Point process models and local asymptotics in statistics

I – Likelihood ratio processes for multivariate point processes Reinhard Höpfner, University of Mainz NOMP II, March 22 – 24, 2021

The aim of this talk is to explain statistical models for multivariate point process models, based on

- Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales. Zeitschrift f. Wahrscheinlichkeitstheorie u. verw. Geb. 31, 235–253 (1975)
- Kabanov, Y., Liptser, R., Shiryaev, A.: Criteria of absolute continuity of measures corresponding to multivariate point processes. In: Proceedings of the 3rd Japan-USSR symposium on probability theory, Lecture Notes in Math., Vol. 550, 232–252. Springer 1976.
- Bremaud, P.: Point processes and queues. Springer 1981.
- Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes. Springer 1987.

and in the following order:

- Exponentials of pure jump semimartingales
- Detailed outline of a simple case (univariate point processes, constant intensities)
- Multivariate point processes
- One example: observing jumps ≥ 1 in a stable increasing process under unknown parameters
- Outlook towards Levy processes

1 Exponentials of pure jump semimartingales

Bremaud (1981) Appendix A4: For a deterministic function $t \to a(t)$ which is cadlag and of locally finite variation (BV) – thus we assume in particular that jumps of $a(\cdot)$ are absolutely summable – there is a unique solution $\ell(\cdot)$ to

$$\ell(t) \; = \; 1 \; + \; \int_0^t \ell(s-) \, da(s) \quad , \quad t \geq 0$$

given by

$$\ell(t) = \left[\prod_{0 < s \le t} (1 + \Delta a(s)) \right] e^{\check{a}(t)} = e^{a(t) - a(0)} \left[\prod_{0 < s \le t} (1 + \Delta a(s)) e^{-\Delta a(s)} \right]$$

with notation

$$\Delta a(s) := a(s) - a(s-) \quad , \quad \breve{a}(t) := a(t) - a(0) - \sum_{0 < s \le t} \Delta a(s) \; .$$

Jacod-Shiryaev (1987) I.4.61 – I.4.63: For a pure-jump semimartingale $X = (X_t)_{t\geq 0}$ (thus we assume: no continuous martingale part X^c , square-summability of small jumps over finite time intervals, finite number of big jumps over finite time intervals) there is a unique cadlag adapted solution $L = (L_t)_{t\geq 0}$ to

$$L_t = 1 + \int_0^t L_{s-} dX_s \quad , \quad t \ge 0$$

given by

$$L_t = e^{X_t - X_0} \left[\prod_{0 < s \le t} (1 + \Delta X_s) e^{-\Delta X_s} \right] .$$

The process L is called the stochastic exponential of X, notation $\mathcal{E}(X) = L$. The product is well defined: by square-summability of small jumps, $(1+z)e^{-z} \sim (1+z)(1-z) = 1 - z^2$ as $z \to 0$.

2 Univariate case, constant intensities

1) We introduce a canonical probability space for Poisson processes. Write \mathbb{M} for the set of all functions $f: [0, \infty) \to \mathbb{N}_0$, piecewise constant, cadlag, f(0) = 0, with jump heigh $\Delta f(s) = f(s) - f(s)$ equal to 1 at the jump times. The canonical process is the process of coordinate projections:

$$N = (N_t)_{t \ge 0}$$
 , $N_t(f) = f(t)$, $f \in \mathbb{M}$, $t \ge 0$

Equip \mathbb{M} with the σ -field $\mathcal{M} := \sigma(N_t : t \ge 0)$ and the filtration

$$\mathbb{G} = (\mathcal{G}_t)_{t \ge 0} \quad , \quad \mathcal{G}_t := \sigma(N_s : 0 \le s \le t)$$

which is right-continuous (Bremaud 1981, Appendix A2, T26). Write $(\tau_n)_{n\geq 1}$ for the sequence of jump times; we have $\tau_n \uparrow \infty$ by definition of \mathbb{M} .

For all $\lambda > 0$, $(\mathbb{M}, \mathcal{M})$ carries a unique probability measure $Q^{(\lambda)}$ such that N under $Q^{(\lambda)}$ is Poisson with constant intensity λ . Equivalent characterizations of $Q^{(\lambda)}$ are:

$$M^{(\lambda)} := (N_t - \lambda t)_{t \ge 0}$$
 is a $(Q^{(\lambda)}, \mathbb{G})$ -martingale,

or: whenever $C = (C_s)_{s \ge 0}$ is nonnegative, \mathbb{G} -predictable and bounded,

$$(\diamond) \qquad \qquad E_{Q^{(\lambda)}}\left(\int_0^t C_s \, dN_s\right) = E_{Q^{(\lambda)}}\left(\int_0^t C_s \, \lambda \, ds\right) \quad , \quad t \ge 0$$

This is our filtered statistical model

$$\left(\mathbb{M}, \mathcal{M}, \mathbb{G}, \left\{Q^{(\lambda)} : \lambda > 0\right\}\right)$$
.

2) Fix $\chi > 0$ constant. Then the unique solution to

$$dL_t = L_{t-} (\chi - 1) dM_t^{(\lambda)} , \quad L_0 \equiv 1$$

is the exponential

$$L = \mathcal{E}_{Q^{(\lambda)}}\left(\int (\chi - 1) dM^{(\lambda)}\right)$$

given in section 1. Since $\int (\chi - 1) dM_s^{(\lambda)}$ has finitely many jumps over finite time intervals, the exponential takes the form

$$(\times) \qquad L_t = \left[\prod_{0 < s \le t} (1 + (\chi - 1)\Delta M_s^{(\lambda)}) \right] e^{-\int_0^t (\chi - 1)\lambda \, ds} = \chi^{N_t} e^{-\int_0^t (\chi - 1)\lambda \, ds} \quad , \quad t \ge 0 \; .$$

L is strictly positive by $\chi > 0$. The SDE shows that L is a local martingale. Laplace transforms for Poisson random variables

$$E_{Q^{(\lambda)}}\left(e^{\alpha N_t}\right) = \exp\{\lambda t(e^{\alpha}-1)\} \quad \forall \alpha \in \mathbb{R}$$

establish $E_{Q^{(\lambda)}}(L_t) = 1$ for all $0 \le t < \infty$. We thus arrive at:

 $L = (L_t)_{0 \le t < \infty}$ is a strictly positive $(Q^{(\lambda)}, \mathbb{G})$ -martingale.

3) For the filtered statistical model ($\mathbb{M}, \mathcal{M}, \mathbb{G}, \{Q^{(\lambda)} : \lambda > 0\}$) we prove the following theorem.

Theorem : i) For $\tilde{\lambda} \neq \lambda$ in $(0, \infty)$, probability measures $Q^{(\tilde{\lambda})}$ and $Q^{(\lambda)}$ are <u>locally equivalent</u> relative to \mathbb{G} , i.e.:

$$Q^{(\widetilde{\lambda})}|\mathcal{G}_t \sim Q^{(\lambda)}|\mathcal{G}_t \quad , \quad 0 \le t < \infty .$$

ii) There is a unique $(Q^{(\lambda)}, \mathbb{G})$ -martingale $L^{\widetilde{\lambda}/\lambda} = (L_t^{\widetilde{\lambda}/\lambda})_{0 \le t < \infty}$ such that

(*)
$$0 \le t < \infty , \ A \in \mathcal{G}_t : \ Q^{(\widetilde{\lambda})}(A) = E_{Q^{(\lambda)}}\left(L_t^{\widetilde{\lambda}/\lambda} \mathbf{1}_A\right) :$$

 $L^{\widetilde{\lambda}/\lambda}$ is called the likelihood ratio process of $Q^{(\widetilde{\lambda})}$ with respect to $Q^{(\lambda)}$ relative to \mathbb{G} .

iii) The likelihood ratio process of $Q^{(\tilde{\lambda})}$ with respect to $Q^{(\lambda)}$ relative to \mathbb{G} is the exponential

$$\mathcal{E}_{Q^{(\lambda)}}\left(\int (\chi-1)dM^{(\lambda)}
ight) \quad ext{where} \quad \chi \ := \ rac{\widetilde{\lambda}}{\lambda}$$

whence by (\times)

$$L_t^{\widetilde{\lambda}/\lambda} = \chi^{N_t} e^{-\int_0^t (\chi - 1) \lambda \, ds} \quad , \quad 0 \le t < \infty \; .$$

Proof: Put $\chi = \frac{\tilde{\lambda}}{\lambda}$ and use the strictly positive $(Q^{(\lambda)}, \mathbb{G})$ -martingale L of 2) above

$$L_t = \mathcal{E}_{Q^{(\lambda)}} \left(\int (\chi - 1) dM^{(\lambda)} \right)_t = \chi^{N_t} e^{-\int_0^t (\chi - 1) \lambda \, ds} \quad , \quad 0 \le t < \infty$$

to define a probability measure \widetilde{Q} on $\left(\mathbb{M}, \mathcal{M} = \bigvee_{0 \leq t < \infty} \mathcal{G}_t\right)$:

$$\widetilde{Q}(A) := E_{Q^{(\lambda)}}(L_t 1_A) \quad \text{if} \quad 0 \le t < \infty \text{ and } A \in \mathcal{G}_t .$$

Then it remains to prove the following:

 \widetilde{Q} coincides on $(\mathbb{M}, \mathcal{M})$ with the probability measure $Q^{(\widetilde{\lambda})}$ defined in 1) above ;

recall from 1) that N admits constant intensity $\tilde{\lambda}$ for one and only one probability measure on $(\mathbb{M}, \mathcal{M}, \mathbb{G})$. We proceed on the lines of Bremaud 1981, Ch. VI.2, using the criterion (\diamond) from 1).

For $C = (C_s)_{s \ge 0}$ nonnegative, \mathbb{G} -predictable and bounded, we have to check that expectations

$$E_{\widetilde{Q}}\left(\int_{0}^{t} C_{s} dN_{s}\right) = E_{Q^{(\lambda)}}\left(L_{t} \int_{0}^{t} C_{s} dN_{s}\right)$$

coincide with

$$E_{\widetilde{Q}}\left(\int_{0}^{t} C_{s}\,\widetilde{\lambda}\,ds\right) = E_{Q^{(\lambda)}}\left(L_{t}\,\int_{0}^{t} C_{s}\,\widetilde{\lambda}\,ds\right)$$

We use the integration by parts formula for cadlag BV functions f and g (Bremaud 1981, App. A4)

$$f(t)g(t) = f(0)g(0) + \int_0^t f(s-) \, dg(s) + \int_0^t g(s) \, df(s) \, ds$$

Rewriting thus the second integrand in the first line of expectations, we have

$$L_t \int_0^t C_s \, dN_s = 0 + \int_0^t (\int_0^{v-} C_s \, dN_s) \, dL_v + \int_0^t L_v \, C_v \, dN_v$$

= 0 + {a local (Q^(\lambda), \mathbb{G})-martingale} + $\int_0^t \chi L_{v-} \, C_v \, dN_v$:

this holds since the process $(\int_0^{v-}C_s dN_s)_{s\geq 0}$ is predictable and locally bounded, since L is a $(Q^{(\lambda)}, \mathbb{G})$ martingale, and since L_{τ_n} equals χL_{τ_n-} at the jump times τ_n of N. Integration by parts in the second line of expectations gives

$$L_t \int_0^t C_s \,\widetilde{\lambda} \, dv = 0 + \int_0^t L_{v-} C_v \,\widetilde{\lambda} \, dv + \int_0^t (\int_0^v C_s \,\widetilde{\lambda} ds) \, dL_v$$

= 0 + $\int_0^t \chi \, L_{v-} C_v \,\lambda \, dv + \{ \text{a local } (Q^{(\lambda)}, \mathbb{G}) \text{-martingale} \}$

again with $\chi = \frac{\tilde{\lambda}}{\lambda}$. Replacing now *C* by $C1_{[[0,\tau_n]]}$, the local $Q^{(\lambda)}$ -martingales are martingales; taking $Q^{(\lambda)}$ -expections and letting *n* tend to ∞ , we obtain (\diamond).

3 Multivariate point processes

Let Ω denote some probability space with right-continuous filtration $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$, define $\mathcal{A} = \bigvee_{0 \le t < \infty} \mathcal{F}_t$. Let (E, \mathcal{E}) denote a Polish space. We assume that (Ω, \mathcal{A}) carries

- a process $\lambda = (\lambda_s)_{s \ge 0}$ nonnegative, \mathbb{F} -predictable, bounded
- a strictly increasing sequence $(\tau_n)_{n\geq 1}$ of $I\!\!F$ -stopping times
- a set of \mathcal{F}_{τ_n} -measurable random variables $Z_n, n \geq 1$, taking values in (E, \mathcal{E}) .

Consider the random measure

$$\mu(ds, dz) = \sum_{n \ge 1} \epsilon_{(\tau_n, Z_n)}(ds, dz)$$

and associate counting processes

$$N(t,F) := \mu((0,t] \times F) \quad , \quad F \in \mathcal{E} \ , \ 0 \le t < \infty \ .$$

Finally, let K(s, dz) = k(s, z)ds denote a transition probability from $[0, \infty)$ to E.

Assuming that the filtration $I\!\!F$ is 'small enough', e.g.

$$\mathcal{F}_t \;=\; \sigma\left(\,N(v,F)\,:\, 0\leq v\leq t\,,\,F\in\mathcal{E}\,\right) \quad,\quad 0\leq t<\infty\;,$$

there is one and only one probability measure $Q^{(\lambda,k)}$ on (Ω, \mathcal{A}) such that all

$$M^{(\lambda,k,F)} := \left(N(t,F) - \int_0^t \lambda_s K(s,F) \, ds \right)_{t \ge 0} \quad , \quad F \in \mathcal{E}$$

are $(Q^{(\lambda,k)}, \mathbb{F})$ -martingales. This is Jacod (1975), uniqueness theorem (3.4).

Consider $\widetilde{\lambda} = (\widetilde{\lambda}_s)_{s \ge 0}$ and $\widetilde{k}(.,.)$ with the same properties as $\lambda = (\lambda_s)_{s \ge 0}$ and k(.,.) above, related by

$$\widetilde{\lambda}_s \, \widetilde{k}(s,z) \; = \; \chi(s,z) \, \lambda_s \, k(s,z)$$

where $\chi: [0,\infty) \times E \to [0,\infty)$ is some function. Then the following holds.

Theorem : (Kabanov-Liptser-Shiryaev 1976, theorem 1; Jacod 1975, section 5)

i) $Q^{(\lambda,\tilde{k})}$ is locally absolutely continuous with respect to $Q^{(\lambda,k)}$ relative to $I\!\!F$, i.e.:

$$Q^{(\lambda,k)}|\mathcal{G}_t \ll Q^{(\lambda,k)}|\mathcal{G}_t \quad , \quad 0 \le t < \infty$$

ii) The likelihood ratio process $L^{(\tilde{\lambda},\tilde{k})/(\lambda,k)}$ of $Q^{(\tilde{\lambda},\tilde{k})}$ with respect to $Q^{(\lambda,k)}$ relative to $I\!\!F$ is given by the stochastic exponential

$$\mathcal{E}_{Q^{(\lambda,k)}}\left(\int_{0}^{\bullet}\int_{E}(\chi(s,z)-1)\left(\mu(ds,dz)-\lambda_{s}k(s,z)dzds\right)\right) \quad \text{with} \quad \chi(s,z) \ = \ \frac{\widetilde{\lambda_{s}}\widetilde{k}(s,z)}{\lambda_{s}k(s,z)}dzds$$

where the martingale in parentheses has paths of locally finite variation. Thus by section 1

$$L_t^{(\widetilde{\lambda},\widetilde{k})/(\lambda,k)} = \left[\prod_{n:\tau_n \le t} \chi(\tau_n, Z_n)\right] \exp\left\{-\int_0^t \int_E (\chi(s,z)-1)\,\lambda_s k(s,z)\,dzds\right\}$$

or, k(s,z)dz and $\tilde{k}(s,z)dz$ being transition probabilities,

$$L_t^{(\widetilde{\lambda},\widetilde{k})/(\lambda,k)} = \left[\prod_{n:\tau_n \le t} \chi(\tau_n, Z_n)\right] \exp\left\{-\int_0^t (\widetilde{\lambda}_s - \lambda_s) \, ds\right\}, \quad 0 \le t < \infty.$$

4 Example

• Höpfner, R., Jacod, J.: Some remarks on joint estimation of index and scale parameter for stable processes. In: Asymptotic statistics, Proc. 5th Prague symp., 273–284. Physica-Verlag 1994.

Write S for a stable increasing process of some index $0 < \alpha < 1$ and some weight parameter $\xi > 0$, constructed from Poisson random measure on $(0, \infty) \times (0, \infty)$ with intensity $ds \xi \alpha z^{-\alpha-1} dz$.

Fixing some $\varepsilon > 0$, let X denote the sum of all jumps $\geq \varepsilon$ in the trajectory of S:

$$X_t = \sum_{\substack{0 < s \le t \\ \Delta S_s \ge \varepsilon}} \Delta S_s \quad , \quad t \ge 0$$

and consider the statistical model related to inference on α and ξ based on observation of the trajectory of X. This example will be continued (statistical properties) in the last part of the lectures.

View X as canonical process on the space of all piecewise constant nondecreasing cadlag functions with jumps $\geq \varepsilon$, starting in $X_0 = 0$, write $\mu(ds, dz)$ for the jump measure of X:

$$X_t = \int_0^t \int_{[\varepsilon,\infty)} z \ \mu(ds, dz) \quad , \quad t \ge 0 \; .$$

We consider the filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t < \infty}$ generated by X and take $\mathcal{A} := \bigvee_{0 \le t < \infty} \mathcal{F}_t$.

Then, for every $\alpha \in (0,1)$ and $\xi \in (0,\infty)$, there is a unique probability measure $Q^{(\alpha,\xi)}$ on (Ω, \mathcal{A}) such that $\mu(ds, dz)$ is Poisson random measure with intensity

$$ds \,\xi \,\alpha z^{-\alpha-1} \mathbf{1}_{\{z \ge \varepsilon\}} \,dz \; =: \; \lambda \,ds \; k(z) dz \quad \text{with} \quad \lambda \; := \; \xi \varepsilon^{-\alpha}$$

under $Q^{(\alpha,\xi)}$. Since λ is a constant and $k(\cdot)$ a probability density, we are in the setting of section 3.

The theorem in section 3 shows that all probability measures in

$$\mathcal{P} := \left\{ Q^{(\alpha,\xi)} : \alpha \in (0,1), \, \xi \in (0,\infty) \right\}$$

are locally equivalent relative to \mathbb{F} , with

$$L_t^{(\widetilde{\alpha},\widetilde{\xi})/(\alpha,\xi)} = \left[\prod_{0 < s \le t} \frac{\widetilde{\alpha}\widetilde{\xi}}{\alpha\xi} (\Delta X_s)^{\alpha - \widetilde{\alpha}}\right] \exp\left\{-t(\widetilde{\xi}\varepsilon^{-\widetilde{\alpha}} - \xi\varepsilon^{-\alpha})\right\}, \quad 0 \le t < \infty$$

the likelihood ratio process of $Q^{(\tilde{\alpha},\tilde{\xi})}$ with respect to $Q^{(\alpha,\xi)}$ relative to \mathbb{F} .

Remark : This extends to \mathbb{F} -stopping times T which are \mathcal{P} -almost surely finite:

$$Q^{(\widetilde{\alpha},\widetilde{\xi})}(A) = E_{Q^{(\alpha,\xi)}} \left(L_T^{(\widetilde{\alpha},\widetilde{\xi})/(\alpha,\xi)} \mathbf{1}_A \right) \quad , \quad A \in \mathcal{F}_T .$$

Remark : Local equivalence of probability measures associated to different values of $(\tilde{\alpha}, \tilde{\xi})$ and (α, ξ) breaks down once we are able to observe arbitrarily small jumps in the trajectory of the stable increasing process S.

5 Outlook towards Levy processes

We consider pure-jump Levy processes $X = (X_t)_{t \ge 0}$ in a semimartingale representation

$$X_t = \int_0^t \int_{\mathbb{R} \setminus \{0\}} h(z) \left(\mu(ds, dz) - ds \Lambda(dz) \right) + \int_0^t \int_{\mathbb{R} \setminus \{0\}} (z - h(z)) \, \mu(ds, dz)$$

where $h(\cdot)$ is a truncation function (i.e.: $h \in C^{\infty}_{\mathcal{K}}$ such that h(z) = z on some ball $B_{\varepsilon}(0)$), and Λ a Levy measure, i.e. a σ -finite measure on $\mathbb{R} \setminus \{0\}$ with the property

$$\int_{\mathbb{R}\setminus\{0\}} (|z|^2 \wedge 1) \Lambda(dz) < \infty .$$

Hence $\mu(ds, dx)$ is the jump measure of X, small jumps of X are square integrable over finite time intervals, and there is a finite number of big jumps over finite time intervals.

X lives on some (Ω, \mathcal{A}) and is adapted to some filtration \mathbb{F} . If we take \mathbb{F} small enough (e.g., the right continuous filtration generated by the process X) and $\mathcal{A} = \bigvee_{0 \le t < \infty} \mathcal{F}_t$, there is one and only one probability measure $Q^{(\Lambda)}$ on (Ω, \mathcal{A}) (Jacod-Shiryaev 1987, II.4.25) such that the random measure $\mu(ds, dz)$ is compensated by $ds \Lambda(dz)$.

Consider now another Levy measure $\widetilde{\Lambda}$ satisfying

$$\widetilde{\Lambda}(dz) \ = \ \chi(z)\Lambda(dz) \ , \quad \int_{\mathbb{R}\setminus\{0\}} \left|h(z)(\chi(z)-1)\right|\Lambda(dz) \ < \ \infty \ , \quad \int_{\mathbb{R}\setminus\{0\}} \left|\sqrt{\chi(z)}-1\right|^2 \Lambda(dz) \ < \ \infty \ .$$

This holds in particular if we define $\widetilde{\Lambda}(dz) := \chi(z)\Lambda(dz)$ from some function $\chi : \mathbb{R} \to [0, \infty)$ with the properties

$$\chi(0) := 1$$
, $|\chi(z) - 1| \le L|z|$ on $B_{\varepsilon}(0)$, $\int_{\{|z| \ge \varepsilon\}} \chi(z) \Lambda(dz) < \infty$.

Then the following holds:

i) Jacod-Shiryaev (1987), theorem IV.4.39 :

 $Q^{(\widetilde{\Lambda})}$ is locally absolutely continuous with respect to $\,Q^{(\Lambda)}$ relative to $\mathbb{F}.$

ii) Jacod-Shiryaev (1987), lemma III.5.17, theorem III.5.19:

the likelihood ratio process $L^{\widetilde{\Lambda}/\Lambda}$ of $Q^{(\widetilde{\Lambda})}$ with respect to $Q^{(\Lambda)}$ relative to \mathbb{F} is given by the stochastic exponential

$$\mathcal{E}_{Q^{(\Lambda)}}\left(\,U\,\right) \quad,\quad U \;:=\; \int_0^\bullet \int_{\mathbb{R}\backslash\{0\}} (\chi(z)-1)\,\left(\mu(ds,dz)-ds\Lambda(dz)\right)\,.$$

iii) An explicit representation of the LRP is

$$L_t^{\widetilde{\Lambda}/\Lambda} = \exp\{U_t\} \left[\prod_{0 < s \le t} (1 + \Delta U_s) e^{-\Delta U_s}\right] \quad , \quad 0 \le t < \infty$$

cf. section 1, since small jumps of U are square summable over finite time intervals,