Point process models and local asymptotics in statistics

III – Example

Reinhard Höpfner, University of Mainz

NOMP II, March 22–24, 2021

9 Inference from jumps ≥ 1 of a stable increasing process

We continue the example of section 4, all notations as there: S is a stable increasing process of some index $0 < \alpha < 1$ and some weight parameter $\xi > 0$. We observe all jumps $\geq \varepsilon$ in the trajectory of S up to time t, with particular choice $\varepsilon := 1$:

$$X_t = \sum_{\substack{0 < s \le t \\ \Delta S_s \ge 1}} \Delta S_s = \int_0^t \int_{[1,\infty)} z \,\mu(ds, dz) \quad , \quad t \ge 0$$

where $\mu(ds, dz)$ is Poisson random measure on $(0, \infty) \times [1, \infty)$ with intensity

$$\nu^{\alpha,\xi}(ds,dz) = \xi \, ds \, \alpha z^{-\alpha-1} \mathbf{1}_{\{z \ge 1\}} \, dz = \xi \, ds \, k_{\alpha}(z) \, dz$$

for some $0 < \alpha < 1$ and $\xi > 0$. Due to $\varepsilon = 1$, $k_{\alpha}(\cdot)$ is a probability density, and the counting process

$$N = (N_t)_{t \ge 0}$$
, $N_t := \mu ((0, t] \times [1, \infty))$

is Poisson with parameter ξ . Consider also the process

$$\overline{N} = (\overline{N}_t)_{t \ge 0}$$
, $\overline{N}_t := \int_0^t \int_{\{z \ge 1\}} \log(z) \,\mu(ds, dz)$.

Aims : Show that LAN holds at every point (α, ξ) as $n \to \infty$,

characterize sequences of estimators for (α, ξ) which as $n \to \infty$ achieve the local asymptotic minimax bound (and thus are also regular and efficient in the sense of Hájek). In this example, it is easy to find maximum likelihood estimators (MLE) :

the log-likelihood ratios are (section 4, special case $\varepsilon = 1$)

$$\log\left(\left[\prod_{0$$

so deriving with respect to $\widetilde{\alpha}$ or to $\widetilde{\xi}$ we obtain MLE's explicitly

$$\widehat{\alpha}_t := \frac{N_t}{\overline{N}_t}$$
, $\widehat{\xi}_t := \frac{N_t}{t}$, $\tau_1 \le t < \infty$.

Rescaling time and writing $\mathbb{F}^n := (\mathcal{F}_{tn})_{t \geq 0}$, the following are (local, at least) $(Q^{(\alpha,\xi)}, \mathbb{F}^n)$ -martingales:

$$\frac{1}{\sqrt{n}} \left(\overline{N}_{tn} - \frac{\xi}{\alpha} tn \right)_{t \ge 0} = \frac{1}{\sqrt{n}} \int_{0}^{\bullet n} \int_{\{z \ge 1\}} \log(z) \left(\mu - \nu^{\alpha, \xi} \right) (ds, dz)$$
$$\frac{1}{\sqrt{n}} \left(N_{tn} - \xi tn \right)_{t \ge 0} = \frac{1}{\sqrt{n}} \int_{0}^{\bullet n} \int_{\{z \ge 1\}} (\mu - \nu^{\alpha, \xi}) (ds, dz) .$$

Also the difference of both is a (local, at least) $(Q^{(\alpha,\xi)}, \mathbb{F}^n)$ -martingale:

$$\frac{1}{\sqrt{n}} \left(N_{tn} - \alpha \,\overline{N}_{tn} \right)_{t \ge 0} \quad = \quad \frac{1}{\sqrt{n}} \int_0^{\bullet n} \int_{\{z \ge 1\}} (1 - \alpha \log z) \, (\mu - \nu^{\alpha, \xi}) (ds, dz) \, .$$

Below, *B* denotes 2-dimensional standard Brownian motion, and *D* is the canonical path space of cadlag functions $[0, \infty) \to \mathbb{R}^2$.

Lemma 1: For all $0 < \alpha < 1$ and $\xi > 0$, we have weak convergence under $Q^{(\alpha,\xi)}$ (in D, as $n \to \infty$)

$$S(n,(\alpha,\xi)) := \frac{1}{\sqrt{n}} \left(\begin{array}{c} N_{tn} - \alpha \,\overline{N}_{tn} \\ N_{tn} - \xi \,tn \end{array} \right)_{t \ge 0} \quad \stackrel{w}{\longrightarrow} \quad \xi^{\frac{1}{2}} B \,.$$

Proof : First, integration by parts successively in $k \in \mathbb{N}_0$ grants

(+)
$$\int_{\{z \ge 1\}} \log^k(z) \alpha z^{-\alpha - 1} dz = \frac{k!}{\alpha^k}$$

for all $0 < \alpha < 1$, $\xi > 0$. The components of $S(n, (\alpha, \xi))$ are locally square integrable martingales. Using (+) we calculate angle brackets

$$\left\langle \frac{1}{\sqrt{n}} (N_{\bullet n} - \alpha \,\overline{N}_{\bullet n}) \,, \, \frac{1}{\sqrt{n}} (N_{\bullet n} - \alpha \,\overline{N}_{\bullet n}) \right\rangle_t = \frac{1}{n} \, \int_0^{tn} \int_{\{z \ge 1\}} (1 - \alpha \log z)^2 \,\nu^{\alpha,\xi} (ds, dz) = \xi \, t \\ \left\langle \frac{1}{\sqrt{n}} (N_{\bullet n} - \alpha \,\overline{N}_{\bullet n}) \,, \, \frac{1}{\sqrt{n}} (N_{\bullet n} - \xi \bullet n) \right\rangle_t = \frac{1}{n} \, \int_0^{tn} \int_{\{z \ge 1\}} (1 - \alpha \log z) \,\nu^{\alpha,\xi} (ds, dz) = 0 \\ \left\langle \frac{1}{\sqrt{n}} (N_{\bullet n} - \xi \bullet n) \,, \, \frac{1}{\sqrt{n}} (N_{\bullet n} - \xi \bullet n) \right\rangle_t = \frac{1}{n} \, \int_0^{tn} \int_{\{z \ge 1\}} \nu^{\alpha,\xi} (ds, dz) = \xi \, t$$

whence

$$\langle S_n(\alpha,\xi) \rangle_t = \xi \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} t$$

for $0 \le t < \infty$. Thus weak convergence in D under $Q^{(\alpha,\xi)}$ as $n \to \infty$ holds in virtue of the martingale convergence theorem (corollary VIII.3.24 in Jacod-Shiryaev 1987).

Since we deal with PRM, we could have formulated a 'elementary' proof, via classical central limit theory: independence assumptions in the definition of PRM show that martingale increments as above reduce to independent random variables.

From now on we write

$$\vartheta := \begin{pmatrix} \alpha \\ \xi \end{pmatrix} \in \Theta := (0,1) \times (0,\infty) .$$

Fix a reference point $\vartheta \in \Theta$ and define local scale at ϑ by

$$\delta_n(\vartheta) := \frac{1}{\sqrt{n}} \begin{pmatrix} \alpha & 0 \\ 0 & \xi \end{pmatrix} , \quad \delta_n = \delta_n(\vartheta) \downarrow 0 \quad \text{as } n \to \infty$$

Introduce local parameter $h = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$ at ϑ , with h ranging over open sets

$$\Theta_{\vartheta,n} := \{h \in \mathbb{R}^2 : \vartheta + \delta_n h \in \Theta\} \quad \uparrow \quad \mathbb{R}^2 \quad \text{as} \ n \to \infty.$$

At a fixed reference point $\vartheta \in \Theta$, at stage *n* of the asymptotics:

• reparametrize neighbourhoods of ϑ , replacing $\begin{pmatrix} \tilde{\alpha} \\ \tilde{\xi} \end{pmatrix}$ in earlier notation by

$$\vartheta + \delta_n(\vartheta) h = \begin{pmatrix} \alpha(1 + \frac{h_1}{\sqrt{n}}) \\ \xi(1 + \frac{h_2}{\sqrt{n}}) \end{pmatrix}, \quad h \in \Theta_{\vartheta,n} = \dots \mathbb{R}^2 \dots$$

and view the local parameter h as new parametrization

• <u>change time</u> from t to tn, i.e. consider the filtration $\mathbb{F}^n := (\mathcal{F}_{tn})_{t \ge 0}$

and study the statistical model in shrinking neighbourhoods of the reference point ϑ .

We thus consider a sequence of filtered local models at ϑ

$$\mathcal{E}_{n}(\vartheta) := \left(\Omega, \mathbb{F}^{n}, \left\{Q^{(\vartheta+\delta_{n}(\vartheta)h)}: h \in \Theta_{\vartheta,n}\right\}\right) \quad , \quad n \to \infty$$

where log-likelihood ratio processes take the form $(0 \leq t < \infty)$

$$(*) \qquad \underbrace{\log L_{tn}^{(\vartheta+\delta_nh)/\vartheta}}_{=\log L_{tn}^{(\tilde{\alpha},\tilde{\xi})/(\alpha,\xi)}} = \underbrace{\log(1+\frac{h_1}{\sqrt{n}})}_{=\log\frac{\tilde{\alpha}}{\alpha}} N_{tn} + \underbrace{\log(1+\frac{h_2}{\sqrt{n}})}_{=\log\frac{\tilde{\xi}}{\xi}} N_{tn} - \underbrace{h_1\frac{\alpha}{\sqrt{n}}}_{=\tilde{\alpha}-\alpha} \overline{N}_{tn} - \underbrace{h_2\frac{\xi}{\sqrt{n}}}_{=\tilde{\xi}-\xi} tn.$$

Using expansions

$$\log(1+z) = z - \frac{1}{2}z^2 + o(z^2)$$
 as $z \to 0$

in (*) and arranging terms

$$\log L_{tn}^{(\vartheta+\delta_nh)/\vartheta} = h_1 \frac{1}{\sqrt{n}} (N_{tn} - \alpha \overline{N}_{tn}) + h_2 \frac{1}{\sqrt{n}} (N_{tn} - \xi tn) - \frac{1}{2} (h_1^2 + h_2^2) \frac{1}{n} N_{tn} + \dots$$
$$= h_1 \frac{1}{\sqrt{n}} (N_{tn} - \alpha \overline{N}_{tn}) + h_2 \frac{1}{\sqrt{n}} (N_{tn} - \xi tn) - \frac{1}{2} (h_1^2 + h_2^2) \xi t + \dots$$

up to remainder terms which are negligible under $Q^{(\vartheta)}$ as $n \to \infty$. Here a score martingale at ϑ appears

$$S(n,\vartheta)_t := \frac{1}{\sqrt{n}} \left(\begin{array}{c} N_{tn} - \alpha \,\overline{N}_{tn} \\ N_{tn} - \xi \, tn \end{array} \right) \quad , \quad t \ge 0$$

together with a process <u>information</u> at ϑ

$$J(n,\vartheta)_t := \langle S(n,\vartheta) \rangle_t = \xi \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} t$$

and we know about weak convergence of the score martingale under $Q^{(\vartheta)}$, by lemma 1.

Lemma 2 : ('2nd Le Cam lemma') At every reference point $\vartheta \in \Theta$, with local scale $\delta_n(\vartheta) = \frac{1}{\sqrt{n}} \begin{pmatrix} \alpha & 0 \\ 0 & \xi \end{pmatrix}$ and local parameter $h \in \ldots \mathbb{R}^2 \ldots$ as above, we have local asymptotic normality

$$\log L_{\bullet n}^{(\vartheta + \delta_n h)/\vartheta} = h^{\top} S(n, \vartheta) - \frac{1}{2} h^{\top} J(n, \vartheta) h + R(n, \vartheta)$$

where under $Q^{(\vartheta)}$

$$\begin{cases} S(n,\vartheta) \longrightarrow \xi^{\frac{1}{2}} B & \text{weakly in } D \text{ as } n \to \infty ,\\ J(n,\vartheta) &= \left\langle \xi^{\frac{1}{2}} B \right\rangle & \text{ for all } n ,\\ \text{paths of } R(n,\vartheta) \text{ vanish uniformly on compact time intervals as } n \to \infty . \end{cases}$$

We have seen that maximum likelihood estimators (MLE) are given by

$$\widehat{\vartheta}_v := \begin{pmatrix} \widehat{\alpha}_v \\ \widehat{\xi}_v \end{pmatrix} \quad , \quad \widehat{\alpha}_v = \frac{N_v}{\overline{N}_v} \quad , \quad \widehat{\xi}_v = \frac{N_v}{v}$$

Here $\overline{N}_v \sim \frac{\xi}{\alpha} v$ and $N_v \sim \xi v$ $Q^{(\alpha,\xi)}$ -almost surely as $v \to \infty$, whence consistency and

$$\frac{\sqrt{v}}{\alpha} \left(\widehat{\alpha}_{v} - \alpha \right) = \frac{v}{\alpha \overline{N}_{v}} \frac{1}{\sqrt{v}} \left(N_{v} - \alpha \overline{N}_{v} \right) \sim \frac{1}{\xi} \frac{1}{\sqrt{v}} \left(N_{v} - \alpha \overline{N}_{v} \right)$$
$$\frac{\sqrt{v}}{\xi} \left(\widehat{\xi}_{v} - \xi \right) = \frac{1}{\xi} \frac{1}{\sqrt{v}} \left(N_{v} - \xi v \right)$$

as $v \to \infty$. In time scale $\bullet n$, this is the assertion

$$\delta_n^{-1}(\vartheta) \left(\widehat{\vartheta}_{tn} - \vartheta \right) = \frac{1}{\xi t} \left(\begin{array}{c} \frac{1}{\sqrt{n}} \left(N_{tn} - \alpha \overline{N}_{tn} \right) \\ \frac{1}{\sqrt{n}} \left(N_{tn} - \alpha \overline{N}_{tn} \right) \end{array} \right) + o_{Q^{(\vartheta)}}(1)$$

as $n \to \infty$, for every $0 < t < \infty$ fixed. We thus find that rescaled ML estimation errors behave as

$$Z(n,\vartheta)_t := J(n,\vartheta)_t^{-1} S(n,\vartheta)_t \quad , \quad 0 < t < \infty \quad , \quad n \to \infty$$

in the sequence of local models at ϑ .

Lemma 3 : At every $\vartheta \in \Theta$, as $n \to \infty$, rescaled ML estimation errors admit the representation

$$\delta_n^{-1}(\vartheta) \left(\widehat{\vartheta}_{tn} - \vartheta \right) = J(n, \vartheta)_t^{-1} S(n, \vartheta)_t + \widetilde{R}(n, \vartheta)_t \quad , \quad 0 < t < \infty$$

where paths of $\widetilde{R}(n,\vartheta)$ vanish uniformly on compact time intervals $\subset (0,\infty)$, under $Q^{(\vartheta)}$, as $n \to \infty$.

Note that it does not make sense to consider $t = 0 \dots$

For inference about the unknown parameter $\vartheta \in \Theta$, Lemmata 2 and 3 allow to deal with

- deterministic observation schemes
- a broad class of random observation schemes.

Deterministic observation schemes:

at stage n of the asymptotics we observe up to time $n, n \to \infty$.

We discuss asymptotic optimality properties for estimators as $n \to \infty$.

Corollary 1: The MLE sequence $(\hat{\vartheta}_n)_n$ is regular and efficient in the sense of Hájek.

Corollary 2 : Consider loss functions $\ell : \mathbb{R}^2 \to [0, \infty)$ continuous, subconvex and bounded. Then a) for arbitrary sequences of \mathcal{F}_n -measurable estimators $(\tilde{\vartheta}_n)_n$ for ϑ

$$\lim_{c\uparrow\infty}\limsup_{n\to\infty}\sup_{|h|\leq c} E_{\vartheta+\delta_n(\vartheta)h}\left(\ell\left(\delta_n^{-1}(\vartheta)\left(\widetilde{\vartheta}_n-(\vartheta+\delta_n(\vartheta)h)\right)\right)\right) \geq E\left(\ell\left(\xi^{-\frac{1}{2}}B_1\right)\right);$$

b) the MLE sequence achieves this bound: for every $0 < c < \infty$,

$$\lim_{n \to \infty} \sup_{|h| \le c} E_{\vartheta + \delta_n(\vartheta)h} \left(\ell \left(\delta_n^{-1}(\vartheta) \left(\widehat{\vartheta}_n - (\vartheta + \delta_n(\vartheta)h) \right) \right) \right) = E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) + E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) = E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) + E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) = E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) + E \left(\ell \left(\xi^{-\frac{1}{2}} B_1 \right) \right) = E \left(\ell \left(\xi^{-\frac{1}{2}} B$$

<u>Random observation schemes</u>: Let \mathcal{T} denote the class of all strictly increasing sequences $(T_n)_n$ of \mathbb{F} -stopping times with the following properties i) and ii):

i) for $\vartheta \in \Theta$, there is some constant $0 < c(\vartheta) < \infty$ such that

$$c(\vartheta) = \lim_{n \to \infty} \frac{1}{n} T_n$$
 $Q^{(\vartheta)}$ -almost surely;

ii) for $\vartheta \in \Theta$, there is some compact $K(\vartheta)$ contained in $(0,\infty)$ and

a sequence $\sigma(n, \vartheta)$ of \mathbb{F}^n -stopping times taking values in $K(\vartheta)$, $n \ge 1$, events $A_n(\vartheta) \in \mathcal{F}_{T_n}$, $n \ge 1$, such that $\liminf_{n \to \infty} A_n(\vartheta) = \Omega$ $Q^{(\vartheta)}$ -almost surely

such that $Q^{(\vartheta)}$ -almost surely

for every
$$n \ge 1$$
, T_n coincides with $\sigma(n, \vartheta) n$ in restriction to $A_n(\vartheta)$.

Then necessarily, also $\lim_{n \to \infty} \sigma(n, \vartheta) = c(\vartheta)$ exists $Q^{(\vartheta)}$ -almost surely.

Examples: consider increasing integrable additive functionals $A = (A_t)_{t \ge 0}$ of X and define

$$T_n := \inf\{t > 0 : A_t \ge n\} , \quad n \ge 1 , \quad c(\vartheta) := [\lim_{t \to \infty} \frac{1}{t} A_t]^{-1} \text{ under } Q^{(\vartheta)} ;$$

in particular: $A_t := N_t$ with $c(\vartheta) = \frac{1}{\xi}$; $A_t := \overline{N}_t$ with $c(\vartheta) = \frac{\alpha}{\xi}$.

Corollary 3 : For random observation schemes of class \mathcal{T}

at stage n of the asymptotics we observe up to time $T_n, n \to \infty$

a) we have LAN with central sequence $J(n,\vartheta)^{-1}_{\sigma(n,\vartheta)}S(n,\vartheta)_{\sigma(n,\vartheta)}$ under $Q^{(\vartheta)}$;

b) the MLE sequence $\widehat{\vartheta}_{T_n} = \begin{pmatrix} \widehat{\alpha}_{T_n} \\ \widehat{\xi}_{T_n} \end{pmatrix}$, $n \ge 1$ is regular and efficient in the sense of Hájek ;

c) the local asymptotic minimax bound

$$\lim_{c\uparrow\infty} \limsup_{n\to\infty} \sup_{|h|\leq c} E_{\vartheta+\delta_n(\vartheta)h}\left(\ell\left(\delta_n^{-1}(\vartheta)\left(\widetilde{\vartheta}_{T_n}-(\vartheta+\delta_n(\vartheta)h)\right)\right)\right) \geq E\left(\ell\left(\left[\xi c(\vartheta)\right]^{-\frac{1}{2}}B_1\right)\right)$$

holds for any sequence of \mathcal{F}_{T_n} -measurable estimators $\tilde{\vartheta}_{T_n}$, $n \geq 1$, and for arbitrary loss functions $\ell : \mathbb{R}^2 \to [0, \infty)$ which are continuous, subconvex and bounded;

d) the MLE sequence $\hat{\vartheta}_{T_n} = \begin{pmatrix} \hat{\alpha}_{T_n} \\ \hat{\xi}_{T_n} \end{pmatrix}$, $n \ge 1$, achieves this bound.