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1 Exponentials of pure jump semimartingales

Bremaud (1981) Appendix A4: For a deterministic function ¢ — a(¢) which is cadlag and of locally

finite variation (BV) — thus we assume in particular that jumps of a(-) are absolutely summable —

there is a unique solution ¢(-) to

given by

Jacod-Shiryaev (1987) 1.4.61 — 1.4.63: For a pure-jump semimartingale X = (X;);>0 (thus we assume:

no continuous martingale part X¢, square-summability of small jumps over finite time intervals, finite
number of big jumps over finite time intervals) there is a unique cadlag adapted solution L = (L)¢>0
to
t
L =1+ / Ls_dXs, , t>0
0

given by

Ly = X% | TT 1+ AX,) e 8%
0<s<t

The process L is called the stochastic exponential of X, notation £(X) = L. The product is well
defined: by square-summability of small jumps, (1 + 2)e™* ~ (1 +2)(1 —2) =1—22 as z — 0.



2 Univariate case, constant intensities

1) We introduce a canonical probability space for Poisson processes. Write M for the set of all functions
f:]0,00) — Ny, piecewise constant, cadlag, f(0) = 0, with jump heigth Af(s) = f(s) — f(s—) equal

to 1 at the jump times. The canonical process is the process of coordinate projections:
N= (N0 , N(f) = f(t), feM,t=0.
Equip M with the o-field M := o(N; : t > 0) and the filtration
G=(G)i=0 , G = 0(Ns:0<s<t)

which is right-continuous (Bremaud 1981, Appendix A2, T26). Write (7,,),>1 for the sequence of jump

times; we have 7, T co by definition of M.

For all A > 0, (M, M) carries a unique probability measure QW such that N under QW) is Poisson

with constant intensity A. Equivalent characterizations of QW) are:
MW = (N, - At)sg isa (QW, G)-martingale ,
or: whenever C' = (Cj)s>0 is nonnegative, G-predictable and bounded,

t t
(©) EQ(,\) (/ CSdNS> = EQ(,\) </ CS)\dS) , t>0.
0 0

This is our filtered statistical model

(M,M,G, {Q(A):)\>O}) .



2) Fix x > 0 constant. Then the unique solution to

st = Lt, (X - 1) th()\) s LO =1

L = & (/(x— 1)dM(A)>

given in section 1. Since [(x — 1)dMs()‘) has finitely many jumps over finite time intervals, the

is the exponential

exponential takes the form

(<) L= | J] (14 (x—DAMP) | e hObrds — \ Nig=[ihhads -y > g

0<s<t
L is strictly positive by x > 0. The SDE shows that L is a local martingale. Laplace transforms for

Poisson random variables
Egm (e“M) = exp{At(e*—1)} VaeR
establish Eqn) (Ly) =1 for all 0 <t < co. We thus arrive at:

L = (Lt)o<t<oo is a strictly positive (QW, G)-martingale .

3) For the filtered statistical model (M, M, G, {Q(/\) A > 0} ) we prove the following theorem.

Theorem : i) For by # X in (0,00), probability measures Q(X) and QW are locally equivalent

relative to G, i.e.:

Q(X)’gt ~ Q(A)|gt , 0<t< .

ii) There is a unique (Q™, G)-martingale LVA = (Li\/)\)ogt@o such that

(%) 0<t<oo, A€ : QV(A) = Egu (Lﬁ/HA) :

LM s called the likelihood ratio process of Q(X) with respect to QW) relative to G.

iii) The likelihood ratio process of Q(X) with respect to QW) relative to G is the exponential

Eom </(X— 1)dM()‘)> where y =

> >

whence by (%)

LtX/A _ XNte—fJ(x—l)Ads , 0<t<oo.



Proof : Put y = % and use the strictly positive (QWV, G)-martingale L of 2) above

Ly = Equ </(X—1)dM(A)> — MemhehAds g <p <o
t

0<t<o0o

to define a probability measure @ on (I\\/JI, M=\ G ):

Q(A) = Eqgo (Lila) if 0<t<oo and A€G,.
Then it remains to prove the following;:
@ coincides on (M, M) with the probability measure Q(X) defined in 1) above ;

recall from 1) that N admits constant intensity X for one and only one probability measure on

(M, M, G). We proceed on the lines of Bremaud 1981, Ch. V1.2, using the criterion (¢) from 1).

For C = (C)s>0 nonnegative, G-predictable and bounded, we have to check that expectations

t t
E~ /Csts> = F, (L /Csts>
Q( 0 Q™ ! 0
t o
E~ /Cs)\ds> = F )<L /CS)\ds> .
Q( 0 Qe ' 0

We use the integration by parts formula for cadlag BV functions f and g (Bremaud 1981, App. A4)

coincide with

F(Hg(t) = F(0)g(0) + /0 f(s—) dgls) + /0 o(s) df (s)

Rewriting thus the second integrand in the first line of expectations, we have

t t v— t
Lt/Csts = o+/(/ C,dN,)dL, +/Lvade
0 0 0 0

t
= 0 + {alocal (QW,G)-martingale} + / XLy— CydN, :
0

this holds since the process ( fofos dNy)s>0 is predictable and locally bounded, since L is a (QW,G)-
martingale, and since L., equals xL,,— at the jump times 7, of N. Integration by parts in the second

line of expectations gives

t ~
Lt / Cs)\dv
0

t ~ t v .
0 + / Ly CyAdv + /(/ C, Ads) dL,,
0 0 J0

t
= 0+ / X Ly_CyXdv + {alocal (QW,G)-martingale}
0

again with y = § Replacing now C by Cly )}, the local QM-martingales are martingales; taking

QW-expections and letting n tend to oo, we obtain (o). O



3 Multivariate point processes

Let © denote some probability space with right-continuous filtration F = (F;)s>0, define A = \/  F.
0<t<o0o

Let (E, &) denote a Polish space. We assume that (€,.4) carries
e a process A = (\g)s>0 nonnegative, F-predictable, bounded
e a strictly increasing sequence (7,,)n>1 of IF-stopping times

e a set of F, -measurable random variables Z,, n > 1, taking values in (E,&).

Consider the random measure
plds, dz) = Y €(r, z,)(ds, dz)
n>1
and associate counting processes

Nt F) = u((0,]xF) , Fe&,0<t<oo.

Finally, let K (s,dz) = k(s, z)ds denote a transition probability from [0, c0) to E.

Assuming that the filtration IF' is 'small enough’, e.g.
Fi = o(NwF):0<v<t,Fef) , 0<t<oo,
there is one and only one probability measure QM%) on (Q, A) such that all

t
MOKF) (N(t, F)— / s K(s, F) ds> , Fe&
0 t>0

are (QMF) | JF)-martingales. This is Jacod (1975), uniqueness theorem (3.4).



Consider \ = (Xs)szo and k(.,.) with the same properties as A = (As)s>0 and k(.,.) above, related by

Ask(s,2) = x(s,2) Ask(s,2)

where x : [0,00)xE — [0,00) is some function. Then the following holds.

Theorem : (Kabanov-Liptser-Shiryaev 1976, theorem 1; Jacod 1975, section 5)

i) Q(X’E) is locally absolutely continuous with respect to QWF) relative to IF, i.e.:

QAPIG, < QUPIG, | 0<t<oo.

ii) The likelihood ratio process LOR)/ k) of Q(M) with respect to QWMF) relative to I

is given by the stochastic exponential

qnn ([ 052 = 1) uldss ) = ks 2)s) ) with x(o.2) = 3]

where the martingale in parentheses has paths of locally finite variation.

Thus by section 1
- t
LR T xlr Z0)| exp { [ [ s = D ak(s.2) dzds}
n:Tp <t 0 JE
or, k(s,z)dz and k(s, z)dz being transition probabilities,
t ~

L300 T )| e = [(Go=ras), 0se<oc.

n:tn <t



4 Example

e Hopfner, R., Jacod, J.: Some remarks on joint estimation of index and scale parameter for stable

processes. In: Asymptotic statistics, Proc. 5th Prague symp., 273-284. Physica-Verlag 1994.

Write S for a stable increasing process of some index 0 < a < 1 and some weight parameter £ > 0,

constructed from Poisson random measure on (0, 00)x (0, 00) with intensity ds £ az=*"! dz.

Fixing some € > 0, let X denote the sum of all jumps > ¢ in the trajectory of S:

X, = ZASS ., t>0

0<s<t
ASs>e

and consider the statistical model related to inference on o and € based on observation of the trajectory

of X. This example will be continued (statistical properties) in the last part of the lectures.

View X as canonical process on the space of all piecewise constant nondecreasing cadlag functions

with jumps > ¢, starting in X = 0, write u(ds, dz) for the jump measure of X:

t
Xt:// z p(ds,dz) , t>0.
0 Jl[e,00)

We consider the filtration F = (F;)o<t<oo generated by X and take A := \/ F;.
0<t<oo

Then, for every o € (0,1) and € € (0,00), there is a unique probability measure Q(*€) on (2, A)

such that p(ds, dz) is Poisson random measure with intensity
ds £z Mpsa dz = Mds k(z)dz with A = & @

under Q(®8). Since X is a constant and k(-) a probability density, we are in the setting of section 3.



The theorem in section 3 shows that all probability measures in

P = {Q(a’g) o e (07 1), f € (07 OO)}
are locally equivalent relative to IF, with
L@/ _ H ag (AX,)® exp{—t(gef& —56*“)} , 0<t<oo
O<s§t

the likelihood ratio process of Q(a,{) with respect to Q%) relative to F.

Remark : This extends to F-stopping times 7" which are P-almost surely finite:

QEI(4) = Eguo (L5 914) , AeFr.

Remark : Local equivalence of probability measures associated to different values of (&,g) and
(o, &) breaks down once we are able to observe arbitrarily small jumps in the trajectory of the stable

increasing process S.

5 Outlook towards Levy processes

We consider pure-jump Levy processes X = (X);>0 in a semimartingale representation

X = // wu(ds,dz) — dsA(dz)) // (z —h(z)) u(ds,dz)
R\{0} R\{0}

where h(-) is a truncation function (i.e.: h € Cg° such that h(z) = z on some ball B.(0)), and A a

Levy measure, i.e. a o-finite measure on R \ {0} with the property

/ (212 A1) Aldz) < oo
R\(0}

Hence p(ds,dz) is the jump measure of X, small jumps of X are square integrable over finite time

intervals, and there is a finite number of big jumps over finite time intervals.

X lives on some (2,.4) and is adapted to some filtration F. If we take F small enough (e.g., the

right continuous filtration generated by the process X) and A= \/ F;, there is one and only one
0<t<oo

probability measure Q) on (Q,A) (Jacod-Shiryaev 1987, I1.4.25) such that the random measure
u(ds,dz) is compensated by dsA(dz).



Consider now another Levy measure A satisfying

A(dz) = x(2)A(dz) /]R\{O} |h(2)(x(2) — 1) A(dz) < oo, /R\{o} ‘\/X(z) — 1’2A(dz) < o0

This holds in particular if we define A(dz) := x(z)A(dz) from some function x : R — [0, 00) with the
properties

x(0):=1, |x(z) —1] < L|z|] on B:(0), f{lZ\ZE} x(z) A(dz) < o .

Then the following holds:

i) Jacod-Shiryaev (1987), theorem IV.4.39 :

QW is locally absolutely continuous with respect to Q™) relative to F.

ii) Jacod-Shiryaev (1987), lemma III.5.17, theorem III.5.19:
the likelihood ratio process LA/ of Q(K) with respect to Q) relative to F is given by the stochastic

exponential

Eqm (U) , U = /0. /R\{O}(X(Z) — 1) (u(ds,dz) — dsA(dz)) .

iii) An explicit representation of the LRP is
LMY = exp{U;} [T @+av)e 2| | 0<t<oo
0<s<t

cf. section 1, since small jumps of U are square summable over finite time intervals,
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