Point process models and local asymptotics in statistics

III - Example

Reinhard Höpfner, University of Mainz
NOMP II, March 22-24, 2021

9 Inference from jumps ≥ 1 of a stable increasing process

We continue the example of section 4, all notations as there: S is a stable increasing process of some index $0<\alpha<1$ and some weight parameter $\xi>0$. We observe all jumps $\geq \varepsilon$ in the trajectory of S up to time t, with particular choice $\varepsilon:=1$:

$$
X_{t}=\sum_{\substack{0<s \leq t \\ \Delta S_{s} \geq 1}} \Delta S_{s}=\int_{0}^{t} \int_{[1, \infty)} z \mu(d s, d z) \quad, \quad t \geq 0
$$

where $\mu(d s, d z)$ is Poisson random measure on $(0, \infty) \times[1, \infty)$ with intensity

$$
\nu^{\alpha, \xi}(d s, d z)=\xi d s \alpha z^{-\alpha-1} 1_{\{z \geq 1\}} d z=\xi d s k_{\alpha}(z) d z
$$

for some $0<\alpha<1$ and $\xi>0$. Due to $\varepsilon=1, k_{\alpha}(\cdot)$ is a probability density, and the counting process

$$
N=\left(N_{t}\right)_{t \geq 0} \quad, \quad N_{t}:=\mu((0, t] \times[1, \infty))
$$

is Poisson with parameter ξ. Consider also the process

$$
\bar{N}=\left(\bar{N}_{t}\right)_{t \geq 0} \quad, \quad \bar{N}_{t}:=\int_{0}^{t} \int_{\{z \geq 1\}} \log (z) \mu(d s, d z)
$$

Aims : Show that LAN holds at every point (α, ξ) as $n \rightarrow \infty$,
characterize sequences of estimators for (α, ξ) which as $n \rightarrow \infty$ achieve the local asymptotic minimax bound (and thus are also regular and efficient in the sense of Hájek).

In this example, it is easy to find maximum likelihood estimators (MLE) :
the \log-likelihood ratios are (section 4, special case $\varepsilon=1$)

$$
\log \left(\left[\prod_{0<s \leq t} \frac{\widetilde{\alpha} \widetilde{\xi}}{\alpha \xi}\left(\Delta X_{s}\right)^{\alpha-\widetilde{\alpha}}\right] \exp \{-t(\widetilde{\xi}-\xi)\}\right)=\log \left(\frac{\widetilde{\alpha} \widetilde{\xi}}{\alpha \xi}\right) N_{t}+(\alpha-\widetilde{\alpha}) \bar{N}_{t}-(\widetilde{\xi}-\xi) t
$$

so deriving with respect to $\widetilde{\alpha}$ or to $\widetilde{\xi}$ we obtain MLE's explicitly

$$
\widehat{\alpha}_{t}:=\frac{N_{t}}{\bar{N}_{t}} \quad, \quad \widehat{\xi}_{t}:=\frac{N_{t}}{t} \quad, \quad \tau_{1} \leq t<\infty .
$$

Rescaling time and writing $\mathbb{F}^{n}:=\left(\mathcal{F}_{t n}\right)_{t \geq 0}$, the following are (local, at least) $\left(Q^{(\alpha, \xi)}, \mathbb{F}^{n}\right)$-martingales:

$$
\begin{aligned}
\frac{1}{\sqrt{n}}\left(\bar{N}_{t n}-\frac{\xi}{\alpha} t n\right)_{t \geq 0} & =\frac{1}{\sqrt{n}} \int_{0}^{\bullet n} \int_{\{z \geq 1\}} \log (z)\left(\mu-\nu^{\alpha, \xi}\right)(d s, d z) \\
\frac{1}{\sqrt{n}}\left(N_{t n}-\xi t n\right)_{t \geq 0} & =\frac{1}{\sqrt{n}} \int_{0}^{\bullet n} \int_{\{z \geq 1\}}\left(\mu-\nu^{\alpha, \xi}\right)(d s, d z)
\end{aligned}
$$

Also the difference of both is a (local, at least) $\left(Q^{(\alpha, \xi)}, \mathbb{F}^{n}\right)$-martingale:

$$
\frac{1}{\sqrt{n}}\left(N_{t n}-\alpha \bar{N}_{t n}\right)_{t \geq 0}=\frac{1}{\sqrt{n}} \int_{0}^{\bullet n} \int_{\{z \geq 1\}}(1-\alpha \log z)\left(\mu-\nu^{\alpha, \xi}\right)(d s, d z) .
$$

Below, B denotes 2-dimensional standard Brownian motion, and D is the canonical path space of cadlag functions $[0, \infty) \rightarrow \mathbb{R}^{2}$.

Lemma 1: For all $0<\alpha<1$ and $\xi>0$, we have weak convergence under $Q^{(\alpha, \xi)}$ (in D, as $n \rightarrow \infty$)

$$
S(n,(\alpha, \xi)):=\frac{1}{\sqrt{n}}\binom{N_{t n}-\alpha \bar{N}_{t n}}{N_{t n}-\xi t n}_{t \geq 0} \quad \xrightarrow{w} \quad \xi^{\frac{1}{2}} B .
$$

Proof : First, integration by parts successively in $k \in \mathbb{N}_{0}$ grants
(+)

$$
\int_{\{z \geq 1\}} \log ^{k}(z) \alpha z^{-\alpha-1} d z=\frac{k!}{\alpha^{k}}
$$

for all $0<\alpha<1, \xi>0$. The components of $S(n,(\alpha, \xi))$ are locally square integrable martingales. Using (+) we calculate angle brackets

$$
\begin{aligned}
\left\langle\frac{1}{\sqrt{n}}\left(N_{\bullet n}-\alpha \bar{N}_{\bullet n}\right), \frac{1}{\sqrt{n}}\left(N_{\bullet}-\alpha \bar{N}_{\bullet n}\right)\right\rangle_{t} & =\frac{1}{n} \int_{0}^{t n} \int_{\{z \geq 1\}}(1-\alpha \log z)^{2} \nu^{\alpha, \xi}(d s, d z)=\xi t \\
\left\langle\frac{1}{\sqrt{n}}\left(N_{\bullet n}-\alpha \bar{N}_{\bullet n}\right), \frac{1}{\sqrt{n}}\left(N_{\bullet n}-\xi \bullet n\right)\right\rangle_{t} & =\frac{1}{n} \int_{0}^{t n} \int_{\{z \geq 1\}}(1-\alpha \log z) \nu^{\alpha, \xi}(d s, d z)=0 \\
\left\langle\frac{1}{\sqrt{n}}\left(N_{\bullet n}-\xi \bullet n, \frac{1}{\sqrt{n}}\left(N_{\bullet n}-\xi \bullet n\right)\right\rangle_{t}\right. & =\frac{1}{n} \int_{0}^{t n} \int_{\{z \geq 1\}} \nu^{\alpha, \xi}(d s, d z)=\xi t
\end{aligned}
$$

whence

$$
\left\langle S_{n}(\alpha, \xi)\right\rangle_{t}=\xi\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) t
$$

for $0 \leq t<\infty$. Thus weak convergence in D under $Q^{(\alpha, \xi)}$ as $n \rightarrow \infty$ holds in virtue of the martingale convergence theorem (corollary VIII.3.24 in Jacod-Shiryaev 1987).

Since we deal with PRM, we could have formulated a 'elementary' proof, via classical central limit theory: independence assumptions in the definition of PRM show that martingale increments as above reduce to independent random variables.

From now on we write

$$
\vartheta:=\binom{\alpha}{\xi} \quad \in \quad \Theta:=(0,1) \times(0, \infty) .
$$

Fix a reference point $\vartheta \in \Theta$ and define local scale at ϑ by

$$
\delta_{n}(\vartheta):=\frac{1}{\sqrt{n}}\left(\begin{array}{cc}
\alpha & 0 \\
0 & \xi
\end{array}\right) \quad, \quad \delta_{n}=\delta_{n}(\vartheta) \downarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Introduce local parameter $h=\binom{h_{1}}{h_{2}}$ at ϑ, with h ranging over open sets

$$
\Theta_{\vartheta, n}:=\left\{h \in \mathbb{R}^{2}: \vartheta+\delta_{n} h \in \Theta\right\} \quad \uparrow \quad \mathbb{R}^{2} \quad \text { as } n \rightarrow \infty .
$$

At a fixed reference point $\vartheta \in \Theta$, at stage n of the asymptotics:

- reparametrize neighbourhoods of ϑ, replacing $\binom{\widetilde{\alpha}}{\tilde{\xi}}$ in earlier notation by

$$
\vartheta+\delta_{n}(\vartheta) h=\binom{\alpha\left(1+\frac{h_{1}}{\sqrt{n}}\right)}{\xi\left(1+\frac{h_{2}}{\sqrt{n}}\right)} \quad, \quad h \in \Theta_{\vartheta, n}=\ldots \mathbb{R}^{2} \ldots
$$

and view the local parameter h as new parametrization

- change time from t to $t n$, i.e. consider the filtration $\mathbb{F}^{n}:=\left(\mathcal{F}_{t n}\right)_{t \geq 0}$
and study the statistical model in shrinking neighbourhoods of the reference point ϑ.

We thus consider a sequence of filtered local models at ϑ

$$
\mathcal{E}_{n}(\vartheta):=\left(\Omega, \mathbb{F}^{n},\left\{Q^{\left(\vartheta+\delta_{n}(\vartheta) h\right)}: h \in \Theta_{\vartheta, n}\right\}\right) \quad, \quad n \rightarrow \infty
$$

where \log-likelihood ratio processes take the form $(0 \leq t<\infty)$
(*) $\underbrace{\log L_{t n}^{\left(\vartheta+\delta_{n} h\right) / \vartheta}}_{=\log L_{t n}^{(\widetilde{\alpha}, \tilde{\xi}) /(\alpha, \xi)}}=\underbrace{\log \left(1+\frac{h_{1}}{\sqrt{n}}\right)}_{=\log \frac{\tilde{\alpha}}{\alpha}} N_{t n}+\underbrace{\log \left(1+\frac{h_{2}}{\sqrt{n}}\right)}_{=\log \frac{\tilde{\xi}}{\xi}} N_{t n}-\underbrace{h_{1} \frac{\alpha}{\sqrt{n}}}_{=\widetilde{\alpha}-\alpha} \bar{N}_{t n}-\underbrace{h_{2} \frac{\xi}{\sqrt{n}}}_{=\widetilde{\xi}-\xi} t n$.
Using expansions

$$
\log (1+z)=z-\frac{1}{2} z^{2}+o\left(z^{2}\right) \quad \text { as } \quad z \rightarrow 0
$$

in (*) and arranging terms

$$
\begin{aligned}
\log L_{t n}^{\left(\vartheta+\delta_{n} h\right) / \vartheta} & =h_{1} \frac{1}{\sqrt{n}}\left(N_{t n}-\alpha \bar{N}_{t n}\right)+h_{2} \frac{1}{\sqrt{n}}\left(N_{t n}-\xi t n\right)-\frac{1}{2}\left(h_{1}^{2}+h_{2}^{2}\right) \frac{1}{n} N_{t n}+\ldots \\
& =h_{1} \frac{1}{\sqrt{n}}\left(N_{t n}-\alpha \bar{N}_{t n}\right)+h_{2} \frac{1}{\sqrt{n}}\left(N_{t n}-\xi t n\right)-\frac{1}{2}\left(h_{1}^{2}+h_{2}^{2}\right) \xi t+\ldots
\end{aligned}
$$

up to remainder terms which are negligible under $Q^{(\vartheta)}$ as $n \rightarrow \infty$. Here a score martingale at ϑ appears

$$
S(n, \vartheta)_{t}:=\frac{1}{\sqrt{n}}\binom{N_{t n}-\alpha \bar{N}_{t n}}{N_{t n}-\xi t n} \quad, \quad t \geq 0
$$

together with a process information at ϑ

$$
J(n, \vartheta)_{t}:=\langle S(n, \vartheta)\rangle_{t}=\xi\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) t
$$

and we know about weak convergence of the score martingale under $Q^{(\vartheta)}$, by lemma 1 .

Lemma 2 : ('2nd Le Cam lemma') At every reference point $\vartheta \in \Theta$, with local scale $\delta_{n}(\vartheta)=\frac{1}{\sqrt{n}}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \xi\end{array}\right)$ and local parameter $h \in \ldots \mathbb{R}^{2} \ldots$ as above, we have local asymptotic normality

$$
\log L_{\bullet n}^{\left(\vartheta+\delta_{n} h\right) / \vartheta}=h^{\top} S(n, \vartheta)-\frac{1}{2} h^{\top} J(n, \vartheta) h+R(n, \vartheta)
$$

where under $Q^{(\vartheta)}$

$$
\left\{\begin{array}{l}
S(n, \vartheta) \quad \longrightarrow \quad \xi^{\frac{1}{2}} B \quad \text { weakly in } D \text { as } n \rightarrow \infty \\
J(n, \vartheta)=\left\langle\xi^{\frac{1}{2}} B\right\rangle \quad \text { for all } n, \\
\text { paths of } R(n, \vartheta) \text { vanish uniformly on compact time intervals as } n \rightarrow \infty
\end{array}\right.
$$

We have seen that maximum likelihood estimators (MLE) are given by

$$
\widehat{\vartheta}_{v}:=\binom{\widehat{\alpha}_{v}}{\widehat{\xi}_{v}} \quad, \quad \widehat{\alpha}_{v}=\frac{N_{v}}{\overline{N_{v}}} \quad, \quad \widehat{\xi}_{v}=\frac{N_{v}}{v} .
$$

Here $\bar{N}_{v} \sim \frac{\xi}{\alpha} v$ and $N_{v} \sim \xi v \quad Q^{(\alpha, \xi)}$-almost surely as $v \rightarrow \infty$, whence consistency and

$$
\begin{aligned}
\frac{\sqrt{v}}{\alpha}\left(\widehat{\alpha}_{v}-\alpha\right)=\frac{v}{\alpha \bar{N}_{v}} \frac{1}{\sqrt{v}}\left(N_{v}-\alpha \bar{N}_{v}\right) & \sim \frac{1}{\xi} \frac{1}{\sqrt{v}}\left(N_{v}-\alpha \bar{N}_{v}\right) \\
\frac{\sqrt{v}}{\xi}\left(\widehat{\xi}_{v}-\xi\right) & =\frac{1}{\xi} \frac{1}{\sqrt{v}}\left(N_{v}-\xi v\right)
\end{aligned}
$$

as $v \rightarrow \infty$. In time scale $\bullet n$, this is the assertion

$$
\delta_{n}^{-1}(\vartheta)\left(\hat{\vartheta}_{t n}-\vartheta\right)=\frac{1}{\xi t}\binom{\frac{1}{\sqrt{n}}\left(N_{t n}-\alpha \bar{N}_{t n}\right)}{\frac{1}{\sqrt{n}}\left(N_{t n}-\alpha \bar{N}_{t n}\right)}+o_{Q^{(\vartheta)}(1)}
$$

as $n \rightarrow \infty$, for every $0<t<\infty$ fixed. We thus find that rescaled ML estimation errors behave as

$$
Z(n, \vartheta)_{t}:=J(n, \vartheta)_{t}^{-1} S(n, \vartheta)_{t} \quad, \quad 0<t<\infty \quad, \quad n \rightarrow \infty
$$

in the sequence of local models at ϑ.

Lemma 3: At every $\vartheta \in \Theta$, as $n \rightarrow \infty$, rescaled ML estimation errors admit the representation

$$
\delta_{n}^{-1}(\vartheta)\left(\widehat{\vartheta}_{t n}-\vartheta\right)=J(n, \vartheta)_{t}^{-1} S(n, \vartheta)_{t}+\widetilde{R}(n, \vartheta)_{t} \quad, \quad 0<t<\infty
$$

where paths of $\widetilde{R}(n, \vartheta)$ vanish uniformly on compact time intervals $\subset(0, \infty)$, under $Q^{(\vartheta)}$, as $n \rightarrow \infty$.

Note that it does not make sense to consider $t=0 \ldots$

For inference about the unknown parameter $\vartheta \in \Theta$, Lemmata 2 and 3 allow to deal with

- deterministic observation schemes
- a broad class of random observation schemes.

Deterministic observation schemes:

at stage n of the asymptotics we observe up to time $n, n \rightarrow \infty$.

We discuss asymptotic optimality properties for estimators as $n \rightarrow \infty$.

Corollary 1 : The MLE sequence $\left(\widehat{\vartheta}_{n}\right)_{n}$ is regular and efficient in the sense of Hájek.

Corollary 2: Consider loss functions $\ell: \mathbb{R}^{2} \rightarrow[0, \infty)$ continuous, subconvex and bounded. Then
a) for arbitrary sequences of \mathcal{F}_{n}-measurable estimators $\left(\widetilde{\vartheta}_{n}\right)_{n}$ for ϑ

$$
\lim _{c \uparrow \infty} \limsup _{n \rightarrow \infty} \sup _{|h| \leq c} E_{\vartheta+\delta_{n}(\vartheta) h}\left(\ell\left(\delta_{n}^{-1}(\vartheta)\left(\widetilde{\vartheta}_{n}-\left(\vartheta+\delta_{n}(\vartheta) h\right)\right)\right)\right) \geq E\left(\ell\left(\xi^{-\frac{1}{2}} B_{1}\right)\right) ;
$$

b) the MLE sequence achieves this bound: for every $0<c<\infty$,

$$
\lim _{n \rightarrow \infty} \sup _{|h| \leq c} E_{\vartheta+\delta_{n}(\vartheta) h}\left(\ell\left(\delta_{n}^{-1}(\vartheta)\left(\widehat{\vartheta}_{n}-\left(\vartheta+\delta_{n}(\vartheta) h\right)\right)\right)\right)=E\left(\ell\left(\xi^{-\frac{1}{2}} B_{1}\right)\right) .
$$

Random observation schemes: Let \mathcal{T} denote the class of all strictly increasing sequences $\left(T_{n}\right)_{n}$ of \mathbb{F}-stopping times with the following properties i) and ii):
i) for $\vartheta \in \Theta$, there is some constant $0<c(\vartheta)<\infty$ such that

$$
c(\vartheta)=\lim _{n \rightarrow \infty} \frac{1}{n} T_{n} \quad Q^{(\vartheta)} \text {-almost surely }
$$

ii) for $\vartheta \in \Theta$, there is some compact $K(\vartheta)$ contained in $(0, \infty)$ and
a sequence $\sigma(n, \vartheta)$ of \mathbb{F}^{n}-stopping times taking values in $K(\vartheta), n \geq 1$, events $A_{n}(\vartheta) \in \mathcal{F}_{T_{n}}, n \geq 1$, such that $\liminf _{n \rightarrow \infty} A_{n}(\vartheta)=\Omega \quad Q^{(\vartheta)}$-almost surely such that $Q^{(\vartheta)}$-almost surely
for every $n \geq 1, T_{n}$ coincides with $\sigma(n, \vartheta) n$ in restriction to $A_{n}(\vartheta)$.
Then necessarily, also $\lim _{n \rightarrow \infty} \sigma(n, \vartheta)=c(\vartheta)$ exists $Q^{(\vartheta)}$-almost surely.

Examples: consider increasing integrable additive functionals $A=\left(A_{t}\right)_{t \geq 0}$ of X and define

$$
T_{n}:=\inf \left\{t>0: A_{t} \geq n\right\}, n \geq 1 \quad, \quad c(\vartheta):=\left[\lim _{t \rightarrow \infty} \frac{1}{t} A_{t}\right]^{-1} \text { under } Q^{(\vartheta)}
$$

in particular: $\quad A_{t}:=N_{t}$ with $c(\vartheta)=\frac{1}{\xi} ; \quad A_{t}:=\bar{N}_{t}$ with $c(\vartheta)=\frac{\alpha}{\xi}$.

Corollary 3 : For random observation schemes of class \mathcal{T} at stage n of the asymptotics we observe up to time $T_{n}, n \rightarrow \infty$
a) we have LAN with central sequence $J(n, \vartheta)_{\sigma(n, \vartheta)}^{-1} S(n, \vartheta)_{\sigma(n, \vartheta)}$ under $Q^{(\vartheta)}$;
b) the MLE sequence $\widehat{\vartheta}_{T_{n}}=\binom{\widehat{\alpha}_{T_{n}}}{\widehat{\xi}_{T_{n}}}, n \geq 1$ is regular and efficient in the sense of Hájek ;
c) the local asymptotic minimax bound

$$
\lim _{c \uparrow \infty} \limsup _{n \rightarrow \infty} \sup _{|h| \leq c} E_{\vartheta+\delta_{n}(\vartheta) h}\left(\ell\left(\delta_{n}^{-1}(\vartheta)\left(\widetilde{\vartheta}_{T_{n}}-\left(\vartheta+\delta_{n}(\vartheta) h\right)\right)\right)\right) \geq E\left(\ell\left([\xi c(\vartheta)]^{-\frac{1}{2}} B_{1}\right)\right)
$$

holds for any sequence of $\mathcal{F}_{T_{n}}$-measurable estimators $\widetilde{\vartheta}_{T_{n}}, n \geq 1$, and for arbitrary loss functions $\ell: \mathbb{R}^{2} \rightarrow[0, \infty)$ which are continuous, subconvex and bounded;
d) the MLE sequence $\widehat{\vartheta}_{T_{n}}=\binom{\widehat{\alpha}_{T_{n}}}{\widehat{\xi}_{T_{n}}}, n \geq 1$, achieves this bound.

