Point process models and local asymptotics in statistics I - Likelihood ratio processes for multivariate point processes
 Reinhard Höpfner, University of Mainz
 NOMP II, March 22 - 24, 2021

The aim of this talk is to explain statistical models for multivariate point process models, based on

- Jacod, J.: Multivariate point processes: predictable projection,Radon-Nikodym derivatives, representation of martingales. Zeitschrift f. Wahrscheinlichkeitstheorie u. verw. Geb. 31, 235-253 (1975)
- Kabanov, Y., Liptser, R., Shiryaev, A.: Criteria of absolute continuity of measures corresponding to multivariate point processes. In: Proceedings of the 3rd Japan-USSR symposium on probability theory, Lecture Notes in Math., Vol. 550, 232-252. Springer 1976.
- Bremaud, P.: Point processes and queues. Springer 1981.
- Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes. Springer 1987.
and in the following order:
- Exponentials of pure jump semimartingales
- Detailed outline of a simple case (univariate point processes, constant intensities)
- Multivariate point processes
- One example: observing jumps ≥ 1 in a stable increasing process under unknown parameters
- Outlook towards Levy processes

1 Exponentials of pure jump semimartingales

Bremaud (1981) Appendix A4: For a deterministic function $t \rightarrow a(t)$ which is cadlag and of locally finite variation (BV) - thus we assume in particular that jumps of $a(\cdot)$ are absolutely summable there is a unique solution $\ell(\cdot)$ to

$$
\ell(t)=1+\int_{0}^{t} \ell(s-) d a(s) \quad, \quad t \geq 0
$$

given by

$$
\ell(t)=\left[\prod_{0<s \leq t}(1+\Delta a(s))\right] e^{\breve{a}(t)}=e^{a(t)-a(0)}\left[\prod_{0<s \leq t}(1+\Delta a(s)) e^{-\Delta a(s)}\right]
$$

with notation

$$
\Delta a(s):=a(s)-a(s-) \quad, \quad \breve{a}(t):=a(t)-a(0)-\sum_{0<s \leq t} \Delta a(s) .
$$

Jacod-Shiryaev (1987) I.4.61 - I.4.63: For a pure-jump semimartingale $X=\left(X_{t}\right)_{t \geq 0}$ (thus we assume: no continuous martingale part X^{c}, square-summability of small jumps over finite time intervals, finite number of big jumps over finite time intervals) there is a unique cadlag adapted solution $L=\left(L_{t}\right)_{t \geq 0}$ to

$$
L_{t}=1+\int_{0}^{t} L_{s-} d X_{s} \quad, \quad t \geq 0
$$

given by

$$
L_{t}=e^{X_{t}-X_{0}}\left[\prod_{0<s \leq t}\left(1+\Delta X_{s}\right) e^{-\Delta X_{s}}\right]
$$

The process L is called the stochastic exponential of X, notation $\mathcal{E}(X)=L$. The product is well defined: by square-summability of small jumps, $(1+z) e^{-z} \sim(1+z)(1-z)=1-z^{2}$ as $z \rightarrow 0$.

2 Univariate case, constant intensities

1) We introduce a canonical probability space for Poisson processes. Write \mathbb{M} for the set of all functions $f:[0, \infty) \rightarrow \mathbb{N}_{0}$, piecewise constant, cadlag, $f(0)=0$, with jump heigth $\Delta f(s)=f(s)-f(s-)$ equal to 1 at the jump times. The canonical process is the process of coordinate projections:

$$
N=\left(N_{t}\right)_{t \geq 0} \quad, \quad N_{t}(f)=f(t), f \in \mathbb{M}, t \geq 0 .
$$

Equip \mathbb{M} with the σ-field $\mathcal{M}:=\sigma\left(N_{t}: t \geq 0\right)$ and the filtration

$$
\mathbb{G}=\left(\mathcal{G}_{t}\right)_{t \geq 0} \quad, \quad \mathcal{G}_{t}:=\sigma\left(N_{s}: 0 \leq s \leq t\right)
$$

which is right-continuous (Bremaud 1981, Appendix A2, T26). Write $\left(\tau_{n}\right)_{n \geq 1}$ for the sequence of jump times; we have $\tau_{n} \uparrow \infty$ by definition of \mathbb{M}.

For all $\lambda>0,(\mathbb{M}, \mathcal{M})$ carries a unique probability measure $Q^{(\lambda)}$ such that N under $Q^{(\lambda)}$ is Poisson with constant intensity λ. Equivalent characterizations of $Q^{(\lambda)}$ are:

$$
M^{(\lambda)}:=\left(N_{t}-\lambda t\right)_{t \geq 0} \quad \text { is a }\left(Q^{(\lambda)}, \mathbb{G}\right) \text {-martingale },
$$

or: whenever $C=\left(C_{s}\right)_{s \geq 0}$ is nonnegative, \mathbb{G}-predictable and bounded,

$$
E_{Q^{(\lambda)}}\left(\int_{0}^{t} C_{s} d N_{s}\right)=E_{Q^{(\lambda)}}\left(\int_{0}^{t} C_{s} \lambda d s\right) \quad, \quad t \geq 0 .
$$

This is our filtered statistical model

$$
\left(\mathbb{M}, \mathcal{M}, \mathbb{G},\left\{Q^{(\lambda)}: \lambda>0\right\}\right) .
$$

2) Fix $\chi>0$ constant. Then the unique solution to

$$
d L_{t}=L_{t-}(\chi-1) d M_{t}^{(\lambda)} \quad, \quad L_{0} \equiv 1
$$

is the exponential

$$
L=\mathcal{E}_{Q^{(\lambda)}}\left(\int(\chi-1) d M^{(\lambda)}\right)
$$

given in section 1. Since $\int(\chi-1) d M_{s}^{(\lambda)}$ has finitely many jumps over finite time intervals, the exponential takes the form
(×) $\quad L_{t}=\left[\prod_{0<s \leq t}\left(1+(\chi-1) \Delta M_{s}^{(\lambda)}\right)\right] e^{-\int_{0}^{t}(\chi-1) \lambda d s}=\chi^{N_{t}} e^{-\int_{0}^{t}(\chi-1) \lambda d s} \quad, \quad t \geq 0$.
L is strictly positive by $\chi>0$. The SDE shows that L is a local martingale. Laplace transforms for Poisson random variables

$$
E_{Q^{(\lambda)}}\left(e^{\alpha N_{t}}\right)=\exp \left\{\lambda t\left(e^{\alpha}-1\right)\right\} \quad \forall \alpha \in \mathbb{R}
$$

establish $E_{Q^{(\lambda)}}\left(L_{t}\right)=1$ for all $0 \leq t<\infty$. We thus arrive at:

$$
L=\left(L_{t}\right)_{0 \leq t<\infty} \text { is a strictly positive }\left(Q^{(\lambda)}, \mathbb{G}\right) \text {-martingale }
$$

3) For the filtered statistical model $\left(\mathbb{M}, \mathcal{M}, \mathbb{G},\left\{Q^{(\lambda)}: \lambda>0\right\}\right)$ we prove the following theorem.

Theorem : i) For $\tilde{\lambda} \neq \lambda$ in $(0, \infty)$, probability measures $Q^{(\tilde{\lambda})}$ and $Q^{(\lambda)}$ are locally equivalent $\underline{\text { relative to } \mathbb{G}}$, i.e.:

$$
Q^{(\widetilde{\lambda})}\left|\mathcal{G}_{t} \sim Q^{(\lambda)}\right| \mathcal{G}_{t} \quad, \quad 0 \leq t<\infty .
$$

ii) There is a unique $\left(Q^{(\lambda)}, \mathbb{G}\right)$-martingale $L^{\tilde{\lambda} / \lambda}=\left(L_{t}^{\tilde{\lambda} / \lambda}\right)_{0 \leq t<\infty}$ such that

$$
\begin{equation*}
0 \leq t<\infty, A \in \mathcal{G}_{t}: \quad Q^{(\widetilde{\lambda})}(A)=E_{Q^{(\lambda)}}\left(L_{t}^{\tilde{\lambda} / \lambda} 1_{A}\right): \tag{*}
\end{equation*}
$$

$L^{\tilde{\lambda} / \lambda}$ is called the likelihood ratio process of $Q^{(\widetilde{\lambda})}$ with respect to $Q^{(\lambda)}$ relative to \mathbb{G}.
iii) The likelihood ratio process of $Q^{(\widetilde{\lambda})}$ with respect to $Q^{(\lambda)}$ relative to \mathbb{G} is the exponential

$$
\mathcal{E}_{Q^{(\lambda)}}\left(\int(\chi-1) d M^{(\lambda)}\right) \quad \text { where } \quad \chi:=\frac{\tilde{\lambda}}{\lambda}
$$

whence by (\times)

$$
L_{t}^{\tilde{\lambda} / \lambda}=\chi^{N_{t}} e^{-\int_{0}^{t}(\chi-1) \lambda d s} \quad, \quad 0 \leq t<\infty .
$$

Proof : Put $\chi=\frac{\tilde{\lambda}}{\lambda}$ and use the strictly positive $\left(Q^{(\lambda)}, \mathbb{G}\right)$-martingale L of 2) above

$$
L_{t}=\mathcal{E}_{Q^{(\lambda)}}\left(\int(\chi-1) d M^{(\lambda)}\right)_{t}=\chi^{N_{t}} e^{-\int_{0}^{t}(\chi-1) \lambda d s} \quad, \quad 0 \leq t<\infty
$$

to define a probability measure \widetilde{Q} on $\left(\mathbb{M}, \mathcal{M}=\underset{0 \leq t<\infty}{\bigvee} \mathcal{G}_{t}\right)$:

$$
\widetilde{Q}(A):=E_{Q(\lambda)}\left(L_{t} 1_{A}\right) \quad \text { if } \quad 0 \leq t<\infty \text { and } A \in \mathcal{G}_{t} .
$$

Then it remains to prove the following:

$$
\left.\widetilde{Q} \text { coincides on }(\mathbb{M}, \mathcal{M}) \text { with the probability measure } Q^{(\widetilde{\lambda})} \text { defined in } 1\right) \text { above ; }
$$

recall from 1) that N admits constant intensity $\widetilde{\lambda}$ for one and only one probability measure on $(\mathbb{M}, \mathcal{M}, \mathbb{G})$. We proceed on the lines of Bremaud 1981, Ch. VI.2, using the criterion ($\diamond)$ from 1).

For $C=\left(C_{s}\right)_{s \geq 0}$ nonnegative, \mathbb{G}-predictable and bounded, we have to check that expectations

$$
E_{\widetilde{Q}}\left(\int_{0}^{t} C_{s} d N_{s}\right)=E_{Q^{(\lambda)}}\left(L_{t} \int_{0}^{t} C_{s} d N_{s}\right)
$$

coincide with

$$
E_{\widetilde{Q}}\left(\int_{0}^{t} C_{s} \tilde{\lambda} d s\right)=E_{Q(\lambda)}\left(L_{t} \int_{0}^{t} C_{s} \tilde{\lambda} d s\right)
$$

We use the integration by parts formula for cadlag BV functions f and g (Bremaud 1981, App. A4)

$$
f(t) g(t)=f(0) g(0)+\int_{0}^{t} f(s-) d g(s)+\int_{0}^{t} g(s) d f(s) .
$$

Rewriting thus the second integrand in the first line of expectations, we have

$$
\begin{aligned}
L_{t} \int_{0}^{t} C_{s} d N_{s} & =0+\int_{0}^{t}\left(\int_{0}^{v-} C_{s} d N_{s}\right) d L_{v}+\int_{0}^{t} L_{v} C_{v} d N_{v} \\
& =0+\left\{\operatorname{a} \text { local }\left(Q^{(\lambda)}, \mathbb{G}\right) \text {-martingale }\right\}+\int_{0}^{t} \chi L_{v-} C_{v} d N_{v}:
\end{aligned}
$$

this holds since the process $\left(\int_{0}^{v-} C_{s} d N_{s}\right)_{s \geq 0}$ is predictable and locally bounded, since L is a $\left(Q^{(\lambda)}, \mathbb{G}\right)$ martingale, and since $L_{\tau_{n}}$ equals $\chi L_{\tau_{n}-}$ at the jump times τ_{n} of N. Integration by parts in the second line of expectations gives

$$
\begin{aligned}
L_{t} \int_{0}^{t} C_{s} \tilde{\lambda} d v & =0+\int_{0}^{t} L_{v-} C_{v} \tilde{\lambda} d v+\int_{0}^{t}\left(\int_{0}^{v} C_{s} \widetilde{\lambda} d s\right) d L_{v} \\
& =0+\int_{0}^{t} \chi L_{v-} C_{v} \lambda d v+\left\{\text { a local }\left(Q^{(\lambda)}, \mathbb{G}\right) \text {-martingale }\right\}
\end{aligned}
$$

again with $\chi=\frac{\tilde{\lambda}}{\lambda}$. Replacing now C by $C 1_{\left[\left[0, \tau_{n}\right]\right]}$, the local $Q^{(\lambda)}$-martingales are martingales; taking $Q^{(\lambda)}$-expections and letting n tend to ∞, we obtain (\diamond).

3 Multivariate point processes

Let Ω denote some probability space with right-continuous filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$, define $\mathcal{A}=\underset{0 \leq t<\infty}{\bigvee} \mathcal{F}_{t}$. Let (E, \mathcal{E}) denote a Polish space. We assume that (Ω, \mathcal{A}) carries

- a process $\lambda=\left(\lambda_{s}\right)_{s \geq 0}$ nonnegative, \mathbb{F}-predictable, bounded
- a strictly increasing sequence $\left(\tau_{n}\right)_{n \geq 1}$ of \mathbb{F}-stopping times
- a set of $\mathcal{F}_{\tau_{n}}$-measurable random variables $Z_{n}, n \geq 1$, taking values in (E, \mathcal{E}).

Consider the random measure

$$
\mu(d s, d z)=\sum_{n \geq 1} \epsilon_{\left(\tau_{n}, Z_{n}\right)}(d s, d z)
$$

and associate counting processes

$$
N(t, F):=\mu((0, t] \times F) \quad, \quad F \in \mathcal{E}, 0 \leq t<\infty .
$$

Finally, let $K(s, d z)=k(s, z) d s$ denote a transition probability from $[0, \infty)$ to E.

Assuming that the filtration \mathbb{F} is 'small enough', e.g.

$$
\mathcal{F}_{t}=\sigma(N(v, F): 0 \leq v \leq t, F \in \mathcal{E}) \quad, \quad 0 \leq t<\infty,
$$

there is one and only one probability measure $Q^{(\lambda, k)}$ on (Ω, \mathcal{A}) such that all

$$
M^{(\lambda, k, F)}:=\left(N(t, F)-\int_{0}^{t} \lambda_{s} K(s, F) d s\right)_{t \geq 0} \quad, \quad F \in \mathcal{E}
$$

are $\left(Q^{(\lambda, k)}, \mathbb{F}\right)$-martingales. This is Jacod (1975), uniqueness theorem (3.4).

Consider $\widetilde{\lambda}=\left(\widetilde{\lambda}_{s}\right)_{s \geq 0}$ and $\widetilde{k}(.,$.$) with the same properties as \lambda=\left(\lambda_{s}\right)_{s \geq 0}$ and $k(.,$.$) above, related by$

$$
\tilde{\lambda}_{s} \widetilde{k}(s, z)=\chi(s, z) \lambda_{s} k(s, z)
$$

where $\chi:[0, \infty) \times E \rightarrow[0, \infty)$ is some function. Then the following holds.

Theorem : (Kabanov-Liptser-Shiryaev 1976, theorem 1; Jacod 1975, section 5)
i) $Q^{(\widetilde{\lambda}, \widetilde{k})}$ is locally absolutely continuous with respect to $Q^{(\lambda, k)}$ relative to \mathbb{F}, i.e.:

$$
Q^{(\widetilde{\lambda}, \tilde{k})}\left|\mathcal{G}_{t} \ll Q^{(\lambda, k)}\right| \mathcal{G}_{t} \quad, \quad 0 \leq t<\infty .
$$

ii) The likelihood ratio process $L^{(\widetilde{\lambda}, \widetilde{k}) /(\lambda, k)}$ of $Q^{(\widetilde{\lambda}, \widetilde{k})}$ with respect to $Q^{(\lambda, k)}$ relative to \mathbb{F} is given by the stochastic exponential

$$
\mathcal{E}_{Q^{(\lambda, k)}}\left(\int_{0}^{\bullet} \int_{E}(\chi(s, z)-1)\left(\mu(d s, d z)-\lambda_{s} k(s, z) d z d s\right)\right) \quad \text { with } \quad \chi(s, z)=\frac{\widetilde{\lambda}_{s} \widetilde{k}(s, z)}{\lambda_{s} k(s, z)}
$$

where the martingale in parentheses has paths of locally finite variation.
Thus by section 1

$$
L_{t}^{(\widetilde{\lambda}, \tilde{k}) /(\lambda, k)}=\left[\prod_{n: \tau_{n} \leq t} \chi\left(\tau_{n}, Z_{n}\right)\right] \exp \left\{-\int_{0}^{t} \int_{E}(\chi(s, z)-1) \lambda_{s} k(s, z) d z d s\right\}
$$

or, $k(s, z) d z$ and $\widetilde{k}(s, z) d z$ being transition probabilities,

$$
L_{t}^{(\widetilde{\lambda}, \widetilde{k}) /(\lambda, k)}=\left[\prod_{n: \tau_{n} \leq t} \chi\left(\tau_{n}, Z_{n}\right)\right] \exp \left\{-\int_{0}^{t}\left(\widetilde{\lambda}_{s}-\lambda_{s}\right) d s\right\}, \quad 0 \leq t<\infty .
$$

4 Example

- Höpfner, R., Jacod, J.: Some remarks on joint estimation of index and scale parameter for stable processes. In: Asymptotic statistics, Proc. 5th Prague symp., 273-284. Physica-Verlag 1994.

Write S for a stable increasing process of some index $0<\alpha<1$ and some weight parameter $\xi>0$, constructed from Poisson random measure on $(0, \infty) \times(0, \infty)$ with intensity $d s \xi \alpha z^{-\alpha-1} d z$.

Fixing some $\varepsilon>0$, let X denote the sum of all jumps $\geq \varepsilon$ in the trajectory of S :

$$
X_{t}=\sum_{\substack{0<s \leq t \\ \Delta s \geq \varepsilon}} \Delta S_{s}, \quad t \geq 0
$$

and consider the statistical model related to inference on α and ξ based on observation of the trajectory of X. This example will be continued (statistical properties) in the last part of the lectures.

View X as canonical process on the space of all piecewise constant nondecreasing cadlag functions with jumps $\geq \varepsilon$, starting in $X_{0}=0$, write $\mu(d s, d z)$ for the jump measure of X :

$$
X_{t}=\int_{0}^{t} \int_{[\varepsilon, \infty)} z \mu(d s, d z) \quad, \quad t \geq 0
$$

We consider the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t<\infty}$ generated by X and take $\mathcal{A}:=\underset{0 \leq t<\infty}{\bigvee} \mathcal{F}_{t}$.
Then, for every $\alpha \in(0,1)$ and $\xi \in(0, \infty)$, there is a unique probability measure $Q^{(\alpha, \xi)}$ on (Ω, \mathcal{A}) such that $\mu(d s, d z)$ is Poisson random measure with intensity

$$
d s \xi \alpha z^{-\alpha-1} 1_{\{z \geq \varepsilon\}} d z=: \lambda d s k(z) d z \quad \text { with } \quad \lambda:=\xi \varepsilon^{-\alpha}
$$

under $Q^{(\alpha, \xi)}$. Since λ is a constant and $k(\cdot)$ a probability density, we are in the setting of section 3 .

The theorem in section 3 shows that all probability measures in

$$
\mathcal{P}:=\left\{Q^{(\alpha, \xi)}: \alpha \in(0,1), \xi \in(0, \infty)\right\}
$$

are locally equivalent relative to \mathbb{F}, with

$$
L_{t}^{(\widetilde{\alpha}, \tilde{\xi}) /(\alpha, \xi)}=\left[\prod_{0<s \leq t} \frac{\widetilde{\alpha} \widetilde{\xi}}{\alpha \xi}\left(\Delta X_{s}\right)^{\alpha-\widetilde{\alpha}}\right] \exp \left\{-t\left(\widetilde{\xi} \varepsilon^{-\widetilde{\alpha}}-\xi \varepsilon^{-\alpha}\right)\right\}, \quad 0 \leq t<\infty
$$

the likelihood ratio process of $Q^{(\widetilde{\alpha}, \widetilde{\xi})}$ with respect to $Q^{(\alpha, \xi)}$ relative to \mathbb{F}.

Remark : This extends to \mathbb{F}-stopping times T which are \mathcal{P}-almost surely finite:

$$
Q^{(\widetilde{\alpha}, \tilde{\xi})}(A)=E_{Q^{(\alpha, \xi)}}\left(L_{T}^{(\widetilde{\alpha}, \tilde{\xi}) /(\alpha, \xi)} 1_{A}\right) \quad, \quad A \in \mathcal{F}_{T} .
$$

Remark : Local equivalence of probability measures associated to different values of ($\widetilde{\alpha}, \widetilde{\xi}$) and (α, ξ) breaks down once we are able to observe arbitrarily small jumps in the trajectory of the stable increasing process S.

5 Outlook towards Levy processes

We consider pure-jump Levy processes $X=\left(X_{t}\right)_{t \geq 0}$ in a semimartingale representation

$$
X_{t}=\int_{0}^{t} \int_{\mathbb{R} \backslash\{0\}} h(z)(\mu(d s, d z)-d s \Lambda(d z))+\int_{0}^{t} \int_{\mathbb{R} \backslash\{0\}}(z-h(z)) \mu(d s, d z)
$$

where $h(\cdot)$ is a truncation function (i.e.: $h \in \mathcal{C}_{\mathcal{K}}^{\infty}$ such that $h(z)=z$ on some ball $B_{\varepsilon}(0)$), and Λ a Levy measure, i.e. a σ-finite measure on $\mathbb{R} \backslash\{0\}$ with the property

$$
\int_{\mathbb{R} \backslash\{0\}}\left(|z|^{2} \wedge 1\right) \Lambda(d z)<\infty
$$

Hence $\mu(d s, d x)$ is the jump measure of X, small jumps of X are square integrable over finite time intervals, and there is a finite number of big jumps over finite time intervals.
X lives on some (Ω, \mathcal{A}) and is adapted to some filtration \mathbb{F}. If we take \mathbb{F} small enough (e.g., the right continuous filtration generated by the process X) and $\mathcal{A}=\underset{0 \leq t<\infty}{\bigvee} \mathcal{F}_{t}$, there is one and only one probability measure $Q^{(\Lambda)}$ on (Ω, \mathcal{A}) (Jacod-Shiryaev 1987, II.4.25) such that the random measure $\mu(d s, d z)$ is compensated by $d s \Lambda(d z)$.

Consider now another Levy measure $\widetilde{\Lambda}$ satisfying

$$
\widetilde{\Lambda}(d z)=\chi(z) \Lambda(d z), \quad \int_{\mathbb{R} \backslash\{0\}}|h(z)(\chi(z)-1)| \Lambda(d z)<\infty, \quad \int_{\mathbb{R} \backslash\{0\}}|\sqrt{\chi(z)}-1|^{2} \Lambda(d z)<\infty .
$$

This holds in particular if we define $\widetilde{\Lambda}(d z):=\chi(z) \Lambda(d z)$ from some function $\chi: \mathbb{R} \rightarrow[0, \infty)$ with the properties

$$
\chi(0):=1,|\chi(z)-1| \leq L|z| \text { on } B_{\varepsilon}(0), \int_{\{|z| \geq \varepsilon\}} \chi(z) \Lambda(d z)<\infty .
$$

Then the following holds:
i) Jacod-Shiryaev (1987), theorem IV.4.39:
$Q^{(\widetilde{\Lambda})}$ is locally absolutely continuous with respect to $Q^{(\Lambda)}$ relative to \mathbb{F}.
ii) Jacod-Shiryaev (1987), lemma III.5.17, theorem III.5.19:
the likelihood ratio process $L^{\widetilde{\Lambda} / \Lambda}$ of $Q^{(\widetilde{\Lambda})}$ with respect to $Q^{(\Lambda)}$ relative to \mathbb{F} is given by the stochastic exponential

$$
\mathcal{E}_{Q^{(\Lambda)}}(U) \quad, \quad U:=\int_{0}^{\bullet} \int_{\mathbb{R} \backslash\{0\}}(\chi(z)-1)(\mu(d s, d z)-d s \Lambda(d z)) .
$$

iii) An explicit representation of the LRP is

$$
L_{t}^{\tilde{\Lambda} / \Lambda}=\exp \left\{U_{t}\right\}\left[\prod_{0<s \leq t}\left(1+\Delta U_{s}\right) e^{-\Delta U_{s}}\right] \quad, \quad 0 \leq t<\infty
$$

cf. section 1, since small jumps of U are square summable over finite time intervals,

