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Résumé. Nous considerons des diffusions avec branchements et immigrations dans IR?.
Nous donnons une condition nécessaire et suffisante pour que ce processus soit ergodique et sa mesure
invariante d’occupation (mesure d’intensité) une mesure finie. Le branchement n’est pas supposé stricte-

ment sous-critique.
Nous étudions la structure de la mesure invariante d’occupation et (si celle-ci existe) de sa densité de

Lebesgue.

This note deals with ergodicity with finite invariant occupation measure in branching diffusions
with immigration, and with the properties of a Lebesgue density — when it exists — for the inva-

riant occupation measure.

We consider a particle process where finitely many particles living in JR? move independently of

each other on paths which are solutions to SDE’s
(1) dfs = b(gs)ds + a(és)dWs

with m-dimensional Brownian motions W, and undergo branching at random times according to
a position-dependent branching rate «(-) and a position-dependent reproduction law (pg(-)) ke,
(a parent particle in position v € IR? at time ¢ > 0 will die in a small time interval |t,t + h] with

probability «(v)h +o(h), h — 0, leaving with probability pj(v) k descendants at v); in addition,



there are immigration events occurring at constant rate ¢ where one new particle is added to the

pre-existing configuration in a position chosen according to a fixed probability law 7.

This describes a strong Markov process 1 = (1), of (ordered) finite particle configurations, called

a branching diffusion with immigration. Its configuration state space S is given by

o0

® 5= @

1=0
which consists of all (ordered) configurations z = (e, .,2h), 28 e R4, 1 < i < [, 1 > 1, with
(R%)° = {A}, and which is a Polish space. The length of a configuration z € S is denoted by
I(z). Sometimes we write a configuration z € S as a point measure on IR%: F(A)= Zi(:zl) d,i(A)

if I(z) > 1, and A(A4) = 0.

As a special case of the construction in Lécherbach [14], we construct the branching diffusion
with immigration as a cadlag process n = (mt)o<t<¢ with lifetime ¢ (due to possible explosion
of the process) (cf. Dellacherie and Meyer [3,XIV,23-24]), whose jumps correspond to either
branching or immigration events. Arranging the sequence (Ty)n of branching or immigration
times in increasing order, with Ty = 0 and T}, 1 (, the process 7 is characterized by the following
assertions A1+A2:

A1) In restriction to every random interval [[T},, Tyy1[[, n > O: Writing [ for the length of the
configuration 77, , (17,+s)s is the motion of / independent particles according to (1), stopped at
configuration dependent rate

!
alrt, .. z') =c+ Zn(xz) ifr=(z!,..,2") withi>1, a(A)=c

=1
where A denotes the void configuration. Thus
i) in case 0y, # A: with starting point (z',...,2!) := 7., the I-particle motion after time T,

evolves as (€1, ..., €") solution of
dg; = b(&;)ds +o(€)aWi, 1<i<l

with independent Brownian motions W, ..., W', and conditionally on evolution of (¢!,..., &!) the
probability to have T, 11 — Ty, > v is exp{— [ dsa(&},...,€)}, 0 < v < oo;
ii) in case 17, = A: the trajectory (n7,1s)s is the constant function A, up to time T,,,1 — T},

which is an independent exponential time with parameter c.



A2) At jump times T}, 41, n > 0: the transition from nT_+1 to nr,., 1s governed by a transition
probability K(,-) on the configuration space S (see (2) below): for z = (z!,...,2!) with [ € IN,
(this means z = A if [ =0), K(z,-) is the law

K(ﬂj, ) - Z ';((Z)) Z pk(xi) 5(Hz,i,k($)) + a_(clj /le 7r(dv) 5(171,“.@17”)

=1 kelNg

where II, ; (2) is the configuration (¢!, ..., 2=, 2%+ . &l 2%, . ") obtained from z = (z},...,zh)
I

k times

by death of the i-th particle with k offspring at the death position.

In contrast to the construction in Licherbach [14], we do not require k # 1 offspring in the repro-
duction laws, and we are not primarily interested in the construction of 7 as canonical process
on a canonical path space (where jumps with & = 1 offspring may be unobservable, which is not
convenient for purposes of statistical inference); also we do not rearrange the particles at random

at every jump time T,.

We wish to have simple conditions in terms of b(-), o(-), s(), (Pk(*))&, ™ which imply the following
properties P1+P2+P3 of the process 7:

P1: No accumulation of jumps in finite time intervals, thus in particular ( = +o0o a.s..

P2: Ergodicity, i.e. we wish the process 7 = (nt)i>0 to be recurrent in the sense of Harris,

admitting A as recurrent atom, and such that the invariant measure m on S

(3) m(F) = Ea ( /0 " s 1F<ns>) . FeB(s)

is a finite measure. Here R := inf{T}, : n > 1,77, = A} is the time of first return to the void
configuration A. We do not normalize the total mass of m to 1.

P3: Finite invariant occupation measure: associating to m the measure

(4) m(A) = /S m(dz) z(A) = Ea ( /0 Rds ns(A)) , A€ B(RY)

we wish to have

m(R?Y) = x)l(x o0 .
m(IR)—/Sm(d)l()<

We call m the invariant occupation measure, or the intensity of m, sometimes also invariant

measure on IR

We shall give — under additional assumptions on the quantities determining the process (see

assumptions 1.1 and 1.3 below) — a simple necessary and sufficient condition for properties



P1+P2+P3. Under this condition, we shall derive simple closed form expressions for the measure

m on IR? and - under stronger conditions — for its Lebesgue density (whenever this density exists).

In the context of statistical inference, where an ergodic branching diffusion with immigration
is observed over a long time interval, with drift, branching rates etc. either depending on an
unknown parameter, or belonging to certain function classes, we need to be able

i) to check properties P1+P2+P3 for the model in question, and

ii) to know invariant occupation measures and densities explicitly.

Among conditions needed for local asymptotic normality (LAN) in branching diffusion with im-
migration, see Le Cam and Yang [13] or Ibragimov and Has'minskii [8] for a general statistical
background, the essential condition is integrability of certain information functionals with re-
spect to the invariant measure, see Locherbach [15]. In nonparametric problems where e.g. the
branching rate is considered as an unknown function to be estimated e.g. by kernel estimates,
nonparametric rates of convergence depend on smoothness classes for the invariant occupation
density, similiar to the classical iid density estimation problem, see Hépfner, Hoffmann, Licher-

bach [6].

In dimension d = 1, local time and Tanaka’s formula can be used to get an invariant occupation
density, but this requires moment conditions with respect to the invariant occupation measure.
There is no analogue to this approach in higher dimensions. In arbitrary dimension d > 1, once
the invariant occupation measure is identified as a certain resolvant related to the one-particle
motion, results from Malliavin calculus can be used to obtain C*°—smoothness of the invariant
occupation density, see Cattiaux [2]. This approach needs strong conditions (drift and diffusion
coefficient of (1) are C;°, and the mass reduction rate is C;° and bounded away from 0). It can
be extended to particle processes with interaction, see Locherbach [16]. However, conditions of
type Cp° are restrictive and sometimes undesirable; already the simplest models — e.g., constant

mass reduction rate and particles moving on Ornstein-Uhlenbeck paths — are ruled out.

The aim of this note is to give a self-contained investigation of ergodicity of branching diffusions
with immigration, and of invariant occupation measure and density, in an arbitrary dimension
d > 1 under minimal conditions (theorem 1.6 and 1.7, theorem 3.5 and lemma 3.6); the result

under Cp°-conditions appears in theorem 3.9. The results are stated in sections 1 and 3, the proofs



are collected in sections 2 and 4.

1 Ergodicity with finite invariant occupation measure

We specify the assumptions which we impose on the quantities determining the process (1;);.

: k
Write C(b)

orders 1, ..., k are bounded. C{f then denotes the subspace of bounded functions in C(kb), and Cp is

(IRP, IR9) for the space of C*-functions IRP — IR? for which all partial derivatives of

Cl?; subscript x denotes compact support.

All proofs for the results stated in section 1 will be given in section 2.

1.1 Assumptions: a) Drift and diffusion coefficient of the diffusion £ in (1): we assume that
b:R* - R? and o : R? = IR™™ are globally Lipschitz continuous, and write a := oo .

b) Branching rate: x € Cp(IR%, IR) is strictly positive, and

/00 dsk(és) =00 as.
0

for every choice of a starting point v € IR? for the diffusion (1).
¢) Reproduction laws: with M!(INy) denoting the space of all probability measures on IVy and

p = (pr(+))x, the mapping p : IR — M!(INy) is continuous with

pPECRLR) , p(v) =) kpi(v), veR’.
k=0

1.2 Remarks: Note that we do not assume that the function p(-) is [0, 1)-valued.

The mass reduction (or augmentation) rate [k(1 — p)](+) is by 1.1 a bounded function on IR?.
Note also that we did not make any assumption on the immigration law: with M!(IR?) the space
of all probability measures on IR?, we allow for any 7 € M!(IRY).

We may have b =0 or ¢ = 0 on certain subsets of IR¢.

1.3 Assumption (’Spatial subcriticality’): Write T for the killing time of a particle travelling
on the path of £ under position-dependent killing at rate x(-) ( 7" is a.s. finite by 1.1.b).

We assume that in the class of all kernels H(-,-) on (IR, B(IR?)), there is a finite kernel solving

T
(5)  H(vf) = E( /0 f<§s>ds+p<§T>H<§T,f>), FEC(RLRY), ve R,



In our note, ’kernel’ is understood as in Revuz [17, Def. I.1.1] except that we always have

H(v, A) € [0,00] for all v € IR?, A € B(IR?). A finite kernel has H(v,R%) < o0, v € R%

1.4 Lemma: Write for short v := [k(1 — p)] which is in Cy(R?, IR).
a) Under 1.1, the y-resolvent kernel of the diffusion £

"R(v, f) = B, ( / " at (&) e Jodon(&) ) , feC(R,RY), ve R

0
is the (unique) minimal solution to (5).

b) Under 1.1, assumption 1.3 (spatial subcriticality) is equivalent to the following condition (6):

(6) E, (/ dt e‘fotd”(fs)> < oo forallve R?.
0

1.5 Remarks: a) We shall see in 2.1 and 2.2 below that assumption 1.3 is indeed a proper
'spatial’ analogue of the classical subcriticality of continuous-time branching processes without
immigration.

b) In view of 1.4 b), an obvious sufficient condition for spatial subcriticality 1.3 is

U nt [<(1=p))(w) > 0.

¢) From (6) we see that 1.3 is not satisfied if x and p are spatially constant, and p > 1:

in this case, the minimal solution of (5) is the trivial one H (v, A) = +o0.

1.6 Theorem: Assume 1.1 and 1.3.

a) For immigration laws 7 € M!(IR?) satisfying
(8) 7R is a finite measure on IR?

the branching diffusion with immigration 7 has the properties P1+P2+P3.

b) Under (8), the invariant intensity measure m of (4) is given by
(9) m(A) = C 7R (A), AcB(RY

with constant C defined as ¢ Ea(R), cf. (3).
¢) The branching diffusion with immigration n has the properties P1+P2+P3 for arbitrary

choice of an immigration law 7 € M!(IR?) if and only if the total mass of the resolvant

v — R = B ([ e fie )
0

6



(cf. (6) ) is a bounded function on IR?.

1.7 Theorem: Assume 1.1 and 1.3, and let o(-) be bounded on IR?. Consider an immigration

law 7 such that (8) holds. Then the invariant occupation measure 7 is such that
Af € LY(m) forall f € C? := C}(RY, R) ,

and T is a solution to
(10) m(Af —~f) = -C=(f), feCf,

where A is the Markov generator of the diffusion £ of (1).

We mention some examples illustrating that the invariant occupation measure in theorem 1.6,
even under the strong ergodicity condition in 1.6 ¢), will be in general quite far from the usual
picture of 'nice’ invariant laws (e.g. invariant distributions of one-dimensional ergodic diffusions).
The problem of a density for the invariant occupation measure will be considered further in sec-

tion 3.

1.8 Examples: Take constant mass reduction rate y(-) = v > 0 on IR%. By 1.6 c), we have
P1+P2+P3 for arbitrary choice of an immigration law 7. Consider the invariant occupation
measure m = C 7R, and write M for the Lebesgue measure on IR%.

Under the conditions which we have made up to now,

a) M can not be expected to be M-absolutely continuous: 1.1 and 1.3 allow for non-empty interior
U of {v € R?:b(v) =0,0(v) = 0}; with choice 7 := 4, for some a € U, we obtain 7R = %(5&.
b) If a density % exists, it can not be expected to be continuous on R%: Take £ in (1) as

d-dimensional standard Brownian motion, take d > 3. Then "R(v, du) has Lebesgue density

d 1
2 e 2

(u—v)T % (u—v)

(11) u = /Ooo dt et (2mt)”

which is smooth on IR?\ {v}, and has a singularity at v = v (this is the prototype example for
general diffusions with a(-) = (¢0 " )(-) nondegenerate, see Cattiaux [2, Proposition (1.37)].
i) The function in (11) is — up to the constant C' — the density ZLK in case 7 := d,, v € IRY.
ii) Defining 7 as image of the one-dimensional standard normal law A(0,1) under the mapping
R>y—(y,...,y) = v € R% (hence the immigration measure 7 on (IR%, B(IR?)) is concentrated

on the diagonal in IR?), one has from (11) an explicit expression for the Lebesgue density of 7 "R.



It is easy to see that this density takes the value 400 at every point u belonging to the diagonal

in IR?, and is smooth outside the diagonal. O

2 Proofs for section 1

We start with the proof of lemma 1.4.

2.1 Proof of lemma 1.4: Assume 1.1, write Ci- := Cic(R?, IR"), and vy := [(1 — p)]. We have

to prove that the y-resolvent kernel for the diffusion £ of (1)

R(v, f) := B, (/Ow dt f(&) e Jods7(&) ) , fecCt,veR*

on (IR4, B(IR%)) (in general not o-finite, under 1.1 alone) always solves the problem (5)

T
Hv, f) = E(/O f(§s>ds+p<fT>H<sT,f)) . fect veR,

and is in fact the minimal solution of (5).

Thus we prove assertion a) of lemma 1.4; b) is an immediate consequence.

1) The total expected occupation time of the diffusion ¢ starting at v and killed at rate x(-) is
(12) U (v, A) := E, </0°° dt 14(&;) e~ Jo ds (&) ) < o, AeB(RY.

Note that by assumption 1.1.b), for all choices of a starting point v € IR?, the diffusion ¢ killed at
rate x(-) has a.s. a strictly positive and finite lifetime (which obviously does not imply that the
expectation in (12) is finite). Multiplying both sides of (12) with x(-) as a density for the second

argument, we write [Uk](v, dv') := "U (v, dv')k(v"); then [Uk](:, ) is the transition probability

[Uk](v, A) = E, (/Ooo dt 14(&) k(&) e~ Jo 45 5(&) )

on (IR, B(IR?)) which selects the killing position of the particle to be killed at rate k(-) on the
path of £&. Write T for this killing time. Then for f,g € Ci

r (L0 = woun) = ([ ar)

0

so the problem (5) takes the form
19 H@H=TEN+ [ [Used) @) HE. ), fedt,ve R
R4

8



or multiplied with x(-) as density relative to the second argument

() [N f) = (Ul )+ [ [URw.d0) o) R0 1) F € G, ve e

2) We discuss the class of all solutions [Hk] to (14). Iterating (14), we get for every N fixed

N
(15) [Hr] = (Z(["Uﬁlp)">[’°Uﬂ] + ([UK]p)¥*" [Hr] .
n=0

Note that the second term on the r.h.s of (15) is necessarily decreasing in N (the first term of
the r.h.s. is increasing in NV and the Lh.s. does not depend on N), for arguments v € IR?, f € C{,

so all solutions to (14) are of the form

(16) [Hr] = (Z([”Um]p)">[“Un] +7, J= lim ([UR]p) ¥ [He]
n=0

where J(-,-) by (14) is a solution to

(17) J,f) 20 , J,f) = B (p(ér)J(ér,f)) , veR?, fecCt.

Note that [Hk](v, f) = oo is always a solution to (14), so we may have J(v, f) = oo.
We shall prove in step 3) below that

(18) (Z ([Ux]p)" ) [Us]

n=0
equals (without conditions other that 1.1) the resolvent kernel R(-,-) multiplied with x as a
density for the second argument. Hence (18) is always a kernel. Since the kernel (18) solves (14),
it is by (16)+(17) the minimal solution of (14).
Hence "R(-,-) is the (unique) minimal solution to (13), i.e. to (5).
3) We calculate the kernel in (18). First, we express [Uk](-, -) in terms of the law of some diffusion
§~ observed after an independent exponential time. Write A for the strictly increasing additive

functional A; := fot k(&s) ds of €, and T for its inverse:

dr .

T.=inf{t: A, >r}, 7(dr)= ,i(él )

By 1.1.b), this is a.s. a time change [0,00) +— [0, 00), for every choice of the starting point v.
Then the time changed diffusion

g‘:zéna TZO

satisfies the equation

(19) dé, = b(&,) dr + (&) dW, |

SN
I
IS
QN
I



and we have for f € Cx

[Ukl(v,f) = Eu (/oo dt (&) w(E,) e Jo s (&) )

0

= 5 ([t e wle) e )
= E, (/oodr e f(é)) = R(v,f)

0

where R = Jo dtet P, is the resolvent kernel for the diffusion €. Since [Uk] = R, equation (14)

takes the form
[HAl(v, f) = E, ( £(Es,) + p(Es,) [HRIEs,. )

where S is an exponentially distributed time with parameter 1, independent of the diffusion §~

Preparing independent exponential waiting times
S, So—S1, ...y, Sn— Sn—1, ---

independent of £, the kernel (18) is (with ]_[?:1 defined as 1)

(20) (’U,f) =5 By (Z (p(ESJ s 'p(gsn—1)) f(gsn)> g

n=1
Since p(-) : IR? = [0,00) is bounded on IR? by 1.1, the r.h.s of (20) can be transformed exactly
as in Hopfner and Locherbach [5, proof of (5.29), p.59] into

(21) E, (/OOO dt f(&) e o ds(l—p)(&l)) ,

Changing time back according to step 3), this is equal to

(22) E, ( /0 " dtw(e) fl&) e o ds[”“"’”“s’) = [R&|(v, f) -

By (18)+(20)+(22), we have proved the assertions at the end of step 2).

This concludes the proof of lemma 1.3. a

We will use the notation ¢ to denote subprocesses of the full process 7 called ’subfamilies’:
with a particle living at a certain time these subprocesses contain the full direct descendance
of this particle, and there is no immigration. By the independence assumptions characterizing
branching diffusions, the subfamilies are again strongly Markov, and are branching diffusions

without immigration.

10



They take the value A once the last member of the subfamily has died; we write R® (which may
take the value +o00) for the extinction time (that is, the first return to A) of the subprocess ¢.
Subprocesses ¢ might have an accumulation of jumps in finite time, and thus finite lifetime (¢
(in the sense of explosion time): we define ¢ := A on [[(?, oo][.

With these conventions, for s > 0 and v € R%, ¢(5:?) = (q&ts . )t>s is the subfamily of descen-
dants of a particle which was in v at time s. If (T jI 2 & ]1 )j denotes th; point process of immigration
times/positions in the branching diffusion with immigration (7;)o<t<¢, With immigration times

arranged in increasing order, the descendance stemming from the j-th immigrant is qu(TJ’ <)

2.2 Proposition: Under 1.1, total expected occupation times for subprocesses #(0-v)

V(v,A)::E(/O dt 4% (A )), AeB(RY,ve R

(all integrals under the expectation sign are well defined since ¢ = A on [[¢?, 0o[[, and take values

in [0, 00]) are given by the minimal solution to (5) as specified in lemma 1.4
V(v,A) = "R(v, A) (/ dt 14(&) e — Jo ds[k(1=p)](&) ) _

Proof: Write ¢(09) for the subprocess of $(®?) from which all particles belonging to generations
later than N are removed. Here a particle is said to be of generation j if it was generated by
branching of a particle of generation j — 1. By the strong Markov property applied N times (i.e.

conditioning successively with respect to the first branching event), we have

E(/o dt 6> <>):C2: [UK] p)" ) U (v, A)

with all notations as in 2.1, and monotone convergence as N — 0o, along with the proof of lemma

1.4, concludes the proof. ]

2.3 Proposition: Under 1.1 and 1.3, subprocesses ¢ := #0) | with v € IR? arbitrary, have
a) a.s. only finitely many jumps in finite time intervals, thus in particular (¢ =400 as,;

b) finite expected first return time to A: E (R?) < oo.

Proof: By 2.2 together with assumption 1.3 and Lemma 1.4, we have for ¢ := #(0-0)

ROAC®
E(R°A(%) <E (/ ds qu(Rd)) = "R(v,R%) < 0.
0

11



In particular, trajectories of the process

t RO ACOAL
A? :=/ ds¢s(ﬂ%d):/ dsps(RY), t>0
0 0

are continuous on [0, ocl, stricty increasing before time R? A ¢?, and have (A%)ps e < 00 a.S..

By 1.1 the branching rate «(-) is continuous and bounded on IR?. Hence all trajectories of

R® ¢?
(23) BY = /Otdsqﬁs(fi):/o : Atdsgbs(n), t>0

are continuous on [0, oo[, strictly increasing before time R? A (¢, and have (B?)gs s < 00 a.s..
But B? is the compensator of the process N¢ = (Ntd) ); counting jump events in ¢ up to time t.
So the path properties of B? imply that a.s. N® can have at most finitely many jumps over finite
time intervals. So there is no accumulation of jumps in ¢, i.e. (¢ = 0o a.s..

Thus we have proved that E(R?) < oo, where R? is the first passage to A which occurs after at

most finitely many jumps in the trajectory of ¢. O

2.4 Proposition: Assume 1.1 and 1.3. For immigration laws 7 € M!(IR?) satisfying (8), the

branching diffusion with immigration n has the property P1.

Proof: Decompose the process 7 into subprocesses ¢(Ovzi), 1 <i<I, where z = (z!,...,2!) is the
initial configuration, and ¢(TJ'I’<} ) stemming from the j-th immigration, 7 > 1.

Proposition 2.3 applied to every ¢(0’T‘i) shows that the descendance of the initial configuration
z = (z!,...,2") will be extinct in finite time a.s., without accumulation of jumps in finite time

intervals.

Proposition 2.3 plus condition (8)
00 _ td 1— )]( ) e TI‘CI) d
TR (A) = E;, / dt14(&) e Jodsls1-P&) ) = E dte, ' (A)) , A€ B(R?)
0 0

I I
shows that the same assertion holds for every subprocess d)(TJ‘ ).
The point process (TJI ,C JI ) is a Poisson point process with intensity ¢ ds 7(dv) on (0, 00) x IR%.
j21
Hence for immigration laws 7 satisfying (8), the branching diffusion 7 has a.s. no accumulation

of jumps in finite time intervals. a

12



2.5 Proposition: Assume 1.1 and 1.3. For immigration laws 7 € MI(IRY) satisfying (8), the

branching diffusion with immigration n has the property P2.

Proof: 1) We know from proposition 2.3 that under 1.1 and 1.3 the descendance of particles
belonging to an arbitrary initial configuration = € S will be extinct a.s. in finite time.

We shall prove that Ea (R7) < oo, where R" = R is the time of first return of a branching
diffusion with immigration 7 starting from 79 = A, the void configuration, to A.

Once this is proved, the measure m defined on S by (3) is necessarily a finite measure on S, and
subsets F € B(S) with m(F) > 0 will be visited infinitely often by the process 1, under arbitrary
choice of a starting configuration z € S. Hence 7 is recurrent in the sense of Harris; in view of
the ratio limit theorem, m is the invariant measure of 7, unique up to constant multiples, and n
is recurrent positive. So property P2 will be a consequence of Ea (R") < oo.

In fact, it is sufficient to prove

(24) E;(R") < o0

since £ (nr,|no = A) is the immigration law 7 viewed as a law on S, and since Ea(Ty) = L.

Our proof of (24) is similiar to an argument given by Zubkov [20, proof of theorem 1’] for classical
branching processes with immigration. In the proof of (24), we assume throughout that 7 starts
at time ¢t = 0 from the initial law 7.

2) Distinguishing wether or not descendants of the initial population ng are still alive at time ¢,

we write
P.(R">t) = P;(R*>t)+P:(R*<t,R">1)
= P (RO>t)+P; (T{ <R’ <t, R<"(T{’<{)) > t)
because of .
M=+ D Lt ol () o0 = gy
j=1

Conditioning with respect to .7-'T11 we get

t
P, (R">t) = P (R¢ > t) + / dsce™ Py (s < R?®< t) P, (R" > t—s)
0
t
< P (R>t)+ / dsce™® P, (R? > s) Pr (R" > t—s) .
0
Write H (ds) for the finite measure on (0, 00)

H(ds) := dsce™ Pr (R® > s)

13



with total mass H((0,00)) < 1 (compare with the exponential law with parameter ¢) and finite

first moment f0°° s H(ds) < co. Then the desired recursion is
(25) P.(R">t) < P (R®>1t) + /OtH(ds) P, (R" > t—s) .
If ¢ tends to oo in (25), we get with dominated convergence and 2.3.b)

P, (R" = +00) < H((0,00)) P (R" = +00)

and thus
(26) R" < oo Pr-as. .

3) Now we can prove that E, (R") is indeed finite. By propsition 2.3 b) and (26),

H

wim Lo (RY) , 0= Le(BY) | him g

are probability distributions on (0,00) with Laplace transforms ¢, ¥, 1y, such that as A [ 0

1—¢v()\) _ /oodte—)‘tpw (R¢>t) + B (R¢) < 00
A 0
———1 = ih()\) 0 /000 sh(ds) < oo

whereas
Puy(A) T 1 asAlO.
The inequality (25) now gives

=g _ 1=% ()
A - A

i~ 'Lpu*h(/\)
A

+ H((0,00))

where Yyun(A) = Yu(NPr(A) = ¢u(A) (1 = (1 = ¥a(}))), and thus

l/\iﬁ)l ((1—H((O,oo))) l—:ﬁ—U(/\—)—> < E; (R¢)+/()wsH(ds) <00.

Thus we have shown that
L — wu(A)

7 — lim — 2"/
E, (R") 1/\1?01 ) < o0

which is (24), and the proof of proposition 2.5 is complete. O

2.6 Proposition: Assume 1.1 and 1.3. For immigration laws 7 € MI(IRY) satisfying (8), the

branching diffusion with immigration 7 has the property P3, and

m(d) = Cr'R(A) = C E, (/O dt14(&) e—féds[m—p)](ss))
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with C = ¢ EA(R).

Proof: Under 1.1 and 1.3, fix 7 € M!(IR?) such that (8) holds. By proposition 2.5, the process
n is ergodic with invariant measure m given by (3), with total mass m(S) = Fa(R). Let R =
R', R? ... denote successive passage times of 7 to A. Let 7 start from 79 = A and consider the

increasing process
t
Ay :=/ dsns(RY), t>0.
0
By ergodicity, the ratio limit theorem for the additive functional A gives

At Js m(dz) U(z)
t Jsm(dz)1

a.s. as t — 0o. Compare A to the process (which is not an additive functional of 7)

(27)

o0 D! I @f.ch
. J (T3 .¢5) d . ¢ I
B = E 1 1{T].I<t}/TI ds ¢’ (R*) , D} .:R( )

J= J

DI T! ¢!
where DJI is the death time of q&(TJ‘I‘(} ). The variables fT/ ds ¢£ 435 are i.i.d. and independent of

the point process of immigration times. This point process of immigration times is Poisson with

intensity ¢, so 2.2 and (8) together with a classical law of large numbers gives

(28) % — ¢[m"R](R%) < o0

a.s. as t — 0o. Since Ap; = Bp; for all j where the sequence R’ is increasing to oo, comparison

of (27) and (28) shows
m(RY) = / m(dz) l(z) = cBa(R)[x R)(RY)] < oo
S

which is the property P3. Now repeating the same argument with a set A € B(IR?) instead of

A = IR? identifies the measure m as C 7 'R. O

2.7 Proposition: Under 1.1, assume that the branching diffusion n has properties P1+P2+P3
for arbitrary choice of an immigration law m € M!(IR?).

Then v — "R(v,IR?) is a bounded function.

Proof: 1) Repeating the argument in the proof of 2.6, we see that under P1+P2+P3, the

invariant occupation measure m is necessarily of form C 7R if 7 is the immigration law.

15



2) Assuming only 1.1, consider the function
o0 t
v V(v) = "R(v, R%) = E, ( / dt e dsw—pﬂ(w) € [0,oc]
0

1t m(RY) = Cn(V) is finite for arbitrary 7 € M!(IR?), then V() is necessarily finite-valued (con-
sider 7 := d,, v € IR?). Also V() is necessarily bounded: if not, we could select a sequence of
points (vp)n in IR such that n < V(v,) < n+1, and could consider a law 7 of type cst >, n% v,

to obtain a contradiction. a
2.8 Proof of theorem 1.6: Theorem 1.6 is proved by propositions 2.4 - 2.7 together. a

2.9 Proof of theorem 1.7: We assume 1.1 and 1.3, take o(-) bounded, and fix an immigration
law 7 such that (8) holds. We shall show that the invariant occupation measure m — explicitly

known by theorem 1.6 — satisfies
Af e L'(m), m(Af—~f) = —Cn(f), forallf € C2(RY, IR)

where A is the Markov generator of the diffusion &

d
29 Af) = 3 Y ais0) >+Zb<v oL v)

7,5=1

1) For functions f € Cp := Cp(IR%, R) and for x € S write f(x) = z(f), i.e.
l
= Zf(x’) if z = (¢!,...,2!) with [ > 1, and f(A) =0.

Under our assumptions, the invariant occupation measure m is explicitly known by theorem 1.6
and is a finite measure, so we have m(f) = m(f) < oo for all f € Cp.
9) Consider f € C2. The Ito (or Dynkin) formula for 7 - obtained from Ito’s formula for (f(n:)),

between successive jump times, and compensating the jumps - is

(30) Fn) - Flno) = /0 LF(n)ds + N+ N¢, fec?

where L is the infinitesimal generator of 7

M,\

k(1= p)l(=)f(2')) + en(f)
= ( )(x) + en(f),

Lf(z) =

.
Il

16



where N¢ is a continuous locally square integrable local martingale with angle bracket

t
(N, = /0 VTF -V (n,)ds

and where N¢ is the purely discontinuous local martingale
oo t -
N = St (Tom) - Torp) = (et e+ [ o= D) as)
n=1

3) Consider the branching diffusion 1 with immigration law 7 as a stationary process, i.e. take
L(no) = ‘Eﬁm . Consider functions f € C7.

Since [£(1 — p)] and o are bounded and since m(g) < oo for bounded g, the local martingales N¢
and N? of step 2) are now martingales.

Then (30) for f € C? shows
LfeL*m), 0=m(Lf), forallfeC}
which gives
AfeL'(m), m(Af—~f) = —=Cn(f), forall f€C?

with C'= ¢ Ex (R"). We have proved that the invariant occupation measure 7 solves (10). O

3 Invariant occupation density

This section deals with existence and properties of a density for the invariant occupation measure

of section 1. The results stated in subsections 3.1 and 3.2 will be proved in section 4.

3.1 Probabilistic approach

We will need resolvents for the diffusion ¢ of (1) and for an associated diffusion £ introduced in

T is spatially constant, £ is the process & run backwards in

(31) below — in case where a = oo
time — with appropriate ’killing rates’. We will also need solutions of SDE’s (1) and (31) in form
of a stochastic flow of C2-diffeomorphisms, see Kunita [11, Cor. 4.6.5].

We have to strengthen the assumptions 1.1 and 1.3 used in section 1.

3.1 Assumption: We have 1.1 together with

o € CH(RY, R¥™™) , b € C?b)(Rd,Bd) , ¥ €CZ(RY R) .

17



3.2 Assumption: The function in (6)
v — 'R(v, R%) = E, (/ dt e_f(;ds"’(f‘))
0
is bounded on IR

Hence by theorem 1.6, the branching diffusion with immigration n has properties P1+P2+P3

for arbitrary choice of an immigration law = € M!(IR?).

Under 3.1, we introduce a diffusion £ associated to (1), with drift b € C?b):

, 1<i<d.

d
(31)  d&f = b (&)dt +o(&0)dW, , b (v) Z

We define a ’killing rate’ v~ € C? (this is abuse of language; v may take negative values)

d

1 Qak
2 & - = -
(32) 7" () Zavz QZ ERENG

k:

for £ in order to consider the resolvent Y“R* : for f > 0 measurable and v € IR?

(33) ("“R-f)(v) = E, ( / "t f(eF) e o dr( f)) € [0,00].

Note that ¥ R* is the adjoint resolvent to "R.

3.3 Remark: a) Write £ ¢ for the diffusion £ run backwards in time: then £ has drift b6

with components

m d )
b () = i) + Y Y oka(v) il 1<i<d,

see e.g. Kunita [11, pp. 131+135]. This is seen from the Stratonovich form of SDE (1) where the
Stratonovich integral is symmetric with respect to passage to the backwards diffusion, see Ikeda
and Watanabe [9, pp. 100-101].

In the special case of spatially constant o, b and b* coincide.

b) Under 3.1 and 3.2, the resolvent kernel (33) can not yet be expected to be a finite kernel. As
an example, let £ in (1) be an ergodic Ornstein-Uhlenbeck process d§; = —9&dt + dWy, ¥ > 0,
with spatially constant killing rate v > 0. Then £ in (31) is a transient Ornstein-Uhlenbeck

process, and 7~ = v — ¢ defined in (32) is negative for ¥ > .

18



3.4 Assumption: The function
v — ""R™(v,RY) = E, (/ dt e_fotd”(_({:))
0

is bounded on IR?.

3.5 Theorem: Assume 3.1, 3.2, 3.4, and define

(34) G :={geC?:geL'(N) and YRS ge L'WN) }.

If the branching diffusion with immigration n has immigration law 7 € M1 (IR?) satisfying
7(dv) := g(v)dv where g belongs to class G ,

then the invariant occupation measure m = C 7R in 1.6 is Lebesgue absolutely continuous.

The density is
dm -
s =1 BT
AN g
which is bounded on IR<.

There are two simple conditions leading to continuous Lebesgue densities %— on IR%:

3.6 Lemma: Assume 3.1, 3.2, 3.4.
a) If 3.2 is strengthened to

inf y(v) > 0
vEIR?

then

g nonnegative and in C} N L'(N) implies T"R<g e LY (W)

b) If 3.4 is strengthened to

inf v~ (v) >0
vEeIR?

then

g € C? implies ""Rge(Cy.

The following example illustrates why in 3.5+3.6 — under the conditions made so far — we obtain
not more than continuity for the invariant occupation density %. In a completely ’smooth’ fra-

mework with stronger conditions, better results (see subsection 3.2) are available.
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3.7 Example: We continue the one-dimensional example of 3.3 b): Consider an Ornstein-
Uhlenbeck process £ = (&)¢>0
dét = —’19 £t dt + th

with parameter ¥ € IR, and fix some spatially constant killing rate v > 0.
Then £ of (31) is Ornstein-Uhlenbeck of parameter —¢, which is as in 3.3 a) the diffusion &

running backwards in time; the stochastic flow corresponding to £ is

t —~—
(¢, v) =el%v+e'9t/ e dW, , t>0,veR
0

where b%w‘_(t,v) = ¢ is independent of v, and B@;—zzb*‘(t,v) =

The resolvent defined in (32)4(33) is

(35) ""Rtg(v) = E ( /0 " dt g4+ (1,0) e‘“) , Y =9,

All assumptions of 3.5+3.6 are satisfied provided v > ¥; in this case, with choice g = g—/’\’\ € C?, we
have from 3.5+3.6 a continuous invariant occupation density % given by (35) multiplied with
the constant C.

i) Consider the case ¥ < 0 where £ is recurrent (positive or null).

Since v — (k4 1)4 is strictly positive for all k& € INy, resolvents (35) with arbitrary g € C;* belong

to Cj*; the k-th derivatives are

36)  ("RT9W) = E ( / dt g™ (v (t,v) e*“*UcHW]t) , 1<k<m.
0

ii) Consider the case ¥ € (0,v) where £ is transient.

For given k, v— (k+1)9 in (36) is positive only for ¥ suffienciently small, so resolvents (35) with
arbitrary g € Cj* will in general only have the property

""Rg € ™% on the interval o € [L L) , kelNy.

k+2 k+1
In particular, for 3 <4 <, this is continuity of 7"R* g as stated in 3.6 b).

iii) In case ¥ >+, assumption 3.4 is violated. O

3.2 Analytic approach

A smooth Lebesgue density can be obtained for the invariant occupation measure m = C 7R

in theorem 1.6 if we assume bounded smooth coefficients
(37) o(-) € C°(RY, R™™) ,  b() € C*(RY, RY), ~(-) € CG°(R*, R)
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together with uniform ellipticity

(38) inf inf BTa(v)B > 0 (a=o00")
veRd BERY|Bl=1

for the one-particle motion (1) and the mass reduction rate . Note that the pair of conditions
(37)+(38) for £ and v implies the corresponding pair of conditions for the associated £ and v
defined in (31) and (32), and vice versa.

For the diffusion £ of (1), the uniform ellipticity condition (38) can be replaced by the uniform
general Hormander condition, introduced by Hérmander [7], see Williams [19], Kusuoka and

Stroock [12] and Cattiaux [2]: there is some N such that

(39) inf inf > (BTV) >0

€IR? BelRY|B|=1
v B 18l Vevn ()

where the set Vy (v) consists of V0, V1, ..., V™ together with all Lie brackets of yo vt ..,vm
up to order N where

V7 is the j-th column in o(v), 1 < j<m

and where V0 is the drift at v of equation (1) rewritten in Stratonovich form:
m d 80

(40) V0 = b v)——zz ”u, 1<i<d.

Here the Lie bracket [V, \7] has components

d ~
~ v, ~0V; _
=S (vt -Vt ), 1<i<d

and the order of an iterated Lie bracket is the maximal degree of partial derivatives appearing in it.
We need conditions which are symmetric in &, v and the associated £, ~* . The uniform general
Hérmander condition for £ is the condition (39) with drift b(-) in (40) replaced by b (-). So we

strengthen assumption 3.1:

3.8 Assumption: We have 1.1 together with the bounded smoothness condition (37), and the

uniform general Hérmander condition holds for both § and £°.

21



The following theorem is then a corollary to results given in Cattiaux [2, Proposition 2.19, Re-

marques 2.21]:

3.9 Theorem: Assume 3.8, 3.2, 3.4.
Consider an immigration law 7 € M!(IR?) with Cg°-density g = g—;. Then g belongs to class G

defined in (34), and the Lebesgue density of m = C' 7R in 3.5 is smooth:

dm -
—_— = O R<— Sl
O g €°C

Ifg= j—§ is in S, then ™ has finite moments of arbitrary order.

Here S is the Schwartz space of all functions in h € C*®(IR¢, IR) such that for arbitrary N

sup (L+[o)™ |

h(v)] < oo
VERA (it rip) €{ L, d}? , p<N Oy, -+-Ou,

see Edwards [4].

By theorem 3.9, we have — under the strong set of assumptions 3.8, in particular (37), on the
diffusive motions € and £, and under weak assumptions on the branching mechanism, expressing
only that ’killing rates’ v and v have to satisfy 3.2+3.4 — very satisfactory information on the

invariant occupation measure whenever the immigration density is in Cg°.

The result in the ’smooth’ context here relies on a strong duality, see theorem 4.5, (49)+(51),
and remark 4.7 below. For immigration densities in class S, this duality would have allowed to
deduce the desired smooth density ‘é—? = CT" R+ j—;’\ for the invariant occupation measure direct-

ly from theorem 1.6. This duality is not available in the C2-context of theorem 3.5 and lemma 3.6.
We note that from a modelling point of view, or from the point of view of statistical inference,

the strong assumptions needed for theorem 3.9 - like (37) contained in 3.8 — are problematic;

they rule out some simple and natural models like the Ornstein-Uhlenbeck example 3.7.

22



4 Proofs for section 3

We start with a careful look at the class of solutions to equation (10) under the stronger condi-

tions of theorem 3.5. We write for short 74 for the mapping f — Af —~f in (10).

4.1 Proposition: Assume 3.1 and 3.2. Then for arbitrary immigration law = € M!(IRY), the

invariant occupation measure m = C7 'R is the unique solution to equation (10)
m(Af) = =Cn(f), feC;
in the class of all finite measures m on IR?.

Proof: 1) Let ("P;),~, denote the semigroup corresponding to ¢ and 7:
t>0 g
(41) Pivs ) = B, (f(ft) e~ Jo ds (&) ) , v € IR, f nonnegative and measurable .

Since v = [k(1 — p)] is bounded, every "Py(-,) is a finite kernel on (IR?, B(IR?)). The resolvent
kernel for the semigroup (41) appeared in lemma 1.4.

2) 3.1 guarantees (a weaker variant of 3.1 would be enough here) that the diffusion £ of (1) can be
constructed as a stochastic flow of C2-diffeomorphisms, see Kunita [11, Theorem 4.6.5, and pp.
72-73, 79-80, 85]. Write (¢ (t,v));>0 v me for this flow. As in Kunita [10, pp. 210 - 223], there are
LP-bounds — uniformly in v € K, 0 <t < T - for partial derivatives %w(t,v) or %;}J_z/)(t,v) ,
for arbitrary p > 2, and these bounds are of exponential type in T (see also Cattiaux [2, Théoreme
(1.1)]). Using ~ € C? by assumption 3.1, and uniform integrability of spatial derivatives in (41),
we get

YP,f €C? forall feC? andall0<t < oo .

(This argument can not be extended to the resolvant "Rf , due to the exponential structure in
T of the bounds mentioned above).

3) Under 3.1, we consider test functions f € Cg°. Then Af € C%, and from (41) and Ito formula

(42) 9 pfw) = P (Af —7f)(w) = A (v) .

ot
Hence " is the infinitesimal generator of the semigroup (41), thus

(43) "P,2Af = AP f, fecCy
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and thus .
(44) Prf(v) — f(v) = /0 dUPfv), feCE.

For f € C, the functions "P;f and "A7Ff are in CZ, by (43). Hence we have for a finite

measure m satisfying (10)

w(f) — m(Prf) = Cw(/OTdt"’Ptf) . fece.

The resolvent "Rf = fooo dt"P;f is a bounded function, by assumption 3.2. Taking averages

77 fOT "dT ... in the last equation, we deduce as T' — oo
m = Crm'R.

This proves proposition 4.1. O
The key point for the results in subsection 3.1 is the following lemma with formula (49) in its proof.

4.2 Lemma: Assume 3.1, 3.2 and 3.4. Then we have

(45) (""Rg,Af) = —(g,f), geCNL'W), feC},

with (-,-) denoting the scalar product in L*(N).

Proof: 1) Consider the semigroup associated to (31)+(32)
(46) (7(_Pt‘_) (v, f) = (f(§<—) Jods v (€5 ) , v e IR f> 0 measurable.

In virtue of the strong assumptions in 3.1, all assertions in steps 2)+3) of the proof of 4.1
concerning ("P;); have exact analogues in terms of (7" Pf );: we have b* € C’?b), o € C}, and
have £ in form of a stochastic flow of C2-diffeomorphisms. We have v~ € C2, 50 (46) is a finite
kernel for ¢ fixed, and we have 7" P f € C? for f € CZ. As in the proof of 4.1, we see that the

generator of the semigroup (46) is

2
an a0+ L) 2w - 7).

2,7=1 1=
2) Write A* for the adjoint of the Markov generator A of £ in (29), see Williams [19] or Bass [1]:

02 a,kf (b, 2 d
(48) Z avzavk )= 5 (v) , feC’ veER

=1

~—
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Then we can combine (31)+(32)+(48) to

s 02 . 0
410 =33 043 (0) e (0) + B W3- 0) = (0 =))W
which gives
(49) TATf = (A f-f) , fect.

3) For every pair of functions g € C?, h € C% (thus we have %4h € C}), we deduce from (49)
Starting from a function g € C2, we have g := 1"Pfg € C? and thus

a — — — —

avp‘:_g,h :('YA‘_’YP;_g’h):(W’ P;_Q,Mh)

henceforgEC,?,hECZ,andO<T<oo

4 i
/ ds (""P{ g, Ah) = (""Pfg,h)—(g,h) .
0

Now ""R<(-,RY) = [;7dt 7P (-,IR?) is a bounded function by assumption 3.4, and (-, h)

and (-, h) are finite (signed) measures, for h € C%. Taking averages 7 fOT "dT ... over the terms

in the last equality, we get as 7" — oo

(50) (""R“g,Mh) = —(g,h), geC} heCk.

5) Now consider in (50) functions g € C2 which in addition belong to L*(M). Then (50) can be

extended from functions h € CZ to functions h € CZ. We have proved (45).

From lemma 4.2, we deduce theorem 3.5 and lemma 3.6.

4.3 Proof of theorem 3.5: Under assumptions 3.1, 3.2, 3.4, consider an immigration measure

7 having Lebesgue density g in class G. Define

dm

(dv) == C (""RTg) (v)dv , 9= %"

Then the function 7" R* ¢ is nonnegative, and in L'(N) by definition of the class G in (34).

Hence 7 is a finite measure on IR¢. Lemma 4.2 shows that m is a solution to equation (10):
m(Uf) =C("R7g, Af) = =C(g,f) = —Ca(f), feC.
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By proposition 4.1, there is only one solution to (10) in the class of all finite measures. From
1.64+1.7, the invariant occupation measure m = C 7 'R solves (10), hence m equals m .

By assumption 3.4, the Lebesgue density of m = m is a bounded function on IR, o

4.4 Proof of lemma 3.6: Under assumptions 3.1, 3.2, 3.4, we apply lemma 4.2 to g € C2ZNL' (W)
nonnegative, and to the constant function f = 1: then (g, f) is nonnegative and finite, and
(9,1) = ("R g, -U1) = (""R7g,7) > inf y(v) | dv7"R7g(v).
velRd R
If ~(-) is bounded away from 0 on IR?, assertion a) of lemma 3.6 follows.

If v+ (-) is bounded away from 0 on IR?, then we have dominated convergence in
v — TRg0) = B ([ argene e} geqt
0

(€ is a stochastic flow of C2-diffeomorphisms), thus 7"R* g is continuous: this is b). |

Now all results in subsection 3.1 are proved. We turn to the results of subsection 3.2. In order to
prove theorem 3.9, we quote an analytical result from Cattiaux [2] which — thanks to symmetry

—

of our assumptions — we apply to both £, v and £, v

4.5 Theorem: (Cattiaux [2, Proposition 2.19, Remarques 2.21]) Assume 3.8, 3.2, 3.4.
a) One has ""R*g €C® NS’ and "Rg €C>* NS’ for geC®NS'.

b) For every h € C®NS’', there is a unique f € C>*° NS’ such that h = TTACS .

c) For every h € C*® N&’, there is a unique f € C*° NS’ such that h = 7Af.

d) For every g € C®NS', we have 7"A<(7"R"g) = TR (7A%g) = —g.

e) For every f € C®NS’, we have A('Rf) = "R(Af) =—f.

Here S’ is the topological dual of the Schwartz space S in 3.9.

4.6 Proof of theorem 3.9: Assume 3.8, 3.2, 3.4.

1) Applying 4.5 c) to the constant function h = 1, there is a unique solution f € C*N S’ to
the equation 4f = 1. By 4.5 e), this solution is the function f = —"R1 = —"R(;, IR?) which
(up to the sign) has been considered in assumption 3.2 (and in lemma 1.4). In virtue of this

assumption, f is bounded and nonpositive.
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2) Consider an immigration density g = j—;;‘ in Cp°. For the function f considered in 1), —(g, f)

is nonnegative and finite. Applying 4.5 d), 4.5 a) and (49), we get

—

—(9,f) = ("AT(""Rg),f) = (""RTg,4f) = (""Rg,1) .

This shows that the C*°-function Y"R* g is in L*(N).

We have proved that every immigration density g € C;° belongs to class G considered in theo-
rem 3.5. Hence by 3.5 combined with 4.5 a), the invariant occupation measure m = C 7R is
Lebesgue-absolutely continuous with C*°-density C 7R g. This is the first assertion of 3.9.

3) Assume that the immigration density g = a‘% is in the Schwartz space S. For every h € C*NS’,
we have "Rh € C* NS’ and "R g € C® NS’ by4.5a),and (g, Rh) is well defined and
finite. Hence (49) combined with 4.5 d) gives the duality

- —

(51) (g,"Rh) = —(""A“(""R7g),"Rh) = (""R"g, -"A("Rh)) = (" R*g,h) .

In particular, polynomials h on IR? of arbitrary degree are elements of C* NS’ so (51) shows

that [jps M(dv) h(v) is finite. This is the second assertion of theorem 3.9. O

4.7 Remark: a) Assume 3.8, 3.2, 3.4, consider immigration densities in the Schwartz space S.

By theorem 1.6, the invariant occupation measure is given by
h — m(h) = Cr'Rh = C(g,"™Rh), hel®nS .

Then (49) combined with theorem 4.5 yield the strong duality appearing in (51)

—

(R)* = "R*

which identifies the Lebesgue density % as

i .
@ CT Rty
an g

Hence theorem 4.5 and (49)+(51) allow to pass directly from theorem 1.6 to theorem 3.8.

b) This direct approach is not possible in the C2-setting of subsection 3.1:

in the C2 context of 3.5+3.6, or of 4.1-4.4, Y"R* g or "Rh are in general not in C?, and there is
no analogue of 4.5 b)—e) for C2-functions g, h.

¢) The strong assumptions needed for a) — like (37) contained in 3.8 — are not always desirable

from a modelling point of view, or from the point of view of statistical inference: they exclude
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some simple and important models, e.g. the Ornstein-Uhlenbeck example 3.7.

Acknowledgement: This paper would not have been written without a fruitful series of dis-
cussions with Vlad Bally on use of Malliavin Calculus in the context of branching diffusions with
immigration, opening the way to consideration of resolvants for particle motion run forwards and

backwards in time. This is gratefully acknowledged.

References

[1 ] Bass, R.: Diffusions and elliptic operators. Springer 1998.

[2 ] Cattiaux, P.: Calcul stochastique et opérateurs dégénérés du second ordre I. Résolvantes,

théoreme de Hérmander et applications. Bull. Sci. Math. 114 (1990) 421-462.

[3 ] Dellacherie, C., Meyer, P.A. Probabilités et potentiel. Chapitres XII a XVI. Paris: Her-
mann, 1987.

[4 ] Edwards, R.: Functional analysis. Theory and applications. Holt Rinehart and Winston
1965.

[5 ] Hopfner, R., Locherbach, E.: Limit theorems for null recurrent Markov processes. Memoirs

Amer. Math. Soc. Nr.768, Providence 2003.

[6 ] Hopfner, R., Hoffmann, M., Lécherbach, E.: Non-parametric estimation of the death rate
in branching diffusions. Scand. J. Statist. 29 (2002) 665-692.

[7 ] Hérmander, L.: Hypoelliptic second-order differential equations. Acta Math. 119 (1967)
147-171.

[8 ] Ibragimov, I., Has'minskii, R.: Statistical estimation. Springer 1981

[9 ] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. North
Holland-Kodansha 1989

28



[10 ] Kunita, H.: Stochastic differential equations and stochastic flow of diffeomorhisms. In: P.
Hennequin (Ed.), Ecole d’été de probabilités de St. Flour XII 1982, pp. 143 - 304, Lecture
Notes in Math. 1097, Springer 1984.

[11 ] Kunita, H.: Stochastic flows and stochastic differential equations. Cambridge University
Press, 1990.

[12 ] Kusuoka, S., Stroock, D.: Applications of the Malliavin Calculus, part II. J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 32 (1985) 1-76.

[13 ] Le Cam, L., Yang, G.: Asymptotic in statistics. Springer 1990.

[14 ] Locherbach, E.: Likelihood ratio processes for Markovian particle systems with killing and

jumps. Statist. Inference Stoch. Process. 5 (2002) 153-177.

[15 ] Locherbach, E.: LAN and LAMN for systems of interacting diffusions with branching and
immigration. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 59-90.

[16 ] Locherbach, E.: Smoothness of the intensity measure density for interacting branching

diffusions with immigrations. J. Funct. Analysis 215 (2004) 130-177.
[17 ] Revuz, D.: Markov chains. North-Holland, 1975.
[18 ] Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Springer 1991.

[19 ] Williams, D.: To begin at the beginning: . ... In: Stochastic integrals (Proc. Durham 1980),
pp. 1-55, Lecture Notes in Math. 851, Springer 1981.

[20 ] Zubkov, A.M. Life-periods of a branching process with immigration. Theor. Probab. Appl.
17 (1972) 174-183.

05.10.04

29



Reinhard Hopfner, Fachbereich 17 Mathematik und Informatik, Johannes Gutenberg Universitéit Mainz,

D - 55099 Mainz (hoepfner@mathematik.uni-mainz.de)

Eva Locherbach, UFR Sciences et Technologie, Université Paris XII - Val de Marne,
F - 94010 Créteil Cedex (locherbach@univ-parisi2.fr)

Work supported in parts by: Deutsche Forschungsgemeinschaft, Schwerpunktprogramm ’'Interagierende
stochastische Systeme von hoher Komplexitét’ (SPP-1033), and European Community’s Human Potential

Programme, under contract HPRN-CT-2000-00100 (DYNSTOCH).

30



