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Preface

The aim of this note is to give a self-contained treatment of weak convergence of martingales and

integrable additive functionals in general Harris recurrent Markov processes in continuous time.

If a Harris process X = (X;);>0 has a recurrent atom, then necessary and sufficient conditions for
weak convergence of martingales associated to X have two components: first, either ergodicity
of X or - in case of null recurrence — regular variation at infinity of tails of lifecycle length
distributions (life cycles are excursions of the process between suitably defined successive visits to
the atom); second, an integrability condition (with respect to invariant mesure) on the predictable
quadratic variation. The norming functions are expressed in terms of tails of the lifecycle length
distribution; they vary regularly at infinity with some index 0 < a < 1.

Limit processes are either Brownian motion (case a = 1), or Brownian motion subject to indepen-
dent time change by a Mittag-Leffler process (the process inverse to a stable increasing process)
of index 0 < a < 1. No other weak limits under linear scaling of time and suitable norming can
occur. Brownian motion in the limit does not characterize ergodicity of the process X, but arises

also in a null recurrent case on the frontier to ergodicity.

For general Harris processes, recurrent atoms and thus i.i.d life cycles for the process X do not
exist. So we consider instead of X a family of Harris processes ()?m)m where X™ for large m
is very close to X, and where trajectories of X™ have from time to time flats of independent
exponential length over which Nummelin splitting can be applied. In this way we get for every
one of the processes X™ a recurrent atom, i.i.d life cycles and thus limit theorems as above, for
martingales and integrable additive functionals of X™. These limit theorems depend on m only
through a set of constants which converge to a limit as m tends to infinity. In this way, we can
deduce the desired limit theorem for martingales and integrable additive functionals of X from
the family of limit theorems for (X™),, . Of course, since life cycles for X™ have been introduced
artificially and are different at each stage m, we need an intrinsic representation of the norming
function for X-martingales: this intrinsic norming function is given in terms of regular variation

at 0 of resolvants of X.



This is a new look on a partially very old topic. A first famous paper on convergence of integ-
rable additive functionals is by Darling and Kac in 1957 ([D-K 57|, re-exposed in the book by
Bingham, Goldie and Teugels [B-G-T 87]): they prove that under a 'Darling-Kac condition’, nor-
ming functions for additive functionals of X are necessarily regularly varying, and limit laws (for
one-dimensional marginals) are necessarily Mittag-Leffler laws. Weak convergence of martingales
under a Lindeberg condition implies weak convergence of quadratic variation processes (for weak
convergence of stochastic processes, we rely on the book by Jacod and Shiryaev [J-Sh 87]). So
the Darling-Kac result remains a main argument in the 'necessary part’ of the result on weak
convergence of martingales (we note here that the case of slow variation of tails of life cycle length
distributions, present in the Darling-Kac theorem, does not correspond to weak convergence, but
only to convergence of finite-dimensional distributions: this explains the absence of the case a = 0
in our treatment). In a spirit similiar to [D-K 57|, additive functionals of null recurrent birth and
death processes or branching processes with immigration were treated by Karlin and McGregor
[K-MG 61], Zubkov [Zu 72] and Pakes [Pa 75]. For one-dimensional diffusions, Khasminskii ([Has
80], see also [Kh 00], [Kh 01]) took a completely different route — based on differential equation

techniques — to limit theorems for integrable additive functionals.

The ’sufficient part’ of the result of weak convergence of martingales is an assertion 'regular va-
riation of tails of life cycle length distributions implies convergence of martingales to Brownian
motion time-changed by an independent Mittag-Leffler process’. The key step for this appears in
a paper by Greenwood and Resnick [Gr-R 78]: they consider joint convergence of bidimensional
random walks where the first marginal is attracted to Brownian motion, the second to a stable
process, and proved with strong reference to P. Lévy that necessarily Brownian motion and
stable process involved in such limits are independent. In the sequel, similiar ideas reappear in

Kasahara [Ka 84] and other papers.

The next important progress was the paper by Touati [Tou 88] considering completely general
Harris processes. Touati argued that using Nummelin splitting along a sequence of independent
exponential times, life cycles may always be introduced artificially, and he gave a very good
argument allowing to avoid 'Darling-Kac conditions’  which for general processes are highly
cumbersome and rather impossible to verify — by use of 'special functions’. The corresponding

parts of our treatment below are entirely based on this idea. However, we do not follow Touati in



his argument on artificial introduction of life cycles (in continuous-time setting) which seems to us
problematic. Instead of this, we propose another approach via an ’accompanying family’ ()?m)m
for X such that at every stage m, Nummelin-like splitting of X is possible. Touati was the
first to enounce a result on weak convergence of martingales and integrable additive functionals
of a general Harris process in complete generality and under minimal hypotheses; unfortunately,
a final publication of his paper never took place, and some points in his preprint version (e.g.

treatment of case @ = 1 where errors occur) have to be corrected.

We now state the general result under minimal hypotheses in a preliminary way; see section 3

(theorems 3.15 and 3.16 there) for the complete set of assumptions and the definitive formulation.

Theorem (preliminary version): Consider a strong Markov process X = (X;);>0, defined on
(A, (F)e>0, (Py)zer), with Polish state space (E,&), and with cadlag paths. Assume that X

is Harris recurrent with invariant measure pu.

a) For 0 < a < 1 and [(+) varying slowly at oo, the following i) and ii) are equivalent:
i) for every g nonnegative £-measurable with 0 < u(g) < oo, one has regular variation at 0 of

resolvants of the process X

(Rung) () = B ([ e P ds) ~ o pnte) oo

for p-almost all x € E (the exceptional set depending on g);

ii) for every integrable additive functional A of X, 0 < E,(A;) < 0o, one has weak convergence

(Atn)tZU
n/1(n)

in D(IR,, IR) as n — oo, under P,, for all z € E.

E,(Ay) we

For 0 < a < 1, the process W occurring in ii) is the Mittag-Leffler process of index «, i.e. the
process inverse of the stable increasing process S¢; for a = 1, W' is the deterministic process
id := (t)tZO

(Atn)tzo
v(n)
nondecreasing limit process W (with Wy = 0 and £(W7) not degenerate at 0) is available for

b) The cases in a) are the only ones where weak convergence of to a continuous

some norming function v.

c) Consider a locally square integrable local martingale M on (Q,A, IF, P,), cadlag and with

My = 0. Assume that its predictable quadratic variation (M) is a locally bounded process which



is an integrable additive functional of X.

If a)i) holds for some 0 < @ < 1 and some [(-) varying slowly at co, we have

1

1/2 o
n“/l(n) (Mtn)tZ[] (<M>l)) B(W )

- (B

(weak convergence in D(IR,, R) as n — oo, under P,).

1

If in addition the sequence (M3,)y>0, n > 1, satisfies a Lindeberg condition, we have

ne/l(n)
weak convergence of pairs
_ 1 1/2 o N
( IR0 <M>t”>t>0 = (B ()" BOV) (B, (M) we)

in D(IRy, R x IR) as n — oo, under P,.

Here our notations are as usual in semimartingale theory, see e.g. the book Jacod and Shiryaev
[J-Sh 87]; in particular, the predictable quadratic variation (M) of a locally square integrable
local martingale M is the unique predictable increasing process such that M? — (M) is a local
martingale. An extension of c¢) to multidimensional martingales M is straightforward: replace
B in ¢) by a multidimensional standard Brownian motion, and the covariance by the matrix
(B, ((M?, Mj)l)),;,j; where M*, M7 are the components of M. Also, by the ratio limit theorem,
the second assertion of c) yields convergence of martingales together with arbitrary integrable

additive functionals of X.

However, there is an essential difficulty related to this general formulation. Usually in applicati-
ons, one specifies a Markov process by its infinitesimal generator, and except some rare examples

there is no possibility to put hands in a sense of explicit representations on the semigroup
itself. As a consequence, explicit calculation of resolvents from the semigroup seems possible only
in very few cases, so condition a)i) is of rather limited practical interest. This is why the study of
processes with life cycles presents an interest in itself: various tools to calculate explicit norming
functions from tails of suitable life cycle distributions do exist. Some care is needed in order to
define properly these life cycles in continuous time. We state a preliminary rough version of the
result 'with life cycles’, see section 3 for the definitive formulation with all details, in particular
for our assumptions concerning life cycles (theorem 3.1 together with corollaries 3.2, 3.3, and

proposition 3.4).



Theorem (preliminary version): Assume that the Harris process X has a recurrent atom.
For suitably defined life cycles of X  with life cycle length distribution ' and appropriate
norming of the invariant measure, condition a)i) on resolvents of X in the preceding theorem

(with 0 < @ <1 and I(-) varying slowly at oo) is equivalent to

1

11—

r(t) == /0 (1 —F(x))dx ~

with same a and [(-), and in case a < 1 also equivalent to

1

1—F(z) ~ )

x “l(x), x1o0.

There are several points which are not treated in this text. First, we do not consider the case of
slowly varying norming functions; this arises e.g. in connection with two-dimensional Brownian
motion, see Kasahara and Kotani [K-K 79] or Hu and Yor [H-Y 98]. Here interesting time trans-
formations are non-linear, and only finite-dimensional convergence can be obtained: our text is
based on weak convergence techniques, functional in time, for semimartingales. Thus for the case
a = 0, we refer the reader to the work of Kasahara ([Ka 82], [Ka 86], [Ka 85]), and relying on
Kasahara here — Touati [Tou 88]. Next, we do not consider discrete time processes: for discrete
time, there are recent results of Chen ([Che 99], [Che 00]) who uses Nummelin splitting and ’spe-
cial functions’, but is interested in convergence of one-dimensional marginals only. Touati [Tou
88] treated the continuous time case parallel to discrete time: he has the discrete-time versions
of all above results. Third, there is work on strong approximation of additive functionals: see the

papers by Cséki, Csorgo, Foldes, Révész [C-C-F-R 92], and [C-C 95], [C-S 96].

The present text is organized as follows. First, there are two introductory sections: section 1
deals with Harris recurrence, and section 2 with stable processes and classical convergence to
stable laws. All our main results are formulated in section 3. Here subsection 3.1 is devoted to
processes X which admit a recurrent atom and thus i.i.d life cycles. Subsection 3.2 gives a family
of examples which apply the result with life cycles’ to classical one-dimensional diffusions, with
strong reference to Khasminskii (his explicit representation of tails of life-cycle length distributi-
ons in null recurrent one-dimensional diffusions is a key tool here). Finally subsection 3.3 states

the general result (without assuming existence of life cycles for X') under minimal hypotheses.



All proofs together then form the rest of our text: section 4 proves the ’sufficient part’ in case
of life cycles, section 5 the corresponding ’necessary part’, section 6 recalls classical Nummelin
splitting as introduced by [Num 78], and section 7 — devoted to general processes without life
cycles  constructs the family ()Z'm)m of processes 'accompanying’ X such that Nummelin-like
splitting can introduce atoms and life cycles artificially into )A(:m, at every stage m, and then

deduces the convergence theorem for X from the family of convergence theorems for (X™),,,.

We hope that the present text may contribute to make existing theorems on weak convergence of
martingales and integrable additive functionals in null recurrent Markov processes better known
in the probabilistic and statistical community, and may be useful as a self-contained reference in

applications such as statistical inference for stochastic processes.

Acknowlegdements : This text grew out of a working group on this topic organized by both
authors in the summer term 2000 at the University of Mainz. We thank Frau J. Gonska for skilful

typing of most parts of our manuscript.



1 Harris recurrence

This introductory section states some main facts about Harris recurrence. These facts will be

used througout this text. An essential reference is Azéma-Duflo-Revuz [A-D-R 69].

Throughout this note, we consider a stochastic basis (Q, A, IF'), IF right-continuous, and on
(Q,A,IF, (P,),) a process X = (X;);>0 which is strongly Markov, taking values in a Polish space
(E, &), with cadlag paths, and with Xo = = P,-a.s., x € E. We have shift operators (¢;);>0 on
(2, A, IF), and write (P;);> for the semigroup of X.

1.1 Definition: ([A-D-R 69]) X is called Harris recurrent if there exists some o-finite measure

m on (E, &) such that
(%) m(A)>0 = Vzek: P$(/ 1A(Xs)ds—oo)—1.
Jo
Sometimes also the terminology m-irreducible is used for (x).
1.2 Theorem: ([A-D-R 69]) If X is Harris recurrent, then there is a unique (up to constant

multiples) invariant measure p for X (i.e. a o-finite measure such that uP, = p for all t > 0),

and property (x) in 1.1 holds with u in place of m.

Definition: A Harris recurrent process X with invariant measure p is called positive recurrent

(or ergodic) if u(E) < oo, null recurrent if u(F) = oo.

We give the major ideas of the proof of 1.2; the notions developped here will reappear as main

tools in section 7.

Sketch of the proof of 1.2: For a > 0, the a-potential kernel is

Uz, A) = ET(/ e M1 4(Xy)dt) = / e “'Py(z, A)dt
0 0

i) A first step is to prove that uP; = u for all ¢ if and only if uU' = p. The nontrivial direction



is <=. The proof starts from the resolvent equation (see [Chu 82, p.83])
U =UP + (8- a)UUP =UP+ (B - a)UPU~
for all @ > 0, § > 0. In particular for o > 1
U'=U"+U'I, U
where I,_; is a multiplication kernel. Assume pU' = p, and « > 1; consider sets I' € £ with
u(T) < co. Then U*(z,T) < U'(z,T) and thus pU%(T") < oo; this gives
p(T) = pU() + (« = HuU*(T) = apU*(T) Va > 1.

Integrating the 1.h.s with respect to the probability law e “'dt gives

puU(T) = /000 e ' pu(l)dt.

Since pU*(T) = [ e~ uPy(T)dt by definition, we get

Va>1: / e~ uPy(T)dt = / e~ (T)dt.
Jo Jo

On open subsets of (0,00), Laplace transforms characterize the underlying measures on (0, c0)
uniquely, thus uP(T") = p(T') for A-almost all ¢ > 0 (with notation A\ for Lebesgue measure).

Since X is strongly Markov, t — P;(I") is continuous, and so we have puP;(I') = p(T") for all £ > 0.

ii) Let X denote a discrete-time Markov chain with one-step transition kernel U': this means
that the continuous-time process X is observed at the jump times of an independent Poisson
process with rate 1 (a typical reasoning in order to transfer results available in discrete time to
the continuous-time setting). By i), a o-finite measure y is thus invariant for X = (X;);>¢ if and

only if it is invariant for X = (Yn)nzo-

iii) Following Harris (see [Har 56]), the discrete time chain X = (X,),> is called Harris recurrent

if there is some o-finite measure m on (F,€) such that

(+) m(A) >0 = VzeFE: P, (ZIA(Yn)—oo)—l.
n=1
Replacing the random variable in (4) by its expectation, the following weaker property
(++) Jaz: Y (UY(x,A)=0] = m(A)=0
n=1




was used by Foguel; he showed ([Fog 66, thm. 4]) that (+4) implies the existence of a o-finite

subinvariant measure p for (X,,), which is dominating m:

pU' <p, m<p.

iv) Note that we have
oo

Hn(w = h  (
nE](U) (z, A) /0 Pi(z, A)dt
mce - - y tn71

The continuous-time process X = (X;);>0 is by assumption Harris recurrent, so this equality
shows that the discrete-time chain (X,,), has the property (++). By [Fog 66], there is a o-finite
subinvariant measure g for U' which is dominating m. Again by Harris recurrence of (X;);>o,

for sets A € £ meeting m(A) > 0 and (w.l.o.g.) u(A) < oo, we have

Voo Y (UY"(x,A) =0
n=1
together with finite bounds
N
Jln - w0h) SO ) = U p@A) < ) < oo
n=1

not depending on N: for y subinvariant, this implies
pw=pUt.

Hence p is invariant for (X,,), and by ii) also invariant for X = (X;)¢>0.

v) For the remaining parts of the proof we refer to [A-D-R 69]: p of iv) is the only invariant
measure for X, u is equivalent to mU?', and the property () in 1.1 holds with invariant measure

u in place of m. O

The above argument following [A-D-R 69] did not prove the discrete time chain X = (X,,),>0 to
be Harris if X' = (X);>¢ is Harris, establishing only the weaker property (4+) . The equivalence
of both properties is proved in the next theorem; here we will make use of the somewhat simpler

criterion (o) below to check Harris recurrence of a continuous time process.
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1.3 Proposition: (cf. Revuz-Yor [R-Y 91, pp. 395-396]) If X = (X;);>0 is strongly Markov
with invariant measure m and if

(o) m(A) >0 = Vzek: P_r<limsup1A(Xt):1):1,

t—o0

then () of 1.1. holds, and X is Harris.

Proof : Consider A € £ with m(A) > 0; put B; = fot 14(Xs)ds, t >0, and 7. = inf{t : B; > ¢}.
m being invariant for X, we have E,,(By) = m(A), so there is some ¢ > 0 with P,,(B; > ¢)
strictly positive, hence

m{z : Py(1. < o0) >a} > 0

for some a > 0. Property (o) then implies

limsup Px, (7. <o0) >a>0 Pgas forallz € FE.

t—o0
Write V; := 1j14709,<00)- For all € B, Px,(7. < o0) is a version of E,(Y;|F;). Ast — oo,
Y; converges to Y := 1n(; 4+ 09,<o0) Which is F-measurable. A corollary to classical martingale
t

theorems ([R-Y 91, cor. 11.2.4]) then shows

lim Px,(7. <o) = Y >a>0 Pyas forallz € FE.

t—o0

But Y is the indicator of a set, thus rg{f + 7.0 < o0} =Q Pg-as. for all z € E. This implies
{Bo =00} = {[;714(X,)ds = 0o} = Q P,-a.s. for all 2 € E, which is (%) of 1.1. O

We resume the discussion of Harris properties.

1.4 Theorem: The assumption
(H1): X = (X;);>0 is Harris with invariant measure p
is equivalent to any of the following properties (H2) or (H2%), 0 < o < o0:

(H2): X = (X,,)n>0 is Harris, with ,,—0,,_; i.i.d exp(1)-waiting times independent of X

(H2%): X = (X, )n>0 is Harris, with p,—p,, 1 i.i.d exp(a)-waiting times independent of X

. . ~ ~N o .
where we put g9 = pg = 0, and where the invariant measure for X or X is p.

Proof: We fix 0 < o < oc. By proposition 1.3, (H2*) implies (H1); we prove the converse.
Lift X to a standard extension (', A", IF" = (F{)i>0, (Py)zer) of (2, A, IF = (Fi)i>0, (Pr)acE),

11



with shifts again denoted by (19t)t20, on which X is strongly Markov and where p,,—p,_1, n > 1,
are 1.i.d exp(a)-waiting times independent of X .

(This is done as follows: let ©” denote the space of all functions f : IR, — INy which are
cadlag, piecewise constant, with jumps only of height +1 and f(0) = 0, equipped with o-field
and filtration generated by the coordinate projections m(w") = &"(t): A" = o(m = t > 0),
F" = (F')i>0, F{' = o(ms : 0 < s <t). Then [F" is right-continuous. We take P" the unique
law on (9", A”) under which the canonical process (m;); is a Poisson process with parameter «.
Then Q' := QOxQ" A" .= ARA", F| = F;&F,, P, := P,®P" is the desired extension, we take
X (W) = X(w), () :=m(w") if ' = (W', w), and (p, ), the sequence of jump times of 7.)

On (Y, A" IF', (P.).cr), we define processes

t
N=|> 1x,, earlfpn.oo(t) , N= </0 alA(Xs)d5>t>U

nzl >0

where A € £ is fixed. Then N — N is a (IF’, P!)-martingale for every = € E. Using Lepingle ([Le
78]), we know that N; increases to oc Pj,-a.s. on the event {lim; N, = oo}. But this event
equals { [7°14(X,)ds = oo}. If X = (X;)¢>0 is Harris with invariant measure p, then p(A) > 0
implies P}, ([ 14(X,)ds = c0) =1 for all # € E: so Pj-as. for all z € E, (X,,), visits the set

A infinitely often. O

Convention: From now on we assume throughout this note that X = (X;);>¢ is Harris recurrent

with invariant measure pu.

1.5 Definition: An additive functional of X is a process A = (A4;);>0 with the properties
(i) A is [F-adapted, Ay = 0;
(ii) all paths of A are nondecreasing and right-continuous;

(iii) for every x € F and for all s,t > 0, we have Ay, s = Ay + A,09; P, —as..

See Revuz-Yor ([R-Y 91, p.371, p.78]). Examples of additive functionals of X are

t
At:/ g9(Xs)ds
0

12



for g > 0 bounded measurable, or counting processes based on the point process of jumps of X

MX = Z €(s,Xo—,X5)

s>0:|AX >0
where ¢, is Dirac measure sitting in a, or (suitable versions of) local time in case where X is a

one-dimensional diffusion. For every additive functional A of X, f(t) := E,(A;) is linear in ¢, and

va(B) := Eﬂ(/o] 15(Xs)dAy) = %EN(/;IB(XS)(],AS) , Beé&

defines a measure v4 on (E,£). The additive functional A is termed integrable if
[vall == va(E) = Eu(Ar)

is finite. As an immediate consequence of this definition, we note

1.6 Remark: a) For A = id (i.e. A, = t, t > 0), the measure v;4(B) = u(B), B € &, is the
invariant measure pu for X.

b) For Ay = [ 14(X,)ds, A" € £, we have vy = p(- N A’) and thus [[va]| = u(A').

We quote the ratio limit theorem (RLT) for additive functionals of X.

1.7 Ratio Limit Theorem: ([A-D-R 69]) For additive functionals A, B of X, 0 < |jvg]| < oc,

E.(A
(i) lim o(Ar) = V4l p—a.s. (with exceptional set depending on A, B),
t=oe Ep(Br)  |lvall
A
i) tim A=l v
t=oe By lugl|

Write (R))x>g for the resolvent of X:

(Raf) (&) = ( [T ds) Y

J0

Then the RLT for additive functionals of X implies a RLT for resolvants of X as A\ — 0.

1.8 Corollary: For f, g nonnegative, &-measurable, 0 < u(f) < oo,

i U9 (@) plg)
As0 (Baf) (2)  p(f)

p-a.s.  (with exceptional set depending on f and g).

13



Proof: It is sufficient to consider f,g with 0 < u(f), u(g) < co. By partial integration, write

(Rag) (z) = /0 T e M B, (A7) ds

with A = fotg(Xs)ds. By Harris recurrence, F, (A7) increases to oo as t — oo, for all z € F,

thus (R)g) (x) increases to oo as A | 0. For fixed ¢y arbitrarily large, we have

(Rag) () = o)+ [ e B (A7) ds, A0

Jtg

whereas by the RLT for additive functionals, there is some p-null set Ny, such that % con-
7n (Al

verges to % as t — oo for all ¢ Ny . Both arguments combined show 1.8. O

In some cases, we have naturally a decomposition of the trajectory of X into i.i.d. excursions
away from some recurrent atom - two examples are given below, two others at the end of this
section. In some cases, Nummelin’s splitting technique ([Num 78], see section 6) allows to intro-

duce recurrent atoms artificially.

1.9.A Definition: We call atom for X a set A € £ such that

i) op :=inf{t >0: X, € A} and 74 :=inf{t > 0: X; ¢ A} are [F-stopping times;
ii) for x € A, L(X;,|Xo =) =: ps does not depend on z € A.

An atom A is called recurrent if Py-a.s. for all z € A: VN 3¢t > N with X; € A.

Examples: a) Consider the one-dimensional Ornstein-Uhlenbeck diffusion dX; = —aX;dt + dW;
with @ > 0. The process is Harris (take m the Lebesgue measure in 1.1); A = {0} is a recurrent
atom, with p,4 the Dirac measure at 0.

b) Fix some measurable function A on IR taking values in some interval [a,b], 0 < a < b < o0,

define a transition probability =(-,-) on (IR, B(IR)) by
m(z,) = N(x—xp,1) if 2 >2, =(x,:):=N(0,1)if 2 < xg

with g > 0. Consider the Markov step process X = (X;);>¢ having exponential holding times
with parameter A(z) in states z € IR, and successor states for x selected according to m(x, -). This
process is Harris (sets of positive Lebesgue measure will be visited infinitely often in the sense of

1.1) and admits A = (—o0, ] as a recurrent atom, with p4 given by N(0,1) conditioned on A€,

14



cf. 1.9.A ii).

To a recurrent atom, we can associate a sequence of IF-stopping times (R,,), which decompose -
by the strong Markov property - the path of X into i.i.d excursions [R;, Ri11[, i = 1,2, ..., plus

an initial segment [0, R1[.

1.9.B Definition: A life cycle decomposition of X associated to a recurrent atom A is a sequence
(R,)n of IF-stopping times increasing to oo (Ry = 0) such that P,-a.s. for every x € E:
HVn>1: R, <occand R, =R,,_1+RyoVp, ,;

ii) Vn > 1: (Xg,+t)i>0 is independent of Fp— with L(Xg, ) = pa

where p4 is given in 1.9.A (thus a.s. all R,,, n > 1, are times where the process leaves A).

Examples: a) In the Ornstein-Uhlenbeck example a) above, one may take
Ry :=inf{t > Sy : X; =0}
where Sj is an independent exponential time. One may take as well
Ry :=inf{t > Sy : X; =0} with Sp:=inf{t > 0:]X,| > 1}

or more generally Sy := inf{t > 0 : X; € B} where B € B(IR) has positive Lebesgue measure and
does not intersect some e-neighbourhood of 0, ¢ > 0. There are i.g. many ways to define stopping
rules Ry meeting 1.9.B.

b) Any atom with p(A) > 0 is a recurrent atom. In this case one may take
Ry = inf{t > S0 Xy ¢ A}

where Sj is an exponential waiting time spent in the atom A. In particular, this applies to the

Markov step process example b) above.

1.10 Proposition: If X has a recurrent atom A, then for every life cycle decomposition (R,,),
associated to A:

a) the invariant measure p (unique up to constant multiples) is given by

Ry
H(A) = st E(/ L (X)ds), A' €€
Ry
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b) X is positive recurrent if and only if F(Ry — Ry) < oc.

Proof: Consider additive functionals A, B, with 0 < ||vg|| < co. Then by SLLN

n B(Ap — A
lim = = lim _ E(Ar, — Ar)) P,-as. V.
t—o0 Bt n—o00 BRn E(BR2 — BR1)

The RLT yields

A vl
lim — = P,as. Vazx
t=oo By g

which together give
||VA|| = cst E(AR2 - AR1)

up to some constant which does not depend on A. Considering in particular A; = fot 14 (Xs)ds,

A" € &, assertion a) follows from 1.6.b); then p has finite total mass iff E(Ry — Ry) < oo. |
We end this section with two more examples illustrating definition 1.9.A.

1.11 Example: The process X = (X;); under consideration is of the following type: piecewise on
suitable random intervals, the first component X! is a Brownian motion; the second component
X? attributes ‘colours’ 0 or 1 to the trajectory of X'; this colour is initially 0, later changes to
1, finally a jump occurs in the first component; this jump time is a renewal time for the process,
thus "IR coloured 1’ will be an atom for X.

a) Prepare on some ({2, F, IF, P) a real valued IF-Brownian motion and a [F-standard Poisson
process N, independent and both starting from 0. Define a transition probability K(-,-) on
E =R x {0,1} as follows:

1 1
K((m,O),-)::em®<560+§e1>, K((z,1),) =v®e, z€R

for some fixed probability law v on (IR, B(IR)), and ¢, the Dirac measure at a. Let (7}); denote

the sequence of jump times of N. The process X is constructed as follows: first, put
X, =(Bs,0), 0<s<Ty,
then successively for j > 1, select X7, according to K(XT{, -), and put
Xy = (X}, + (B, Br),X},) . Ty <s<Tpp.
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The resulting process X is defined i.g. on an extension of the original (Q,F,F,P). On this

t>0.

Y

extension, let IFX denote the filtration generated by X: FX = gt()'(Xs 0<s<r)
T

Then X is strongly Markov w.r.t. IFX, with Polish state space, and is Harris (take m in 1.1 such

that its restriction to IR x {0} and IR x {1} is Lebesgue measure on IR).

X admits A = IR x {1} as recurrent atom with ps = r®eg, and the rule
R] = inf{Tj+1 ] 2 1/XT7 € A}

generates a life cycle decomposition (R,,),>1 for X according to 1.9.A+B.

Note that (Xp,4¢);>0 is independent of .7-'1;(;, but not of Fj .

b) A more general variant of the example in a) could be formulated using suitable position de-
pendent killing of X at rate x(-) — if X is in position (z,0) at time ¢, colour will switch to 1 in
a small time interval (¢,t4h| with probability x(z) h 4+ o(h) — instead of killing at constant rate

1 as above.

1.12 Example: Consider a Markov step process (X;);>o with Polish state space (E,&), Harris
recurrent, with exp(\(x))-distributed holding times in states © € E () is measurable and takes
values in [a,b], 0 < a < b < o0), and with successor states for x selected according to a transi-
tion probability 7(-,-) on (F,£). In general, X will not have a recurrent atom. Let (7;); denote
the sequence of jump times of X. Since A is bounded and bounded away from 0, also (Xr,); is
Harris with one-step transition probability © (compare with the completely different situation
in Proof of 1.2, steps ii) and iii)). Let us assume that x(-,-) satisfies Nummelin’s minorization
condition (M) with k = 1, see [Num 78]. Then Nummelin’s splitting technique applied to (X7, );

yields a representation of (X;);>¢ as first component of a ’split’ process (X;);>o with state space

E* = Ex{0,1} such that X* is again Harris and admits a recurrent atom A* C E*. See section 6.
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2 Stable increasing processes and Mittag-Leffler processes

In this section, we collect some main facts about one-sided stable laws, their domains of attraction,
stable increasing processes and their process inverse called Mittag-Leffler processes. The main
references are Feller ([Fe 71]) and Bingham-Goldie-Teugels ([B-G-T 78]). For regularly varying

functions and their properties, we refer always to [B-G-T 78].

2.1 Definition: A mesurable function £ : (0,00) — (0, 00) is slowly varying at oo if

. ()
lim

=1 VA>0.

The class of slowly varying functions is denoted by RVj. A mesurable function r : (0, 00) — (0, 00)

is reqularly varying at oo if it is of form
r(x) =4(x)-z¢, x>0 (€RV, o€IR,

where g is termed index of regular variation. The class of functions varying regularly at oo with
index o is denoted by RV,, o € IR, and RV is the class of regularly varying functions with arbi-

trary index.

These notions go back to Karamata, about 1930. Examples of slowly varying functions are

((x) = log(z) and its iterates log,,(z); with £(-) also l(]—_) is slowly varying. We mention that

r(Ax)

for r € RV,, the convergence @ A% as ¥ — oo is (at least) uniform in A € K for arbitray

compacts K contained in (0, 00), see [B-G-T 78, thm. 1.5.2].

2.2 Definition: A probability law F on (IR, B(IR)) is called (strictly) stable if
£(X] +...+Xk) :E((IkX) , ke N

for (X,,),>1 ii.d. with £(X;) = F and for suitable choice of a norming sequence (ag ).

The word ’strictly’ will be omitted in the sequel.

2.3 Theorem: ([Fe 71, XIIL.6]) For 0 < a < 1 the function ¢, (\) = e ™" is the Laplace trans-
form of a probability law G, with the properties

i) G, is concentrated on (0, 00);
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ii) G, is stable and a,, = n'/®;

m)1cau)~fg%;5

(G, is called the one sided stable law of index «, 0 < a < 1.

(x — 00).

Domains of attraction of G, 0 < a < 1, are characterized as follows.

2.4.A Theorem: ([Fe 71, XIII.6]) Consider a probability law F' concentrated on IR, a norming
sequence (a,),, and a probability law G on [0, 00) which is not a Dirac measure.

a) Assume weak convergence of rescaled convolutions:
(%) F*™(a,x) = G(z) (n — o0)

at all continuity points of G. Then there is some 0 < @ < 1 and some £ € RV| such that

x%(x)

(xx) 1—F(x)~m

(x — 00).

b) If the tails of F' satisfy (*x) for some 0 < o < 1 and some ¢ € RV}, then (x) holds with G = G,

and a,, = a(n) where a(-) is an asymptotic inverse to

1
i mwa—Fmy < e

ie.n-fl(a,) ~al as n — oco.

There is a case a = 1, covering the SLLN and more generally 'relative stability’ in the termi-
nology of Bingham, Goldie and Teugels [B-G-T 87]. In 2.4.A limit distributions G concentrated
at one point in (0, 00) were excluded. Write G for the Dirac measure sitting at 1; obviously G,

meets 2.2 with a,, = n. Domains of attraction of Gy are as follows.

2.4.B Theorem: ([B-G-T 87, 8.8]) Consider a probability law F' concentrated on IR, with

t 00
mo:/ummmT/'Mwm<w
Jo Jo
and a norming sequence (a,),. Then weak convergence

(%) F(an-) = G1(-) (n— o0)
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is equivalent to
(%) r € RVj.

Under (%), (%) holds with a, = a(n) where a(-) is an asymptotic inverse to

Y

t
t— —— € RV,

r(t)

ie.n-r(a,) ~ a, as n — oo.

As a consequence of 2.4.A and 2.4.B, there are no other stable laws concentrated on (0, c0) except

Ga, 0 < a <1 (up to scaling by a constant).

2.5 Definition: A stable increasing process of index o, 0 < a < 1, is a process X with the
following properties:
i) all paths of X are cadlag and nondecreasing, and Xy =0 ;

ii) X is a PIIS (independent and stationary increments) with E(e = *Xt) = e~ A >0, ¢ > 0.

We write S® for the stable increasing process of index a, 0 < @ < 1. Note that i)+ii) of 2.5 define
a unique probability law on the Skorohod space D(IR, ,IR) with Borel-o-field D and canonical
filtration @&. Defined on a suitable stochastic basis (e.g. on (D, D,&)), S is necessarily a Feller
process and thus strongly Markov. In 2.7 below we will give a construction of S®. Note that by

definition, almost all paths £ — S;* increase to oo as t — oo and do not have flats.

2.6 Definition: For 0 < o < 1, the process inverse of §¢
W =inf{s >0: S¢ >t}, t>0

is a process W with W = 0, nondecreasing, having almost all paths continuous and increasing

to oo as t — oc. W is called Mittag-Leffler process of index a.

In the sequel, we shall always use versions of S where all paths ¢ — S§* increase to oo ast — 0o
and do not have flats, and versions of W having all paths continuous and increasing to co as

t — oo. We shall also need a definition of S* and W for a = 1: we take S' = W' = id, the
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deterministic process.

In order to prepare for the essential point in the limit theorems of section 3 (the independence of
Brownian motion and stable process involved in the limit, see 4.12 and 4.21 below), we discuss

in detail the structure of the stable increasing process S®.

2.7 Remark: (see Ito-McKean [I-MK 65, p.32]) Let u(dt,dx), t € R, € IR, denote Poisson
random measure (PRM) on some (92, A, P) with intensity v(dt,dx) = dt m(dz),

Cal(ﬂ,oo)(m) v
(1 —a)zot! ™

m(dx) =
By definition (e.g. [I-W 89, 1.8]), Poisson random measure p(dt, dz) is an integer-valued random
measure on IR, x IR, characterized by the properties:
i) for F € B(IRy)®B(IR,): the r.v. u(F') has Poisson law with parameter v(F);
ii) for pairwise disjoint sets Fy ..., F,, € B(IRy)®B(IR,), u(Fy),...,u(F,) are independent.
Define

Sy = /t/ zp(ds,dx) , t > 0.
0 J(0,00)

Up to the scaling factor ¢, this gives a version of the stable increasing process S with
E(e™™) =" ' X>0,t>0.
This is seen as follows: Approximate the process X; := e~ 5% by

n-2"
t b
—s Z fo f(k71 L] ?,rl'-l#(ds,dﬂ:)
k=1 PO ]

X i=e
Then X" | X;, n — co. By independence of z ((0,#] x (’“22] ) 2%]) for k=1,...,n2", we see
E(e ) = limE(X])
n-2"
= lim [[E [E*S%H((MX(%%D]
" k=1
VS () (¢ 1)
= lim e #=
ni>>o eft f(o,oo)(lfe*”)m(dz) — pcts?
where by partial integration
/ (1 —e*")ym(dx) = /(1 —e Mz * dr- _C s
(0,00) (1 a)
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Independence and stationarity of the increments of S follow directly from the corresponding
properties of PRM. We prove that S; < oo for all £ > 0, a.s.. Contribution of small jumps

t zu(dt, dz) is summable a.s. since 0 < a < 1 implies
Jo f(o,]} pldt, p

t 1
c
zv(dt,dx) =t / ar Ydr  ———— < o0 .
/0 /(0,1} 0 L1 —a)

There are only finitely many big jumps over finite time intervals: p ((0,¢] x [1,00)) < oo a.s. since

v((0,¢] x [1,00)) =t - /]OO ax” Ldx - ﬁ < o0.

Thus N¢ :={w € Q2 : S, (w) < oo V¥ n} is aset of full measure, and paths of S are right-continuous
and nondecreasing on N°. Moreover P(S;y, = Sy) = P(u((t,t + h] x (0,00)) = 0) = 0, so paths
of S a.s. do not have flats. § being a PIIS, the paths of S a.s. increase to co. Modifying the paths

of S on a set of measure 0, we get all path properties required in 2.5. O

2.8 Remark: ([Fe 71, p.453]) For 0 < a < 1, W has Laplace transform

n

(=N
) = 7/ yna
YY) HZ:O I'(1 + na)
and thus admits finite moments of arbitrary order n > 1

n!
(1 +na)

my,(t) = ne,

zl/a

Note also that P(W? < z) = P(S§ >t) =1—-P(Sy <t)=1-— F( £ ) where F' is the

distribution function of of S{*. Using the last expression one has
LW) =L((S1)):

this representation of the Mittag-Leffler law appears e.g. in Khasminskii [Has 80, Ch. IV.11].

2.9 Remark: For a = %, stable increasing process S'/2 and Mittag-Leffler process W'/2 occur in
well known connection with one-dimensional Brownian motion. First, by [R-Y 91, p. 76, p.102],
the process of level crossing times of Brownian motion is equal in law to 25%/2. The process
inverse to 25'/2 is %W]/Q. Thus %WVQ is equal in law to the maximum process of Brownian
motion, or to local time of Brownian motion in 0 with choice of norming constant such that local

time is an occupation time density: see [R-Y 91, p. 223, p. 207-209].
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3 The main theorem

In this section, we state the main theorem on weak convergence of integrable additive functionals
and local martigales whose predictable quadratic variation is an integrable additive functional of
the Harris process X (the integrability assumption is crucial and in null recurrent cases indeed a

restrictive condition).

The theorem has a long history. A key argument for one direction of the proof is the clas-
sical Darling-Kac theorem ([D-K 57]) on necessary conditions for convergence in law of (one-
dimensional marginals of) additive functionals of X. In the other direction, the proof relies on a
paper by Greenwood and Resnick ([R-Gr 79]) who study weak convergence of bivariate random
walks where one component is attracted to a Gaussian and the other to a stable limit process,
with strong reference to P. Lévy. In a highly interesting but unfortunately never published paper,
Touati ([Tou 88]) gave the theorem in very general form (general state space, Nummelin splitting
applied to continuous time, and avoiding restrictive Darling-Kac conditions; a gap left was the
case of relative stability which was ignored there, and some lines of argument — namely for Num-
melin splitting in continuous time — which seem problematic). Touati’s arguments relied heavily
on semimartingale theory and weak convergence of processes in the sense of the book Jacod and
Shiryaev ([J-Sh 87]). For related work, see [Bin 71|, [B-G-T 87, ch. 8.11]; see Khasminskii [Has
80, ch. IV.10-11] for one-dimensional diffusions; a note on Markov step processes with countable

state space (where things are much simpler) was [Ho 88].

One application of this theorem is in a context of local asymptotic statistics where convergence of
the score function martingale is essential for convergence of statistical experiments (weak conver-
gence of filtered statistical experiments to Gaussian or Mixed Gaussian limit models), or simply
when convergence of e.g. maximum likelihood estimators is considered: see [Lu 92|, [Lu 94], [Lu
95] for general semimartingale models, see [H-J-L 90], [H6 90 a, b], [Ho 93 a, b] for Markov step
processes, [Lo 97], [Lo 99 a-c] for systems of diffusing particles with branching and killing; for
ergodic diffusions, see the forthcoming book of Kutoyants [Ku 01]; there seem to be relatively few
cases of models for null recurrent diffusions where the above integrability condition indeed holds,
see [H-K 01] for an example. It is interesting to note that 'martingale convergence theorems’

typically can not deal with general nullrecurrent cases (the reason is that martingale convergence

theorems need convergence in probability of angle bracketts; in most null recurrent cases there is
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only convergence in law).

The section is organized as follows. In subsection 3.1, we state the theorems in case where the
Harris process X has life cycles. Subsection 3.2 is devoted to examples. Subsection 3.3 states the
theorems for general Harris processes where no life cycles exist. All proofs will be postponed to

sections 4, 5, 7.

3.1 Processes with life cycles

If X has life cycles, the main result is theorem 3.1 together with its corollaries 3.2 and 3.3.
The ’sufficient part’ of the assertion (regular variation of tails of life cycle length distribution
implies weak convergence of normed and linearly time-scaled martingales or additive functionals
to suitable continuous limit processes) will be proved in section 4 below (see 4.12 and 4.22).
The ’'necessary part’ (there are no other possibilities for weak convergence to continuous limit

processes, under linear time-scaling and suitable norming) will be proved in section 5 (see 5.27).

In this subsection, we assume the following for the process X:

(H1): X = (X¢);>0 is Harris with invariant measure y;

(H3): X has a recurrent atom A € £ and a life cycle decomposition (R,,),>1, see 1.9.A + 1.9.B;
(H4): There is some function f, bounded, nonnegative, £-measurable, 0 < u(f) < oo, such that

Ry

y — B, < f(Xy) ds) is bounded on F ;
Jo

below, functions f with this property will be called weakly special for X and Ry.

We will describe at the end of this subsection (see proposition 3.4 below) a large class of life cycle

decompositions (R,), which satisfy (H4).

Let M?!°¢(P, IF) denote the class of locally square integrable local (P,, IF)-martingales, cadlag
and with My = 0. Here P, is some probability measure on (€, A, IF') as in the beginning of section

1. For M € M>!°¢(P,, IF'), the process (M) is (a version of) the predictable quadratic variation
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of M (or angle brackett) relative to P, and IF', and [M] is the quadratic variation (or square

brackett) of M. We assume that M meets the following assumptions:

(H54): M has the property
Vy.Vs,t: My, — M= DMgod; Pyas.;

the processes (M) and [M] are additive functionals of X', and E, ({(M);) < oc.

(H5B): For the life cycle decomposition (R, ), of (H3), M satisfies either (x):
(%) M, is measurable with respect to F -, for all n > 1
or the following (xx):

(%) R,41 — R, and M — M® are independent of Fg,, foralln > 1.

Assumption (H5P) guarantees that the martingales under consideration accumulate independent
and square integrable increments over life cycles of X. This is not obvious: for the Harris process
of example 1.11 a), examples of martingales meeting or violating (%) or (x#) of (H5?) will appear

in 4.27 below.

3.1 Theorem: For suitable choice of a norming function v(-) 1 oo, consider a rescaled sequence

1
. <7M) |
v(n) 150

satisfying the Lindeberg condition

1 tn
] / /m2 1{‘ bgm}y(ds,dm) — 0 in P,-probability, for all ¢, all € > 0
n Jo . x vn

v
where v(ds, dx) is the compensator of the point process of jumps of M under P,.
a) If there is some limit process W = (W;);>0, with Wy = 0 and £(W;) not concentrated at (
such that
MrEs W
(weak convergence in D(IRy, IR), under P,, as n — oc), then only the following cases can arise:

either W = J'/2 B with standard Brownian motion B, and with .J € (0, c0) a constant,
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or W=JY2BoW®" for some 0 < a < 1, where W is a Mittag Leffler process independent of
B, acting as time change for the Brownian motion: B o W = (B(W#));>0.
b) One has
M5 JV2B & reRV

where r is the function

t

r(t) :/ P(Ry — Ry > z)dx.

0

In this case, norming function v up to asymptotic equivalence and limiting constant J are

given by
o(t) ~ t/r(t), t—o00, J=E(KM>p, —<M>p).

¢) For 0 < a < 1, one has
M" L5 JU2BoW® «— t—P(Ry—R; >t) €RV_,;
in this case, norming function and limiting constant are

o) ~ TQ—a)P(Ry— Ry >1t)) ', t—=o00o, J=E(KM>p, —<M>p,).

Remark : a) If X is ergodic, we have r(o00) = E(Ry — Ry) < oo and thus y/n-norming for

martingales M € M2 -

loc*
n

v(n) ~ ———— |
") E(Ry — Ri)
b) In the ergodic case, the martingale limit theorem (see [J-Sh 87, VIII.3.22]) applies and the

n — oo.

assertion of theorem 3.1 could be derived from it. The same is true in the limiting case of 'rela-
tive stability’ (null recurrence with index o = 1). In null recurrent cases with index 0 < o < 1
however, we do not have convergence in probability of angle bracketts of martingales, but only

convergence in law: so a basic assumption needed in martingale convergence theorems fails.

3.2 Corollary: In parts b) and c) of theorem 3.1 we also have the stronger assertion (recall the
convention W = id)

(M, < M™ >) £ (,ﬂ/?B oW JW“)

(weak convergence in D(IRy, IR x IR), under P,, as n — o).
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We mention that the proof of the 'sufficient part’ in the above assertions (regular variation at oo
of tails of life-cycle length distributions implies weak convergence of rescaled martingales to Brow-
nian motion or to Brownian motion time-changed by an independent Mittag-Leffler process) does
not need all assumptions made above. The Lindeberg condition comes in to prove that arbitrary
weak limits of sequences of rescaled martingales are again martingales, and that convergence of
martingales implies weak convergence of their brackett processes. Condition (H4), introduced by
Touati [Tou 88], is needed to prove that regular variation of tails of life-cycle length distributions
is necessary for weak convergence: it replaces the original Darling-Kac condition which is rather
intractable (except in simple cases such as countable state space). The following corollary 3.3

reduces to merely notational changes in the proofs leading to 3.1 and 3.2.

3.3 Corollary: 3.1 and 3.2 remain true for d-dimensional M = (M")j<;cq € M3 (Py.IF)
provided

E(< M7 >p, — <M >p)<oc0,1<j<d:

it is sufficient to replace B by a d-dimensional standard Brownian motion and to take

J = (J(i’j)>ij:] = (B MM >y = < MU M SR))

At the end of this subsection, we discuss a large class of life cycle decompositions which satisfies
assumption (H4). For (-) &-measurable, [0, 1]-valued, p(x) > 0, write T, for the stopping time
corresponding to position-dependent killing of X at rate x: this means that conditionally on the
event that f,.i has not occurred up to time ¢, it will occur in a following small time interval (¢, ¢+h]
will probability «(X;) h+o(h), h L 0. If k is of form 15, B € &£, u(B) > 0, we write for short Tp
and speak of killing of X in B at rate 1;if B = F, fp is simply an exponential waiting time. In
general, killing times are stopping times on an extension of the original (€2, A, IF'), but this will
not appear in our notations. For sets B € £, a first entry time to B is denoted by T’g; obviously

one has Ty < T\B. The following proposition will be proved in section 5 (see 5.28).

3.4 Proposition: A sufficient condition for (H4) is as follows: the life cycle decomposition in
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(H3) is defined from a stopping time Ry of form

(+) Ry < Sp+ max Tp, odg,, Sy < max T

: : Kj
1<i<i 1<j<m

where B; are sets in £ with p(B;) > 0, and &;(-) are £-measurable, [0, 1]-valued, with pu(k;) > 0.

Examples: We continue the examples discussed in section 1 after the definitions 1.9.A + B.
a) For the one-dimensional Ornstein-Uhlenbeck diffusion dX; = —aXdt + dW; with a > 0,
A = {0} is a recurrent atom; then (H4) holds for the three choices of life cycle decompositions

specified there. We show this in case
R1:inf{t>So:Xt:0}, nginf{t>0:XtEB}

where B € B(IR) has positive Lebesgue measure (thus p(B) > 0, the invariant measure being

p=N (0, ;—a) ) and does not intersect some e-neighbourhood of 0. Ry has form (+) in 3.4 since
Sy < max{fBﬂfo} , Ry < Sp+max{Tp+, Tz }odg,

in case where both sets BT := BN (0,00), B~ := BN (—0c0,0) have positive y-measure; if B
coincides with BT, this simplifies to Sy < f3+ and Ry < Sy + Tg- odg,.

b) If the Harris process X meeting (H3) has an atom A of positive mass u(A) > 0, life cycles

R

Ry = inf{t >S5y X, € AC}

(first entry times to A¢ after an independent exponential time spent in A) satisfy (H4).

3.2 Examples

For Harris processes with recurrent atom and life cycle decomposition meeting (H4), the theorems
in subsection 3.1 require quite complete knowledge on regular variation of tails of life cycle length
distributions in the null recurrent case, and on integrability with respect to invariant measure. In
this subsection, we illustrate the results of subsection 3.1 by some examples. For one-dimensional
diffusions, the necessary results on regular variation of tails of tails of life cycle length distri-

butions have been proved by Khasminskii ([Has 80], [Kh 00], [Kh 01]). We give the details in

Y
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examples 3.5 and 3.10 below; example 3.9 considers the ’classical’ special case of one-dimensional
Brownian motion. For birth and death processes (see Karlin and McGregor [K-MG 61]) and for
branching processes with immigration (see Zubkov [Zu 72] and Pakes [Pa 75]), regular variation
of tails of life cycle length distributions is available under conditions on the birth-, death-, or
branching rates in large populations, in which case also asymptotic behaviour of invariant mea-
sure is known. More sophisticated examples can be treated on this background, e.g. for finite
systems of diffusing particles with branching and immigration where the void configuration is an
atom for the process; under suitable conditions, the particle process is Harris and has the void
configuration as recurrent atom of positive mass under the invariant measure; see [H6-L6 99 a,b],

[L6 99 a,b,c] and the references quoted there.

3.5 Example: We consider one-dimensional diffusions.

a) A one-dimensional diffusion dX; = o(X;)dB; with ¢ continuous and strictly positive (thus
nonexploding in finite time, see [K-S 91, p. 332]) is Harris recurrent with invariant measure
UZL(T) dr (write X as time-changed Brownian motion and use [Le 78]). Assuming in addition that
o is locally Lipschitz and satisfies a global linear growth condition, Khasminskii [Has 80, sections

IV.10-11] gives a sufficient condition for regular variation of tails of life cycle length distributions

with index —«, 0 < a < 1. He uses life cycle decompositions (R,,),, defined by
(3.5") R,=inf{t >S,: X; =0}, S,=inf{t >R, 1:X;=1}, n>1, Ry=

(which satify (H4), see 3.4 above) and calculates ([Has 80, lemma 10.5])

Ro 9
(3.5") B( [ f0c)as) =, nian) = —sas
Ry o (x)
f nonnegative, measurable, in L'(;). Khasminskii’s condition is
2 2 _
(3.6) ~AYEP = 400, —— ~ A |z)?, 2 —» —0
o?(x) o?(x)

with §:= -2+ & > —1 and nonnegative constants AT, A~ meeting AT + A~ > 0 (here AT =0

is written for ”%(T) = o(|z|?) as & — +00); he shows that (3.6) implies

(3.6') P(Ro—R1>t) ~ ((?2:2)(14)0) ) oo,

This is proved in [Has 80, theorem 11.2, corollary, remark 3, theorem 11.3], or in [Kh 00, theorem

2.2] with a different proof, see also [Kh 01, theorem 1.1]. So the result on convergence in law of
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integrable additive functionals of X

P(Ry— Ry >t) ~ct™, t — — ! /f )ds = u(f)WT'
E 1 ‘ 7 = (F(l—a) (RQ—R1>t i a !

([Has 80, theorem 11.1], [Kh 01, theorem 1.1]) is — via RLT — a special case of theorem 3.1 and

corollary 3.2 above.

b) A one-dimensional diffusion dX; = b(X;)dt + o(X;)dB; is Harris recurrent with invariant

measure equivalent to Lebesgue measure if the function S

(3.7 sta) = [ sy st = (= [ Ztwiao)

a

is a space transformation on IR, i.e.

lim S(z)=—-00, S(0)=0, lim S(r)=+4oc0

rT——00 r— 400

(see [Has 80, example 2 in section I11.8]). In this case, the process X := (S(X4))i>0 is a diffusion

without drift, with same passage times to 0 as X, and with diffusion coefficient
(3.8) o=(s-0)08!

where S~ is the function inverse of S on IR; the invariant measure of X is given by

(3.8) u(dz) 022@) exp (/0 j__l;(v)dv) de, weRR

3.9 Example : We consider ’classical’ results in case of one-dimensional Brownian motion.

a) In the special case 0 = 1 of 3.6.a), X is Brownian motion; for the life cycles as there one has

E(ef)‘(RrRl)) = 672"/5, A>0
([R-Y 91, p. 67]) and thus L(Rs — Ry) = L(8 51/2) As a consequence (cf. 2.3),
t 2
P(Ry— R >t) ~ P(S\* > o)~ 2\/it1/2, t— oo
7T

By theorem 3.1 and corollary 3.2, for f € L'(u), we have weak convergence in D(IR,,IR) as

(n)
%/ﬂ f(Xs)ds — /f Wl/2 t — oo.
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Note that %WVQ is the process inverse to 2.5'/2. Since 25"/? is equal in law to the process

1

V2
to the maximum process B* := (maxg<s<; B,);>0. For local time of Brownian motion defined

of level crossing times of Brownian motion B ([R-Y 91, p. 67, p. 102]), W12 is equal in law
as occupation time density ([R-Y 91, p. 207-209]), the process %WVQ is thus equal in law to
local time at 0 of Brownian motion ([R-Y 91, p. 223]). In this form, weak convergence of additive
functionals of Brownian motion has been proved by Papanicolaou, Strook and Varadhan ([P-S-V
77]), reported by Hu and Yor in their survey [H-Y 98, theorem A.1].

b) [P-S-V 77] also prove that for f in L'(x) having compact support and pu(f) = 0

1
nl/a

/('n) f(X)ds —  CV2Bo (w2
0 V2

(weak convergence in D(IR,,R), as n — o) with

oo ([ )

Applying the Ito formula to the semimartingale 2F(X), F(z) := [*__dy [Y__dzf(z) being boun-

ded on IR, this result is again contained in theorem 3.1 above.

3.10 Example : We consider a typical family of null recurrent diffusions with drift.
a) With notations of 3.5, consider a process X solution of dX; = b(X;)dt + o(X;)dB; with b, o
continuous and o strictly positive. Assume that for a family of parameters p, 7 ranging over the

domain p < 1, —1 4+ 2p < v < 1, drift and diffusion coefficient have representations

2(x 1
(3.11) o(x) ~ esty|z|?, x— Foo; b(x) = 7 2(T) (7— —{—(5(30)) ,Jz>1
T

where 0(+) is some function with ﬁxb] 10(z)|dz < oo (which may also depend on p and 7). In
(3.11) and below, all occuring constants 'cst’  varying from line to line can be calculated for
given b and o using the methods of example 3.5 a)+b); see [H-K 01] for an application.

Since v < 1, S of (3.7) is a space transformation, and X is Harris. The invariant measure u of X

normed as in (3.8’) behaves as
(3.12) p(de) ~ esty |x[77%Pde, o — 4oc.
Since v — 2p > —1, it has infinite total mass on IR, so X is recurrent null. Calculating o of (3.8)

=
o(x) ~ esty |z|T=7, x— +o0
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the invariant measure i of X = S(X) has density

2 1-
—— ~ csty |x|72+%, r — too, «a:= T
0% (x) 2(1=p)

where a = «a(p,y) ranges over the full interval (0,1) since p <1, - 14+2p <~y < 1.

(3.13)

b) Define life cycles for X by
R,=inf{t>S,:X;, =0}, S,=inf{t>R,_1:X;,=51)}, n>1, Ry=0
where S~ is the function inverse of S. By (3.57) applied to X and by (3.7)-(3.8"), we see that

5 ( " recaas) =6 ( [ “ro 57(Xo)ds ) =7l 057 = ()

J Ry Ry

for f € L1(1); moreover, (3.13) is condition (3.6) relative to X = S(X), and so we can calculate
as in (3.67) the factor C(a) such that

(314) P(Rg — Ry > t) ~ C(Oé) %, t— .

¢) Thus for functions h € L?(i1), theorem 3.1 and corollary 3.2 yield weak convergence of

1 tn 1 tn
<—2/ h(X,)dB,, —/ hQ(Xs)ds)
ne/2 Jy n* Jo >0

(B can be recovered from the observed X) as n — oo to

pu(h?)
Cla)T(1 — )

(K”QB(W"), KW“) . K=K(ha)=
with « of (3.13) and C(a) of (3.14). Note that the condition h € L?(u) — depending on p and ~y
via (3.12) — is a very strong condition if p and « range over the domain p < 1, =1 +2p < v < 1:
essentially, we are reduced to consider h € Cx, Ci the class of continuous functions with compact
support.

d) In analogy to 3.9 b), we consider also the case of integrable additive functionals with u(f) = 0,

f € Cx. With s of (3.7), the function

1s bounded on IR and solves

1
AF =f, AF :=bF + E(RF”.
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From Ito formula for F'(X) together with the result of ¢) applied to the martingale part of F/(X),

we get weak convergence as n — oo

B . gy R t(E9?)
(e [ 00w) > BB, K=

in case u(f) = 0. O

3.3 General Harris processes

Many interesting Harris processes do not have recurrent atoms; thus life cycle decompositions as
used in the preceding subsection are not available. However, it is possible to consider instead of
X itself a family of new Harris processes which are arbitrarily close to the original one; in this
family, life cycles can be introduced artificially via Nummelin’s splitting technique. Using this

idea, the above results carry over to general Harris processes where life cycles do not exist.

In this general setting, conditions on regular variation at 0 of resolvants of X replace the former
conditions on regular variation at oo of tails of life cycle length distributions; note that we could
have formulated theorems 3.1 - 3.3. already in this way. A slight disadvantage of resolvant condi-
tions remains: unless using resolvants for very particular functions of X (the ’special functions’
of 5.28 which are essentially nonconstructive), the required regular variation holds only p-a.s. in

z. In this subsection, we do not need more than the basic condition
(H1): X = (X¢);>0 is Harris with invariant measure y.

The proofs of the two theorems 3.15 and 3.16 stated in this subsection is the aim of sections
6 and 7, and is given in theorems 7.16 and 7.20 there. The results are in complete analogy to

subsection 3.1 although we choose a different presentation.

3.15 Theorem : a) For 0 < a < 1 and [(-) varying slowly at oo, the following i) and ii) are
equivalent:

i) for every g nonnegative £-measurable with 0 < u(g) < oo, one has regular variation at 0 of
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resolvants in X

(Rl/tg)u):Em(/oooe%Sg<Xs>ds) ~ t“%u(g), £ o0

for p-almost all x € E (the exceptional set depending on g);

ii) for every additive functional A of X with 0 < E,(A;) < oo, one has weak convergence

(Atn)tZU
n®/l(n)

(in D(IR4,IR) as n — oo, under P, for all x € E) where W is the Mittag-Leffler process of

E,(Ay) we

index a.

(Atn)tzo
v(n)

decreasing limit process W (with Wy = 0 and £(W7) not degenerate at 0) is available for some

b) The cases in a) are the only ones where weak convergence of to a continuous non-

norming function v.

We turn to martingales M € M?1°¢(P,, IF) with the property that (M) is a locally bounded

process (this slight restriction coming in here was not needed in subsection 3.1). We require only

(H54): M has the property
Vy.Vs,t: My, — M= DMgod; Pyas.,

the processes (M) and [M] are additive functionals of X, and E, ((M);) < co.

3.16 Theorem : Consider 0 < a < 1 and [(-) varying slowly at co. Assume that 3.15 a)i) holds

for & and I(+). Then we have weak convergence

i Mo = (Bala0) 7 BOV)

in D(IR,, IR) as n — oc, under P,.

Under a Lindeberg condition on ———— (Mn),~q, we can again deduce from the last assertion

V/n/l(n)
of theorem 3.16 weak convergence of pairs (martingale, angle brackett) as in corollary 3.2, and
then conclude from 3.15 that no other weak limits (under linear time scaling, with continuous

limit process as in 3.1, and for some sequence of norming constants) can arise. The extension to
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multidimensional martingales (as in corollary 3.3) is obvious.

It might look strange that the seemingly simpler case with life cycles required more assumptions
than the general case. The reason is the following. In our proof, we switch from the process X
of interest to a family of new Harris processes, arbitrarily close to X, where life cycles are intro-
duced artificially: so we can use the degrees of freedom in this construction to make sure that
all additional assumptions needed in subsection 3.1 are satisfied at these auxiliary stages, and

things become surprisingly simple at the level of the final result.
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4 Proofs for subsection 3.1 - sufficient condition

In this section, we prove the ’sufficient’ part of theorem 3.1 and its corollaries given in subsection
3.1: for processes X with life cycles, regular variation of tails of life cycle length distributions
implies convergence of rescaled martingales to either Brownian motion or Brownian motion time-
changed by an independent Mittag-Leffler process. This result is formulated in theorem 4.12 and

in proposition 4.22, see also the remarks 4.25 and 4.26.

We work in the setting of subsection 3.1, but under weaker conditions: we list the assumptions on
X and on the martingales M to be considered in this subsection, and then retrace the arguments
given by Greenwood and Resnick ([R-Gr 79]) on weak convergence of bidimensional random
walks. From this, weak convergence of martingales follows by time change. An extension of this
argument yields weak convergence of pairs (martingale, angle brackett). (H4) is never needed in

the present section.

Let us recall — for later use in sections 4 and 5 — the arguments proving theorems 2.4.A and 2.4.B,
see [Fe 71] or [B-G-T 87]. Classical facts about regular variation (like Tauberian theorems etc.)

are quoted from the first chapter of [B-G-T 87].

4.1 Proof of 2.4.A and 2.4.B : The proof is in several steps. Notations F, GG, GG, are as in
2.4.A and 2.4.B: F, G are probability laws on [0, o0), G is not a Dirac measure at 0. ﬁ, G denotes
the Laplace transform (LT) of F', G.

A) (cf. [B-G-T 87, Cor. 8.1.7]) For 0 < a < 1 and ¢ € Ry, the assertion

~

(4.2) 1—F(s) ~s"1/s) sl]0

is equivalent to

(4.3) r(t) = /0 (1 —F(x))dx ~ theut), t1 oo;

I'2—a)
in case « < 1, the last assertion is again equivalent to

1

(4.4) - F@) ~ 5

x “U(x), x71o0.

This is seen as follows: the function r defines a measure on IR™"; partial integration gives

~

/00 e (1 — F(x))de = l(1 —F(\)
Jo A
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_ /OOO e Nr(dr) = F(A).

The Tauberian theorem ([B-G-T 87, p. 37]) shows that for 0 < a <1

T(s) ~ s 1(1/s) s} 0
=
r(t) ~ ﬁtlﬂﬁ(t) t 1 o0

this shows (4.2) <= (4.3); (4.3) <= (4.4) for a < 1 is the monotone density theorem ([B-G-T
87, p. 39]) und the Karamata theorem ([B-G-T 87, p. 26]).

B) We determine possible limit laws for F*"(a,-) for suitable norming sequences a,, T oco. The
convergence

F*(apz) — G(z) VY z continuity point of G

is equivalent to convergence of L'T
—nlog F(Ma,) — —logG\), ¥V A>0

and thus to
(4.5) n(l1—F(\a,) — —logG), ¥V X>0.
Consider U := 1 — F which is nondecreasing: then for a, <z < a,41

U ans1) _ UO2) _ UVan)
Oy = U(1/2) = U(l/ans)

IA

and (4.5) implies

UGN —log G())

(4.5) VoAS0 g TS

T — OQ.

This is regular variation of the function U = 1 — Fin 0, and at the same time determines (cf.

[B-G-T 87, p.17]) the possible limits in (4.5’):
(4.6) 1—F RV, in0, —logG(\)=c-\2, A>0

for some g € IR and some constant ¢ > (. We have necessarily g > 0 since G is nonincreasing
as LT of a probability law concentrated on [0, 00); necessarily o < 1 since otherwise A — e~**
would not be ‘completely monotone’ and thus not a LT of a measure on [0, 00) ([Fe 71, p. 439]);

necessarily also ¢ > 0 since G by assumption is not the Dirac measure at 0. Finally, a constant
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¢ in (4.6) can always be absorbed into the norming sequence (a,),, so we put ¢ = 1. The only

remaining possibilities are

(4.7) G = G,, O<a<l1, withl—F RV,in0,

(4.8) G = Gy, withl—F RV;inO0.
According to A) we have for 0 < a <1
1-F RV, in 0 <= r RV, in oo

C) Comparison of (4.5) and (4.5’) shows: with ¢ = 1 in (4.6), the norming sequence (a,,),, satisfies

1
(4.9) N~ ————— n— o0,
1 F(1/ay)

whence a,, = a(n) where a(-) is an asymptotic inverse to

1 t t

(4.10) t L_ Py (/) T TE—a)r)

where we have used A); for 0 < o < 1 the function in (4.10) is asymptotically equivalent to

1
r(1—a)(1-F(t)

(4.11) t —

D) Steps B)+C) prove part a) of theorem 2.4.A, and the corresponding direction in 2.4.B. The

converse is proved by using the arguments of B)+C) in reverse order. O

On this basis, we turn to the topic of subsection 3.1. The proof of the ‘sufficient’ part of 3.1
is contained in the following theorem 4.12. Our arguments follow the references Greenwood and
Resnick [R-Gr 79], Touati [Tou 88], [Ho 88]. For background on semimartingales and weak conver-

gence we refer to Jacod and Shiryaev [J-Sh 87], Ikeda and Watanabe [I-W 89], Billingsley [Bill 68].

For the rest of of this section, the following assumptions on the process X will be in force:
(H1): X = (X¢)¢>0 is Harris with invariant measure y;

(H3): X has a recurrent atom A € £ and a life cycle decomposition (R, )n>1, see 1.9.A + 1.9.B.

We consider martingales M € M?>!°¢(P,, IF) for some P, on (9, A, IF) as in section 1, meeting
(H54): M has the property

Vy.Vs,t: My, — M= DM;od; Pyas.,

38



the processes (M) and [M] are additive functionals of X, and E, ((M);) < oo;
(H5B): For the life cycle decomposition (R, ), of (H3), M satisfies either (x):

(%) Mp, is measurable with respect to - , foralln >1;
or the following (xx):
(%) Rnoy1 — R, and M — M are independent of Fg, , for alln > 1 .

Only these assumptions will be needed in the remaining parts of this section.

With respect to the sequence (R,,),>1 of (H3), we write r(-) for the function
t
r(t) == / P(Ry — Ry > s)ds,
Jo

and we fix the norming constant for p (cf. 1.10) by

(4.11) W(F) = E (/R 10 (X,) ds) . Fec.

Ry

We recall also the convention Wl = St = id.

4.12 Theorem: Assume regular variation r(-) € RV;_, at oo, for some 0 < o < 1:

P(Ry,—Ry>:) €RV, fallsO<a<l,
r(-) eRVy fallsa=1.

Define

1
riaPm—msy 0<a<l,
t/r(t), a=1.

Then one has

no.__ ; 1/2 a
M" = My, —  JY/ " BoW<.
v(n) >0

(weak convergence in D(IR', IR), under P,, as n — 00), where Brownian motion B and Mittag

Leffler process W< are independent, and where

J:=E((M)p, —(M)g,)

39



Proof: 0) First we mention that due to 1.9.A+B and (H5*)+(H57),

(4.12) (Mg, — Mp,, Ry — R1),,5,

is a random walk either w.r.t. (F,-), or w.r.t. (Fg,), (see example 4.27 for illustration of some

typical problems). (H5*) and Markov property give

Fp. (ef)q(Rn+1fRn)f)\2(MRn+1*MRn)‘]_‘Rn) — Ex,. (e*)\lleAQMm) AL >0
Conditioning w.r.t. - according to 1.9.A+B, we see

Ep, (ef)\l(Rn+1fRn)f)\2(MRn+]7MRn)‘-7:R;) =Ep, (e*MRhA,zMRI) —ha(A, ).
Thus we have always

(Rut1 — Ry, Mg, ., — Mpg,) is independent of Fp , foralln > 1 .

n+1
If (x) of (H5%) holds, the r.v. (Mg, — Mp,,R; — Ry) is Fj— -measurable (R; as a stopping time
3 :
is always F - -measurable), thus (4.12°) is a random walk w.r.t. (¥ ), under P,.
7 "
If (x*) of (H57) holds, then much simpler (4.12’) is a random walk w.r.t. (Fg,), .
This holds under every starting law for the process X.

1) We consider the bivariate random walk (MRJ, — Mg, ,R; — Rl)j>1 under P,.

Writing S; := Mpg,, we rescale the components of this random walk separately

(4.13) Y= (%Sw ﬁ&m)

according to 2.4.A and 2.4.B where a(-) is an asymptotic inverse for v(-). For every n € IN,
the bivariate process Y” is a PII, and has approximately as n — oo stationary increments.

Considering the components of Y™ separately, we have weak convergence under P, as n — oo

as n — oo by independence of increments combinded with theorems 2.4.A and 2.4.B: so possible
limits for the sequence (Y;,)" in (4.13) under P,, in the sense of finite-dimensional distributions,

are

(4.14) Y = (JY?-B,S%)
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for some bivariate process having marginals B and S°.

2) The essential point is to prove that the components B, S of the limit process Y in (4.14) are
necessarily independent. A short argument, see Greenwood and Resnick [R-Gr 79], is as follows.
Being limit of a bivariate random walk, Y is necessarily a PIIS. The Lévy-Khintchine formula
shows that Y can be represented as independent sum of a Gaussian and a non-Gaussian (sum of

big jumps and compensated sum of small jumps) Levy process plus a deterministic linear term:
Y =C-id+BY + K.
Comparison with (4.14) gives

0 Ji/2.B 0
C = ., BY = ., KY =

0 0 Se

Thus B, S® in (4.14) are independent. (We will give a detailed and more general argument
following Ikeda and Watanabe [I-W 89, p. 77-78] - a Poisson random measure and a Brownian
motion defined with respect to the same filtration are necessarily independent - in 4.21 below.)
3) By step 2) we know that under P,

Y" = (%S[_n],$lﬁ_n}) Bdo oy (J'?. B, 5%
where Brownian motion B and stable increasing process S® are necessarily independent. Write

N; for the number of life cycles of X (including the initial segment) completed at time ¢:
Ny =sup{n € INy : R,, < t}.

Then we have

~ 1 1 ~
(4.15) Y= (TSM, —N.a(n)> Mo 5 v B we)
n n

where W is the process inverse to S® and thus B and W are independent: for 0 < t; < t5 <

oo <tp<oo, forxy,...,z, € (0,00), a8 n — 00

N,
{—t'“(”) <z 1<i< e}

n

{Rppn > tia(n), 1 <i <L} AN,

= >t 1<i<lyAN,
a(n)

up to symmetric difference with small sets N,, meeting P,(N,) — 0; since n ~ v(a(n)) with

a(-) € RViq, we identify %N,a(n) with a subsequence of ﬁN.n as n — oo. We show that the

sequence (Y™), in (4.15) is tight in D(R*, IR?) under P,: tightness of the first component in
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D(IR",R) is clear from step 1); for tightness of the second component in D(IR™, IR), we use
([J-Sh 87, V1.3.37)): since the second components of (Y"),, are increasing processes and since W

is continuous, finite-dimensional convergence (4.15) implies

n—oo
—

1
—N.a(n) W  (weak convergence in D(R™, IR) under P,).
n

Thus both components of (37”)” form tight sequences in D(IR™, IR), and so the bivariate sequence

(Y™), is tight in D(IRT, R?) ([J-Sh 87, V1.3.33]). By (4.15), there is a unique limit law for

arbitrary subsequences of (Y™),, so we have

Y, = (ﬁs[.n}, %N.a(n)> — Y = (,]1/2 - B,W®)

weak convergence in D(IRT, IR?) under P, as n — oo.

(4.16)

By Billingsley [Bill 68, p.145], both components of the limit process in (4.16) being continuous,

Y

the second component in (4.16) may be used as a time transformation for the first: so we get

(4.17) VLG Ny )
weak convergence in D(IR", R) under P,
and after replacing n by v(n) - which amounts to an insertion of members into the sequence -

one arrives at

Sy, — JY2.B(W?)

1
(4.18) v(n)
weakly in D(IR™, IR) under P, as n — cc.

4) It remains to show that (4.18) implies
1

Vo(n)

The proof of (4.19) is in three parts.

(4.19) M, — J'2.B(W®) weakly in D(IR", R) under P, as n — cc.

i) For every starting point x for the Harris process X, the measure
b= By(Ny) =) Pu(Ri<t)
I>1

is (with notations of 1.9.A+B) a convolution

P.(Ry € ) % (i P,, (R € -)) .
m=0

The asymptotic behaviour of its Laplace transform (cf. [B-G-T 87, p. 361)

1
—AR
A C 1)1—EPA(6*)‘R1)7 A>0
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as A | 0 does not depend on z. Combining (4.2)-(4.4) and Karamata’s Tauberian theorem (B-G-T
87, p. 37), we see that

E.(Ny) ! (t) t—
pA (14 «) Y as >
independently of the starting point z.
ii) We show that for every t > 0, £ > 0 fixed,
1
(+) P, <7|SNM — My,| > 5) - 0
v(n)
as n — o0o. Since lim,, .o, P,(Ry > nt) =0, is is sufficient to consider
2 2
(++) P, (sup (MSARNth — MS/\RNt,,) >ev(n), By < nt) :
2>0 / /

Note that the last renewal time Ry, before tn is not a stopping time: an event {Ry,, < ¢} with
0 < ¢ < tn does not belong to the o-field generated by observation of X only up to time c. By
1.9.A+B and (H5), rewrite (++) as

Ey | Yyr<nty o | Yn, —r>ni—r) 1 2 | F -
]Z; {Ri<nt} {Rip1— Ry i} {flzlpO(Ms/\RH]*Ms/\Rl) >e?v(n)} i

nt
= / dy (E(Ny)) Py, <R1 >nt —u, sup (M,)? > E%(n))
J0 SSRl

/UOO PpA (Rl € d?“) f(n)(r) (Ez(Nn ) - Em(N(ntfr)\/O))

with notation

f(n)(r) =P,, ( sup (Ms)2 > 627)(71) | Ry = 7«> )
s<R1

By assumption in (H5),

J = E(M)g,— (M)g)=E (sgg (Mg Msmz) -5, (s;]g MS)
52> s

= / PpA(Rledr)EpA(suprRl—r> < 00,
0 s<Ry

thus we have for P/ﬁl— aa.r>0asn— oo

£2u(n) f(N)(T) <E,, (( sup M?) L sup (Mo)2>e20(n)} | B1 = T) 0

SSRl s<Rjy

and from this by dominated convergence
/ Py (By € dr)u(n) () > 0.
Jo
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By part i) above and regular variation of v, we thus have proved

/0Oo PpA (Rl € d’l") f(n)('r) (Em(Nnt) - Ez(N(ntfr)\/O)) - 0

which via (++) establishes (+).
iii) Part ii) together with (4.18) implies

1
M, 4 JU2B(W®).
v(n)

It remains to prove tightness of this sequence in D(IR™T, IR) under P, in order to complete the

proof of theorem 4.12. By [J-Sh 87, VI.4.13], it is enough to verify

1
(<7Mn>> is O-tight in D(R*, R);
v(n) .

we will prove weak convergence

1
(4.20) <ﬁMn> — J- W weakly in D(IRT, IR) as n — oc.
v(n

Again by [J-Sh 87, V1.3.37], it is enough to show finite-dimensional convergence in (4.20) - the pre-
limiting processes are increasing, and the limit process is continuous - and this is a consequence

of (4.15) (with n replaced by v(n))

N, we
v(n)
and the ratio limit theorem
<M >
P—as.:lim —' = BE(<M>p, —<M>g) = J.
t—o00 Nt
So (4.20) is proved, and thus (4.19): this concludes the proof of 4.12. O

By 4.12, we have proved the ’sufficent’ direction in 3.1. Before proceding to joint convergence of
pairs (martingale, angle brackett) in proposition 4.22, we give an alternative argument for step

2) of the preceding proof.

4.21 Remark : We give an alternative argument replacing step 2) of the previous proof, based

on [I-W 89, pp. 77-78]. Consider any possible cadlag limit process Y for (Y"),, of (4.13), in the
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sense of finite-dimensional distributions: Y is defined on some (', A, F’, P') where IF’ is the

filtration generated by Y

F' = (Ft)e>0, ﬂfT Fli=o(Y,: 0<s<T);
T>t

by (4.14), its first marginal denoted by B is a Brownian motion (for simplicity, we put J = 1);
its second marginal denoted by S® is a stable increasing process with index a. Since Y" has
independent increments which asymptotically as n — oo are stationary, the limit process Y is
a PIIS w.r.to IFO: for 0 < s < t < 0o, the conditional law PYt—YsIFd = L(Y;_s) is independent
of FV. Since Y is right-continuous, Y is also a PIIS w.r.to the filtration IF': for arbitrary Z

nonnegative and F.-measurable, F. = F? op1/n for b € Cy(IR?), we have

E(Zh(Y; —Y;)) = lim E(Zh(Y; — Yiq1/m))

= ligp E (ZE (h(Yf - Y9+]/77) | F, —|—1/n)>
= EZ lim E(h(Y; — Yyi1/0))

= EZ E(h(Y,-Y}))

which proves that PY*~Y:1%s = £(Y;_,) is independent of F!. By this argument, the first compo-

nent of Y is a JF’-Brownian motion:
PBBIL = (0,8 — s)
and the point process p of jumps of the second component of YV is a IF’-Poisson random measure:
Pels tIxUi)i<i<e) | FE = ® P((t — 8)Aa(T7))

for disjoint sets Uy, ...,Us in B(IR) having A, (U;) < oo

where we write A, (dz) for the measure az = 'dz on (0, 00), see remark 2.7. Following [I-W 89,
pp. 77-78], we will show that Poisson random measure and Brownian motion defined on the same
(Q', A', P") with respect to the same filtration IF" are necessarily independent (which implies the

desired independence of B and S%). To this aim we consider transforms

Rx (RY) 3 (E M, M) = @A, N) =B (eifwt*'?s)* i=1 Al XU | f;)
(0 < s <t < oo, U disjoint sets having A, (U;) < oo, £ € IN); if we prove that
(%) O(E M, N) = e(t*S)[*%£2+Zf:1(e’k"rfl)/\a(Ui)}7
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then B; — By, u(]s,t] x U;), 1 < i < ¢ will be independent and independent of F., and as a
consequence, the o-fields o(B; : t > 0) and o(u(]s,t] x U : 0 < s <t < 00, U € B(IR?)) generated
by B and p will be independent, which concludes the proof.

To prove (x), we consider the bounded and complex-valued semimartingale F'(Z)
F(Z) = o1€Bt—321 2y Ain(10,t]x Us)
Z = (B,u(0,]xUh),...u(]0, ] x Up)) .

It6’s formula (see e.g. [J-Sh 87, p. 57]) for F(Z) gives

t

F(z) - F(2) = it [ FZiB+ (56 [ P2, )

J/

v

:Zue(s,t](F(zu)*F(zu7 ))

= (= M)+ (58 [ F(Z)du

t
+ / / F(Z,) (ei Simi Al (@) 1) du A, (dz)
Js JIR

for some local martingale M such that < M >; is bounded; since the sets U; are disjoint, the last

[ F

For Y nonnegative, bounded, F}-measurable we consider E[Y (F(Z;) — F(Z,))]: with notation

term on the r.h.s equals
0

S(e - DALY

i=1

du.

t>s

Y juiy

ov(t) = B (¥ € B2 s 02)
(thus vy (s) = E(Y)) we get from E(M; — M4|F;) = 0 after absorption of the factor F/(Z;) in Y

E(Y [eiﬂBt*Bs)*Zle Niulls 11X Vi) —ID = ov(t) — py(s)

; ‘
/ du py (u) [—%fg +Y) (e = DAL(U) | du.
s i=1

The solution of this differential equation is well known

t>s.

Y iy

oy (t) = B(Y) - e(t=9) [~ 3+ Tisi (7 = DAa ()]

Taking in particular Y = 1,4, for arbitrary A € F., we get

E (eiamfﬁs)fzf:] Al t]xUs)

F) = et Al i 0]
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This is (*), and concludes the proof. O

The argument leading to theorem 4.12 can be strengthened to obtain weak convergence of pairs

(martingale, angle brackett). Note that we do not require a Lindeberg condition here.

4.22 Proposition : Under all assumptions of theorem 4.12, we have
(M, < M">) 55 (J1/2Bo we JW“)

(weak convergence in D(IR,, R x IR), as n — oo, under P,).

Proof : We replace the bivariate random walk in step 1) of the proof of 4.12 by a trivariate one

(MRj - Ro> <M >R]‘ -<M >R07 R7 _Ro)jeﬂ\lo

and consider
(4.23) YY" = L S 1K L R
‘ —\n [n]: o Sl a(n) [n]

where K; :=< M >g.. The second component converges weakly in D(IR, IR) to the deterministic
process (.J -t);>o. Inverting the last component and using it as a time change for the pair of first

components in analogy to (4.16)-(4.18), we get

(ﬁsN_n,ﬁKNJ —  (JYV2-BW*),J W)

(4.24)
weakly in D(IRT, IR x IR) as n — oc.

Up to obvious changes, the remaining parts of the proof are on the lines of 4.12. O

2

4.25 Remark : In the same way, we may consider d-dimensional local martingales M € M, _

by including all components M’ of M and < M', M7 > of < M > into the random walk (4.23).

4.26 Remark : Via the RLT, see 1.7, the last result implies joint weak convergence of martin-

gales with arbitrary integrable additive functionals.

We end this section with an example illustrating why we need assumption (H5%) to make sure

that increments of the martingale over life cycles of X form indeed a random walk.
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4.27 Example: We continue example 1.11 a), will all notations as there.

Y

a) For F open in IR with 0 < v(F) < 1, consider the [FX-counting process
Ni = 1m<nlixg, erxio))
n>1

and let M denote the compensated counting process

M, = N, - '/Ot (%1”{0}()@) + V(F)IA(XS)> ds

where A = IR x {1} is the atom of X. By definition of (R,,), in 1.11 as passage times from A to

A, Xp, is always in IR x {0}, is distributed according to v®e¢g, and we have
. . 1 .
Xg, € Fx{0} ifandonlyif Mg, 4+ — Mg, = fit for ¢ sufficiently small

Xpg, € F¢ x {0} ifandonlyif Mg 4 — Mg, =0 fort sufficiently small

as well as

Mp, = Mp- +1p 0y (Xg,) -

So both () and (*#) of (H5?) are violated, and it is clear that M — M ®» and My, are dependent.
So (MR]. — Mpg,,R; — R1)].21 is not a random walk.

b) In example 1.11 a) we have constant intensity for 'change of colour’ on Ex{0} and Ex{1},
thus R, 1 — R, is independent of Fp, . Consider

t

N =Y Ur.<olixp erxioy, M =N —/0 v(F)14(X,)ds.
n>1 !

M is a martingale such that M — (M")®» is independent of Fr_, n > 1. So (+*) of (H5%) holds
for M.

c¢) Consider now

L1
N} = Zl{Tngt}l{XTneFx{l}}a M7 ZNE/O <§1F><{0}(Xs)> ds
n>1

Then (M?)g, is F,- -measurable, so (x) of (H5%) holds for M?. O
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5 Proofs for subsection 3.1 - necessary condition

In this section, we consider processes with life cycles and prove that the conditions on regular
variation of tails of life-cycle length distributions in theorem 3.1 are necessary conditions for
weak convergence of rescaled martingales under a Lindeberg condition - this condition implies
that the limit process is a continuous local martingale, and that we have also weak convergence of
(predictable) quadratic variations. To these one applies the classical Darling-Kac theorem ([D-K
57], see [B-G-T 87, ch. 8.11]) which states that norming functions are necessarily regular varying,
and that limit laws for (one-dimensional marginals of) rescaled additive functionals of X are
necessarily Mittag-Leffler laws. However, the Darling-Kac theorem needs a uniformity condition
(see [B-G-T 87, p. 390]) which is rather restrictive except for simple situations such as Markov
step processes with countable state space. Touati ([Tou 88]) proposed to avoid 'Darling-Kac con-

ditions’ by use of 'special functions’. We give the argument exactly in this way.

In a first part of this section, we shall use only assumptions on the process X:
(H1): X = (X¢)¢>0 is Harris with invariant measure y;
(H3): X has a recurrent atom A € £ and a life cycle decomposition (R,,),>1, see 1.9.A + 1.9.B;

(H4): There is some function f, bounded, nonnegative, £-measurable, 0 < u(f) < oo, such that

T—)ET(
0

(a ’weakly special function for X and R;y’).

Ry
f(Xs) ds) is bounded on E

With respect to (R,,),, we fix the norming constant for u as in (4.117).

(H1), (H3) and (H4) allow to prove a variant of the classical Darling-Kac theorem without
Darling-Kac conditions: weak convergence of (linearly time-scaled and suitably normed) additi-
ve functionals of X implies regular variation of tails of life-cycle length distributions (theorems
5.6.A and 5.6.B below). We will use in this section the following abuse of language: we write
E4()) := E,,(-) with p4 the law of Xp, asin 1.9.A4+B, and we term functions f meeting (H4)

for short weakly special without explicit reference to X and Rj.

As in (4.2)-(4.4), write F' for the Laplace transform of the life cycle length distribution:
F(\) = E(e MRy = B (e M) X e Ry
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and introduce a function v : Ry — IR

(5.1) vit) = (1= Ea (e*%Rl))*] - (1 —ﬁ(%)>l

which is nondecreasing, with v(0) = 1 and v(¢) 1 oo as ¢ — oo. This function v - which was
implicit already in (4.2)-(4.4) - will play a key role in the sequel. We will work with resolvants

and define for f nonnegative, bounded, measurable

Ryf(z) = /OOO e ME, (/Of f(Xs)ds) dt = E, (/OOO e“f(Xt)dt) .

5.2 Lemma : ([Tou 88]) R) admits the decomposition

Ryf(z) = Ryf(x)+ R3f(x)
where
Ry
Rif(x) = E, ( / e’\tf(Xt)dt>
0
and

Rf(e) = V(§)E: () By (/0 " e“f(Xt)dt> .

Proof: We start from

Ryf(z) = E, </OO eAtf(Xt)dt>

0

- E, </R1 eAtf(Xt)dt> + F, Z /Rn+1 ei)‘tf(Xt)dt
J0 J Iin

n>1

Here, the first term on the r.h.s is R}\f(?“) For the second one, note that

E, ( / A eAtf(Xt)dt> _ B (an { / " e)‘”f(Xv)dv} o 9Rn)
. n JO

Ry
= ET (eiAR") EA (/ €A1)f(Xv)d7)>
J0

by the strong Markov property, where
B, (e ) = B, (e M) B, (ef)\(Rnle)> — B, (e M) By (67,\31)7171.

By definition of v in (5.1), the assertion follows. O
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For weakly special functions, lemma 5.2 can be strengthened.

5.3 Lemma : ([Tou 88]) For f weakly special and C' := sup, F, (fORl f(XS)ds> < o0, for p

normed according to (4.117), one has for arbitrary x € E

0 I
(i) YAS0: v(3) Rj{g)mf) <c

Proof: For A | 0, this follows from inspection of the terms

<c
— i
E, (/ . tf(X,)dt) .
R T o L 1
)\fl(x) _ J0 - + ET (ef)\l?q) . EA (/ e)\tf(Xt)dt>
v(x) v(x) —_— 0 g
<111 ~
=t T <u(f), tu(f)
arising in the decomposition of lemma 5.2. O

Next, for f weakly special, we consider moments of arbitrary order for additive functionals A; =
[ f(X,)ds. Define
t n
M, (t,x) = E, {( / f(Xs)ds> }
Jo

M,(\, z) :/ e MM, (¢, z)dt, X > 0.
0

and

Then the following modification of [D-K 57] or [B-G-T 87] — due to Touati — holds.

5.4 Lemma : ([Tou 88]) For f weakly special, one has for all = € E:

, M,(\, z) .
.. 1 ]/\4\”()\,$) n n—1
(i) VA>0: v(3) [W—u(f) < C(C +2u(f))

where C' is the constant of lemma 5.3.
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Proof : 1) We start from

E, K/Otf(xs)ds)n] - '/Ut...'/OtEm(f(Xul)...f(Xun))du]...dun

t t t
= nl / duy / dusy .. / dun B (f(Xu,) . f(Xu,))
0 Ul Upy—1

which gives

M,(\,z) = / Xe MM, (t, z)dt

0
— n!/ du]/ dug.../ dupe M By (f(Xuy) - f(Xu,)).
0 ul Un—1

Conditioning on X, | and using the strong Markov property we get

1

]/\J\n()\, z)=n! / duy ... / dun,]ef)‘“"”Em(f(Xul) (X, DBRAf(Xu, )
0 Un —2

XUTLI)

where we have used that

E, (/ ei)\(uniunfl)f(Xun)d“n Xun1> = E, (/ ei)\uf(XuanrU)d“
Up—1 0

= Ex, | (/ e)‘“f(Xu)du)
0

= R)\f(Xun,l)-

Iterating this argument, we arrive at

o~

M, (A, ) :n!/R)\(m,dm)f(m])/RA(m],dmg)...f(mn1)/R)\(mn1,dmn)f(mn)

which in short notation

¢0(A/T) = 0: wl (>‘7T) = R)\f(T)/ T wn()‘/T) = /R)\(TadTl)f(Tl)wnl(AaT])

takes the form

M,(\,z) = n! ¥n (), 2).

2) In a next step we prove that there is some sequence of constants (K,,), such that for all n the

following (+) and (++) hold:

(+) YnXT) K, Y\

(v(z)" —

>|=

¥alhi2) (W) V.
A

e Y
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The proof is by induction on n. The case n = 1 is lemma 5.3 together with v(+) > 1. For arbitrary

1
)
n > 1, we write

(A7)
(v(z))"

and decompose again

- (u(f))"*ld”(A’m) — /RA(m,dm)f(m]) [

v(z)  v(3)

Yn_1 (>\, m])
(v

(5:5) ()

R\ =R} + R}
according to lemma 5.2. Assuming (+) and (++) for n—1, the expression [...] in square bracketts
in (5.5) converges to 0 pointwise in z1 as A | 0, and is bounded by K, 1 + (u(f))"~!. Thus
f € L (n) implies
o f) I e £ ()

and the last function is weakly special since f is weakly special. Using this property, we have

R Ko +p(f)"!
V(). v(3)

for all z, and dominated convergence and the definition of R3 give

/RM%MﬂﬂmN~]S C=0 (AL0)

Wg/ﬁﬂﬁﬂﬂﬂmNJ

which implies (+) and (++) for n.

‘ ! g/u(dxl)f(xl)-l[---]I%O (A1 0)

3) Assertion (i) in lemma 5.4 is proved by (++). From (5.5), we then prove by induction also

assertion (ii) of 5.4, using exactly the same arguments as in step 2) above. O

For sake of completeness, we now include the proof of the Darling-Kac theorem, under assumpti-
ons (H1), (H3), and (H4), and thus in a version where the use of weakly special functions avoids
Darling-Kac conditions. The principal assertion of theorems 5.6.A and 5.6.B is that if we ha-
ve weak convergence of (one-dimensional marginals of ) additive functionals of X, then norming

functions are automatically regularly varying.

5.6.A Theorem : ([D-K 57], [B-G-T 87, ch. 8.11], [Tou 88]) Consider an additive functional

Y

(A¢)¢>0 of X, p-integrable and such that F,(A;) > 0. If we have convergence in law under P,

A w
(+) — LY
u(t)

to some limit variable Y such that £(Y) is not a Dirac measure, for some norming function v(-)

(v: Ry — IRy nondecreasing, v(t) T 0o as t — 00), then we have necessarily
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(i) v(t) ~c-v(t) as t — oo for some ¢ > 0, where v is given by (5.1);
(ii) v € RV, for some 0 < a < 1;
(i) A —  Eu(A) WP under P,

where the norming constant for u is as in (4.117), and where W ~ exp(1) is defined for a = 0 in

accordance with 2.8 (the special case of a Mittag-Leffler law with parameter 0).

5.6.B Theorem : Under all assumptions of 5.6.A except that the limit variable Y in () is

replaced by a constant y € (0,00), we have the following:
(i) v(t) ~c-v(t) ast — oo for some ¢ > 0, where v is given by (5.1);
(ii) v € RV} ;
(i) </5Ar — Eu(A;) under P,

with norming constant of (4.11’).

We add a remark before proving the theorems.

5.7 Remark : a) Remark 2.8 shows that the limiting case « = 0 of a Mittag-Leffler process
is a process with time-independent marginals on the strictly positive half axis: the process has
the form W9 = §1(0,00) Where ¢ 1s exponentially distributed with parameter 1. This process is
not continuous and thus will not arise in the setting of theorem 3.1 where - under the Lindeberg
condition - limit processes will be continuous.

b) For 0 < a < 1, (4.2)-(4.4) guarantee that the norming function v of (5.1) in theorems 5.6.A
and 5.6.B coincides (up to asymptotic equivalence) with the norming functions used in theorems
3.1 and 3.2 (or in 4.12).

c¢) By (i) in lemma 5.3, we can replace the norming function v of (5.1) by a resolvent of a special
function - for an arbitrary starting point 2 - and thus give a version of 5.6.A and 5.6.B where
a life cycle decomposition of the process X does not appear in the formulation of the theorem.

This will be important for section 7.
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5.8 Proof of 5.6.A and 5.6.B : By the ratio limit theorem, it is sufficient to prove the theorems

for additive functionals of form
t
A= [ rexs
Jo

where the function f is weakly special. W.l.o.g., we can take p(f) = 1. This will be assumed in
the sequel. The proof, following [B-G-T 87, p. 392], is in several steps. During the first ones, we
consider a limit variable Y in (%) whose law (certainly concentrated on [0,00)) is not a Dirac

measure at 0; this is the common assumption in 5.6.A and 5.6.B.

/UOO e ME, ((‘(I‘a);n) dt —sn! (A10)

1) Lemma 5.4 gives

or after substituting u = At

/UOO ¢ B, (%> e

Choose some r.v. T' exponentially distributed with parameter 1, and independent of the process

X. Then the last convergence is

_ (Ar/)"
(5.9) Vn: E, (W

But (n!) is the sequence of moments of the exponential law exp(1) with parameter 1, which is

>—>n! (A1 0).

uniquely determined by its moments: by the method of moments, we have weak convergence

Aqa
Al0
where £ ~ exp(1), or
(5.10) /OO e P, ( An c> dt —1—e° Ye>0.
Jo v(1/X)
A/

2) We have assumed weak convergence

N

o(t/))

/N which are nondecreasing in ¢ for fixed .

S/ 2 Y as A | 0, for some r.v Y whose law is not a
Dirac measure at 0. Consider functions g*(t) :=

Helly’s selection procedure applied to families {g* : n > 0} (distribution functions of o-finite
measures) allows to select for every sequence (A, ), with A, | 0 a subsequence (A,/),s and some
non-decreasing function g taking values in [0, oc] such that at all continuity points ¢ of g
v(t/Aw)

(5:11) V() o
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We take ¢ right-continuous. Let G denote the distribution function of Y. Along the sequence
(An/)nt, we write the Lh.s of (5.10) as

R Ai/x, v(L/Aw)
(5.12) /0 e 'P, (7)(t/>\n') < Cv(t/An/) )dt.

At continuity points ¢ of both G and g and along ()\,,/),,/, the probability in the integrand converges

to P(Y <¢/g(t)) = G(e/g(t)) (with ¢/0 = 0o, ¢/oo = 0); there are at most countably many such

discontinuities. So (5.10) gives

(5.13) Ve>0: /000 e 'G(c/g(t))dt =1 —e .

From (5.13) we see that g is (0, 00)-valued: g = oo on some half axis [tg, 00) would imply that the
integrand in (5.13) equals G(0)e" on [tg, o00) which is impossible: let ¢ 1 oo in (5.13), and recall
that G(0) < 1 by assumption. A similiar argument excludes cases where g = 0 on some [0, t().

So g takes values in (0,00), and (5.13) reads
(5.14) P(Y-g(T) < ¢) = E(G(c/g(T)) =1 = ¢, ¢>0.

Here we have used that 7" and Y are independent since 7" was independent of the process X.

(5.14) with ¢ = 0 then shows that also Y is (0, co)-valued; thus we may take logarithms and have
(5.15) logY +log g(T) £ logT.
3) Consider characteristic functions @y of logY’, @41 of log g(T), ¢r of log T', then

(5.16) oy (u)pgery(u) = pr(u), u € R.

None of these can take the value 0 since
or(u) = /xi“ezdx =T(1+4+du)#0, ueR.

So g1y = w1 /py is uniquely determined from Y, so the distribution function of g(7") and thus
the (right-continuous) function g itself are uniquely determined from Y. In particular, g does not
depend on choice of subsequences (), of sequences (A, ), so (5.11) is improved to

u(t/A)

(5.17) TN AT(J)

g(t) for almost all ¢

which gives

(5.18)

v(t/A) g(t)
v(1/A) o 9(1) for almost all ¢ .
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But (5.17) and (5.18) imply
(5.19) v€E RV, g(t)=g(1)t*, veRV,, ot)~g(l)v(t) as ttoc

for some a € IR; necessarily a > 0 since g is nondecreasing.

4) It remains to show that not all cases a > 0 can occur in (5.19), and to identify the limit
law L£(Y); by (5.17) - (5.19) and in virtue of (5.14), we have specified the initial assumption on
convergence in law to

A w
(5.20) !

% — g(1)Y ast? oo,

for some r.v Y concentrated on (0, c0).

i) If « = 0, then the function g is constant by (5.19), so (5.14) shows that ¢g(1)Y has law exp(1).
ii) Consider the case 0 < o < 1. Since A; = fof f(Xs)ds where f is special and u(f) = 1, we apply
lemma 5.4 a) which gives the asymptotics as A | 0 of the Laplace transform ﬁn of the measure
U, (ds) := M, (s, x)ds:

U,(0) ¥ ;n! (v(;))n.

Since v € RV,,, the Tauberian theorem ([B-G-T 87, p. 37]) gives

e tnl (v(t)"

Un([0,1]) T2 +an)

since M, (-, z) is by definition monotone, the monotone density theorem ([B-G-T 87, p. 39]) shows

oo ! (v(1)"

My (t, ) T(1+ an)

which we write in the form

(5.21) E, ((%>n> — F(%'Om) t— o0

for arbitrary n € IN. On the r.h.s of (5.21), we find the sequence of moments of the Mittag-LefHer

variable W*, cf. 2.8: so the method of moments gives convergence in law under P,

At w

(5.22) - Wi, t— o
v(t)

and thus specifies the limit law in (5.20).

iii) We show that under the assumptions of theorem 5.6.A, other cases o > 0 except 0 < a < 1
are impossible. Indeed, the ratio limit theorem and (5.20) - where u(f) = 1 - imply convergence
in law

(5.23) — 5 g(1)Y, t— oo,



with notations as in the proof of theorem 4.12. v being regularly varying by (5.19) with positive

Rn
a(n)

index, the arguments in step 3) of the proof of 4.12 show that we have weak convergence of
as n — oo to some limit law which is concentrated on (0, 00) and which is not a Dirac measure;
here a(-) is an asymptotic inverse of v. Then theorem 2.4.A combined with (4.2)-(4.4) and (5.1)
show that the index « of regular variation of v is necessarily in (0, 1). So all assertions of theorem
5.6.A are proved.

iv) We show that under the assumptions of theorem 5.6.B, all cases « # 1 are impossible. Steps

i) and ii) above exclude 0 < a < 1. With the same arguments as in iii) except that aj(?‘;) now

converges in probability as n — oo to some stricly positive constant, we apply theorem 2.4.B
combined with (4.2)-(4.4) and (5.1) to show that the index « of regular variation of v necessarily
equals 1. Then ¢ in (5.19) is linear, so ¢(1)Y =1 by (5.14), and all assertions of theorem 5.6.B

are proved. O

Now we turn to convergence of martingales M € M?!°¢(P,, IF), on a space (€2, A, IF') as in section
1. Theorems 5.6.A and 5.6.B contain one essential argument for the proof of the 'necessary’ part

of theorem 3.1; the other is the following.

5.24 Theorem : Consider M € M2 (P,, IF) whose angle and square brackett are y-integrable

loc

additive functionals of X. For some norming function v(-), let

1
Iy (7M)
v(n) 10

converge (weakly in D(IR,IR), under P,, as n — 00) to some limit process W = (W;);>¢ such
that Wy = 0 and £(W;) is not the Dirac measure at 0, and assume that the sequence (M"),,

satisfies the Lindeberg condition

1 tn
(5.25) ﬁ/ /m2 1{‘ bgm}y(ds,dm) ~— 0 in P,-probability, for all ¢, all € > 0
vin 0 x vn

where v(ds, dz) is the P,-compensator of the point process of jumps of M. Then the limit process

W is a continuous local martingale with respect to its own filtration, and we have
(5.26) (M™, [M"])) — W, <W>) , (M".<M">) — (W, <W>)

(weak convergence in D(IRy, IR x IR), under P,, as n — o).

o8



Proof : We decompose M"™ = M™' + M™? where M™! has bounded jumps |[AM™!| < b and
where M"™? is the compensated sum of "big’ (i.e. [AM™"| > b) jumps of M™. Then the Lindeberg

condition (3.25) implies

P<sup|MS”’2|>5>—>0 (n—o00) VT >0
s<T

and thus

w w

M™* =0, MM S W

(weak convergence in D(IR,,IR), under P,, as n — oo). Then by [J-Sh 87, V1.3.26], the weak
limit W is a continuous process. By [J-Sh 87, IX.1.19], since M™! has bounded jumps, W is a
local martingale with respect to its own filtration (let W be defined on some (', A’, P’), consider
the filtration IF’ generated by W). So W has bracketts < W >= [W]. Again by boundedness of
jumps of M™! [J-Sh 87, VL.6.1] gives

Y

(M",[M"))  — (W,<W >)

Y

(weak convergence in D(IR,, Rx IR), under P,, asn — oc). In this last assertion, square bracketts

can be replaced by angle bracketts
(M", < M">) — (W, <W >)

since < M >, [M] are additive functionals of X having the same expected increment over life
cycles of X: this is again the RLT combined with the argument of step 3) in the proof of 4.12
that weak convergence of increasing processes to a continuous increasing process is equivalent to

convergence of finite dimensional marginals. O

5.27 Proof of theorem 3.1, 'necessary’ condition : Consider (M"),, as in 5.24. We have
to prove that if M™ converges weakly in D(IRy, R) under P, as n — oo to some limit process
W = (W})i>0 such that Wy = 0 and £(W;) is not the Dirac measure at 0, then necessarily the
tails of life-cycle length distributions in the process X are regulary varying as stated in theorem

3.1. First we apply 5.24: W is continuous and a local martingale, and we have convergence in law

<M >, ——< W >,
v(n)

as n — oo under P,, where also £(< W >1) is not a Dirac measure at 0. Then 5.6.A and 5.6.B

apply to show the following: if < W >y is a.s. constant, then we have v € RV; and

1
—— <M >, J
v(n)
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where v is given by (5.1) and J = E(< M >p, — < M >pg,); if < W >; is not a.s. constant,
then v € RV,, and
1
—— <M >,— JW
v(n)
for some 0 < a < 1. It remains to exclude the case o = 0: if the norming function v is slowly

varying at oo, then < W >, the limit in law of ﬁ < M >y, and < W >y, the limit in law
of ﬁ < M >),, necessarily have the same law exp(1); since < W > is increasing, its paths
must be constant on (0,00); but < W > is continuous on [0,00) with < W >¢= 0 which is
a contradiction. So 0 < @ < 1, and by (5.1) and (4.2)-(4.4), regular variation of the norming
function v is translated into regular variation of tails of life-cycle length distributions of X as

specified in theorem 3.1. O

The 'necessary’ part of theorem 3.1 in subsection 3.1 is thus proved, under assumption (H1), (H3)
and (H4) for the process, and under conditions much weaker than (H54)+(H5") on the martin-
gales under consideration. It remains to prove proposition 3.4 which gives a sufficient condition

in terms of upper bounds for the life cycle variable Ry for existence of weakly special functions

for X and R;. In fact, the only assumption which we need for this is (H1).

5.28 Proof of proposition 3.4 : We assume only Harris recurrence (H1) of the process X.
The proof is in several steps.
1) Consider first the process X = (X;);>¢ at jump times 7, of an independent Poisson process
with rate 1: by theorem 1.4, we have (H2), i.e. the discrete-time process X = (X, )nepv is Harris
with invariant measure p. Revuz terms f : E — IR, a special function for X (see [Re 75, p. 182,
p. 48]) if f is £-measurable and if

v = B, (Z(l = (X7)) (1= h(Xw))f(XﬂL))

n=1

is bounded in z € E, for every h € U™ having p(h) > 0; here U™ denotes the set of £-measurable
functions h on E with 0 < h(-) < 1. Special functions of X do exist, see [Re 75, 6.4.3 and 6.4.6];
the set of special functions forms a convex cone in L' (i) ([Re 75, 6.4.2]); thus in particular special
functions exist which are bounded.

2) We prove that for h € U with pu(h) > 0 and f > 0 measurable, one has

[ee]

(5:29) I, (Z(l B(X)) (1 h(XTM))f(Xm) = ([ e B,

n=1
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Indeed, 7, has law I'(n, 1), and (T ey TT—)N independent of 7,, and distributed as the order

statistics of n — 1 uniform r.v.’s on (0, 1); thus the summands on the Lh.s of (5.29) are

by ((1 - h(Xn)) e (1 - h(X'rnfl))f(XTﬂ))

n—1
_E, / dt e F(X,) / dtl/ dty .. / dt, 1 e
JO t1 2

tr—

with g := log(1 — h), for n € IN. Fix some t and define functions S,,(-) = S¢,(-) on [0,¢] by

t t t t i (X))
So(r) =1, Si(r):= / dr'ed) S () ::/ dt / dts . / dt,, = ., m > 2.
T T t1 tm—1

Note that Sy, (r) < L and that S,,, f dr'ed X)) S (') for m > 1. Defining S(-) = St(-) :=
> Sim(:) on [0,t], we have %S(r) = —eg(X’)S(r) and S'(t) =1, thus
m>0

= > Swlr [FA=mX0d’ g < <t

m>0

As a consequence, we have written the 1.h.s of (5.29) as

E, (/0 dtetf<Xt>;Sz1<0>) = E, (/0 dt.f(Xt>e-f5"<X-*>“S)

which is the assertion.

3) We give an interpretation of the r.h.s of (5.29) in terms of position-dependent killing of the
strong Markov process X = (X;);>¢ at rate h € YT with p(h) > 0: given that X has not been
killed up to time r, it will be killed in a small time interval (r, r+¢€] with probability € h(X,)+o(e).

First, for h bounded away from 0 and for f bounded, partial integration
b (oo Brasar) = ([Tarnexge £roas [Loxm).
0

allows to write the r.h.s of (5.29) as
Th
Jo

where T}, is the killing time, defined on an extension of the stochastic basis (2,4, IF). Second,

stochastic ordering of fhn as h, | h and monotone convergence show
T,
(/ f(Xy)e ot dsdi) F(Xy)dt
Jo
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for arbitrary h € U™ with u(h) > 0 and f > 0; note that Ty < oo Py-as for all # € F since
p(h) > 0.

4) Write Ty if h = 1g, for B € £ with u(B) > 0, and let Sg denote the first entry time of the
discrete chain X to B: then (5.29) yields

SB
n=1 0

If f is a special function of X as in 1), the expressions in (5.29), for h € YT with pu(h) > 0, and

T

f(Xy) dt) , TEER.

in (5.30), for B € £ with pu(B) > 0, are bounded functions of z € E. From now on, we will omit
the reference to X and speak for short during this proof of special functions.

Consider a first entry time 75 to B
t A~
T = inf{t >0: / 1B(Xs)d8 > 0} < Tpg;
0

then Ty is a IF-stopping time, and by construction, between Tz and fB, the process X has to
spend an independent exponential time in the set B. In particular, for B = E, § := fp is an

independent exponential time. Comparison with (5.30) shows: if f is special, then

(5.31) B, ( OTB 1(x0) dt) B ( OfB 7(x0) dt) B (/0 " F(x) dt)

(B € &€ with pu(B) > 0) are bounded functions of z € E.
5) Consider now a recurrent atom A € £ for X and a life cycle decomposition (R,,), asin 1.9.A+B
such that Ry has the form specified in proposition 3.4:

(532) R] S S[] + (max TB) o 1950 s Sg S max fh,i
1<j<t 1<i<k

where B; € & have positive invariant measure p(B;) > 0, 1 < j < I, and where h; are &-
measurable, [0,1]-valued, with u(h;) > 0. By the strong Markov property, for f special and
bounded,

Ry

P E$< F(X) dt) < B,

So ! fBi
f(Xy) dt+ZEXsn (/ ' f(Xv)dv)
j=1 70

J0O J0

using (5.31), this is is again a bounded function in # € E. Thus we have proved that for R,
meeting (5.32), special functions for X are weakly special for X and R;. This is the assertion of

proposition 3.4. O
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6 Nummelin splitting in discrete time

The results of subsection 3.1 were formulated under the assumption that a Harris process X =
(X¢)i>0 has a recurrent atom A such that suitably defined exit times (R,,), from this atom de-
compose the trajectory of X into a sequence of i.i.d life cycles. Unfortunately, many interesting

processes X do not possess such recurrent atoms.

Nummelin ([Num 78]) showed that discrete-time Harris chains can be embedded as first com-
ponent into a a two-dimensional Harris chain (the ’split’ chain) where the second component
introduces a recurrent atom of positive mass. As a preparation to section 7, we retrace the ap-

proach of Nummelin in case of discrete time.

In this section, we consider a Markov chain Y = (V},),emn, taking values in a Polish space (E, &),
with one-step transition kernel P(z,dy), and assume that Y is Harris with invariant measure u.

Nummelin used the following minorization assumption(s) (My), k € IN.

6.1 Minorization assumption (M) : There is some £-measurable function h : £ — [0, 1]

with p(h) > 0 and some probability measure v on (E, &) such that

Pi(x,A) > h(z)v(A) Ve eE, VAef.

For our purposes, the discrete time chain Y of interest will be X = (X, ),, i.e. the continuous-
time Harris process X = (X;);>0 evaluated after independent exponential waiting times; hence
P(xz,dy) will be the potential kernel U'(z,dy) and p the invariant measure of X, cf. proof of

theorem 1.2 and theorem 1.4. The main result of the this section is proposition 6.7: it states that

in case P(x,dy) = U'(x,dy), the minorization assumption (M) is automatically satisfied.

Under (M;), Nummelin splitting transforms the state space (E,£), measures A on (E, &), tran-
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sition probabilities P(-,-) on (E,E), ..., as follows. For points € F and sets A € &, split

xrg = (’L‘,O) € EO =F x {0}

E>zx 4
pY
xr) = (.’IJ,l)EE] :EX{l}
AUZ:AX{O}CEU
EDA 4
N\

Aq Z:AX{l}CEl.
We write

E* :=FEyUE,, & =0(Ay, A :A€f)
and identify sets A € £ with their pre-image under the projection from E* to E:
EA +— Ax{0,1} €&
By (Mj) with h as there, a o-finite measure A on (E, ) splits according to

[ 1a(2)h(z)\(dz) = A(4))

SLa@)(1 — h)(@)A(da) =t A (Ao) .

A € &; this defines a o-finite measure \* on (E*, £*) such that
(A x {0,1}) = A(4), A€

Identifying A € £ with A x {0,1} € £* as above, we write again A for the restriction of \* to the
sub-o-field {A x {0,1} : A € £} of £*. Extending £-measurable f: E — R to (E*,£*) via

f(wo) = fz) = f(z1), wz€E,

we may consider integrals

/ fdx= fdXx
without distinction on either (F, &) or (E*,£¥).
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Next, one uses (M;) and the kernel h@v(z,dy) := h(z)v(dy) to transform the transition kernel
P(-,-) on (E,€). The aim is to define a transition probability P*(-,-) on (E*,£*) such that

i) the original Markov chain Y = (Y,,),,ew, evolving under P is embedded as first component into
a new chain Y* = (Y,/)nemw, on (E*,£*) evolving under P*(-,-): we then write Y, = (Y., €,);

ii) transitions away from points 21 = (z,1) € E; do no longer keep trace of the first component
z of points in F;: thus F; € £* will become an atom for Y*.

To get i) and ii), one has to solve

EO E El
A (dxg) = (1 = h)(x)\(dx) +— A(dx) —  h(x)A(dz) = X\*(dzq)
P*(2o, dy) N\ v P, dy) = v(dy)

+— MNdz)P(x,dy) —

which — noticing that v(dy) = ﬁ(h ® v)(x,dy) whenever h(z) > 0 — leads to a kernel P*(-,-)
defined for points z* in E* = E x {0,1} by

(P —h@v)(s,dy)  ifi=0andh(z) <1
P*(zi,dy) =

v(dy) else .

So far, we have defined P*(z*, dy) as a transition probability from (E*,£*) to (F,£): it remains
to split all measures P*(z*,dy), x* € E*, according to the above rule (from y to yo = (y,0)
with probability 1—hA(y), and to y; = (y, 1) with probability h(y)) to define the desired transition
kernel P*(z*,dy*) on (E*,&*).

Resuming this discussion, we obtain

6.2 Proposition : Consider a discrete time chain Y = (Y},)nemn, with one-step transition kernel
P(-,-) on (E,€) satisfying (M;), with arbitrary initial distribution A. Consider a chain (Y,¥),, on

(E*,&*) with one-step transition kernel P*(-,-) as defined above, and with starting law A*.

(i) For arbitrary N > 1 and A, € £, 0 <n < N, we have

P\(Y,€A,,0<n<N)=Py (Y€ A, x{0,1}, 1 <n<N)

65



thus the first component of Y* is equal in law to the original chain Y . (Moreover, we may
construct Y jointly with Y* such that Y is the first component of Y* = (Y,,,¢,)n, the

second component (&,), taking values in {0,1}.)

(ii) If Y is Harris with invariant measure p, then Y* is Harris with invariant measure p*:

i (Ar) = /A ho)u(de), i (Ag) = /A (—h)(@)u(dz), A€E.

(iii) Ey is an atom for Y* having p*(Eq) = [, h(z)u(dz) > 0.

To apply 6.2, we have to be able to check the minorization condition (Mj).

6.3 Remark : In some cases one has explicit densities p(-,-), £ ® £-measurable,
P(z,dy) = p(z,y)m(dy), z,y€E

with respect to some o-finite measure m on (F, &) which is equivalent to the invariant measure

1, and one can specify some set C € £ having
inf x,y) >0
(m,y)EC’XC’p( U)

m(C) >0 (wlo.galso m(C)<1)

(thus C' will be visited infinitely often, and also transitions C' — C' will occur infinitly often):

then for x € £, A€ &

Pz, A) > P(m,Aﬂc):/lAmC(?}) p(x,y)m(dy)

> le(v)

inf x W(ANC
(m’y;gcwp("r,y)} m( )

> h(@)v(4) = (hev)(,A)
where the function h and the probability measure v are given in terms of the set C' alone

h:=1 inf z,Y) A1) m(C) = al
e (,nt  pea) A1) m@) = alo
v:=m(-NC)/m(C)

for some « € (0,1). In this case, the minorization condition (M7) holds in a very particular form,

with h and v determined from C. O
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This leads to the following sharper form of minorization conditions (My), k > 1:

6.4 Minorization assumption (ka) : There is some set C' € £ with u(C) > 0, some probability

measure v on (E,€) equivalent to u(- N C'), some function h of form alc, a € (0,1), such that

Pi(z,A) > h(z)v(A) VxeE, VAecf.

We quote the following result from Revuz [Rev 75].

6.5 Proposition : ([Rev 75, p. 160]) Consider a Harris chain Y = (Y, )nemn, taking values in
(E,E), £ countably generated, with one-step transition kernel P(z,dy) and invariant measure u.
Let m denote a probability measure on (E, £) which is equivalent to p. Then there is a family of

Lebesgue decompositions of k-step transition probabilities P (z,-) with respect to m
Py(x,dy) = p(z,y)m(dy) + Py(x,dy) , w,y€ B, k>1
with the following properties: pi(-,-) is £ ® E-measurable for all £ > 1, and there is some set

C € & with m(C) > 0 and some integer k € IN such that ( %nf pr(z,y) > 0.
z,y)eCxC

As a consequence, arguing exactly as in remark 6.3 above, we deduce from 6.5:

6.6 Proposition : Consider a Harris chain Y = (Y},),emn, taking values in (E, &), £ countably
generated, with one-step transition kernel P(z,dy). Then there is some k > 1 such that the

minorization condition (M) is satisfied.
We apply this to the special situation of interest for us.

6.7 Proposition : Consider X = (X;);>0, a continuous-time Harris process with semigroup
(P;(-,-))¢e>0 and invariant measure y, taking values in a Polish space (E,&).

Then for all 0 < a < oo, the transition kernels
aU®(z,dy) = / e Py(x, dy)dt
Jo

satisfy a minorization condition (]\Z)
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Proof : Consider X" = (X, )n>0 where p,41—pn, n > 0, are i.i.d exp(a)-waiting times in-

dependent of X, pg = 0. Then p, has law I'(n,«), and a mixture formula for Gamma laws
gives

Y (1-¢)q"T(n+1,0) =T(1,a(1-q))

n=0

for arbitrary 0 < ¢ < 1. Thus we have

oo o oo

a(l—q)ue=—9 = Z(l—q)q”/o D(n+1,0)(dt) P, =Y (1-q)g" (aU”)"*" .

n=0 : n=0
Since X = (X{);>¢ is by assumption Harris, we know from theorem 1.4 that (H2%) holds for
arbitrary 0 < o < oo: thus X with one-step transition kernel aU® is by assumption Harris.
Then proposition 6.6 yields that at least one of the kernels (aU®)", n > 1, satisfies a minorization
condition (M;). So we have a minorization condition (M;) also for o/U®" where o/ = a(1—q).

Since o and ¢ were arbitrary, this proves the assertion. O
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7 Nummelin-like splitting for general continuous time Harris pro-

cesses and proofs for subsection 3.3

The results of subsection 3.1 were formulated under the assumption that the Harris process
X = (X{)¢>0 under consideration has a life cycle decomposition. This restrictive assumption will
be removed now, and we will prove the general results 'without life cycles’ of subsection 3.3.
Touati ([Tou 88]) used Nummelin splitting to argue that for Harris processes X = (X;);>¢ with
Polish state space, life cycles may always be introduced artificially: he thus could state the main
theorem of section 3 without explicit reference to concrete life cycles of X, giving by the way the
result in its most general form. Using quite different arguments, we will prove this result in the

present section (theorems 7.16 and 7.20 below).

The setting is the following: we consider a continuous-time strong Markov process X = (X;);>0
with semigroup (P;(-,-))¢>0, taking values in a Polish space (E, ), and with cadlag paths. Slight-
ly more restrictive than in section 1, we take X as canonical process on (2, A, IF), where ) is
the Skorohod space D(IR,, E) with canonical o-field and with canonical filtration; we have shifts
(0¢)e>0 on (2, A, IF') (note that for results on weak convergence of stochastic processes, this choice

is no restriction of generality). We do not assume more than

(H1): X = (X;)¢>0 is Harris with invariant measure p.

By theorem 1.4, we know that (H1) implies the property

(H2): X = (X,,)n>0 is Harris, with 0,,—0,,_1 iid ezp(1)-waiting times independent of X

and that in virtue of proposition 6.7 the following holds:

(H6): The one-step transition kernel U'(-,-) of X satisfies a minorization condition (M;): there

is some set C' € £ with u(C) > 0, some probability measure v on (E, &) equivalent to u(- N C),
and some 0 < o < 1 such that U'(x,dy) > alc(z)v(dy) , for all z,y € E.

We start with embedding X as first component into a richer Harris process X = (Xt)tzo- To
X we will associate processes X™ which - close to X if m is large - can be equipped with a
recurrent atom A™ and a life cycle decomposition (E;”)n Then the idea is as follows: shifting

additive functionals of X to X™ by means of ratio limit theorems, we can apply theorem 3.1
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in X™ to prove that ’additive functionals of X converge as if X had life cycles’, where norming

function and limiting process are now determined from regular variation at 0 of the resolvent of X.

7.1 The process X : Prepare i.i.d. exponential times 7,,,n > 1, and i.i.d. random variables
Un,Vn, n > 1, uniformly distributed on (0,1), all independent and independent of X. Write
T, =7+ -+, n>1,Ty:=0. Define the process X by

Xp= (X, ), Ne= (N N2 NP = 1o (8 (2,u,0) + 3 1, 7o (O (X1, Ui, Vi)
n>1

t > 0, under initial conditions X = (, z,u,v). E := ExEx[0,1]x[0, 1] is the state space for X,
equipped with Borel-o-field &.

X is defined on a standard extension (Q, A, IF, (P;) .. ) of the original space (Q, A, IF, (P,)»cp):

ek )

for this extension, we take also /N as canonical process on its canonical path space, the set of all
right-continuous piecewise constant functions IR, — Ex|[0,1]x[0, 1], with canonical o-field and
canonical filtration; without ambiguity, we write again (1¥;);>¢ for the shifts on (Q, A, IF). By

construction, X is then the canonical process on (Q, A, ]F), IF the filtration generated by X, and

the original process X appears now as first component of X.

Jumps in the N-component of X occur at constant rate 1; note that since the T,, n > 1, are
constructed from independent exponential waiting times, they have a.s. no intersection with the
countably many jump times of the original cadlag process X. Thus at a jump time T,,, the

successor state XTn for XTf is selected according to K(XTf, -), for the transition probability
K((z,z,u,v), d(a', 2, u',v")) = €, 4 (da’, dz")R(du', dv')

on (E,E), where e denotes Dirac measure and R (du, dv) = Lio,1y(u)dulg1y(v)dv . Between suc-
cessive jumps of the N-component, the X-component of X evolves according to the semigroup of
X, and the N-component remains constant. So we are pasting together in a Markovian way pieces
of ’killed’ strong Markov processes; it is known that this preserves the strong Markov property,
hence X is strongly Markov with state space (E, ) (see [I-N-W 66 a,b], [[-N-W 68]).

Y

We will prove now that
(7.1) i(dx, dz, du, dv) = p(dz) R(du, dv) Ul(z, dx)
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is the invariant measure for X. Since the discrete time process (X7, ), is Harris with invariant
measure u and since U!(-, A) gives the expected sojourn time of X in A up to an independent

exponential time, (7.1') implies via 1.3 that the process X is again a Harris process.

We have to show that i defined by (7.1) is invariant for the I-potential kernel of X. Write
A= A;xAyx A3x Ay for arbitrary Ay, Ay € £, A3, Ay € B([0,1]). Write o for an exp(1)-waiting
time independent of X. Conditioning with respect to Ty, the first jump of the N-component of

X, one has

t
E(m,z,u,v) (1A(Xt)) = / dre" / PT (:E: dy) R(dula dU’) E(y,y,u’,v’) (1A(thr))
Jo JEx[0,1)2

+ et Pt(xa Al) 1A2 (Z) 1A3><A4(u7 U)

for every t > 0; integrating this equation w.r.t. e 'dt, we get

E(m,z,u,v) (1A(XU)) = /F‘x[[] 2 Uz(xa dy) R(dula dvl) E(y,y,u’,v’) (1A(XU))

+ U2(x,A1) 14,(2) Lagxa, (u,v)

where U? is the 2-potential kernel of X. p being invariant for X, we deduce from the last equation

with particular initial condition z = 2

1

Py / M(dz) R(duadv) E(zzu v) (1A(XU)) :/ /.1,((]2’) 1A2(Z) UQ(Z7A1)R(A3XA4)'
2 JEx0,1)2 o E

As a consequence of both last equations, we obtain for ji defined by (7.17)

1

/Ev‘ﬂ(dxadzadu;d'U)E(:c,z,u,v) (1A(XU)) = §/E><[[] 1]2“(dy)R(dul=dUI)E(y,y,u’,v’) (1A(XU))

+ / u(dz) 1A2(Z) (UIUQ) (Z,Al)R(A3XA4)
E

/Fu(dz) 14,(2) (U +U'U?) (2, A1) R(A3x Ay) .

An obvious calculation on Gamma densities gives Y72, 27'T'({,2) = T'(1,1); since the transition

probability 2U? involves a I'(1, 2)-waiting time, this gives Y 72, 27! (2U2)l =U"! and thus

(U2 +U'0?) = = ((2U%) + U (2U?)) = U".

DN | =

Hence the last integral equals ji (A; x Ay x A3x Aq) = i (A) which proves (7.1).
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Now we associate to the process X of 7.1 a family of processes )?m, close to X for large m.
To do this, we use (H6): whenever X7, visits the set C occurring in the minoration condition
(]\71), n > 1, we will forget with probability 27 the fluctuation of X on the remaining interval
HTna Tn+1 H

7.2 The processes X™, m > 0 : For C of (H6) and X = (X, N) of 7.1, we define
X" = Z 1[[Tn,Tn+1[[(t) (Xr 1{XTn€E\FC,m,} + X7, 1{XTn€FC’,m,}) , t>0
n>0

with notation Fg,, := ExCx(0,27™)x[0, 1].

Viewed as IF-adapted process, X™ is a functional of X: )Z'{” coincides with X, on intervals where
X; visits (ExCx(0,27™)x[0,1])¢, and remains constant right-continuous as long as X; visits
ExCx(0,27™)x[0,1]. The N-component of X™ is the N-component of X. In this sense, X™ is

close to X if m is large.

Consider now the (smaller) filtration I generated by X™ alone. With respect to its own past

]Fm, X™ s again strongly Markov: jumps of the N-component occur at constant rate 1; at a

jump time T),, a successor state X7 for X;l is selected according to the transition probability

K((z,z,u,v), d(z', 2 ,u/,v")) on (E, &) given by
(7.2") (2 + 1 (2) L o-my(u) (U' (2, ) — €5)] (da’) ey (d2") R(du', do') ;

between successive jumps of the N-component, the X-component of the process X™ evolves ac-
cording to the semigroup of X whenever X™ is in (ExCx (0,2 ™)x [0,1])¢, and remains constant

otherwise. With respect to ﬁ?m, X™ is again Harris and has invariant measure
(7.2") ™ (dx, dz, du, dv) == p(dz) R(du,dv) [U(z,-) + 1e(2)1(0.0-my(u) (ex — Ul(z,)] (dz) .

In the sense of equality of laws of processes, i.e. of probability laws on the Skorohod space

D(IR,, E), we shall always switch between these two interpretations of X™.

7.3 An atom for X" : Let a, C, v be given by (H6). The Harris process X™ with respect to
F" admits an interpretation in terms of Nummelin splitting with recurrent atom

A" = ExCx(0,27™)x(0,a) €&, p™(A™) = a2 ™u(C) > 0.

72



Indeed, at a jump time 7T;,, knowing )?;l and thus knowing whether X™ was constant on
[[Ty_1,T,[[ or not (this is seen from the N-component of )Z';n,), we can rewrite the transiti-
on kernel K (-,-) of (7.2") as follows:
i) on {N,- ¢ Cx(0,27™)x[0,1]}, we select )?g according to

€x, (da') e, (d2") R(du', dv')
(on this event, X, is the first component of )?;l);

n

ii) on {N,— € Cx(0,27™)x[0,a)}, we select )?771}7 according to
v(da') ey (d2") R(du', dv') ;

iii) on {Np- € Ox(0,27™)x[a, 1]}, we select )N(}’; according to

1

1—«

(U (X,

2 — 17

dz') — av(dz')) ey (d2') R(du', dv")

is the second component of )?;l) in virtue of (H6).

n

(on this event, X7, |
Note that we have applied Nummelin’s splitting technique only between those jump times of the

N-component of X™ where the process X™ itself remained constant.

As a consequence of 7.3, X™ has life cycles. In order to apply the results of subsection 3.1 to
X™ we need (H4): we have to specify a life cycle decomposition (R™),, for X™ such that weakly

special functions for X and R}" do exist.

7.4 Proposition : For the process X™ with recurrent atom A™ := ExCx(0,27™)x(0,a), we

define a life cycle decomposition (EZ‘)” by

(7.5) Ry := So+ T gy 005y, So:=inf{t: X" € A™}

c

where T(Zm) is the first entry time to (gm)c. Then for any special function f for X, the function

f(z,z,u,0) = f(z) on (E,€) is weakly special for X™ and ]?’1“

Proof : 1) First note that ET is defined as the first entry time to (A™)¢ following the first
visit to the atom A™; since v in 7.3 i) is by (H6) concentrated on C, a visit in A™ during an

independent exponential time leads with probability a2~ to another visit in Am during a new
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independent exponential time. So having entered the atom, the sojourn time of X™ in A™ is
distributed according to

> (1027 (a2 ™YL (j+1,1) =T(1,1-a2™™).

>0
2) Consider the original process X. In virtue of (H1)+(H2), special functions f for X do exist,
cf. 5.28; w.l.o.g., we take f bounded. Put h := a27™ 1¢ with «, C as in 7.3. Since u(C) > 0 by

(H6), we have with notations of 5.28

T
z— B, ( f(XS)ds) is bounded on F
Jo

where fh is a killing time for position dependent killing of X at rate h. Prepare - on an extension
of (2, A, IF,P) - a sequence p, T oo such that p; — p;_1, ¢ > 0 are i.i.d ~ exp(l), pg = 0, and
prepare (U,,V,,) i.i.d ~ R(du,dv) for n > 0, all independent and independent of X. By (5.29)

we see that

2= B | Y (1-h(X,)) .. (1-h(X,, ) f(X,,) | is bounded.

n>1

The expectation in the last relation is equal to

(7-6) Ez Z (1*hC,m,a(W1)) (I*hC,m,a(anl)) f(Xpn) (pn+1 - Pn)

n>1
with notation he m.a = lox(o,.2-m)x(0,) and Wj = (X,,,U;, Vj): this is seen by multiplying out
summands and using the independence assumptions.

3) Consider the process N arising in the construction of X and X™. In notation of 7.1 and 7.2,

the expectation (7.6) equals

S+TyoS
E(z,u,v) (/ (f o W])(NJdS)

T
where we define

S:=inf{t > T, : N, € Ox(0,27")x(0,) },
where m is the projection (z,u,v) — z and where u, v are arbitrary. So we have proved in 2)+3)

S+T105
(77 (z,u,v) = Bz (/ (fo W])(Ns)ds) is bounded on Ex|0,1]x[0, 1].
Th
= f(z

4) Consider now X™. With notation f(z,z,u,v) : ), (7.7) reads

S-I—T] OS .~ .
T — Fj (/ f(X?)d?) is bounded on E .
T4
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Noticing that f is bounded and that T} has law exp(1l), we may replace the interval of integration
by [[0, S 4 T} o S[[. By construction of the atom A™ in 7.3, the first entry time Sy of X™ to A™
equals the first entry time of N to C'x(0,27™)x (0, «): thus we have Sy < S. By step 1), the
interval [[Sy, So+T, gm)c07950 [[ has length distributed according to I'(1,1—a2~™). All this together

(
with the strong Markov property allows to deduce

ﬁm ~ ~
(7.8) i - B, ( 1 f(X;“)ds) is bounded on E
0

with ﬁ{” defined by (7.5). We have proved that for every bounded special function f of X,

f(z,2z,u,0) == f(z) is weakly special for X™ and ﬁ{" |

Remark : As a consequence of 7.2, 7.3 and 7.4, we know that assumptions (H1)+(H3)+(H4)
hold for the process X™ with atom A™ and with life cycles defined by (7.5). So all results of

subsection 3.1 (or of sections 445) can be applied to Xm,

However, we have to reformulate the conditions on life cycle length distributions in Xm (which is
an artificial object) into conditions formulated for the original process X. After two preliminary

results, this will be done in theorem 7.14.

7.9 Lemma : For the life cycle decomposition defined for Xm by (7.5), put

V() = (1 - E (e*%(ﬁ«g’*ﬁﬁ"’)))il , t>0.

a) For 0 < a <1 and le() varying slowly at oo, the following assertions i) - iv) are equivalent:

t ~
i) T (t) = / PRy — R >x)dr ~ ———t'"%1™() as t— 00
0 I'(2—a)
(in case 0 < a < 1, this is equivalent to P(ﬁg” - ﬁﬁ” > x) ~ ﬁ 27 I™ () as t — 00):;
ii v (t) ~ t%=—— as t—=00;
) 0~

iii) for every bounded special function f of X, defining f(x, z,u,v) := f(z), the resolvant of Xm

satisfies

(~717}t.f> () ~ tai%(t) (/ﬁig f()??)d?) as t— oo
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for every # € E;
iv) for every g nonnegative £-measurable with 0 < u(g) < oo, for N' the second component of

X™ (i.e the first component of N),

[e'e) 1 RT
E; </ et g(N}) ds) ~ Y mE (/~ i g(NhH ds) as ¢t — oo
0 m(t pm

for m-almost all & € E.

b) Under P ..., the law of N' = Y >0 Y7, 7,11 X1, does not depend on m. There is some

constant ¢™ such that

RT
(7.10) E(/ g(Nsl)ds) — @ u(g)

R™
for all ¢ in iv), and there is a slowly varying function /(-) not depending on m such that Tm() in

a) can be replaced by

(7.11) I"(t) = @ 1(t), t>0, forarbitrary m.

Proof : 1) The equivalence of i) and ii) is (5.1) together with (4.2)-(4.4), the equivalence of ii)
and iii) is the decomposition of the resolvant in the proof of lemma 5.3, all this applied to the
process X™ (the assumptions (H1)+(H3)+(H4) relative to X™ which we need here have been
checked, and f is weakly special for X™ and Ié’]“ if f is special for X). By definition of 1, iii) can
be written in terms of N':
iv’) for every bounded special function f of X and for all & € E,

E; </Ooei-9f(zv§)ds> ~ ta;E< Rgﬂf(zvg)ds) . t—00.

Jo Im(t) JRm

So we have proved a) with iv’) in place of iv).
2) Under P ..., the notation N' = ano L7, Tpsr [[XT. 15 unambiguous, and the Lh.s of iv’)
is the resolvant of a Markov step process with ezp(1)-holding times in all states and with jump
heigth governed by the potential kernel U'(-,-) of X. So in this case, there is asymptotically as
t — oo no dependence on m in the r.h.s of iv’), and there is a function I(-) varying slowly at oo,

not dependent on m, such that

(%) ™ (t) ! ~ Z(t)i t— 00

E( i f(NJ)ds> ()’

Proposition 1.10 applied to additive functionals fot g(N1)ds of X™ - with invariant measure ji™

whose image under the projection (z,z,u,v) — z equals p - shows that there is a constant ¢™
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with property (7.10), so (*) implies (7.11).
3) In order to complete the proof of the lemma, note that assertion iv’) is equivalent to iv) in a)

by the ratio limit theorem 1.8 for resolvants in Xm, O

7.12 Lemma : We have ¢™ = 2"/ [u(C)a(l — a27™)] in (7.10)+(7.11).

Proof: Consider g nonnegative £-measurable with 0 < u(g) < 0o, and an arbitrary £-measurable
nonnegative function g with 0 < g™ (g) < oo. Proposition 1.10 applied to fof g(N})ds and
o §(X™)ds - additive functionals of X™ with invariant measure i™ - shows that (7.10) can be

extended to

Ry
(7.13) E(/ .a(st) = ().

m

‘1

Consider the counting process

gt = Z 1[[1:2”7",00[[(75) , 20

n>1

associated to the life cycle decomposition (R™),, in X™. By (7.5), the (ﬁ:{”)nzl are passage times
from the atom A™ = ExCx (0,2 ™)x(0,a) to its complement. By 7.3 ii), the measure v being
concentrated on the set C, the atom A™ can only be left by a change from (0,27™)x(0, ) to
((0,27™)x(0,))" in the two last components of X™. So the " -compensator of the counting

process Bm is
t
/0 (1—02")15,(X{")ds

and (7.13) gives

=5 (- O, ) =(-02 "B ( /R L (57 d) — (1 a2 )@ i (Am)

R

and the assertion follows from fi™(A™) = a2 ™ u(C). a

We deduce from 7.9 and 7.12 that regular variation at oo of tails of life cycle length distributions

in X™ can be expressed in terms of regular variation at 0 of the resolvant of the original process X.

7.14 Theorem : Consider 0 < o < 1 and [(-) varying slowly at oo. Then for arbitrary m, for life

cycle decompositions (R™),, of X™ given by (7.5) and constants @™ given in 7.12, the following
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assertions i) - iii) are equivalent:

1

— et t
2o c"I(t) as t— o0

t o~ o~
i) 20 —/ PRI — B > 2)de  ~
0

(in case 0 < a < 1, this is equivalent to P(ﬁg” - ﬁ{” >x) ~ ﬁ x " l(x) as t — 00);

pm_ pm -1 ]_
ii) v (t) = (17E<e*%(R2 — )>> ~ 1Y = as t— o00;
cm(t)

iii) for every g nonnegative £-measurable with 0 < u(g) < oo, one has regular variation at 0 of

resolvants in the original process X

(7.15) (R]/t.q)u):Em(/O“e%8g<xs>ds) ~ ), o

for u-almost all z € E (the exceptional set depending on g).

Proof : Note that i) and ii) above rephrase assertions i) and ii) of 7.9 a). Note also that the

resolvant (7.15) in X can be rewritten as a resolvant in the process X = (X, N) of 7.1, of form

oo 1,
E(m,z,u,v) o € t q(Xg)dS

where z,u, v are arbitrary. Fix some bounded special function f for X. Consider

(+) t— B, (/OOO e 1 g(X,) ds) .t B (/OOO et f(N ds)

as resolvants in X with invariant measure i on (E,&). Since N-components coincide in X and
X™, the second expression in (+) is also a resolvent in X™. Thus according to 7.9 a) iii) together

with (7.10)4(7.11), regular variation

> — L 1 a
B ([Teaahas) ~ e, o

for all & € F is equivalent to i) and ii). It remains to apply the RLT 1.8 to the resolvants (+) in

X and to note that x is image of ji under projections (z, z,u,v) — = and (z, z,u,v) — 2. O

7.16 Theorem : a) For 0 < a < 1 and I(-) varying slowly at oo, the following i) and ii) are
equivalent:
i) for every g nonnegative £-measurable with 0 < u(g) < oo, one has regular variation at 0 of

resolvants in X

(Rung) () = B ([ P ds) ~ o nte) oo



for p-almost all x € E (the exceptional set depending on g);

ii) for every additive functional A of X with 0 < E,(A;) < oo, one has weak convergence

Am
(Am)izo = B, (A)W°

n®/1(n)
(in D(IR4,IR) as n — oo, under P, for all x € E) where W is the Mittag-Leffler process of

index a.

(Atn)tzo
v(n)

decreasing limit process W (with Wy = 0 and £(WW7) not degenerate at 0) is available for some

b) The cases in a) are the only ones where weak convergence of to a continuous non-

norming function v.

Proof : 1) The additive functional A of X is also an additive functional of X = (X, N). The
RLT in X with invariant measure ji shows
Ay N Eu(Al)

— ast — oo, Py-a.s. forall # € E
Jo 9(N3)ds u(g)

where g > 0 is any fixed £-measurable function with 0 < pu(g) < oc. We can also view fot g(NDds
as additive functional of X™ since N -components in X or X™ are the same, and compare it via
ratio limits in X™ with invariant measure 1™ to the counting process Em = o 1[[;3’" sof[? OF

to the compensator
t
(1—a2™™ / 1o (X ds
Jo
of ™ relative to I (see proof of 7.12). Thus

Jo 9(N1)ds 1(g) _
Bm ~ (1—a2™)a2=™ u(C) ‘

Pj-a.s. for all # € E, where ¢™ is given in 7.12. So it remains to consider weak convergence of
the counting process Em associated to the life cycle decomposition (ﬁ?)n of X™.

2) Assume regular variation of the resolvant of X at 0 as in a) i), and thus by theorem 7.14 regular
variation of X™-life cycle length distributions as in 7.14 a) i) together with regular variation of
the function v'"(-) in 7.14 a) ii). For this setting, it has been proved in section 4 (see in particular

(4.16) with v ~ v"™ and with a(-) an asymptotic inverse to v(-)) that
() e
— —
v (n) \"") >0
(weakly in D(IR,, IR) as n — oo, under P, for all z € E), or using the above ratio limits

e (Aw)sg = ElA)Ewe.

v (n)
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By the structure of v'™ in 7.14, the ¢"™ cancels, and we have assertion a) ii) of the theorem.
3) Assume now that one has weak convergence of rescaled and suitably normed additive functio-

1 /-~ ~
nals — (ﬂf}l) of X™ asn — 0o to a continuous limit process W. Then in virtue of theorems
>0

v(n)
5.6.A+B, we have necessarily regular variation of v at oo with some index 0 < o < 1 (see also
remark 5.7), in which case we are back in step 2) - so no other types of limits can arise under

weak convergence - and have by theorem 7.14 regular variation at 0 of the resolvant of X as in

a) ). So the proof of theorem 7.16 is completed. O

Now we consider martingales M € M?>!°°(P,, IF') meeting

(H54): M has the property
Vy,Vs,t: My g — M= Mso9; Pjas.,

(M) and [M] are additive functionals of X, and E, ((M);) < co.

By construction of X in 7.1, we can lift the processes M, (M), [M] to (9, A, IF'): then M is
in M2'°¢ with respect to IF' and to laws P := Py - ) with arbitrary z,u,v, with predictable
quadratic variation and quadratic variation as before. (H54) will remain true with respect to
shifts (¥);>0 on (Q, A, IF'), with laws Py 2w ) Teplacing P, and with Ej; replacing F,,.

(Note that [F-stopping times become IF-stopping times; to see that martingale properties relative

to (P,, IF) do carry over to (P, IF') as asserted, consider a (P,, IF)-martingale M', s < t, and sets
F € F, of form

F={X, € A:= AixAyxAjx A}, 0<i<l}, O0=s1<s<..<s=s5, €N
with A, Ay € &, AL, A} € B([0,1]). Then for every n
Bz u0) <1Fm{Tn+1>s}(MtI - M;))
= B,z u0) (/000 /000 dtye ™" dtppe " L o sy G (MY - Mé))

byt ..
where G0 "*" is given by

n

l )
H (1{91<T1}1Al (Xsia Z, U, U) + Z 1{t0+...+tk§si<tn+...+tk+1} 1/" (XSiJXt0+...+tk7 Uk7 Vk))
=0 k=1

with notations of 7.1 and ¢y = 0. By the independence assumptions in 7.1, the above integral is

oo oo
/ / dtleftl---dtn_kleft"“ 1{t1+...+tn+1>s} ,Y;}{L-’-'l-);tn-kl Em (th"“’t"H(MtI _ M;))
JO JO
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with G't+-+1 the indicator function of an event in o (X,;, 0 <i <1, X1 41,)ns, 0 < k <),
Ep(1(M] — M) =0 for P = Py, 2 u0)- Since IF" is the filtration generated by X, one deduces
Ep (1z(M] — M!)) =0 for arbitrary events F' € F;.)

7.17 Lemma : From martingales M € M?1°¢(P,, IF') meeting (H54), and such that in addition
(M) is a locally bounded process, consider

M= Vg g,y (MTH =M™, >0
n>0

defined on (€2, A), where F,,, = ExCx(0,27™)x[0, 1] is the set occurring in 7.2.

Then the following holds, for arbitrary m > 1.

a) The process M™ is " adapted.

b) M™ belongs to MQ’]“C(]??m, P) with P = Pla,2 ) for arbitrary z,u,v.

) Write (M™), [M™] for angle and square brackett of M™ with respect to (I ,P). On

(Q, A, E?m, (04) >0, (Pﬂ)geﬁ?)ﬂ with lifecycles for X™ defined by (7.5) and invariant measure ™
given by (7.27), the processes M™, (M™), [M™] satisfy all conditions (H54) + (H5”); one has

(7.18) & B (M™)1) = B ((M™) g — (M™) ) < 00

with ¢™ as in 7.12.

Proof : a) To see that the process M on (Q, ./Zl) is ﬁ?m—adapted, we shall prove

(+) o(n,t) = (t—T,) V0 is an (}N'ﬂ+u>u>0 -stopping time

(++) the process (1{YTn¢Fo,m} (MT+1 — MTn)Tn+u>“20 is (f%’“”)uzo -adapted
for n € INg, t > 0. Combining (4) and (++) yields

s F

) T T,
1{XTH€Fc,m} (M M )Tn+0(n,t) Tnto(n,t)

-measurable .

Now T,, + o(n,t) = T, Vt is an ]Aﬁ‘m—stopping time which equals ¢ on {7}, <t} = {T,, Vit < t}.
Thus by definition of ]?ﬂ vi

(T, <ty {Xp, ¢ Foyn{(MTr —M™) e A} e F"

t
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for sets A € B(IR): thus

M= Z L%, ¢Fm} LT ooll (Mt — M)
n=0

is IF"-adapted which is a). We show (+) and (++).
Since T, is an ]Aﬁ‘m—stopping time, o(n,t) is }N',?l -measurable and nonnegative, hence (+) is obvious

since {o(n,t) < v} € .%;l C }N'ﬂ+1), v > 0. To see (++), note first that by (H54)

Lixy gre,y (M = MT")THH] (w) = |:1{Y0¢FC,W}MIT1:| (I7, (w)) -

Now M is IF-adapted; stopped at time Ty, the process M 7! is (]:"u/\Tl)u>0—adapted, thus

(%) {Xo¢ Fom}N{M]" € A} € Frijpu, A€EB(R), u>0.
Since (Q, A, ]F) is the canonical path space for X, see 7.1 - 7.2, we have by construction of xXm
(xx) the o-fields Fr, 1, and ]?1’1}/\” coincide in restriction to {Xo ¢ Fc .}

By (*) and (**), the process 13 op. 4 MT1 is in particular " -adapted. Then (H54) shows
that

1{)?Tn¢Fc,m} (MT"+1 - MT”)TMLU] (w) = |:1{Y0¢FC,W}MIT1 (I, (w))

is .7?77%+u—measurable, for all n € INg, u > 0: this is (++4). So assertion a) is proved.

b) By assumption, M and thus M™ belong to M?!°¢(IF', P). Since " is smaller than IF, (IF, P)-
martingales which are ﬁ?m—adapted will be (ﬁ?m, P)-martingales. By a), M™ is ﬁ?m—adapted. It
remains to show that there are localizing sequences (p;");>; for M™ which are " stopping

times: then M™ will belong to M2¢(F" P).

We consider first the particular case where the process (M) is continuous. Then
oo
b - Tn TTL
Y= Z 1{XTn$Fo,m} (<M> = <M> )
n=0
is continuous and nondecreasing, and one proves exactly as in a) that Y™ is ]Aﬁ‘m—adapted. So
p =inf{t>0:Y/">1}, 1>1
is a sequence of ]Aﬁ‘m—stopping times increasing to co such that

(Mm)(ﬁ}”) is in MQ(ﬁ?m,p) with angle brackett (Ym)(ﬁr), [>1.
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Now we consider the case of a locally bounded process (/). Then there is a sequence (X;);>; of

JF-stopping times increasing to co and a sequence of constants (C1)1>1 such that
(M)YM) < Gy on Ry x Q, for every [ > 1.

We restrict ; to the event { Xy ¢ Fc,} on which we observe X™ up to time T}, by construction

of X™ in 7.2, and define
)\’{n = (Al){f%%FO,m} /\ T] 5 lz 1

By construction we have
NP<Ty VI, Xttoasl—oo,and (A" <T1} L0 asl— oo,
Let us prove that
le are ﬁm—stopping times, [ > 1.

Since X;” has been constructed as IF-stopping time, one has
{X}” <w}= {X;n <uvAT } € ]:—UATl ., v>0.
By (**) above, the o-fields F, 7, and N'IT)T}\TI coincide in restriction to {Xy ¢ Fc ), thus
{XU ¢ Fom}N {X}” <w}e€ -7'~—1T;T/1\T1 , v>0.
Since T and v ATy are ﬁ?m—stopping times,
(Xo€ Fem}N{N' <o} ={Xg € Fem}N{Th <Ti Av} € Flip, v>0,

Both assertions together prove that X;” are ﬁ?m—stopping times, [ > 1. Since (T},), are F"-
stopping times, also

A =Ty 4+ X0 (07,), 1>1,n¢€ Ny

Y

are I -stopping times. The sequence (A]"™),~, has the properties

T, <A <Thoy1 VI, A1 asl—oo,and {A" <T,41} 10 asl— oo

Ly, grony (MYt = (M)T) o = |:1{Y0¢Fo,m} <M>§;n] o(Wr,)<C, 121

1

where we have used (H5%). Let us define for [ > 1

~m (AU,m

N
l ){A?’m<T1}



Then (ﬁ;”) is an increasing sequence of ﬁ?m—stopping times. Since {A]"" < T,41} L 0 as

I>1
[ — oo for every n fixed, the sequence increases to oo as [ — oo, and meets by construction

-1
(Ym)(z’}m) < Z 1{XTn€Fo,m} ((M)T"+1 — <M>Tn)/\n,m <1-C

1
n=0
~m . . . .
on Ry x €, for every [ > 1. Thus we have a sequence of IF' -stopping times increasing to oo such

that
(Mm)("’;n) is in M2(F", P) with angle brackett (Ym)(mﬁ), [>1.

This proves b).
c¢) By assumption we have (H54) for M € M?2°¢(JF', P): the processes (M), [M] are additive

functionals of X, and M satisfies
Vg, Vst Myg— M= Mgody, Pyas.
These properties carry over to M™, (M™) with respect X™ since
AM™ = 1oy (0,2-m)x[0,1])° (Ns=) M, d{M™)s = Loy (0,2-m)x[0,1))° (Ns—) d{M)s

depend only on the trajectory of )?m, by construction in 7.2; for the quadratic variation [M™],
use approximation by sums of quadratic increments over time partitions with mesh tending to 0.
(7.18) is obtained from the ratio limit theorem together with (7.13) or (7.10). This shows that the
processes M™, (M™), [M™] on (Q, A, F", (91)1>0, (Py) e ) satisfy assumption (H54). We check
(H5B). With lifecycles for X™ defined by (7.5) and invariant measure @™ given by (7.27), note
that every Rn ,n > 1, 1is a passage time from A™ to (gm)c: since M™ is constant before time
R,’ln and since M is cadlag, the paths of M™ are continuous at Iéﬂl Hence (Mm)fw is measurable

with respect to F™ which is (*) of (H57). a

(Rp)=

7.19 Lemma : We have in (7.18)

Em ((M™)1) = E((M™)1) ,  lim_Eg ((M™)1) = Eg ((M)1) = Ey ((M)) -

m—r00

Proof : For m fixed, choose a function § nonnegative, £&-measurable, 0 < i(§) < co such that §
equals 0 on ExCx(0,27™)x[0,1]: then fi(g) = u™(g), and fﬂ s)ds = fﬂf V()Z'm)ds. We apply
the RLT to (M™), and [ g( (X™)ds as IF" -additive functionals, and to (M™), and 3 §(X,)ds as
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IF-additive functionals. Since 1(§) = g™ (§), this gives Ezm ((M™)1) = E; ((M™)1). As m — oo,
the second assertion follows by dominated convergence since

Ey((M)1 — (M™)) = B (/0 1E><C><(U,2’"')X[O,l}(XS)d<M>s> :

7.20 Theorem : Consider 0 < « < 1 and [(-) varying slowly at cc. Assume that condition (7.15)
holds: for every g nonnegative £-measurable with 0 < p(g) < 0o, one has regular variation at 0

of resolvants in X

(Runs) 0= Bx ([T alxds) ~ el 1o

for u-almost all z € E (the exceptional set depending on g).
Then for local martingales M € M?>!°¢(P,, IF) meeting (H54) and such that (M) is locally
bounded:
a) for every m fixed, we have weak convergence in D(IR,, IR) as n — oo under P
= (M) = (B ((M™)1)) " B(W?)
n®/l(n) =
where B(W*) is Brownian motion time-changed by an independent Mittag Leffler process;
b) we have weak convergence in D(IR.,, IR) as n — oo under P
1 1/2 o
———— (Mm);50 — (Ez((M)1)) "~ B(W*);
n®/l(n) =
c¢) we have weak convergence in D(IR,,IR) as n — oo under P,
1

g (Mo > (B (D)7 BOV).

Proof : By lemma 7.17, for every (P,, IF)-local martingale M meeting (H54) and such that (M)
is a locally bounded process, M™ defined in 7.17 is an (P, ]Aﬁ‘m)—local martingale on (€, A), and
meets assumptions (H54)+(H5%) with respect to X™, I and with respect to the life cycles
(R™),, defined in (7.5). By the remark preceding lemma 7.9, we know that all assumptions needed
in section 4 are met for X™ and M™.

Combining 7.144(7.18)+7.19 with theorem 4.12 for M™, we get a).
It remains to prove b). By definition of M™ and by Lenglart’s inequality ([J-Sh 87, p. 35]),

. 1
P ( sup ———— My, — M| > \/5)

0<t<to y/n*/l(n)
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(for arbitrary m, ty < oo and &, > 0) is bounded by

n . 1 ton
- + P W /0 Lpxox(.2-m)x0,1)(Xs)d(M)s > n

where the last expression decreases to 0 as m tends to oo. Thus, for {3 < 0o and € > 0 there is
some mg = mg(tg, ) such that

. 1
lim (sup P( sup 7|MMM;ZZ|>\/E)> <e

n—=0o0 \ m>mg 0<t<tg no‘/l(n)

where we have used theorem 7.16. Let G be nonnegative, uniformly continuous and bounded

on the canonical path space D(IR,R) of Min);~o- Then for every § > 0, there are

1
V/n/l(n) (

constants C7, Cy such that for arbitrary m > mg

1 1
limsupEp | G| ——= M, < lim EBp |G| ———=MT +C16+ C
i P( ( ne /() )) nhoe ”( ( ne J1(n) )) e

(this is seen as follows: according to the definition of Skorohod distance d(.,.) on D(R,,R),
see [J-Sh 87, ch. VI], for every d > 0 there is p=p(8) > 0, e=¢(p) > 0, tg=tg(p) < oo such that
SUPp< i<, [f(t)—g(t)] < /& implies first d(f,g) < p, and second |G(f) — G(g)| < C1d, for all

f,9 € D(IR,, IR)). Combining these inequalities with weak convergence

_

according to a) and using

(Mi2)isg = (Ba((M™))) 2 BOW®)

im E; ((M™)1) = E; ((M)1)

m—00

as shown in 7.19, we get the assertion of b). ¢) is a simple restatement of b). O

By theorems 7.16 and 7.20, all assertions of subsection 3.3 are proved.
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Overview: assumptions (H1) - (H6)

We give a list of the assumptions used in this note and resume their connections.

X = (Xy)i>0 is a continuous-time strong Markov process with semigroup (P(,-));>0, taking
values in a Polish space (£, ), with cadlag paths, living on some (2, A, IF, (Y;);>0, (Py)zeE)-

Only in section 7 we require that X is the canonical process on its canonical path space D(IR,, F).

The first assumption is

(H1): X = (X;)¢>0 is Harris with invariant measure p.

This is the basic assumption used throughout the paper; (H1) is equivalent (see 1.4) to any of
the following properties (H2) or (H2%), 0 < a < oc:

(H2): X = (X,, )n>0 is Harris, with 0, 0,1 i.i.d exp(1)-waiting times independent of X

(H2%): X° = (X, )n>0 is Harris, with p, —p,_1 i.i.d exp(a)-waiting times independent of X

where we put oy = pg = 0, and where the invariant measure for X or X is p.

Via (H2)+(H2%) for some « > 1, see 6.7, we have the following property (H6) which is needed
for Nummelin splitting:

(H6): The one-step transition kernel U'(-,-) of X satisfies the minorization condition (]\71):
there is some set C' € & with u(C) > 0, some probability measure v on (E, &) equivalent to
pu(-NC), and some 0 < a < 1 such that U'(xz,dy) > alc(z)v(dy) , for all z,y € E.

A second group of assumptions is used for processes with life cycles:
(H3): X has a recurrent atom A € £ and a life cycle decomposition (R,,),>1, see 1.9.A + 1.9.B.

(H4): There is some function f, bounded, nonnegative, £-measurable, 0 < u(f) < oo, such that

r — Ew(
Jo

(called weakly special for X and Ry).

Ry
f(Xy) ds) is bounded on E

Under suitable definition of the life cycle decomposition (R,,), in (H3), (H4) will hold in virtue

of the Harris property (H2), see proposition 3.4.
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A third group of assumptions deals with M € M?>!°¢(P,, IF), the class of locally square integrable
local martingales w.r.t. P, and IF', with cadlag paths and with My = 0:
(H54): M has the property

Vy.Vs,t: My, — M= DMgod; Pyas.,

angle brackett (M) and square brackett [A/] are additive functionals of X, and E, ((M)1) < oc.

Whenever we work with a life cycle decomposition (R,,), of the process X, we need independent
increments of M over life cycles of X:

(H5B): For the life cycle decomposition (R, ), of (H3), M satisfies either (x):
(%) Mp, is measurable with respect to F — foralln >1
or the following (xx):

(%) R,41 — R, and M — M% are independent of Fg,, foralln > 1.
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