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9 Inference from jumps > 1 of a stable increasing process

We continue the example of section 4, all notations as there: S is a stable increasing process of some

index 0 < a <1 and some weight parameter & > 0. We observe all jumps > ¢ in the trajectory of S

up to time ¢, with particular choice € := 1:

t
X, = Z AS —// zp(ds,dz) , t>0
0 J[1,00)

0<s<t
ASs>1

where p(ds, dz) is Poisson random measure on (0, 00)x[1, 00) with intensity
v*&(ds,dz) = Eds az*afll{zzl} dz = &ds ka(z)dz
for some 0 < @ < 1 and £ > 0. Due to e =1, k,(-) is a probability density, and the counting process
N =(Ni)izo > N = p((0,8]x[1,00))

is Poisson with parameter £&. Consider also the process

t
N = (N0 , Ni:= / / log(z) p(ds,dz) .
0 J{z>1}

Aims : Show that LAN holds at every point (o, &) as n — oo,

characterize sequences of estimators for (a, &) which as n — oo achieve the local asymptotic minimax

bound (and thus are also regular and efficient in the sense of Hajek).



In this example, it is easy to find maximum likelihood estimators (MLE) :
the log-likelihood ratios are (section 4, special case € = 1)

tog ([ T1 ﬁ(axsw—&] exp{ —H(E—£)) :1og<§§>Nt+<a—a>Nt—<E—f>t
0<s<t

so deriving with respect to a or to E we obtain MLE’s explicitly

N N; ~ N,
Qg = =t , & :ZTt , Mm<t<oo.

Rescaling time and writing F™ := (Fy,)i>0, the following are (local, at least) (Q(®€), F")-martingales:

\/1% (Nm _ im>t20 _ ;ﬁ /0 N /{ IRCCIS Vo) (ds, d2)
oty = 2 [T v,

Also the difference of both is a (local, at least) (Q(®%), F™)-martingale:
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vn

o 1 on
— — - _ — avf
(Nin O‘Nt”)tzo \/77/0 /{Z>1}(1 alogz) (u—v*)(ds,dz) .

Below, B denotes 2-dimensional standard Brownian motion, and D is the canonical path space of

cadlag functions [0, 00) — R2.



Lemma 1: Forall0 < a <1 and ¢ > 0, we have weak convergence under Q8 (in D, as n — o0)

Nip — Oéth w
Ntn — §tn

S(n, (a,§)) =

Si-

Proof : First, integration by parts successively in k € Ny grants

k!
+ / logh(2) az™@tdz = —
+) {z>1} ak
for all 0 < aw < 1, £ > 0. The components of S(n, («,§)) are locally square integrable martingales.

Using (4) we calculate angle brackets

(N.n—azv.n>>t _

—_

1 tn . 7
<\/ﬁ(N’”_aN'”)’\/ﬁ /0 AZN}(I—alogz) v (ds,dz) = &t

1
n
— 1 I ok -
<\/> _aNon)v\/ﬁ(Non_g.n)>t = ”/0 Az>1}(1_alog2)y (dS,dZ) = 0
1 1 o _
< n,\/ﬁ(N.n—fon)>t = n/o /{221} v*&(ds,dz) = &t

whence
10
( Sn(a,€) >t = ¢ (0 1) t
for 0 < ¢t < co. Thus weak convergence in D under Q(®¢) as n — oo holds in virtue of the martingale

convergence theorem (corollary VIII.3.24 in Jacod-Shiryaev 1987). O

Since we deal with PRM, we could have formulated a ’elementary’ proof, via classical central limit theory:
independence assumptions in the definition of PRM show that martingale increments as above

reduce to independent random variables.

From now on we write

9 = <2‘> e 0 := (0,1)x(0,00) .

Fix a reference point ¥ € © and define local scale at 9 by

5(V) :_\}ﬁ@g) S On=0n(0) L0 asn— oo,

Introduce local parameter h = (™) at 9, with h ranging over open sets
b ha

Oyn={heR*:9+6,heO} 1+ R? as n— 0.



At a fixed reference point ¥ € O, at stage n of the asymptotics:

e reparametrize neighbourhoods of ¥, replacing (%) in earlier notation by

1+
0+ 6u(9)h = all+ ) . h€ Oy, =. R

61+ )

and view the local parameter h as new parametrization

e change time from ¢ to tn, i.e. consider the filtration F" := (F, )0

and study the statistical model in shrinking neighbourhoods of the reference point 9.

We thus consider a sequence of filtered local models at o
En(0) = (Q ", {Q(’”‘Snw)h) ‘he @M}) . n— 0o

where log-likelihood ratio processes take the form (0 < ¢ < 00)

9+6,h) /0 hy ha a — 3
(%) longn = log(l4+ —=) Ny, + log(1+ —=) Nyw — h1 — Ny — ho—=tn
— log L(@8)/(@:8) — — Y Y
8 Liin =log % = log £ =a—« =¢—¢

3

Using expansions

1
log(1+2) = z— 522 +0(2?) as z—0
in (%) and arranging terms

1 — 1 1
lo gL(ﬁ—H; nh)/9 = hl \F(Ntn OéNtn) + h2 \F(Ntn gtn) - (h +h2) Ntn +

f \f

up to remainder terms which are negligible under Q) as n — co. Here a score martingale at ¢

= hi — (N — aNy) + hy —(Ny, — Etn) — §(h§+h§)gt + ...

appears
1 Ny — aN.
S(n,¥); == — m m , t>0
VI Ny — €tn
together with a process information at ¢
10
J(n,9)¢ = (S(n,9)), = ¢ t
0 1

and we know about weak convergence of the score martingale under Q¥), by lemma 1.



Lemma 2 : ('2nd Le Cam lemma’) At every reference point 9 € ©, with local scale 6,,(9) = ﬁ (3‘ 2)

and local parameter h € ...R?... as above, we have local asymptotic normality
1
log L& = hTS(n,0) = S hTI(n9) b + R(n,v)

where under Q)

t\.’)\»—A

S(n 19) — %B weakly in D as n — oo,
< > for all .,

paths of R(n,?) vanish uniformly on compact time intervals as n — oo .

We have seen that maximum likelihood estimators (MLE) are given by

9@ av ~ Nv - Nv
19 = -~ = = = .
v <£v ) ) Qy NU ’ gv v

Here N, ~ v and N, ~ & Q@8_almost surely as v — co, whence consistency and

ﬁ ~ v 1 — 1
~— (ay — = —— — (N, —aN ~ - — —aN,
o (Goma) = o s (Nomaly) ~ g f( aNo)
NOES 11
Yo(e, — -~ — (N, —
c(6-¢) = ¢ (N -g)
as v — 0o. In time scale en, this is the assertion
) _
—~ 1 — Ntn_aNtn
6.1 0) (I —9) = = vl B

ft ﬁ(Ntn_@Ntn)

as n — 0o, for every 0 < t < oo fixed. We thus find that rescaled ML estimation errors behave as

, N — 00

Z(n,9); == J(n,9);*S(n,¥); , 0<t<oo

in the sequence of local models at .

Lemma 3 : At every ¥ € O, as n — oo, rescaled ML estimation errors admit the representation
5L (9) (@n —19) = J(n, ) 8(n, ) + R(n,9) , 0<t<oo

where paths of fl(n, ) vanish uniformly on compact time intervals C (0,00), under Q). as n — oo .

Note that it does not make sense to consider t = 0 ...



For inference about the unknown parameter 9 € ©, Lemmata 2 and 3 allow to deal with

e deterministic observation schemes

e 3 broad class of random observation schemes.

Deterministic observation schemes:

at stage n of the asymptotics we observe up to time n, n — oo.

We discuss asymptotic optimality properties for estimators as n — oc.

Corollary 1 : The MLE sequence (5n)n is regular and efficient in the sense of Hajek.

Corollary 2 : Consider loss functions ¢ : R? — [0, 00) continuous, subconvex and bounded. Then

a) for arbitrary sequences of F,,-measurable estimators (5n)n for

lim limsup sup Egis, 9)n <€ (5;1(19) (571 — (v +5n(19)h)> )) > F (E (§*%B1> ) ;

cfoo  n—oo |h|<c

b) the MLE sequence achieves this bound: for every 0 < ¢ < o0,

lim sup E19+5n(19)h<€<5;1(19)(5n—(19+5n(19)h)>)) - E(z(g—%Bl)).



Random observation schemes: Let 7 denote the class of all strictly increasing sequences (73,), of

F-stopping times with the following properties i) and ii):
i) for ¥ € O, there is some constant 0 < ¢(1) < oo such that
1
c(@) = lim =T, Q)-almost surely ;

n—oo N

ii) for ¥ € ©, there is some compact K (9) contained in (0, 00) and

a sequence o(n,1) of F"-stopping times taking values in K (¢), n > 1,

events A,(J) € Fr,, n > 1, such that lilrr_l> inf A,(0) = Q QW-almost surely
such that Q®)-almost surely

for every n > 1, T,, coincides with o(n,9)n in restriction to A4, (9) .

9)_

Then necessarily, also ILm o(n,9) = ¢(9) exists QW)-almost surely.

Examples: consider increasing integrable additive functionals A = (A¢)i>0 of X and define
T, = inf{t>0:A4>n} , n>1 , c):= [tlim +4;]7" under QW
—00

in particular:  A; := Ny with ¢(9) = Ay := N; with ¢(9) = 2.

1.
é‘?

m

Corollary 3 : For random observation schemes of class 7

at stage n of the asymptotics we observe up to time 7}, , n — oo

a) we have LAN with central sequence J(n, ﬁ);(ln ﬁ)S(n, V) g(n,9) under QW .

b) the MLE sequence 5Tn = ( ?Tn> , n > 1 is regular and efficient in the sense of Héjek ;

Tn

¢) the local asymptotic minimax bound

lim limsup sup FEyis,9)n (€ (5;1(19) (5Tn — (4 5n(19)h)) ) ) > F (6 < [fc(ﬁ)]*% Bl) )

ctoo  n—oo |h|§c

holds for any sequence of Fr,-measurable estimators 5;[’”, n > 1, and for arbitrary loss functions

¢ :R? — [0,00) which are continuous, subconvex and bounded ;

d) the MLE sequence 7§Tn = < ng> , n > 1, achieves this bound.

Tn
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