derivative Vϑ.

Then for bounded sequences (hn) in Rd (we always assume that ϑ+n−1/2hn belongs to Θ),

log-likelihood ratios in En admit at ϑ quadratic expansions

logL(ϑ+n−1/2hn) / ϑ
n = h>nSn(ϑ) − 1

2
h>n J(ϑ)hn + oPn

ϑ
(1) , n→∞

with

Sn(ϑ) := n−1/2
n∑
j=1

Vϑ(Xj)

(called score at ϑ in En) converging in law:

L (Sn(ϑ) | Pnϑ )
w−→ N ( 0 , J(ϑ) ) (weak convergence in Rd as n→∞) .

Remark: Compare this to normal distributions P :=
{
Ph := N (Jh, J) : h ∈ Rd

}
on (Rd,B(Rd)),

J ∈ Rd×d symmetric and strictly positive definite, where we have

dPh
dP0

(x) = exp

{
h>S(x)− 1

2
h>J h

}
, S(x) := x

with L(S | P0) = N (0, J).

Proofs in many books, e.g. sections 4.1 and 4.2 in H. 2014.

Results of type ’2nd Le Cam Lemma’ can be proved in broad classes of stochastic process models under ergodicity

assumptions: then martingales and their angle brackets appear in place of score and Fisher information, and

one applies martingale convergence theorems (e.g. Jacod-Shiryaev 1987, VIII.3.22).

� Löcherbach, E.: LAN and LAMN for systems of interacting diffusions with branching and immigration.

Ann. H. Poincaré Proba. Stat. 38, 59–90 (2002).

� Holbach, S.: Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate

diffusion with internal variables. Electronic J. Probability 13, 4884–4915 (2019).

In a variety of other stochastic process models, results of type ’2nd Le Cam Lemma’ exist, with information

processes (to which limit theorems apply) in place of deterministic information.

� Höpfner, R., Kutoyants, Y.: On a problem of statistical inference in null recurrent diffusions.

Statist. Inference Stoch. Processes 6, 25–42 (2003).
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7 The Gaussian shift model

Definition: A model (Ω,A, {Ph : h ∈ Rd}) is called Gaussian shift experiment E(J) if there exists

a statistic S , Rd-valued, and a deterministic matrix J , symmetric and strictly positive definite, such

that for every h ∈ Rd,

ω −→ exp

(
h>S(ω)− 1

2
h>J h

)
=: Lh/0(ω)

is a version of the likelihood ratio of Ph with respect to P0. Call Z := J−1S central statistic in E(J).

Remark: In a Gaussian shift experiment E(J), all probability measures are equivalent, and we have

L(h0+h)/h0 = L(h0+h)/0/Lh0/0 = exp

(
h>(S − Jh0)− 1

2
h>J h

)
for all h, h0 in Rd .

Taking expectation Eh0 (. . .) on both sides we identify (Laplace transform!)

L (S − Jh0 | Ph0) = N (0, J)

and thus obtain for the central statistic Z := J−1S and arbitrary h0 ∈ Rd

L (Z − h0 | Ph0) = N (0, J−1) does not depend on h0 ∈ Rd.

We all estimators κ for the unknown parameter equivariant if laws of estimation errors L (κ− h | Ph )

do not depend on the value of the parameter h. In particular, in a Gaussian shift model E(J), the

central statistic Z is an equivariant estimator for the unknown parameter.

Convolution theorem (Boll 1955): In a Gaussian shift experiment E(J), for every equivariant

estimator κ for the unknown parameter h ∈ Rd, there is a probability law Q on (Rd,B(Rd)) such that

L (κ− h | Ph ) = N (0, J−1) ? Q for all h ∈ Rd .

Convolutions N (0, J−1)?Q are always ’more spread out’ than the law N (0, J−1) itself. Hence in E(J),

the central statistic Z is a best concentrated equivariant estimator for the unknown parameter.
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However, we would like to be able to compare quite arbitrary estimators for the unknown parameter.

For this, the main technical (and somewhat difficult) step:

Lemma: In a Gaussian shift experiments E(J), for arbitrary estimators η for the unknown parameter

h ∈ Rd, there is a sequence (Qn)n of probability measures on (Rd,B(Rd)) such that total variation

distance between the laws∫
{|h|≤n}

L ( η − h | Ph ) dh and N (0, J−1) ? Qn

vanishes as n→∞.

Definition: We call a loss function ` : Rd → [0,∞) subconvex or bowl-shaped if level sets{
x ∈ Rd : `(x) ≤ c

}
, c ≥ 0

are convex and symmetric with respect to the origin.

With respect to a loss function `, the risk of an estimator η for the unknown parameter h is the

function

h −→ R`(η, h) := Eh ( `(η − h) )

which may take the value ∞.

Minimax theorem: In a Gaussian shift experiment E(J), the central statistic Z minimizes the

maximal risk with respect to any subconvex loss function `(·), i.e.: arbitrary estimators η for the

unknown parameter h ∈ Rd can be compared to Z via

sup
h∈Rd

R`(η, h) ≥
∫
Rd

`(z)N (0, J−1)(dz) = R`(Z, 0) = sup
h∈Rd

R`(Z, h) .

References, proofs, further reading: H. 2014 Section 5.1; mixed normal experiments: Section 6.1.
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8 Local asymptotic normality (LAN)

Consider a sequence of statistical experiments parametrized by the same parameter set Θ ⊂ Rd open:

En := ( Ωn , An , {Pn,ϑ : ϑ ∈ Θ} ) , n ∈ N .

Definition: For ϑ ∈ Θ fixed, the sequence of experiments (En)n is called locally asymptotically

normal (LAN) at ϑ if there is a sequence of positive real numbers (or matrices in Rd×d)

δn = δn(ϑ) decreasing to 0 as n→∞

called local scale at ϑ, and a matrix in Rd×d

J(ϑ) , deterministic, symmetric and strictly positive definite

called limit information at ϑ, such that the following holds: for all bounded sequences (hn)n in Rd

(we always assume that ϑ+ δn(ϑ)hn belongs to Θ), log-likelihood ratios in local models at ϑ

En,ϑ :=
{
Pn , ϑ+δn(ϑ)h : h in Rd such that ϑ+ δn(ϑ)h ∈ Θ

}
, n→∞

admit quadratic expansions

logL(ϑ+δ(ϑ)hn)/ϑ
n = h>nSn(ϑ) − 1

2
h>n Jn(ϑ)hn + oPn,ϑ

(1)

as n→∞ where

L (Sn(ϑ) , Jn(ϑ) | Pn,ϑ )
w−→ N ( 0 , J(ϑ) )⊗ εJ(ϑ) (weakly in Rd×Rd×d ) .

Remarks: 1) Equivalently, we can write the last assertion as

L (Sn(ϑ) | Pn,ϑ )
w−→ N ( 0 , J(ϑ) ) together with Jn(ϑ) = J(ϑ) + oPn,ϑ

(1)

as n→∞ (weak convergence to a deterministic object is convergence in probability).

2) Local models at ϑ are parametrized by h ∈ ...Rd... : thus, when LAN holds at ϑ,

the Gaussian shift experiment E(J(ϑ)) appears as limit model for En,ϑ as n→∞.

6



Definition: Assuming LAN at ϑ, a sequence of estimators for the unknown parameter ϑ ∈ Θ

Tn on (Ωn,An) , n ≥ 1

is called regular at ϑ if there is some probability law F = F (ϑ) on (Rd,B(Rd)) such that

L
(
δ−1
n (ϑ) (Tn − (ϑ+ δn(ϑ)h)) | Pn , ϑ+δn(ϑ)h

) w−→ F

(weak convergence in Rd, as n→∞) for every h ∈ Rd .

Thus regular means ’asymptotically equivariant with respect to the local parameter’ at ϑ.

Regularity can be checked by proving joint weak convergence of pairs ’rescaled estimation errors, log-

likelihood ratios’ under Pn,ϑ as n→∞ to limit laws of suitable structure.

A key tool is ’Le Cam’s 3rd lemma’, e.g. H. 2014 section 3.1.

Hájek’s convolution theorem: Assume LAN at ϑ, and consider any sequence of estimators (Tn)n

for the unknown parameter ϑ ∈ Θ which is regular at ϑ.

a) Any limit distribution F arising in the definition above can be written as

F = N
(

0 , J−1(ϑ)
)
? Q

for some probability law Q on (Rd,B(Rd)).

b) A sequence of estimators (Tn)n is regular and efficient at ϑ if and only if

δ−1
n (ϑ) (Tn − ϑ) = Zn(ϑ) + oPn,ϑ

(1) as n→∞

i.e. rescaled estimation errors under ϑ are coupled to the central sequence Zn(ϑ) = J−1
n (ϑ)Sn(ϑ) at ϑ.
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Local asymptotic minimax theorem: Assume LAN at ϑ, and consider any sequence of estimators

(Tn)n for the unknown parameter ϑ ∈ Θ whose rescaled estimation errors at ϑ are tight:

L
(
δ−1
n (ϑ) (Tn − ϑ) | Pn,ϑ

)
, n ≥ 1 , is tight in Rd as n→∞ .

a) For every loss function `(·) which is continuous, subconvex and bounded:

lim
c↑∞

lim sup
n→∞

sup
|h|≤c

Eϑ+δn(ϑ)h

(
`
(
δ−1
n (ϑ)

(
ϑ̃n − (ϑ+ δn(ϑ)h)

)))
≥

∫
Rd

`(z) N (0, J−1(ϑ))(dz)

where J(ϑ) is the limiting information.

b) Sequences (Tn)n with the property

δ−1
n (ϑ) (Tn − ϑ) = Zn(ϑ) + oPn,ϑ

(1) as n→∞

achieve the local asymptotic minimax bound in a): for every 0 < c <∞,

lim
n→∞

sup
|h|≤c

Eϑ+δn(ϑ)h

(
`
(
δ−1
n (ϑ)

(
ϑ̃n − (ϑ+ δn(ϑ)h)

)))
=

∫
Rd

`(z) N (0, J−1(ϑ))(dz) .

Remark: Starting from any sequence (T̃n)n of preliminary estimators for the unknown param-

eter ϑ ∈ Θ such that rescaled estimation errors at ϑ are tight, it is possible (under additional

assumptions which often do hold) to construct explicitely a new sequence (Tn)n which is efficient

in the sense of (the convolution theorem and) the local asymptotic minimax theorem: this is

Le Cam’s ’one-step correction’.

References, proofs, further reading, extension to LAMN: H. 2014 Sections 7.1, 7.2, 7.3.
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