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Prefae
The aim of this note is to give a self-ontained treatment of weak onvergene of martingales andintegrable additive funtionals in general Harris reurrent Markov proesses in ontinuous time.If a Harris proess X = (Xt)t�0 has a reurrent atom, then neessary and suÆient onditions forweak onvergene of martingales assoiated to X have two omponents: �rst, either ergodiityof X or { in ase of null reurrene { regular variation at in�nity of tails of lifeyle lengthdistributions (life yles are exursions of the proess between suitably de�ned suessive visits tothe atom); seond, an integrability ondition (with respet to invariant mesure) on the preditablequadrati variation. The norming funtions are expressed in terms of tails of the lifeyle lengthdistribution; they vary regularly at in�nity with some index 0 < � � 1.Limit proesses are either Brownian motion (ase � = 1), or Brownian motion subjet to indepen-dent time hange by a Mittag-Le�er proess (the proess inverse to a stable inreasing proess)of index 0 < � < 1. No other weak limits under linear saling of time and suitable norming anour. Brownian motion in the limit does not haraterize ergodiity of the proess X, but arisesalso in a null reurrent ase on the frontier to ergodiity.For general Harris proesses, reurrent atoms and thus i.i.d life yles for the proess X do notexist. So we onsider instead of X a family of Harris proesses ( eXm)m where eXm for large mis very lose to X, and where trajetories of eXm have from time to time ats of independentexponential length over whih Nummelin splitting an be applied. In this way we get for everyone of the proesses eXm a reurrent atom, i.i.d life yles and thus limit theorems as above, formartingales and integrable additive funtionals of eXm. These limit theorems depend on m onlythrough a set of onstants whih onverge to a limit as m tends to in�nity. In this way, we andedue the desired limit theorem for martingales and integrable additive funtionals of X fromthe family of limit theorems for ( eXm)m . Of ourse, sine life yles for eXm have been introduedarti�ially and are di�erent at eah stage m, we need an intrinsi representation of the normingfuntion for X-martingales: this intrinsi norming funtion is given in terms of regular variationat 0 of resolvants of X.
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This is a new look on a partially very old topi. A �rst famous paper on onvergene of integ-rable additive funtionals is by Darling and Ka in 1957 ([D-K 57℄, re-exposed in the book byBingham, Goldie and Teugels [B-G-T 87℄): they prove that under a 'Darling-Ka ondition', nor-ming funtions for additive funtionals of X are neessarily regularly varying, and limit laws (forone-dimensional marginals) are neessarily Mittag-Le�er laws. Weak onvergene of martingalesunder a Lindeberg ondition implies weak onvergene of quadrati variation proesses (for weakonvergene of stohasti proesses, we rely on the book by Jaod and Shiryaev [J-Sh 87℄). Sothe Darling-Ka result remains a main argument in the 'neessary part' of the result on weakonvergene of martingales (we note here that the ase of slow variation of tails of life yle lengthdistributions, present in the Darling-Ka theorem, does not orrespond to weak onvergene, butonly to onvergene of �nite-dimensional distributions: this explains the absene of the ase � = 0in our treatment). In a spirit similiar to [D-K 57℄, additive funtionals of null reurrent birth anddeath proesses or branhing proesses with immigration were treated by Karlin and MGregor[K-MG 61℄, Zubkov [Zu 72℄ and Pakes [Pa 75℄. For one-dimensional di�usions, Khasminskii ([Has80℄, see also [Kh 00℄, [Kh 01℄) took a ompletely di�erent route { based on di�erential equationtehniques { to limit theorems for integrable additive funtionals.The 'suÆient part' of the result of weak onvergene of martingales is an assertion 'regular va-riation of tails of life yle length distributions implies onvergene of martingales to Brownianmotion time-hanged by an independent Mittag-Le�er proess'. The key step for this appears ina paper by Greenwood and Resnik [Gr-R 78℄: they onsider joint onvergene of bidimensionalrandom walks where the �rst marginal is attrated to Brownian motion, the seond to a stableproess, and proved { with strong referene to P. L�evy { that neessarily Brownian motion andstable proess involved in suh limits are independent. In the sequel, similiar ideas reappear inKasahara [Ka 84℄ and other papers.The next important progress was the paper by Touati [Tou 88℄ onsidering ompletely generalHarris proesses. Touati argued that using Nummelin splitting along a sequene of independentexponential times, life yles may always be introdued arti�ially, and he gave a very goodargument allowing to avoid 'Darling-Ka onditions' { whih for general proesses are highlyumbersome and rather impossible to verify { by use of 'speial funtions'. The orrespondingparts of our treatment below are entirely based on this idea. However, we do not follow Touati in3



his argument on arti�ial introdution of life yles (in ontinuous-time setting) whih seems to usproblemati. Instead of this, we propose another approah via an 'aompanying family' ( eXm)mfor X suh that at every stage m, Nummelin-like splitting of eXm is possible. Touati was the�rst to enoune a result on weak onvergene of martingales and integrable additive funtionalsof a general Harris proess in omplete generality and under minimal hypotheses; unfortunately,a �nal publiation of his paper never took plae, and some points in his preprint version (e.g.treatment of ase � = 1 where errors our) have to be orreted.We now state the general result under minimal hypotheses in a preliminary way; see setion 3(theorems 3.15 and 3.16 there) for the omplete set of assumptions and the de�nitive formulation.Theorem (preliminary version): Consider a strong Markov proess X = (Xt)t�0, de�ned on(
;A; (Ft)t�0; (Px)x2E), with Polish state spae (E; E), and with �adl�ag paths. Assume that Xis Harris reurrent with invariant measure �.a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) are equivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants of the proess X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the exeptional set depending on g);ii) for every integrable additive funtional A of X, 0 < E�(A1) <1, one has weak onvergene(Atn)t�0n�= l(n) ! E�(A1)W�in D(IR+; IR) as n!1, under Px, for all x 2 E.For 0 < � < 1, the proess W� ourring in ii) is the Mittag-Le�er proess of index �, i.e. theproess inverse of the stable inreasing proess S�; for � = 1, W 1 is the deterministi proessid := (t)t�0.b) The ases in a) are the only ones where weak onvergene of (Atn)t�0v(n) to a ontinuousnondereasing limit proess W (with W0 = 0 and L(W1) not degenerate at 0) is available forsome norming funtion v.) Consider a loally square integrable loal martingale M on (
;A; IF; Px), �adl�ag and withM0 = 0. Assume that its preditable quadrati variation hMi is a loally bounded proess whih4



is an integrable additive funtional of X.If a)i) holds for some 0 < � � 1 and some l(�) varying slowly at 1, we have1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�)(weak onvergene in D(IR+; IR) as n!1, under Px).If in addition the sequene 1pn�=l(n) (Mtn)t�0, n � 1, satis�es a Lindeberg ondition, we haveweak onvergene of pairs 1pn�=l(n)Mtn ; 1n�=l(n) hMitn!t�0 ! ��E� (hMi1)�1=2B(W�) ; �E� (hMi1)�W��in D(IR+; IR� IR) as n!1, under Px.Here our notations are as usual in semimartingale theory, see e.g. the book Jaod and Shiryaev[J-Sh 87℄; in partiular, the preditable quadrati variation hMi of a loally square integrableloal martingale M is the unique preditable inreasing proess suh that M2 � hMi is a loalmartingale. An extension of ) to multidimensional martingales M is straightforward: replaeB in ) by a multidimensional standard Brownian motion, and the ovariane by the matrix�E� �hM i;M ji1��i;j, where M i, M j are the omponents of M . Also, by the ratio limit theorem,the seond assertion of ) yields onvergene of martingales together with arbitrary integrableadditive funtionals of X.However, there is an essential diÆulty related to this general formulation. Usually in appliati-ons, one spei�es a Markov proess by its in�nitesimal generator, and { exept some rare examples{ there is no possibility to put hands { in a sense of expliit representations { on the semigroupitself. As a onsequene, expliit alulation of resolvents from the semigroup seems possible onlyin very few ases, so ondition a)i) is of rather limited pratial interest. This is why the study ofproesses with life yles presents an interest in itself: various tools to alulate expliit normingfuntions from tails of suitable life yle distributions do exist. Some are is needed in order tode�ne properly these life yles in ontinuous time. We state a preliminary rough version of theresult 'with life yles', see setion 3 for the de�nitive formulation with all details, in partiularfor our assumptions onerning life yles (theorem 3.1 together with orollaries 3.2, 3.3, andproposition 3.4). 5



Theorem (preliminary version): Assume that the Harris proess X has a reurrent atom.For suitably de�ned life yles of X { with life yle length distribution F { and appropriatenorming of the invariant measure, ondition a)i) on resolvents of X in the preeding theorem(with 0 < � � 1 and l(�) varying slowly at 1) is equivalent tor(t) := Z t0 (1� F (x)) dx � 1�(2� �) t1�� l(t) ; t " 1 ;with same � and l(�), and in ase � < 1 also equivalent to1� F (x) � 1�(1� �) x�� l(x) ; x " 1 :
There are several points whih are not treated in this text. First, we do not onsider the ase ofslowly varying norming funtions; this arises e.g. in onnetion with two-dimensional Brownianmotion, see Kasahara and Kotani [K-K 79℄ or Hu and Yor [H-Y 98℄. Here interesting time trans-formations are non-linear, and only �nite-dimensional onvergene an be obtained: our text isbased on weak onvergene tehniques, funtional in time, for semimartingales. Thus for the ase� = 0, we refer the reader to the work of Kasahara ([Ka 82℄, [Ka 86℄, [Ka 85℄), and { relying onKasahara here { Touati [Tou 88℄. Next, we do not onsider disrete time proesses: for disretetime, there are reent results of Chen ([Che 99℄, [Che 00℄) who uses Nummelin splitting and 'spe-ial funtions', but is interested in onvergene of one-dimensional marginals only. Touati [Tou88℄ treated the ontinuous time ase parallel to disrete time: he has the disrete-time versionsof all above results. Third, there is work on strong approximation of additive funtionals: see thepapers by Cs�aki, Cs�org�o, F�oldes, R�ev�esz [C-C-F-R 92℄, and [C-C 95℄, [C-S 96℄.The present text is organized as follows. First, there are two introdutory setions: setion 1deals with Harris reurrene, and setion 2 with stable proesses and lassial onvergene tostable laws. All our main results are formulated in setion 3. Here subsetion 3.1 is devoted toproesses X whih admit a reurrent atom and thus i.i.d life yles. Subsetion 3.2 gives a familyof examples whih apply the result 'with life yles' to lassial one-dimensional di�usions, withstrong referene to Khasminskii (his expliit representation of tails of life-yle length distributi-ons in null reurrent one-dimensional di�usions is a key tool here). Finally subsetion 3.3 statesthe general result (without assuming existene of life yles for X) under minimal hypotheses.6



All proofs together then form the rest of our text: setion 4 proves the 'suÆient part' in aseof life yles, setion 5 the orresponding 'neessary part', setion 6 realls lassial Nummelinsplitting as introdued by [Num 78℄, and setion 7 { devoted to general proesses without lifeyles { onstruts the family ( eXm)m of proesses 'aompanying' X suh that Nummelin-likesplitting an introdue atoms and life yles arti�ially into eXm, at every stage m, and thendedues the onvergene theorem for X from the family of onvergene theorems for ( eXm)m.We hope that the present text may ontribute to make existing theorems on weak onvergene ofmartingales and integrable additive funtionals in null reurrent Markov proesses better knownin the probabilisti and statistial ommunity, and may be useful as a self-ontained referene inappliations suh as statistial inferene for stohasti proesses.

Aknowlegdements : This text grew out of a working group on this topi organized by bothauthors in the summer term 2000 at the University of Mainz. We thank Frau J. Gonska for skilfultyping of most parts of our manusript. 7



1 Harris reurreneThis introdutory setion states some main fats about Harris reurrene. These fats will beused througout this text. An essential referene is Az�ema-Duo-Revuz [A-D-R 69℄.Throughout this note, we onsider a stohasti basis (
;A; IF ), IF right-ontinuous, and on(
;A; IF; (Px)x) a proess X = (Xt)t�0 whih is strongly Markov, taking values in a Polish spae(E; E), with �adl�ag paths, and with X0 = x Px-a.s., x 2 E. We have shift operators (#t)t�0 on(
;A; IF ), and write (Pt)t�0 for the semigroup of X.1.1 De�nition: ([A-D-R 69℄) X is alled Harris reurrent if there exists some �-�nite measurem on (E; E) suh that(�) m(A) > 0 =) 8x 2 E : Px�Z 10 1A(Xs)ds =1� = 1:Sometimes also the terminology m-irreduible is used for (�).1.2 Theorem: ([A-D-R 69℄) If X is Harris reurrent, then there is a unique (up to onstantmultiples) invariant measure � for X (i.e. a �-�nite measure suh that �Pt = � for all t � 0),and property (�) in 1.1 holds with � in plae of m.De�nition: A Harris reurrent proess X with invariant measure � is alled positive reurrent(or ergodi) if �(E) <1, null reurrent if �(E) =1.We give the major ideas of the proof of 1.2; the notions developped here will reappear as maintools in setion 7.Sketh of the proof of 1.2: For � > 0, the �-potential kernel isU�(x;A) = Ex(Z 10 e��t1A(Xt)dt) = Z 10 e��tPt(x;A)dti) A �rst step is to prove that �Pt = � for all t if and only if �U1 = �. The nontrivial diretion8



is (=. The proof starts from the resolvent equation (see [Chu 82, p.83℄)U� = U� + (� � �)U�U� = U� + (� � �)U�U�for all � > 0, � > 0. In partiular for � � 1U1 = U� + U1I��1U�where I��1 is a multipliation kernel. Assume �U1 = �, and � � 1; onsider sets � 2 E with�(�) <1. Then U�(x;�) � U1(x;�) and thus �U�(�) <1; this gives�(�) = �U�(�) + (�� 1)�U�(�) = ��U�(�) 8 � � 1:Integrating the l.h.s with respet to the probability law �e��tdt gives�U�(�) = Z 10 e��t�(�)dt:Sine �U�(�) = R10 e��t�Pt(�)dt by de�nition, we get8 � � 1 : Z 10 e��t�Pt(�)dt = Z 10 e��t�(�)dt:On open subsets of (0;1), Laplae transforms haraterize the underlying measures on (0;1)uniquely, thus �Pt(�) = �(�) for �-almost all t � 0 (with notation � for Lebesgue measure).Sine X is strongly Markov, t! Pt(�) is ontinuous, and so we have �Pt(�) = �(�) for all t � 0.ii) Let X denote a disrete-time Markov hain with one-step transition kernel U1: this meansthat the ontinuous-time proess X is observed at the jump times of an independent Poissonproess with rate 1 (a typial reasoning in order to transfer results available in disrete time tothe ontinuous-time setting). By i), a �-�nite measure � is thus invariant for X = (Xt)t�0 if andonly if it is invariant for X = (Xn)n�0.iii) Following Harris (see [Har 56℄), the disrete time hain X = (Xn)n�0 is alled Harris reurrentif there is some �-�nite measure m on (E; E) suh that(+) m(A) > 0 =) 8x 2 E : Px 1Xn=1 1A(Xn) =1! = 1:Replaing the random variable in (+) by its expetation, the following weaker property(++) "9 x : 1Xn=1(U1)n(x;A) = 0# =) m(A) = 09



was used by Foguel; he showed ([Fog 66, thm. 4℄) that (++) implies the existene of a �-�nitesubinvariant measure � for (Xn)n whih is dominating m:�U1 � � ; m << � :iv) Note that we have 1Xn=1(U1)n(x;A) = Z 10 Pt(x;A)dtsine (U1)n(x;A) = Z 10 e�t tn�1(n� 1)!Pt(x;A)dt :The ontinuous-time proess X = (Xt)t�0 is by assumption Harris reurrent, so this equalityshows that the disrete-time hain (Xn)n has the property (++). By [Fog 66℄, there is a �-�nitesubinvariant measure � for U1 whih is dominating m. Again by Harris reurrene of (Xt)t�0,for sets A 2 E meeting m(A) > 0 and (w.l.o.g.) �(A) <1, we have8x : 1Xn=1(U1)n(x;A) =1together with �nite boundsZ (�� �U1)(dx) NXn=1(U1)n(x;A) = �U1(A)� �(U1)N+1(A) � �(A) <1not depending on N : for � subinvariant, this implies� = �U1 :Hene � is invariant for (Xn)n and by ii) also invariant for X = (Xt)t�0.v) For the remaining parts of the proof we refer to [A-D-R 69℄: � of iv) is the only invariantmeasure for X, � is equivalent to mU1, and the property (�) in 1.1 holds with invariant measure� in plae of m. 2The above argument following [A-D-R 69℄ did not prove the disrete time hain X = (Xn)n�0 tobe Harris if X = (Xt)t�0 is Harris, establishing only the weaker property (++) . The equivaleneof both properties is proved in the next theorem; here we will make use of the somewhat simplerriterion (Æ) below to hek Harris reurrene of a ontinuous time proess.10



1.3 Proposition: (f. Revuz-Yor [R-Y 91, pp. 395-396℄) If X = (Xt)t�0 is strongly Markovwith invariant measure m and if(Æ) m(A) > 0 =) 8x 2 E : Px� lim supt!1 1A(Xt) = 1� = 1 ;then (�) of 1.1. holds, and X is Harris.Proof : Consider A 2 E with m(A) > 0; put Bt = R t0 1A(Xs)ds, t � 0, and �" = infft : Bt > "g.m being invariant for X, we have Em(B1) = m(A), so there is some " > 0 with Pm(B1 > ")stritly positive, hene mfx : Px(�" <1) > ag > 0for some a > 0. Property (Æ) then implieslim supt!1 PXt(�" <1) � a > 0 Px-a.s. for all x 2 E :Write Yt := 1ft+�"Æ#t<1g. For all x 2 E, PXt(�" < 1) is a version of Ex(YtjFt) . As t ! 1,Yt onverges to Y := 1\t ft+�"Æ#t<1g whih is F1-measurable. A orollary to lassial martingaletheorems ([R-Y 91, or. II.2.4℄) then showslimt!1PXt(�" <1) = Y � a > 0 Px-a.s. for all x 2 E :But Y is the indiator of a set, thus \t ft + �" Æ #t <1g = 
 Px-a.s. for all x 2 E. This impliesfB1 =1g = fR10 1A(Xs)ds =1g = 
 Px-a.s. for all x 2 E, whih is (�) of 1.1. 2We resume the disussion of Harris properties.1.4 Theorem: The assumption(H1): X = (Xt)t�0 is Harris with invariant measure �is equivalent to any of the following properties (H2) or (H2�), 0 < � <1:(H2): X = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(1)-waiting times independent of X(H2�): X� = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(�)-waiting times independent of Xwhere we put �0 = �0 = 0, and where the invariant measure for X or X� is �.Proof: We �x 0 < � <1. By proposition 1.3, (H2�) implies (H1); we prove the onverse.Lift X to a standard extension (
0;A0; IF 0 = (F 0t)t�0; (P 0x)x2E) of (
;A; IF = (Ft)t�0; (Px)x2E),11



with shifts again denoted by (#t)t�0, on whih X is strongly Markov and where �n��n�1, n � 1,are i.i.d exp(�)-waiting times independent of X.(This is done as follows: let 
00 denote the spae of all funtions f : IR+ ! IN0 whih are�adl�ag, pieewise onstant, with jumps only of height +1 and f(0) = 0, equipped with �-�eldand �ltration generated by the oordinate projetions �t(!00) = !00(t): A00 = �(�t : t � 0),IF 00 = (F 00t )t�0, F 00t = �(�s : 0 � s � t). Then IF 00 is right-ontinuous. We take P 00 the uniquelaw on (
00;A00) under whih the anonial proess (�t)t is a Poisson proess with parameter �.Then 
0 := 
�
00, A0 := A
A00, F 0t = Ft
F 00t , P 0x := Px
P 00 is the desired extension, we takeX(!0) := X(!), �(!0) := �(!00) if !0 = (!00; !), and (�n)n the sequene of jump times of �.)On (
0;A0; IF 0; (P 0x)x2E), we de�ne proessesN = 0�Xn�1 1fX�n2Ag1[[�n;1[[(t)1At�0 ; N̂ = �Z t0 �1A(Xs) ds�t�0where A 2 E is �xed. Then N � N̂ is a (IF 0; P 0x)-martingale for every x 2 E. Using Lepingle ([Le78℄), we know that Nt inreases to 1 P 0x-a.s. on the event flimt!1 N̂t = 1g. But this eventequals fR10 1A(Xs) ds = 1g. If X = (Xt)t�0 is Harris with invariant measure �, then �(A) > 0implies P 0x �R10 1A(Xs) ds =1� = 1 for all x 2 E: so P 0x-a.s. for all x 2 E, (X�n)n visits the setA in�nitely often. 2Convention: From now on we assume throughout this note that X = (Xt)t�0 is Harris reurrentwith invariant measure �.1.5 De�nition: An additive funtional of X is a proess A = (At)t�0 with the properties(i) A is IF -adapted, A0 � 0;(ii) all paths of A are nondereasing and right-ontinuous;(iii) for every x 2 E and for all s; t � 0, we have At+s = At +As Æ #t Px � a:s:.See Revuz-Yor ([R-Y 91, p.371, p.78℄). Examples of additive funtionals of X areAt = Z t0 g(Xs)ds
12



for g � 0 bounded measurable, or ounting proesses based on the point proess of jumps of X�X = Xs>0:j�Xjs>0 �(s;Xs�;Xs)where �a is Dira measure sitting in a, or (suitable versions of) loal time in ase where X is aone-dimensional di�usion. For every additive funtional A of X, f(t) := E�(At) is linear in t, and�A(B) := E�(Z 10 1B(Xs)dAs) = 1t E�(Z t0 1B(Xs)dAs) ; B 2 Ede�nes a measure �A on (E; E). The additive funtional A is termed integrable ifk�Ak := �A(E) = E�(A1)is �nite. As an immediate onsequene of this de�nition, we note1.6 Remark: a) For A = id (i.e. At = t, t � 0), the measure �id(B) = �(B) ; B 2 E , is theinvariant measure � for X.b) For At = R t0 1A0(Xs)ds, A0 2 E , we have �A = �(� \A0) and thus k�Ak = �(A0):We quote the ratio limit theorem (RLT) for additive funtionals of X.1.7 Ratio Limit Theorem: ([A-D-R 69℄) For additive funtionals A;B of X, 0 < k�Bk <1,(i) limt!1 Ex(At)Ex(Bt) = k�Akk�Bk ��a.s. (with exeptional set depending on A, B),(ii) limt!1 AtBt = k�Akk�Bk Px�a.s. 8 x.Write (R�)�>0 for the resolvent of X:(R�f) (x) = Ex�Z 10 e��t f(Xs) ds� ; � > 0 :Then the RLT for additive funtionals of X implies a RLT for resolvants of X as �! 0.1.8 Corollary: For f , g nonnegative, E-measurable, 0 < �(f) <1,lim�!0 (R�g) (x)(R�f) (x) = �(g)�(f) �-a.s. (with exeptional set depending on f and g).13



Proof: It is suÆient to onsider f; g with 0 < �(f); �(g) <1. By partial integration, write(R�g) (x) = Z 10 �e��tEx (Agt ) dswith Agt = R t0 g(Xs)ds . By Harris reurrene, Ex(Agt ) inreases to 1 as t ! 1, for all x 2 E,thus (R�g) (x) inreases to 1 as � # 0. For �xed t0 arbitrarily large, we have(R�g) (x) = o(1) + Z 1t0 �e��tEx (Agt ) ds ; � # 0whereas by the RLT for additive funtionals, there is some �-null set Nf;g suh that Ex(Agt )Ex(Aft ) on-verges to �(g)�(f) as t!1 for all x =2 Nf;g. Both arguments ombined show 1.8. 2In some ases, we have naturally a deomposition of the trajetory of X into i.i.d. exursionsaway from some reurrent atom - two examples are given below, two others at the end of thissetion. In some ases, Nummelin's splitting tehnique ([Num 78℄, see setion 6) allows to intro-due reurrent atoms arti�ially.1.9.A De�nition: We all atom for X a set A 2 E suh thati) �A := infft > 0 : Xt 2 Ag and �A := infft > 0 : Xt =2 Ag are IF -stopping times;ii) for x 2 A, L(X�A jX0 = x) =: �A does not depend on x 2 A.An atom A is alled reurrent if Px-a.s. for all x 2 A: 8N 9 t > N with Xt 2 A.Examples: a) Consider the one-dimensional Ornstein-Uhlenbek di�usion dXt = �aXtdt+ dWtwith a � 0. The proess is Harris (take m the Lebesgue measure in 1.1), A = f0g is a reurrentatom, with �A the Dira measure at 0.b) Fix some measurable funtion � on IR taking values in some interval [a; b℄, 0 < a < b < 1,de�ne a transition probability �(�; �) on (IR;B(IR)) by�(x; �) := N (x�x0; 1) if x > x0 ; �(x; �) := N (0; 1) if x � x0with x0 � 0. Consider the Markov step proess X = (Xt)t�0 having exponential holding timeswith parameter �(x) in states x 2 IR, and suessor states for x seleted aording to �(x; �). Thisproess is Harris (sets of positive Lebesgue measure will be visited in�nitely often in the sense of1.1) and admits A = (�1; x0℄ as a reurrent atom, with �A given by N (0; 1) onditioned on A,14



f. 1.9.A ii).To a reurrent atom, we an assoiate a sequene of IF -stopping times (Rn)n whih deompose -by the strong Markov property - the path of X into i.i.d exursions [[Ri; Ri+1[[, i = 1; 2; :::, plusan initial segment [[0; R1[[.1.9.B De�nition: A life yle deomposition of X assoiated to a reurrent atom A is a sequene(Rn)n of IF -stopping times inreasing to 1 (R0 � 0) suh that Px-a.s. for every x 2 E:i) 8n � 1: Rn <1 and Rn = Rn�1 +R1 Æ #Rn�1 ;ii) 8n � 1: (XRn+t)t�0 is independent of FR�n with L(XRn) = �Awhere �A is given in 1.9.A (thus a.s. all Rn, n � 1, are times where the proess leaves A).Examples: a) In the Ornstein-Uhlenbek example a) above, one may takeR1 := infft > S0 : Xt = 0gwhere S0 is an independent exponential time. One may take as wellR1 := infft > S0 : Xt = 0g with S0 := infft > 0 : jXtj � 1gor more generally S0 := infft > 0 : Xt 2 Bg where B 2 B(IR) has positive Lebesgue measure anddoes not interset some "-neighbourhood of 0, " > 0. There are i.g. many ways to de�ne stoppingrules R1 meeting 1.9.B.b) Any atom with �(A) > 0 is a reurrent atom. In this ase one may takeR1 := infft > S0 : Xt =2 Agwhere S0 is an exponential waiting time spent in the atom A. In partiular, this applies to theMarkov step proess example b) above.1.10 Proposition: If X has a reurrent atom A, then for every life yle deomposition (Rn)nassoiated to A:a) the invariant measure � (unique up to onstant multiples) is given by�(A0) = st E(Z R2R1 1A0(Xs)ds) ; A0 2 E15



b) X is positive reurrent if and only if E(R2 �R1) <1.Proof: Consider additive funtionals A, B, with 0 < k�Bk <1. Then by SLLNlimt!1 AtBt = limn!1 ARnnBRnn = E(AR2 �AR1)E(BR2 �BR1) Px-a.s. 8 x:The RLT yields limt!1 AtBt = k�Akk�Bk Px-a.s. 8 xwhih together give k�Ak = st E(AR2 �AR1)up to some onstant whih does not depend on A. Considering in partiular At = R t0 1A0(Xs)ds,A0 2 E , assertion a) follows from 1.6.b); then � has �nite total mass i� E(R2 �R1) <1. 2We end this setion with two more examples illustrating de�nition 1.9.A.1.11 Example: The proess X = (Xt)t under onsideration is of the following type: pieewise onsuitable random intervals, the �rst omponent X1 is a Brownian motion; the seond omponentX2 attributes 'olours' 0 or 1 to the trajetory of X1; this olour is initially 0, later hanges to1, �nally a jump ours in the �rst omponent; this jump time is a renewal time for the proess,thus 'IR oloured 1' will be an atom for X.a) Prepare on some (
;F ; IF; P ) a real valued IF -Brownian motion and a IF -standard Poissonproess N , independent and both starting from 0. De�ne a transition probability K(�; �) onE = IR� f0; 1g as follows:K((x; 0); �) := �x 
 �12�0 + 12�1� ; K((x; 1); �) := � 
 �0 ; x 2 IRfor some �xed probability law � on (IR;B(IR)), and �a the Dira measure at a. Let (Tj)j denotethe sequene of jump times of N . The proess X is onstruted as follows: �rst, putXs = (Bs; 0) ; 0 � s < T1 ;then suessively for j � 1, selet XTj aording to K(XT�j ; �), and putXs = �X1Tj + (Bs �BTj );X2Tj� ; Tj � s < Tj+1 :16



The resulting proess X is de�ned i.g. on an extension of the original (
;F ; IF; P ). On thisextension, let IFX denote the �ltration generated by X: FXt = \r>t�(Xs : 0 � s � r), t � 0.Then X is strongly Markov w.r.t. IFX , with Polish state spae, and is Harris (take m in 1.1 suhthat its restrition to IR� f0g and IR� f1g is Lebesgue measure on IR).X admits A = IR� f1g as reurrent atom with �A = �
�0, and the ruleR1 := inffTj+1 : j � 1;XTj 2 Aggenerates a life yle deomposition (Rn)n�1 for X aording to 1.9.A+B.Note that (XRn+t)t�0 is independent of FXR�n , but not of FXRn .b) A more general variant of the example in a) ould be formulated using suitable position de-pendent killing of X at rate �(�) | if X is in position (x; 0) at time t, olour will swith to 1 ina small time interval (t; t+h℄ with probability �(x)h+ o(h) | instead of killing at onstant rate1 as above.1.12 Example: Consider a Markov step proess (Xt)t�0 with Polish state spae (E; E), Harrisreurrent, with exp(�(x))-distributed holding times in states x 2 E (� is measurable and takesvalues in [a; b℄, 0 < a < b < 1), and with suessor states for x seleted aording to a transi-tion probability �(�; �) on (E; E). In general, X will not have a reurrent atom. Let (Tj)j denotethe sequene of jump times of X. Sine � is bounded and bounded away from 0, also (XTj )j isHarris with one-step transition probability � (ompare with the ompletely di�erent situationin Proof of 1.2, steps ii) and iii)). Let us assume that �(�; �) satis�es Nummelin's minorizationondition (M) with k = 1, see [Num 78℄. Then Nummelin's splitting tehnique applied to (XTj )jyields a representation of (Xt)t�0 as �rst omponent of a 'split' proess (X�t )t�0 with state spaeE� = E�f0; 1g suh that X� is again Harris and admits a reurrent atom A� � E�. See setion 6.
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2 Stable inreasing proesses and Mittag-Le�er proessesIn this setion, we ollet some main fats about one-sided stable laws, their domains of attration,stable inreasing proesses and their proess inverse alled Mittag-Le�er proesses. The mainreferenes are Feller ([Fe 71℄) and Bingham-Goldie-Teugels ([B-G-T 78℄). For regularly varyingfuntions and their properties, we refer always to [B-G-T 78℄.2.1 De�nition: A mesurable funtion ` : (0;1)! (0;1) is slowly varying at 1 iflimx!1 `(�x)`(x) = 1 8� > 0:The lass of slowly varying funtions is denoted by RV0. A mesurable funtion r : (0;1)! (0;1)is regularly varying at 1 if it is of formr(x) = `(x) � x%; x > 0; ` 2 RV0; % 2 IR;where % is termed index of regular variation. The lass of funtions varying regularly at 1 withindex % is denoted by RV%, % 2 IR, and RV is the lass of regularly varying funtions with arbi-trary index.These notions go bak to Karamata, about 1930. Examples of slowly varying funtions are`(x) = log(x) and its iterates logm(x); with `(�) also 1`(�) is slowly varying. We mention thatfor r 2 RV%, the onvergene r(�x)r(x) ! �% as x ! 1 is (at least) uniform in � 2 K for arbitrayompats K ontained in (0;1), see [B-G-T 78, thm. 1.5.2℄.2.2 De�nition: A probability law F on (IR;B(IR)) is alled (stritly) stable ifL(X1 + : : :+Xk) = L(akX) ; k 2 INfor (Xn)n�1 i.i.d. with L(X1) = F and for suitable hoie of a norming sequene (ak)k.The word 'stritly' will be omitted in the sequel.2.3 Theorem: ([Fe 71, XIII.6℄) For 0 < � < 1 the funtion '�(�) = e��� is the Laplae trans-form of a probability law G� with the propertiesi) G� is onentrated on (0;1); 18



ii) G� is stable and an = n1=�;iii) 1�G�(x) � x���(1� �) (x!1):G� is alled the one sided stable law of index �, 0 < � < 1.Domains of attration of G�, 0 < � < 1, are haraterized as follows.2.4.A Theorem: ([Fe 71, XIII.6℄) Consider a probability law F onentrated on IR+, a normingsequene (an)n, and a probability law G on [0;1) whih is not a Dira measure.a) Assume weak onvergene of resaled onvolutions:(�) F �n(anx)! G(x) (n!1)at all ontinuity points of G. Then there is some 0 < � < 1 and some ` 2 RV0 suh that(��) 1� F (x) � x��`(x)�(1� �) (x!1):b) If the tails of F satisfy (��) for some 0 < � < 1 and some ` 2 RV0, then (�) holds with G = G�and an = a(n) where a(�) is an asymptoti inverse tot 7! 1�(1� �)(1� F (t)) 2 RV�;i.e. n � `(an) � a�n as n!1.There is a ase � = 1, overing the SLLN and more generally 'relative stability' in the termi-nology of Bingham, Goldie and Teugels [B-G-T 87℄. In 2.4.A, limit distributions G onentratedat one point in (0;1) were exluded. Write G1 for the Dira measure sitting at 1; obviously G1meets 2.2 with an = n. Domains of attration of G1 are as follows.2.4.B Theorem: ([B-G-T 87, 8.8℄) Consider a probability law F onentrated on IR+, withr(t) := Z t0 (1� F (u))du " Z 10 xF (dx) � 1;and a norming sequene (an)n. Then weak onvergene(�) F �n(an�)! G1(�) (n!1)19



is equivalent to(��) r 2 RV0:Under (��), (�) holds with an = a(n) where a(�) is an asymptoti inverse tot 7! tr(t) 2 RV1;i.e. n � r(an) � an as n!1.As a onsequene of 2.4.A and 2.4.B, there are no other stable laws onentrated on (0;1) exeptG�, 0 < � � 1 (up to saling by a onstant).2.5 De�nition: A stable inreasing proess of index �, 0 < � < 1, is a proess X with thefollowing properties:i) all paths of X are �adl�ag and nondereasing, and X0 � 0 ;ii) X is a PIIS (independent and stationary inrements) with E(e��Xt) = e�t�� , � � 0, t � 0.We write S� for the stable inreasing proess of index �, 0 < � < 1. Note that i)+ii) of 2.5 de�nea unique probability law on the Skorohod spae D(IR+; IR) with Borel-�-�eld D and anonial�ltration IG. De�ned on a suitable stohasti basis (e.g. on (D;D; IG)), S� is neessarily a Fellerproess and thus strongly Markov. In 2.7 below we will give a onstrution of S�. Note that byde�nition, almost all paths t! S�t inrease to 1 as t!1 and do not have ats.2.6 De�nition: For 0 < � < 1, the proess inverse of S�W�t := inffs > 0 : S�s > tg; t � 0is a proess W� with W� � 0, nondereasing, having almost all paths ontinuous and inreasingto 1 as t!1. W� is alled Mittag-Le�er proess of index �.In the sequel, we shall always use versions of S� where all paths t! S�t inrease to 1 as t!1and do not have ats, and versions of W� having all paths ontinuous and inreasing to 1 ast ! 1. We shall also need a de�nition of S� and W� for � = 1: we take S1 = W 1 = id, the20



deterministi proess.In order to prepare for the essential point in the limit theorems of setion 3 (the independene ofBrownian motion and stable proess involved in the limit, see 4.12 and 4.21 below), we disussin detail the struture of the stable inreasing proess S�.2.7 Remark: (see Ito-MKean [I-MK 65, p.32℄) Let �(dt; dx), t 2 IR+, x 2 IR+ denote Poissonrandom measure (PRM) on some (
;A; P ) with intensity �(dt; dx) = dt m(dx);m(dx) := �1(0;1)(x)�(1� �)x�+1 dx:By de�nition (e.g. [I-W 89, I.8℄), Poisson random measure �(dt; dx) is an integer-valued randommeasure on IR+ � IR+, haraterized by the properties:i) for F 2 B(IR+)
B(IR+): the r.v. �(F ) has Poisson law with parameter �(F );ii) for pairwise disjoint sets F1 : : : ; Fn 2 B(IR+)
B(IR+), �(F1); : : : ; �(Fn) are independent.De�ne St := Z t0 Z(0;1) x�(ds; dx) ; t � 0:Up to the saling fator , this gives a version of the stable inreasing proess S� withE(e��St) = e�t�� ; � � 0 ; t � 0:This is seen as follows: Approximate the proess Xt := e�sSt byXnt := e�sn�2nPk=1 R t0 R( k�12n ; k2n ℄ k�12n �(ds;dx):Then Xnt # Xt; n!1: By independene of � �(0; t℄� (k�12n ; k2n ℄� for k = 1; :::; n2n, we seeE(e�sSt) = limn E(Xnt )= limn n�2nYk=1E he�s k�12n �((0;t℄�( k�12n ; k2n ℄)i= limn et n�2nPk=1 m(( k�12n ; k2n ℄)��e�s k�12n �1�n!1�! e�t R(0;1)(1�e�sx)m(dx) = e�ts�where by partial integrationZ(0;1)(1� e�sx)m(dx) = Z (1� e�sx)�x���1dx � �(1� �) =  � s� :21



Independene and stationarity of the inrements of S follow diretly from the orrespondingproperties of PRM. We prove that St < 1 for all t � 0, a.s.. Contribution of small jumpsR t0 R(0;1℄ x�(dt; dx) is summable a.s. sine 0 < � < 1 impliesZ t0 Z(0;1℄ x�(dt; dx) = t � Z 10 �x��dx � �(1� �) <1 :There are only �nitely many big jumps over �nite time intervals: � ((0; t℄� [1;1)) <1 a.s. sine� ((0; t℄� [1;1)) = t � Z 11 �x���1dx � �(1� �) <1:Thus N  := f! 2 
 : Sn(!) <1 8 ng is a set of full measure, and paths of S are right-ontinuousand nondereasing on N . Moreover P (St+h = St) = P (�((t; t + h℄� (0;1)) = 0) = 0; so pathsof S a.s. do not have ats. S being a PIIS, the paths of S a.s. inrease to1. Modifying the pathsof S on a set of measure 0, we get all path properties required in 2.5. 22.8 Remark: ([Fe 71, p.453℄) For 0 < � < 1, W�t has Laplae transform t(�) = 1Xn=0 (��)n�(1 + n�) tn�and thus admits �nite moments of arbitrary order n � 1mn(t) = n!�(1 + n�) tn�:Note also that P (W�t � x) = P (S�x > t) = 1 � P (S�x � t) = 1 � F � tx1=�� where F is thedistribution funtion of of S�1 . Using the last expression one hasL (W�1 ) = L �(S�1 )��� ;this representation of the Mittag-Le�er law appears e.g. in Khasminskii [Has 80, Ch. IV.11℄.2.9 Remark: For � = 12 , stable inreasing proess S1=2 and Mittag-Le�er proessW 1=2 our inwell known onnetion with one-dimensional Brownian motion. First, by [R-Y 91, p. 76, p.102℄,the proess of level rossing times of Brownian motion is equal in law to 2S1=2. The proessinverse to 2S1=2 is 1p2W 1=2. Thus 1p2W 1=2 is equal in law to the maximum proess of Brownianmotion, or to loal time of Brownian motion in 0 with hoie of norming onstant suh that loaltime is an oupation time density: see [R-Y 91, p. 223, p. 207-209℄.22



3 The main theoremIn this setion, we state the main theorem on weak onvergene of integrable additive funtionalsand loal martigales whose preditable quadrati variation is an integrable additive funtional ofthe Harris proess X (the integrability assumption is ruial and in null reurrent ases indeed arestritive ondition).The theorem has a long history. A key argument for one diretion of the proof is the las-sial Darling-Ka theorem ([D-K 57℄) on neessary onditions for onvergene in law of (one-dimensional marginals of) additive funtionals of X. In the other diretion, the proof relies on apaper by Greenwood and Resnik ([R-Gr 79℄) who study weak onvergene of bivariate randomwalks where one omponent is attrated to a Gaussian and the other to a stable limit proess,with strong referene to P. L�evy. In a highly interesting but unfortunately never published paper,Touati ([Tou 88℄) gave the theorem in very general form (general state spae, Nummelin splittingapplied to ontinuous time, and avoiding restritive Darling-Ka onditions; a gap left was thease of relative stability whih was ignored there, and some lines of argument { namely for Num-melin splitting in ontinuous time { whih seem problemati). Touati's arguments relied heavilyon semimartingale theory and weak onvergene of proesses in the sense of the book Jaod andShiryaev ([J-Sh 87℄). For related work, see [Bin 71℄, [B-G-T 87, h. 8.11℄; see Khasminskii [Has80, h. IV.10-11℄ for one-dimensional di�usions; a note on Markov step proesses with ountablestate spae (where things are muh simpler) was [H�o 88℄.One appliation of this theorem is in a ontext of loal asymptoti statistis where onvergene ofthe sore funtion martingale is essential for onvergene of statistial experiments (weak onver-gene of �ltered statistial experiments to Gaussian or Mixed Gaussian limit models), or simplywhen onvergene of e.g. maximum likelihood estimators is onsidered: see [Lu 92℄, [Lu 94℄, [Lu95℄ for general semimartingale models, see [H-J-L 90℄, [H�o 90 a, b℄, [H�o 93 a, b℄ for Markov stepproesses, [L�o 97℄, [L�o 99 a-℄ for systems of di�using partiles with branhing and killing; forergodi di�usions, see the forthoming book of Kutoyants [Ku 01℄; there seem to be relatively fewases of models for null reurrent di�usions where the above integrability ondition indeed holds,see [H-K 01℄ for an example. It is interesting to note that 'martingale onvergene theorems'typially an not deal with general nullreurrent ases (the reason is that martingale onvergenetheorems need onvergene in probability of angle braketts; in most null reurrent ases there is23



only onvergene in law).The setion is organized as follows. In subsetion 3.1, we state the theorems in ase where theHarris proess X has life yles. Subsetion 3.2 is devoted to examples. Subsetion 3.3 states thetheorems for general Harris proesses where no life yles exist. All proofs will be postponed tosetions 4, 5, 7.
3.1 Proesses with life ylesIf X has life yles, the main result is theorem 3.1 together with its orollaries 3.2 and 3.3.The 'suÆient part' of the assertion (regular variation of tails of life yle length distributionimplies weak onvergene of normed and linearly time-saled martingales or additive funtionalsto suitable ontinuous limit proesses) will be proved in setion 4 below (see 4.12 and 4.22).The 'neessary part' (there are no other possibilities for weak onvergene to ontinuous limitproesses, under linear time-saling and suitable norming) will be proved in setion 5 (see 5.27).In this subsetion, we assume the following for the proess X:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a reurrent atom A 2 E and a life yle deomposition (Rn)n�1, see 1.9.A + 1.9.B;(H4): There is some funtion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, suh thaty ! Ey �Z R10 f(Xs) ds� is bounded on E ;below, funtions f with this property will be alled weakly speial for X and R1.We will desribe at the end of this subsetion (see proposition 3.4 below) a large lass of life yledeompositions (Rn)n whih satisfy (H4).LetM2;lo(Px; IF ) denote the lass of loally square integrable loal (Px; IF )-martingales, �adl�agand withM0 = 0. Here Px is some probability measure on (
;A; IF ) as in the beginning of setion1. For M 2 M2;lo(Px; IF ), the proess hMi is (a version of) the preditable quadrati variation24



of M (or angle brakett) relative to Px and IF , and [M ℄ is the quadrati variation (or squarebrakett) of M . We assume that M meets the following assumptions:(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;the proesses hMi and [M ℄ are additive funtionals of X, and E� (hMi1) <1.(H5B): For the life yle deomposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respet to FR�n , for all n � 1or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .Assumption (H5B) guarantees that the martingales under onsideration aumulate independentand square integrable inrements over life yles of X. This is not obvious: for the Harris proessof example 1.11 a), examples of martingales meeting or violating (�) or (��) of (H5B) will appearin 4.27 below.3.1 Theorem: For suitable hoie of a norming funtion v(�) " 1, onsider a resaled sequeneMn :=  1pv(n)Mtn!t�0 ;satisfying the Lindeberg ondition1v(n) Z tn0 Z jxj2 1fjxj>"pv(n)g�(ds; dx) �! 0 in Px-probability, for all t, all " > 0where �(ds; dx) is the ompensator of the point proess of jumps of M under Px.a) If there is some limit proess W = (Wt)t�0, with W0 � 0 and L(W1) not onentrated at 0suh that Mn L�!W(weak onvergene in D(IR+; IR), under Px, as n!1), then only the following ases an arise:either W = J1=2B with standard Brownian motion B, and with J 2 (0;1) a onstant,25



or W = J1=2B ÆW� for some 0 < � < 1, where W� is a Mittag Le�er proess independent ofB, ating as time hange for the Brownian motion: B ÆW� = (B(W�t ))t�0.b) One has Mn L�! J1=2B () r 2 RV0where r is the funtion r(t) = Z t0 P (R2 �R1 > x)dx:In this ase, norming funtion v { up to asymptoti equivalene { and limiting onstant J aregiven by v(t) � t=r(t) ; t!1 ; J = E(< M >R2 � < M >R1) :) For 0 < � < 1, one hasMn L�! J1=2B ÆW� () t! P (R2 �R1 > t) 2 RV�� ;in this ase, norming funtion and limiting onstant arev(t) � (�(1� �)P (R2 �R1 > t))�1 ; t!1 ; J = E(< M >R2 � < M >R1) :
Remark : a) If X is ergodi, we have r(1) = E(R2 � R1) < 1 and thus pn-norming formartingales M 2M2lo: v(n) � nE(R2 �R1) ; n!1 :b) In the ergodi ase, the martingale limit theorem (see [J-Sh 87, VIII.3.22℄) applies and theassertion of theorem 3.1 ould be derived from it. The same is true in the limiting ase of 'rela-tive stability' (null reurrene with index � = 1). In null reurrent ases with index 0 < � < 1however, we do not have onvergene in probability of angle braketts of martingales, but onlyonvergene in law: so a basi assumption needed in martingale onvergene theorems fails.3.2 Corollary: In parts b) and ) of theorem 3.1 we also have the stronger assertion (reall theonvention W 1 = id) (Mn ; < Mn >) L�! �J1=2B ÆW� ; J W��(weak onvergene in D(IR+; IR� IR), under Px, as n!1).26



We mention that the proof of the 'suÆient part' in the above assertions (regular variation at 1of tails of life-yle length distributions implies weak onvergene of resaled martingales to Brow-nian motion or to Brownian motion time-hanged by an independent Mittag-Le�er proess) doesnot need all assumptions made above. The Lindeberg ondition omes in to prove that arbitraryweak limits of sequenes of resaled martingales are again martingales, and that onvergene ofmartingales implies weak onvergene of their brakett proesses. Condition (H4), introdued byTouati [Tou 88℄, is needed to prove that regular variation of tails of life-yle length distributionsis neessary for weak onvergene: it replaes the original Darling-Ka ondition whih is ratherintratable (exept in simple ases suh as ountable state spae). The following orollary 3.3redues to merely notational hanges in the proofs leading to 3.1 and 3.2.3.3 Corollary: 3.1 and 3.2 remain true for d-dimensional M = (M i)1�i�d 2 M2lo(Px; IF )provided E(< M j >R2 � < M j >R1) <1 ; 1 � j � d :it is suÆient to replae B by a d-dimensional standard Brownian motion and to takeJ = �J (i;j)�i;j=1;:::;d = �E(< M i;M j >R2 � < M i;M j >R1)�i;j=1;:::;d :
At the end of this subsetion, we disuss a large lass of life yle deompositions whih satis�esassumption (H4). For �(�) E-measurable, [0; 1℄-valued, �(�) > 0, write bT� for the stopping timeorresponding to position-dependent killing of X at rate �: this means that onditionally on theevent that bT� has not ourred up to time t, it will our in a following small time interval (t; t+h℄will probability �(Xt)h+ o(h), h # 0. If � is of form 1B , B 2 E , �(B) > 0, we write for short bTBand speak of killing of X in B at rate 1; if B = E, bTE is simply an exponential waiting time. Ingeneral, killing times are stopping times on an extension of the original (
;A; IF ), but this willnot appear in our notations. For sets B 2 E , a �rst entry time to B is denoted by TB; obviouslyone has TB � bTB. The following proposition will be proved in setion 5 (see 5.28).3.4 Proposition: A suÆient ondition for (H4) is as follows: the life yle deomposition in27



(H3) is de�ned from a stopping time R1 of form(+) R1 � S0 + max1�i�l TBi Æ #S0 ; S0 � max1�j�m bT�jwhere Bi are sets in E with �(Bi) > 0, and �j(�) are E-measurable, [0; 1℄-valued, with �(�j) > 0.Examples: We ontinue the examples disussed in setion 1 after the de�nitions 1.9.A + B.a) For the one-dimensional Ornstein-Uhlenbek di�usion dXt = �aXtdt + dWt with a � 0,A = f0g is a reurrent atom; then (H4) holds for the three hoies of life yle deompositionsspei�ed there. We show this in aseR1 = infft > S0 : Xt = 0g ; S0 = infft > 0 : Xt 2 Bgwhere B 2 B(IR) has positive Lebesgue measure (thus �(B) > 0, the invariant measure being� = N �0; 12a� ) and does not interset some "-neighbourhood of 0. R1 has form (+) in 3.4 sineS0 � maxf bTB+ ; bTB�g ; R1 � S0 +maxfTB+ ; TB�g Æ #S0in ase where both sets B+ := B \ (0;1), B� := B \ (�1; 0) have positive �-measure; if Boinides with B+, this simpli�es to S0 � bTB+ and R1 � S0 + TB� Æ #S0 .b) If the Harris proess X meeting (H3) has an atom A of positive mass �(A) > 0, life ylesR1 = infft > S0 : Xt 2 Ag ; S0 = bTA :(�rst entry times to A after an independent exponential time spent in A) satisfy (H4).
3.2 ExamplesFor Harris proesses with reurrent atom and life yle deomposition meeting (H4), the theoremsin subsetion 3.1 require quite omplete knowledge on regular variation of tails of life yle lengthdistributions in the null reurrent ase, and on integrability with respet to invariant measure. Inthis subsetion, we illustrate the results of subsetion 3.1 by some examples. For one-dimensionaldi�usions, the neessary results on regular variation of tails of tails of life yle length distri-butions have been proved by Khasminskii ([Has 80℄, [Kh 00℄, [Kh 01℄). We give the details in28



examples 3.5 and 3.10 below; example 3.9 onsiders the 'lassial' speial ase of one-dimensionalBrownian motion. For birth and death proesses (see Karlin and MGregor [K-MG 61℄) and forbranhing proesses with immigration (see Zubkov [Zu 72℄ and Pakes [Pa 75℄), regular variationof tails of life yle length distributions is available under onditions on the birth-, death-, orbranhing rates in large populations, in whih ase also asymptoti behaviour of invariant mea-sure is known. More sophistiated examples an be treated on this bakground, e.g. for �nitesystems of di�using partiles with branhing and immigration where the void on�guration is anatom for the proess; under suitable onditions, the partile proess is Harris and has the voidon�guration as reurrent atom of positive mass under the invariant measure; see [H�o-L�o 99 a,b℄,[L�o 99 a,b,℄ and the referenes quoted there.3.5 Example: We onsider one-dimensional di�usions.a) A one-dimensional di�usion dXt = �(Xt)dBt with � ontinuous and stritly positive (thusnonexploding in �nite time, see [K-S 91, p. 332℄) is Harris reurrent with invariant measure2�2(x) dx (write X as time-hanged Brownian motion and use [Le 78℄). Assuming in addition that� is loally Lipshitz and satis�es a global linear growth ondition, Khasminskii [Has 80, setionsIV.10-11℄ gives a suÆient ondition for regular variation of tails of life yle length distributionswith index ��, 0 < � < 1 . He uses life yle deompositions (Rn)n de�ned by(3:50) Rn = infft > Sn : Xt = 0g; Sn = infft > Rn�1 : Xt = 1g; n � 1; R0 = 0(whih satify (H4), see 3.4 above) and alulates ([Has 80, lemma 10.5℄)(3:500) E �Z R2R1 f(Xs)ds� = �(f); �(dx) = 2�2(x)dx ;f nonnegative, measurable, in L1(�). Khasminskii's ondition is2�2(x) � A+x� ; x! +1; 2�2(x) � A�jxj� ; x! �1(3.6)with � := �2 + 1� > �1 and nonnegative onstants A+, A� meeting A+ +A� > 0 (here A� = 0is written for 2�2(x) = o(jxj�) as x! �1); he shows that (3.6) implies(3:60) P (R2 �R1 > t) � �2� ((A+)� + (A�)�)�(1 + �) t��; t!1 :This is proved in [Has 80, theorem 11.2, orollary, remark 3, theorem 11.3℄, or in [Kh 00, theorem2.2℄ with a di�erent proof, see also [Kh 01, theorem 1.1℄. So the result on onvergene in law of29



integrable additive funtionals of XP (R2 �R1 > t) �  t��; t!1 =) 1(�(1� �)P (R2 �R1 > t))�1 Z t0 f(Xs)ds! �(f)W�1([Has 80, theorem 11.1℄, [Kh 01, theorem 1.1℄) is { via RLT { a speial ase of theorem 3.1 andorollary 3.2 above.b) A one-dimensional di�usion dXt = b(Xt)dt + �(Xt)dBt is Harris reurrent with invariantmeasure equivalent to Lebesgue measure if the funtion SS(x) := Z x0 s(y)dy ; s(y) := exp�� Z y0 2b�2 (v)dv�(3.7)is a spae transformation on IR, i.e.limx!�1S(x) = �1 ; S(0) = 0 ; limx!+1S(x) = +1(see [Has 80, example 2 in setion III.8℄). In this ase, the proess eX := (S(Xt))t�0 is a di�usionwithout drift, with same passage times to 0 as X, and with di�usion oeÆiente� = (s � �) Æ S�1(3.8)where S�1 is the funtion inverse of S on IR; the invariant measure of X is given by(3:80) �(dx) = 2�2(x) exp�Z x0 2b�2 (v)dv�dx; x 2 IR: 23.9 Example : We onsider 'lassial' results in ase of one-dimensional Brownian motion.a) In the speial ase � � 1 of 3.6.a), X is Brownian motion; for the life yles as there one hasE(e��(R2�R1)) = e�2�p2�; � � 0([R-Y 91, p. 67℄) and thus L(R2 �R1) = L(8S1=21 ). As a onsequene (f. 2.3),P (R2 �R1 > t) � P (S1=21 > t8) � 2r 2� t�1=2 ; t!1 :By theorem 3.1 and orollary 3.2, for f 2 L1(�), we have weak onvergene in D(IR+; IR) asn!1 1pn Z (�n)0 f(Xs)ds ! ZIR f(x)dx 1p2W 1=2 ; t!1:30



Note that 1p2W 1=2 is the proess inverse to 2S1=2. Sine 2S1=2 is equal in law to the proessof level rossing times of Brownian motion B ([R-Y 91, p. 67, p. 102℄), 1p2W 1=2 is equal in lawto the maximum proess B� := (max0�s�tBs)t�0. For loal time of Brownian motion de�nedas oupation time density ([R-Y 91, p. 207-209℄), the proess 1p2W 1=2 is thus equal in law toloal time at 0 of Brownian motion ([R-Y 91, p. 223℄). In this form, weak onvergene of additivefuntionals of Brownian motion has been proved by Papaniolaou, Strook and Varadhan ([P-S-V77℄), reported by Hu and Yor in their survey [H-Y 98, theorem A.1℄.b) [P-S-V 77℄ also prove that for f in L1(�) having ompat support and �(f) = 01n1=4 Z (�n)0 f(Xs)ds ! C1=2B Æ ( 1p2W 1=2)(weak onvergene in D(IR+; IR), as n!1) withC := 4 Z +1�1 �Z x�1 f(y)dy�2 dx :Applying the Ito formula to the semimartingale 2F (X), F (x) := R x�1 dy R y�1 dzf(z) being boun-ded on IR, this result is again ontained in theorem 3.1 above.3.10 Example : We onsider a typial family of null reurrent di�usions with drift.a) With notations of 3.5, onsider a proess X solution of dXt = b(Xt)dt + �(Xt)dBt with b, �ontinuous and � stritly positive. Assume that for a family of parameters �,  ranging over thedomain � < 1, �1 + 2� <  < 1, drift and di�usion oeÆient have representations�(x) � st� jxj�; x! �1; b(x) = �2(x)2 � 1x + Æ(x)� ; jxj > 1(3.11)where Æ(�) is some funtion with Rjxj>1 jÆ(x)jdx < 1 (whih may also depend on � and ). In(3.11) and below, all ouring onstants 'st' { varying from line to line { an be alulated forgiven b and � using the methods of example 3.5 a)+b); see [H-K 01℄ for an appliation.Sine  < 1, S of (3.7) is a spae transformation, and X is Harris. The invariant measure � of Xnormed as in (3.8') behaves as�(dx) � st� jxj�2� dx; x! �1:(3.12)Sine  � 2� > �1, it has in�nite total mass on IR, so X is reurrent null. Calulating e� of (3.8)e�(x) � st� jxj ��1� ; x! �131



the invariant measure e� of eX = S(X) has density2e�2(x) � st� jxj�2+ 1� ; x! �1; � := 1� 2(1� �)(3.13)where � = �(�; ) ranges over the full interval (0; 1) sine � < 1, �1 + 2� <  < 1.b) De�ne life yles for X byRn = infft > Sn : Xt = 0g; Sn = infft > Rn�1 : Xt = S�1(1)g; n � 1; R0 = 0where S�1 is the funtion inverse of S. By (3.5") applied to eX and by (3.7)-(3.8'), we see thatE �Z R2R1 f(Xs)ds� = E �Z R2R1 (f Æ S�1)( eXs)ds� = e�(f Æ S�1) = �(f)for f 2 L1(�); moreover, (3.13) is ondition (3.6) relative to eX = S(X), and so we an alulateas in (3.6') the fator C(�) suh thatP (R2 �R1 > t) � C(�) t��; t!1:(3.14)) Thus for funtions h 2 L2(�), theorem 3.1 and orollary 3.2 yield weak onvergene of� 1n�=2 Z tn0 h(Xs)dBs; 1n� Z tn0 h2(Xs)ds�t�0(B an be reovered from the observed X) as n!1 to�K1=2B(W�); K W�� ; K = K(h; �) = �(h2)C(�) �(1� �)with � of (3.13) and C(�) of (3.14). Note that the ondition h 2 L2(�) { depending on � and via (3.12) { is a very strong ondition if � and  range over the domain � < 1, �1 + 2� <  < 1:essentially, we are redued to onsider h 2 CK, CK the lass of ontinuous funtions with ompatsupport.d) In analogy to 3.9 b), we onsider also the ase of integrable additive funtionals with �(f) = 0,f 2 CK. With s of (3.7), the funtionF (x) = Z x1 s(y)�(1(�1;y℄f) dyis bounded on IR and solves AF = f ; AF := bF 0 + 12�2F 00 :32



From Ito formula for F (X) together with the result of ) applied to the martingale part of F (X),we get weak onvergene as n!1� 1n�=2 Z tn0 f(Xs)ds�t�0 ! eK1=2B(W�) ; eK := � �(F 0�)2�C(�) �(1� �)in ase �(f) = 0. 2
3.3 General Harris proessesMany interesting Harris proesses do not have reurrent atoms; thus life yle deompositions asused in the preeding subsetion are not available. However, it is possible to onsider instead ofX itself a family of new Harris proesses whih are arbitrarily lose to the original one; in thisfamily, life yles an be introdued arti�ially via Nummelin's splitting tehnique. Using thisidea, the above results arry over to general Harris proesses where life yles do not exist.In this general setting, onditions on regular variation at 0 of resolvants of X replae the formeronditions on regular variation at 1 of tails of life yle length distributions; note that we ouldhave formulated theorems 3.1 - 3.3. already in this way. A slight disadvantage of resolvant ondi-tions remains: unless using resolvants for very partiular funtions of X (the 'speial funtions'of 5.28 whih are essentially nononstrutive), the required regular variation holds only �-a.s. inx. In this subsetion, we do not need more than the basi ondition(H1): X = (Xt)t�0 is Harris with invariant measure �.The proofs of the two theorems 3.15 and 3.16 stated in this subsetion is the aim of setions6 and 7, and is given in theorems 7.16 and 7.20 there. The results are in omplete analogy tosubsetion 3.1 although we hoose a di�erent presentation.3.15 Theorem : a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) areequivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 of33



resolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the exeptional set depending on g);ii) for every additive funtional A of X with 0 < E�(A1) <1, one has weak onvergene(Atn)t�0n�= l(n) ! E�(A1)W�(in D(IR+; IR) as n ! 1, under Px for all x 2 E) where W� is the Mittag-Le�er proess ofindex �.b) The ases in a) are the only ones where weak onvergene of (Atn)t�0v(n) to a ontinuous non-dereasing limit proess W (with W0 = 0 and L(W1) not degenerate at 0) is available for somenorming funtion v.We turn to martingales M 2 M2;lo(Px; IF ) with the property that hMi is a loally boundedproess (this slight restrition oming in here was not needed in subsetion 3.1). We require only(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;the proesses hMi and [M ℄ are additive funtionals of X, and E� (hMi1) <1.3.16 Theorem : Consider 0 < � � 1 and l(�) varying slowly at 1. Assume that 3.15 a)i) holdsfor � and l(�). Then we have weak onvergene1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�)in D(IR+; IR) as n!1, under Px.Under a Lindeberg ondition on 1pn�=l(n) (Mtn)t�0, we an again dedue from the last assertionof theorem 3.16 weak onvergene of pairs (martingale, angle brakett) as in orollary 3.2, andthen onlude from 3.15 that no other weak limits (under linear time saling, with ontinuouslimit proess as in 3.1, and for some sequene of norming onstants) an arise. The extension to34



multidimensional martingales (as in orollary 3.3) is obvious.It might look strange that the seemingly simpler ase with life yles required more assumptionsthan the general ase. The reason is the following. In our proof, we swith from the proess Xof interest to a family of new Harris proesses, arbitrarily lose to X, where life yles are intro-dued arti�ially: so we an use the degrees of freedom in this onstrution to make sure thatall additional assumptions needed in subsetion 3.1 are satis�ed at these auxiliary stages, andthings beome surprisingly simple at the level of the �nal result.
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4 Proofs for subsetion 3.1 - suÆient onditionIn this setion, we prove the 'suÆient' part of theorem 3.1 and its orollaries given in subsetion3.1: for proesses X with life yles, regular variation of tails of life yle length distributionsimplies onvergene of resaled martingales to either Brownian motion or Brownian motion time-hanged by an independent Mittag-Le�er proess. This result is formulated in theorem 4.12 andin proposition 4.22, see also the remarks 4.25 and 4.26.We work in the setting of subsetion 3.1, but under weaker onditions: we list the assumptions onX and on the martingalesM to be onsidered in this subsetion, and then retrae the argumentsgiven by Greenwood and Resnik ([R-Gr 79℄) on weak onvergene of bidimensional randomwalks. From this, weak onvergene of martingales follows by time hange. An extension of thisargument yields weak onvergene of pairs (martingale, angle brakett). (H4) is never needed inthe present setion.Let us reall { for later use in setions 4 and 5 { the arguments proving theorems 2.4.A and 2.4.B,see [Fe 71℄ or [B-G-T 87℄. Classial fats about regular variation (like Tauberian theorems et.)are quoted from the �rst hapter of [B-G-T 87℄.4.1 Proof of 2.4.A and 2.4.B : The proof is in several steps. Notations F , G, G� are as in2.4.A and 2.4.B: F , G are probability laws on [0;1), G is not a Dira measure at 0. bF , bG denotesthe Laplae transform (LT) of F , G.A) (f. [B-G-T 87, Cor. 8.1.7℄) For 0 � � � 1 and ` 2 R0, the assertion1� bF (s) � s�`(1=s) s # 0(4.2)is equivalent to r(t) = Z t0 (1� F (x)) dx � 1�(2� �) t1��`(t); t " 1;(4.3)in ase � < 1, the last assertion is again equivalent to1� F (x) � 1�(1� �)x��`(x); x " 1:(4.4)This is seen as follows: the funtion r de�nes a measure on IR+; partial integration givesZ 10 e��x(1� F (x)) dx = 1� (1� bF (�))36



= Z 10 e��xr(dx) = br(�):The Tauberian theorem ([B-G-T 87, p. 37℄) shows that for 0 � � � 1br(s) � s��1`(1=s) s # 0()r(t) � 1�(2��) t1��`(t) t " 1;this shows (4.2) () (4.3); (4.3) () (4.4) for � < 1 is the monotone density theorem ([B-G-T87, p. 39℄) und the Karamata theorem ([B-G-T 87, p. 26℄).B) We determine possible limit laws for F �n(an�) for suitable norming sequenes an " 1. Theonvergene F �n(anx) �! G(x) 8 x ontinuity point of Gis equivalent to onvergene of LT�n log bF (�=an) �! � log bG(�); 8 � > 0and thus to n(1� bF (�=an)) �! � log bG(�); 8 � > 0:(4.5)Consider U := 1� bF whih is nondereasing: then for an � x � an+1U(�=an+1)U(1=an) � U(�=x)U(1=x) � U(�=an)U(1=an+1)and (4.5) implies(4:50) 8 � > 0 : U(�=x)U(1=x) �! � log bG(�)� log bG(1) ; x!1:This is regular variation of the funtion U = 1 � bF in 0, and at the same time determines (f.[B-G-T 87, p.17℄) the possible limits in (4.5'):1� bF RV% in 0; � log bG(�) =  � �%; � > 0(4.6)for some % 2 IR and some onstant  > 0. We have neessarily % � 0 sine bG is noninreasingas LT of a probability law onentrated on [0;1); neessarily % � 1 sine otherwise � ! e��%would not be `ompletely monotone' and thus not a LT of a measure on [0;1) ([Fe 71, p. 439℄);neessarily also % > 0 sine G by assumption is not the Dira measure at 0. Finally, a onstant37



 in (4.6) an always be absorbed into the norming sequene (an)n, so we put  = 1. The onlyremaining possibilities areG = G�; 0 < � < 1; with 1� bF RV� in 0;(4.7) G = G1; with 1� bF RV1 in 0:(4.8)Aording to A) we have for 0 � � � 11� bF RV� in 0 () r RV1�� in 1:C) Comparison of (4.5) and (4.5') shows: with  = 1 in (4.6), the norming sequene (an)n satis�esn � 11� bF (1=an) ; n!1;(4.9)whene an = a(n) where a(�) is an asymptoti inverse tot �! 11� bF (1=t) � tbr(1=t) � t�(2� �)r(t)(4.10)where we have used A); for 0 < � < 1 the funtion in (4.10) is asymptotially equivalent tot �! 1�(1� �)(1� F (t)) :(4.11)D) Steps B)+C) prove part a) of theorem 2.4.A, and the orresponding diretion in 2.4.B. Theonverse is proved by using the arguments of B)+C) in reverse order. 2On this basis, we turn to the topi of subsetion 3.1. The proof of the `suÆient' part of 3.1is ontained in the following theorem 4.12. Our arguments follow the referenes Greenwood andResnik [R-Gr 79℄, Touati [Tou 88℄, [H�o 88℄. For bakground on semimartingales and weak onver-gene we refer to Jaod and Shiryaev [J-Sh 87℄, Ikeda and Watanabe [I-W 89℄, Billingsley [Bill 68℄.For the rest of of this setion, the following assumptions on the proess X will be in fore:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a reurrent atom A 2 E and a life yle deomposition (Rn)n�1, see 1.9.A + 1.9.B.We onsider martingales M 2M2;lo(Px; IF ) for some Px on (
;A; IF ) as in setion 1, meeting(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;38



the proesses hMi and [M ℄ are additive funtionals of X, and E� (hMi1) <1;(H5B): For the life yle deomposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respet to FR�n , for all n � 1 ;or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .Only these assumptions will be needed in the remaining parts of this setion.With respet to the sequene (Rn)n�1 of (H3), we write r(�) for the funtionr(t) := Z t0 P (R2 �R1 > s) ds ;and we �x the norming onstant for � (f. 1.10) by(4:110) �(F ) = E �Z R2R1 1F (Xs) ds� ; F 2 E :We reall also the onvention W 1 = S1 = id.4.12 Theorem: Assume regular variation r(�) 2 RV1�� at 1, for some 0 < � � 1:8<: P (R2 �R1 > �) 2 RV�� falls 0 < � < 1,r(�) 2 RV0 falls � = 1.De�ne v(t) = 8<: 1�(1��)P (R2�R1>t) ; 0 < � < 1;t=r(t); � = 1:Then one has Mn :=  1pv(n)Mtn!t�0 �! J1=2 B ÆW�:(weak onvergene in D(IR+; IR), under Px, as n ! 1), where Brownian motion B and MittagLe�er proess W� are independent, and whereJ := E ( hMiR2 � hMiR1) :
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Proof: 0) First we mention that due to 1.9.A+B and (H5A)+(H5B),(4:120) (MRn �MR1 ; Rn �R1)n�1is a random walk either w.r.t. (FR�n )n or w.r.t. (FRn)n (see example 4.27 for illustration of sometypial problems). (H5A) and Markov property giveEPx �e��1(Rn+1�Rn)��2(MRn+1�MRn)jFRn� = EXRn �e��1R1��2MR1 � ; �1; �2 � 0 :Conditioning w.r.t. FR�n aording to 1.9.A+B, we seeEPx �e��1(Rn+1�Rn)��2(MRn+1�MRn)jFR�n � = E�A �e��1R1��2MR1 � =:  A(�1; �2) :Thus we have always�Rn+1 �Rn;MRn+1 �MRn� is independent of FR�n , for all n � 1 :If (�) of (H5B) holds, the r.v. (MRj �MR1 ; Rj �R1) is FR�j -measurable (Rj as a stopping timeis always FR�j -measurable), thus (4.12') is a random walk w.r.t. (FR�n )n under Px.If (��) of (H5B) holds, then { muh simpler { (4.12') is a random walk w.r.t. (FRn)n.This holds under every starting law for the proess X.1) We onsider the bivariate random walk �MRj �MR1 ; Rj �R1�j�1 under Px.Writing Sj :=MRj , we resale the omponents of this random walk separatelyY n := � 1pnS[�n℄; 1a(n)R[�n℄�(4.13)aording to 2.4.A and 2.4.B where a(�) is an asymptoti inverse for v(�). For every n 2 IN ,the bivariate proess Y n is a PII, and has approximately as n ! 1 stationary inrements.Considering the omponents of Y n separately, we have weak onvergene under Px as n!11pnS[�n℄ �! J1=2Bin D(IR+; IR) aording to Donsker's theorem, and onvergene of �nite-dimensional distributions1a(n)R[�n℄ �! S�as n!1 by independene of inrements ombinded with theorems 2.4.A and 2.4.B: so possiblelimits for the sequene (Yn)n in (4.13) under Px, in the sense of �nite-dimensional distributions,are Y = (J1=2 �B;S�)(4.14) 40



for some bivariate proess having marginals B and S�.2) The essential point is to prove that the omponents B, S� of the limit proess Y in (4.14) areneessarily independent. A short argument, see Greenwood and Resnik [R-Gr 79℄, is as follows.Being limit of a bivariate random walk, Y is neessarily a PIIS. The L�evy-Khinthine formulashows that Y an be represented as independent sum of a Gaussian and a non-Gaussian (sum ofbig jumps and ompensated sum of small jumps) Levy proess plus a deterministi linear term:Y = C � id+BY +KY :Comparison with (4.14) givesC = 0� 00 1A ; BY = 0� J1=2 �B0 1A ; KY = 0� 0S� 1A :Thus B, S� in (4.14) are independent. (We will give a detailed and more general argumentfollowing Ikeda and Watanabe [I-W 89, p. 77-78℄ - a Poisson random measure and a Brownianmotion de�ned with respet to the same �ltration are neessarily independent - in 4.21 below.)3) By step 2) we know that under PxY n = � 1pnS[�n℄; 1a(n)R[�n℄� f.d.�! Y = (J1=2 �B;S�)where Brownian motion B and stable inreasing proess S� are neessarily independent. WriteNt for the number of life yles of X (inluding the initial segment) ompleted at time t:Nt = supfn 2 IN0 : Rn � tg:Then we have eY n := � 1pnS[�n℄; 1nN�a(n)� f.d.�! eY := (J1=2 �B;W�)(4.15)where W� is the proess inverse to S� and thus B and W� are independent: for 0 � t1 < t2 <: : : < t` <1, for x1; : : : ; xn 2 (0;1), as n!1�Ntia(n)n < xi; 1 � i � `� = �R[xin℄ > tia(n); 1 � i � `	4Nn= �R[xin℄a(n) > ti; 1 � i � `�4Nnup to symmetri di�erene with small sets Nn meeting Px(Nn) ! 0; sine n � v(a(n)) witha(�) 2 RV1=�, we identify 1nN�a(n) with a subsequene of 1v(n)N�n as n ! 1. We show that thesequene (eY n)n in (4.15) is tight in D(IR+; IR2) under Px: tightness of the �rst omponent in41



D(IR+; IR) is lear from step 1); for tightness of the seond omponent in D(IR+; IR), we use([J-Sh 87, VI.3.37℄): sine the seond omponents of (eY n)n are inreasing proesses and sineW�is ontinuous, �nite-dimensional onvergene (4.15) implies1nN�a(n) n!1�! W� (weak onvergene in D(IR+; IR) under Px):Thus both omponents of (eY n)n form tight sequenes in D(IR+; IR), and so the bivariate sequene(eY n)n is tight in D(IR+; IR2) ([J-Sh 87, VI.3.33℄). By (4.15), there is a unique limit law forarbitrary subsequenes of (eY n)n, so we have8<: eYn = � 1pnS[�n℄; 1nN�a(n)� �! eY = (J1=2 �B;W�)weak onvergene in D(IR+; IR2) under Px as n!1:(4.16)By Billingsley [Bill 68, p.145℄, both omponents of the limit proess in (4.16) being ontinuous,the seond omponent in (4.16) may be used as a time transformation for the �rst: so we get8<: 1pnS[( 1nN�a(n))n℄ �! J1=2 �B(W�)weak onvergene in D(IR+; IR) under Px(4.17)and after replaing n by v(n) - whih amounts to an insertion of members into the sequene -one arrives at 8><>: 1pv(n)SN�n �! J1=2 �B(W�)weakly in D(IR+; IR) under Px as n!1:(4.18)4) It remains to show that (4.18) implies1pv(n)M�n �! J1=2 �B(W�) weakly in D(IR+; IR) under Px as n!1 :(4.19)The proof of (4.19) is in three parts.i) For every starting point x for the Harris proess X, the measuret ! Ex(Nt) = Xl�1 Px(Rl � t)is (with notations of 1.9.A+B) a onvolutionPx(R1 2 �) � 1Xm=0P�A(Rm 2 �)! :The asymptoti behaviour of its Laplae transform (f. [B-G-T 87, p. 361)� ! Ex �e��R1� 11�E�A (e��R1) ; � > 042



as � # 0 does not depend on x. Combining (4.2)-(4.4) and Karamata's Tauberian theorem (B-G-T87, p. 37), we see that Ex(Nt) � 1�(1 + �) v(t) as t!1independently of the starting point x.ii) We show that for every t > 0, " > 0 �xed,(+) Px 1pv(n) jSNtn �Mtnj > "! ! 0as n!1. Sine limn!1 Px(R1 > nt) = 0 , is is suÆient to onsider(++) Px�sups�0 �Ms^RNtn+1 �Ms^RNtn�2 > "2v(n) ; R1 � nt� :Note that the last renewal time RNtn before tn is not a stopping time: an event fRNtn � g with0 <  < tn does not belong to the �-�eld generated by observation of X only up to time . By1.9.A+B and (H5), rewrite (++) as1Xl=1 Ex0�1fRl�ntg Ex0�1fRl+1�Rl>nt�Rlg 1fsups�0�Ms^Rl+1�Ms^Rl�2>"2v(n)g j FR�l 1A1A= Z nt0 du (Ex(Nu))P�A �R1 > nt� u ; sups�R1(Ms)2 > "2v(n)�= Z 10 P�A(R1 2 dr) f (n)(r) �Ex(Nnt)�Ex(N(nt�r)_0)�with notation f (n)(r) := P�A � sups�R1(Ms)2 > "2v(n) j R1 = r� :By assumption in (H5),J = E (hMiR2 � hMiR1) = E�sups�0 (Ms^R2 �Ms^R1)2� = E�A � sups�R1M2s�= Z 10 P�A(R1 2 dr)E�A � sups�R1M2s j R1 = r� < 1 ;thus we have for PR1�A - a.a. r > 0 as n!1"2 v(n) f (n)(r) � E�A  ( sups�R1M2s ) 1f sups�R1(Ms)2>"2v(n)g j R1 = r! ! 0and from this by dominated onvergeneZ 10 P�A(R1 2 dr) v(n) f (n)(r) ! 0 :43



By part i) above and regular variation of v, we thus have provedZ 10 P�A(R1 2 dr) f (n)(r) �Ex(Nnt)�Ex(N(nt�r)_0)� ! 0whih via (++) establishes (+).iii) Part ii) together with (4.18) implies1pv(n)M�n f.d.�! J1=2B(W�):It remains to prove tightness of this sequene in D(IR+; IR) under Px in order to omplete theproof of theorem 4.12. By [J-Sh 87, VI.4.13℄, it is enough to verify * 1pv(n)M�n+!n is C-tight in D(IR+; IR);we will prove weak onvergene* 1pv(n)M�n+ �! J �W� weakly in D(IR+; IR) as n!1:(4.20)Again by [J-Sh 87, VI.3.37℄, it is enough to show �nite-dimensional onvergene in (4.20) - the pre-limiting proesses are inreasing, and the limit proess is ontinuous - and this is a onsequeneof (4.15) (with n replaed by v(n)) 1v(n)N�n f.d.�! W�and the ratio limit theoremP � a:s: : limt!1 < M >tNt = E (< M >R2 � < M >R1) = J:So (4.20) is proved, and thus (4.19): this onludes the proof of 4.12. 2By 4.12, we have proved the 'suÆent' diretion in 3.1. Before proeding to joint onvergene ofpairs (martingale, angle brakett) in proposition 4.22, we give an alternative argument for step2) of the preeding proof.4.21 Remark : We give an alternative argument replaing step 2) of the previous proof, basedon [I-W 89, pp. 77-78℄. Consider any possible �adl�ag limit proess Y for (Y n)n of (4.13), in the44



sense of �nite-dimensional distributions: Y is de�ned on some (
0;A0; IF 0; P 0) where IF 0 is the�ltration generated by YIF 0 = (Ft)t�0; F 0t = \T>tF0T ; F0T := �(Ys : 0 � s � T );by (4.14), its �rst marginal denoted by B is a Brownian motion (for simpliity, we put J = 1);its seond marginal denoted by S� is a stable inreasing proess with index �. Sine Y n hasindependent inrements whih asymptotially as n ! 1 are stationary, the limit proess Y isa PIIS w.r.to IF 0: for 0 � s < t < 1, the onditional law PYt�YsjF0s = L(Yt�s) is independentof F0s . Sine Y is right-ontinuous, Y is also a PIIS w.r.to the �ltration IF 0: for arbitrary Znonnegative and F 0s-measurable, F 0s = TnF0s+1=n, for h 2 Cb(IR2), we haveE(Zh(Yt � Ys)) = limn E(Zh(Yt � Ys+1=n))= limn E �ZE �h(Yt � Ys+1=n) j F0s+1=n��= EZ limn E(h(Yt � Ys+1=n))= EZ E(h(Yt � Ys))whih proves that PYt�YsjF 0s = L(Yt�s) is independent of F 0s. By this argument, the �rst ompo-nent of Y is a IF 0-Brownian motion:PBt�BsjF 0s = N (0; t� s)and the point proess � of jumps of the seond omponent of Y is a IF 0-Poisson random measure:8><>: P (�(℄s;t℄�Ui)1�i�`)jF 0s = Ǹi=1P((t� s)��(Ui))for disjoint sets U1; : : : ; U` in B(IR) having ��(Ui) <1where we write ��(dx) for the measure �x���1dx on (0;1), see remark 2.7. Following [I-W 89,pp. 77-78℄, we will show that Poisson random measure and Brownian motion de�ned on the same(
0;A0; P 0) with respet to the same �ltration IF 0 are neessarily independent (whih implies thedesired independene of B and S�). To this aim we onsider transformsIR� (IR+)` 3 (�; �1; : : : ; �`)! '(�; �1; : : : ; �`) := E �ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui) j F 0s�(0 � s < t <1, Ui disjoint sets having ��(Ui) <1; ` 2 IN); if we prove that(�) '(�; �1; : : : ; �`) = e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄;45



then Bt � Bs, �(℄s; t℄ � Ui), 1 � i � ` will be independent and independent of F 0s, and as aonsequene, the �-�elds �(Bt : t � 0) and �(�(℄s; t℄�U : 0 � s < t <1; U 2 B(IRd)) generatedby B and � will be independent, whih onludes the proof.To prove (�), we onsider the bounded and omplex-valued semimartingale F (Z)F (Zt) := ei�Bt�Pì=1 �i�(℄0;t℄�Ui)Z = (B;�(℄0; �℄� U1); : : : �(℄0; �℄� U`)) :Itô's formula (see e.g. [J-Sh 87, p. 57℄) for F (Z) givesF (Zt)� F (Zs) = i� Z ts F (Zu�)dBu + (�12�2)Z ts F (Zu�)du+Z ts ZIR hF (Zu�)�e�Pì=1 �i1Ui (x) � 1�i�(ds; dx)| {z }=Pu2(s;t℄(F (Zu)�F (Zu�))= (Mt �Ms) + (�12�2)Z ts F (Zu)du+Z ts ZIR F (Zu)�e�Pì=1 �i1Ui (x) � 1� du��(dx)for some loal martingaleM suh that < M >t is bounded; sine the sets Ui are disjoint, the lastterm on the r.h.s equals Z ts F (Zu)"X̀i=1(e��i � 1)��(Ui)# du:For Y nonnegative, bounded, F 0s-measurable we onsider E[Y (F (Zt)� F (Zs))℄: with notation'Y (t) := E �Y ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui)� ; t � s(thus 'Y (s) = E(Y )) we get from E(Mt �MsjF 0s) = 0 after absorption of the fator F (Zs) in YE �Y hei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui) � 1i� = 'Y (t)� 'Y (s)= Z ts du 'Y (u)"�12�2 + X̀i=1(e��i � 1)��(Ui)# du:The solution of this di�erential equation is well known'Y (t) = E(Y ) � e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄; t � s:Taking in partiular Y = 1A, for arbitrary A 2 F 0s, we getE �ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui)jF 0s� = e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄:46



This is (�), and onludes the proof. 2The argument leading to theorem 4.12 an be strengthened to obtain weak onvergene of pairs(martingale, angle brakett). Note that we do not require a Lindeberg ondition here.4.22 Proposition : Under all assumptions of theorem 4.12, we have(Mn ; < Mn >) L�! �J1=2B ÆW� ; J W��(weak onvergene in D(IR+; IR� IR), as n!1, under Px).Proof : We replae the bivariate random walk in step 1) of the proof of 4.12 by a trivariate one�MRj �MR0 ; < M >Rj � < M >R0 ; Rj �R0�j2IN0and onsider Y n := � 1pnS[�n℄; 1nK[�n℄; 1a(n)R[�n℄�(4.23)whereKj :=< M >Rj . The seond omponent onverges weakly inD(IR+; IR) to the deterministiproess (J � t)t�0. Inverting the last omponent and using it as a time hange for the pair of �rstomponents in analogy to (4.16)-(4.18), we get8><>: � 1pv(n)SN�n ; 1v(n)KN�n� �! �J1=2 �B(W�); J �W��weakly in D(IR+; IR� IR) as n!1:(4.24)Up to obvious hanges, the remaining parts of the proof are on the lines of 4.12. 24.25 Remark : In the same way, we may onsider d-dimensional loal martingales M 2 M2loby inluding all omponents M i of M and < M i;M j > of < M > into the random walk (4.23).4.26 Remark : Via the RLT, see 1.7, the last result implies joint weak onvergene of martin-gales with arbitrary integrable additive funtionals.We end this setion with an example illustrating why we need assumption (H5B) to make surethat inrements of the martingale over life yles of X form indeed a random walk.47



4.27 Example: We ontinue example 1.11 a), will all notations as there.a) For F open in IR with 0 < �(F ) < 1, onsider the IFX -ounting proessNt =Xn�1 1fTn�tg1fXTn2F�f0ggand let M denote the ompensated ounting proessMt = Nt � Z t0 �121F�f0g(Xs) + �(F )1A(Xs)� dswhere A = IR� f1g is the atom of X. By de�nition of (Rn)n in 1.11 as passage times from A toA, XRn is always in IR� f0g, is distributed aording to �
�0, and we haveXRn 2 F � f0g if and only if MRn+t �MRn = �12 t for t suÆiently smallXRn 2 F  � f0g if and only if MRn+t �MRn = 0 for t suÆiently smallas well as MRn =MR�n + 1F�f0g(XRn) :So both (�) and (��) of (H5B) are violated, and it is lear thatM�MRn andMRn are dependent.So �MRj �MR1 ; Rj �R1�j�1 is not a random walk.b) In example 1.11 a) we have onstant intensity for 'hange of olour' on E�f0g and E�f1g,thus Rn+1 �Rn is independent of FRn . ConsiderN1t =Xn�1 1fRn�tg1fXRn2F�f0gg ; M1t = N1t � Z t0 �(F )1A(Xs)ds :M1 is a martingale suh thatM1� (M1)Rn is independent of FRn , n � 1. So (��) of (H5B) holdsfor M1.) Consider nowN2t =Xn�1 1fTn�tg1fXTn2F�f1gg ; M2t = N2t � Z t0 �121F�f0g(Xs)� dsThen (M2)Rn is FR�n -measurable, so (�) of (H5B) holds for M2. 2
48



5 Proofs for subsetion 3.1 - neessary onditionIn this setion, we onsider proesses with life yles and prove that the onditions on regularvariation of tails of life-yle length distributions in theorem 3.1 are neessary onditions forweak onvergene of resaled martingales under a Lindeberg ondition - this ondition impliesthat the limit proess is a ontinuous loal martingale, and that we have also weak onvergene of(preditable) quadrati variations. To these one applies the lassial Darling-Ka theorem ([D-K57℄, see [B-G-T 87, h. 8.11℄) whih states that norming funtions are neessarily regular varying,and that limit laws for (one-dimensional marginals of) resaled additive funtionals of X areneessarily Mittag-Le�er laws. However, the Darling-Ka theorem needs a uniformity ondition(see [B-G-T 87, p. 390℄) whih is rather restritive exept for simple situations suh as Markovstep proesses with ountable state spae. Touati ([Tou 88℄) proposed to avoid 'Darling-Ka on-ditions' by use of 'speial funtions'. We give the argument exatly in this way.In a �rst part of this setion, we shall use only assumptions on the proess X:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a reurrent atom A 2 E and a life yle deomposition (Rn)n�1, see 1.9.A + 1.9.B;(H4): There is some funtion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, suh thatx ! Ex�Z R10 f(Xs) ds� is bounded on E(a 'weakly speial funtion for X and R1').With respet to (Rn)n, we �x the norming onstant for � as in (4.11').(H1), (H3) and (H4) allow to prove a variant of the lassial Darling-Ka theorem withoutDarling-Ka onditions: weak onvergene of (linearly time-saled and suitably normed) additi-ve funtionals of X implies regular variation of tails of life-yle length distributions (theorems5.6.A and 5.6.B below). We will use in this setion the following abuse of language: we writeEA(�) := E�A(�) with �A the law of XRn as in 1.9.A+B, and we term funtions f meeting (H4)for short weakly speial without expliit referene to X and R1.As in (4.2)-(4.4), write bF for the Laplae transform of the life yle length distribution:bF (�) = E(e��(R2�R1)) = EA(e��R1) ; � 2 IR+49



and introdue a funtion v : IR+ ! IR+v(t) = �1�EA �e� 1tR1���1 = �1� bF (1t )��1(5.1)whih is nondereasing, with v(0) = 1 and v(t) " 1 as t ! 1. This funtion v - whih wasimpliit already in (4.2)-(4.4) - will play a key role in the sequel. We will work with resolvantsand de�ne for f nonnegative, bounded, measurableR�f(x) = Z 10 �e��tEx�Z t0 f(Xs)ds� dt = Ex�Z 10 e��tf(Xt)dt� :5.2 Lemma : ([Tou 88℄) R� admits the deompositionR�f(x) = R1�f(x) +R2�f(x)where R1�f(x) = Ex�Z R10 e��tf(Xt)dt�and R2�f(x) = v( 1� )Ex �e��R1�EA�Z R10 e��tf(Xt)dt� :Proof: We start fromR�f(x) = Ex�Z 10 e��tf(Xt)dt�= Ex�Z R10 e��tf(Xt)dt�+Ex0�Xn�1Z Rn+1Rn e��tf(Xt)dt1A :Here, the �rst term on the r.h.s is R1�f(x). For the seond one, note thatEx�Z Rn+1Rn e��tf(Xt)dt� = Ex�e��Rn �Z R10 e��vf(Xv)dv� Æ �Rn�= Ex �e��Rn�EA�Z R10 e��vf(Xv)dv�by the strong Markov property, whereEx �e��Rn� = Ex �e��R1�Ex �e��(Rn�R1)� = Ex �e��R1�EA �e��R1�n�1 :By de�nition of v in (5.1), the assertion follows. 250



For weakly speial funtions, lemma 5.2 an be strengthened.5.3 Lemma : ([Tou 88℄) For f weakly speial and C := supxEx �R R10 f(Xs)ds� < 1, for �normed aording to (4.11'), one has for arbitrary x 2 E(i) R�f(x)v( 1�) �!�#0 �(f)(ii) 8 � > 0 : v( 1�)"R�f(x)v( 1�) � �(f)# � C :Proof: For � # 0, this follows from inspetion of the termsR�f(x)v( 1�) = Ex �Cz }| {�Z R10 e��tf(Xt)dt�v( 1�) + Ex �e��R1�| {z }�1 "1 � EA�Z R10 e��tf(Xt)dt�| {z }��(f); "�(f)arising in the deomposition of lemma 5.2. 2Next, for f weakly speial, we onsider moments of arbitrary order for additive funtionals At =R t0 f(Xs)ds. De�ne Mn(t; x) := Ex��Z t0 f(Xs)ds�n�and Mn(�; x) = Z 10 �e��tMn(t; x)dt; � > 0:Then the following modi�ation of [D-K 57℄ or [B-G-T 87℄ { due to Touati { holds.5.4 Lemma : ([Tou 88℄) For f weakly speial, one has for all x 2 E:(i) Mn(�; x)n! (v( 1�))n �!�#0 (�(f))n;(ii) 8 � > 0 : v( 1�)" Mn(�; x)n! (v( 1�))n � �(f)n# � C(C + 2�(f))n�1where C is the onstant of lemma 5.3. 51



Proof : 1) We start fromEx ��Z t0 f(Xs)ds�n� = Z t0 : : : Z t0 Ex(f(Xu1) : : : f(Xun))du1 : : : dun= n! Z t0 du1 Z tu1 du2 : : :Z tun�1 dunEx(f(Xu1) : : : f(Xun))whih givesMn(�; x) = Z 10 �e��tMn(t; x)dt= n! Z 10 du1 Z 1u1 du2 : : : Z 1un�1 dune��unEx(f(Xu1) : : : f(Xun)):Conditioning on Xun�1 and using the strong Markov property we getMn(�; x) = n! Z 10 du1 : : : Z 1un�2 dun�1e��un�1Ex(f(Xu1) : : : f(Xun�1)R�f(Xun�1))where we have used thatEx Z 1un�1 e��(un�un�1)f(Xun)dun���Xun�1! = Ex�Z 10 e��uf(Xun�1+u)du���Xun�1�= EXun�1 �Z 10 e��uf(Xu)du�= R�f(Xun�1):Iterating this argument, we arrive atMn(�; x) = n! Z R�(x; dx1)f(x1)Z R�(x1; dx2) : : : f(xn�1)Z R�(xn�1; dxn)f(xn)whih in short notation 0(�; x) := 0;  1(�; x) := R�f(x); : : : ;  n(�; x) := Z R�(x; dx1)f(x1) n�1(�; x1)takes the form Mn(�; x) = n!  n(�; x):2) In a next step we prove that there is some sequene of onstants (Kn)n suh that for all n thefollowing (+) and (++) hold:(+)  n(�; x)(v( 1�))n � Kn 8�; x(++)  n(�; x)(v( 1�))n �!�#0 (�(f))n 8x:52



The proof is by indution on n. The ase n = 1 is lemma 5.3 together with v( 1�) � 1. For arbitraryn > 1, we write n(�; x)(v( 1�))n � (�(f))n�1 1(�; x)v( 1� ) = 1v( 1�) Z R�(x; dx1)f(x1)" n�1(�; x1)(v( 1� ))n�1 � (�(f))n�1#(5.5)and deompose again R� = R1� +R2�aording to lemma 5.2. Assuming (+) and (++) for n�1, the expression [: : :℄ in square brakettsin (5.5) onverges to 0 pointwise in x1 as � # 0, and is bounded by Kn�1 + (�(f))n�1. Thusf 2 L1+(�) implies x1 7! f(x1) j[: : :℄j 2 L1+(�)and the last funtion is weakly speial sine f is weakly speial. Using this property, we have����� 1v( 1�) Z R1�(x; dx1)f(x1)[: : :℄����� � Kn�1 + �(f)n�1v( 1�) � C ! 0 (� # 0)for all x, and dominated onvergene and the de�nition of R2� give����� 1v( 1�) Z R2�(x; dx1)f(x1)[: : :℄����� � Z �(dx1)f(x1) � j[: : :℄j ! 0 (� # 0)whih implies (+) and (++) for n.3) Assertion (i) in lemma 5.4 is proved by (++). From (5.5), we then prove by indution alsoassertion (ii) of 5.4, using exatly the same arguments as in step 2) above. 2For sake of ompleteness, we now inlude the proof of the Darling-Ka theorem, under assumpti-ons (H1), (H3), and (H4), and thus in a version where the use of weakly speial funtions avoidsDarling-Ka onditions. The prinipal assertion of theorems 5.6.A and 5.6.B is that if we ha-ve weak onvergene of (one-dimensional marginals of) additive funtionals of X, then normingfuntions are automatially regularly varying.5.6.A Theorem : ([D-K 57℄, [B-G-T 87, h. 8.11℄, [Tou 88℄) Consider an additive funtional(At)t�0 of X, �-integrable and suh that E�(A1) > 0. If we have onvergene in law under Px(�) Atv(t) w�! Yto some limit variable Y suh that L(Y ) is not a Dira measure, for some norming funtion v(�)(v : IR+ ! IR+ nondereasing, v(t) " 1 as t!1), then we have neessarily53



(i) v(t) �  � v(t) as t!1 for some  > 0, where v is given by (5.1);(ii) v 2 RV� for some 0 � � < 1;(iii) 1v(t)At w�! E�(A1) �W�1 under Pxwhere the norming onstant for � is as in (4.11'), and where W 01 � exp(1) is de�ned for � = 0 inaordane with 2.8 (the speial ase of a Mittag-Le�er law with parameter 0).5.6.B Theorem : Under all assumptions of 5.6.A exept that the limit variable Y in (�) isreplaed by a onstant y 2 (0;1), we have the following:(i) v(t) �  � v(t) as t!1 for some  > 0, where v is given by (5.1);(ii) v 2 RV1 ;(iii) 1v(t)At w�! E�(A1) under Pxwith norming onstant of (4.11').We add a remark before proving the theorems.5.7 Remark : a) Remark 2.8 shows that the limiting ase � = 0 of a Mittag-Le�er proessis a proess with time-independent marginals on the stritly positive half axis: the proess hasthe form W 0 = �1(0;1) where � is exponentially distributed with parameter 1. This proess isnot ontinuous and thus will not arise in the setting of theorem 3.1 where - under the Lindebergondition - limit proesses will be ontinuous.b) For 0 < � � 1, (4.2)-(4.4) guarantee that the norming funtion v of (5.1) in theorems 5.6.Aand 5.6.B oinides (up to asymptoti equivalene) with the norming funtions used in theorems3.1 and 3.2 (or in 4.12).) By (i) in lemma 5.3, we an replae the norming funtion v of (5.1) by a resolvent of a speialfuntion - for an arbitrary starting point x - and thus give a version of 5.6.A and 5.6.B wherea life yle deomposition of the proess X does not appear in the formulation of the theorem.This will be important for setion 7.
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5.8 Proof of 5.6.A and 5.6.B : By the ratio limit theorem, it is suÆient to prove the theoremsfor additive funtionals of form At = Z t0 f(Xs)dswhere the funtion f is weakly speial. W.l.o.g., we an take �(f) = 1. This will be assumed inthe sequel. The proof, following [B-G-T 87, p. 392℄, is in several steps. During the �rst ones, weonsider a limit variable Y in (�) whose law (ertainly onentrated on [0;1)) is not a Dirameasure at 0; this is the ommon assumption in 5.6.A and 5.6.B.1) Lemma 5.4 gives Z 10 �e��tEx (At)n(v( 1�))n! dt �! n! (� # 0)or after substituting u = �t Z 10 e�uEx� (Au=�)n(v(1=�))n� du �! n! :Choose some r.v. T exponentially distributed with parameter 1, and independent of the proessX. Then the last onvergene is8n : Ex� (AT=�)n(v(1=�))n�! n! (� # 0):(5.9)But (n!) is the sequene of moments of the exponential law exp(1) with parameter 1, whih isuniquely determined by its moments: by the method of moments, we have weak onvergeneAT=�v(1=�) �! � (� # 0)where � � exp(1), or Z 10 e�tPx� At=�v(1=�) � � dt �! 1� e� 8 � 0:(5.10)2) We have assumed weak onvergene At=�v(t=�) w! Y as � # 0, for some r.v Y whose law is not aDira measure at 0. Consider funtions g�(t) := v(t=�)v(1=�) whih are nondereasing in t for �xed �.Helly's seletion proedure applied to families fg�n : n � 0g (distribution funtions of �-�nitemeasures) allows to selet for every sequene (�n)n with �n # 0 a subsequene (�n0)n0 and somenon-dereasing funtion g taking values in [0;1℄ suh that at all ontinuity points t of gv(t=�n0)v(1=�n0) �!(n0) g(t):(5.11)
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We take g right-ontinuous. Let G denote the distribution funtion of Y . Along the sequene(�n0)n0 , we write the l.h.s of (5.10) asZ 10 e�tPx At=�n0v(t=�n0) � v(1=�n0)v(t=�n0)!dt:(5.12)At ontinuity points t of bothG and g and along (�n0)n0 , the probability in the integrand onvergesto P (Y � =g(t)) = G(=g(t)) (with =0 =1, =1 = 0); there are at most ountably many suhdisontinuities. So (5.10) gives8  � 0 : Z 10 e�tG(=g(t))dt = 1� e�:(5.13)From (5.13) we see that g is (0;1)-valued: g � 1 on some half axis [t0;1) would imply that theintegrand in (5.13) equals G(0)e�t on [t0;1) whih is impossible: let  " 1 in (5.13), and reallthat G(0) < 1 by assumption. A similiar argument exludes ases where g � 0 on some [0; t0).So g takes values in (0;1), and (5.13) readsP (Y �g(T ) � ) = E(G(=g(T ))) = 1� e�;  � 0:(5.14)Here we have used that T and Y are independent sine T was independent of the proess X.(5.14) with  = 0 then shows that also Y is (0;1)-valued; thus we may take logarithms and havelog Y + log g(T ) d= log T:(5.15)3) Consider harateristi funtions 'Y of log Y , 'g(T ) of log g(T ), 'T of log T , then'Y (u)'g(T )(u) = 'T (u); u 2 IR:(5.16)None of these an take the value 0 sine'T (u) = Z xiue�xdx = �(1 + iu) 6= 0; u 2 IR:So 'g(T ) = 'T ='Y is uniquely determined from Y , so the distribution funtion of g(T ) and thusthe (right-ontinuous) funtion g itself are uniquely determined from Y . In partiular, g does notdepend on hoie of subsequenes (�n0)n0 of sequenes (�n)n, so (5.11) is improved tov(t=�)v(1=�) �!�#0 g(t) for almost all t(5.17)whih gives v(t=�)v(1=�) �!�#0 g(t)g(1) for almost all t .(5.18) 56



But (5.17) and (5.18) implyv 2 RV�; g(t) = g(1)t�; v 2 RV�; v(t) � g(1)v(t) as t " 1(5.19)for some � 2 IR; neessarily � � 0 sine g is nondereasing.4) It remains to show that not all ases � � 0 an our in (5.19), and to identify the limitlaw L(Y ); by (5.17) - (5.19) and in virtue of (5.14), we have spei�ed the initial assumption ononvergene in law to Atv(t) w! g(1)Y as t " 1;(5.20)for some r.v Y onentrated on (0;1).i) If � = 0, then the funtion g is onstant by (5.19), so (5.14) shows that g(1)Y has law exp(1).ii) Consider the ase 0 < � < 1. Sine At = R t0 f(Xs)ds where f is speial and �(f) = 1, we applylemma 5.4 a) whih gives the asymptotis as � # 0 of the Laplae transform bUn of the measureUn(ds) :=Mn(s; x)ds: bUn(�) �#0� 1� n! �v( 1� )�n :Sine v 2 RV�, the Tauberian theorem ([B-G-T 87, p. 37℄) givesUn([0; t℄) t"1� t n! (v(t))n�(2 + �n) ;sineMn(�; x) is by de�nition monotone, the monotone density theorem ([B-G-T 87, p. 39℄) showsMn(t; x) t"1� n! (v(t))n�(1 + �n)whih we write in the formEx�� Atv(t)�n� �! n!�(1 + �n) ; t!1(5.21)for arbitrary n 2 IN . On the r.h.s of (5.21), we �nd the sequene of moments of the Mittag-Le�ervariable W�1 , f. 2.8: so the method of moments gives onvergene in law under PxAtv(t) w! W�1 ; t!1(5.22)and thus spei�es the limit law in (5.20).iii) We show that under the assumptions of theorem 5.6.A, other ases � > 0 exept 0 < � < 1are impossible. Indeed, the ratio limit theorem and (5.20) - where �(f) = 1 - imply onvergenein law Ntv(t) w! g(1)Y; t!1;(5.23) 57



with notations as in the proof of theorem 4.12. v being regularly varying by (5.19) with positiveindex, the arguments in step 3) of the proof of 4.12 show that we have weak onvergene of Rna(n)as n!1 to some limit law whih is onentrated on (0;1) and whih is not a Dira measure;here a(�) is an asymptoti inverse of v. Then theorem 2.4.A ombined with (4.2)-(4.4) and (5.1)show that the index � of regular variation of v is neessarily in (0; 1). So all assertions of theorem5.6.A are proved.iv) We show that under the assumptions of theorem 5.6.B, all ases � 6= 1 are impossible. Stepsi) and ii) above exlude 0 � � < 1. With the same arguments as in iii) exept that Rna(n) nowonverges in probability as n ! 1 to some strily positive onstant, we apply theorem 2.4.Bombined with (4.2)-(4.4) and (5.1) to show that the index � of regular variation of v neessarilyequals 1. Then g in (5.19) is linear, so g(1)Y = 1 by (5.14), and all assertions of theorem 5.6.Bare proved. 2Now we turn to onvergene of martingalesM 2M2;lo(Px; IF ), on a spae (
;A; IF ) as in setion1. Theorems 5.6.A and 5.6.B ontain one essential argument for the proof of the 'neessary' partof theorem 3.1; the other is the following.5.24 Theorem : Consider M 2M2lo(Px; IF ) whose angle and square brakett are �-integrableadditive funtionals of X. For some norming funtion v(�), letMn =  1pv(n)Mtn!t�0onverge (weakly in D(IR+; IR), under Px, as n ! 1) to some limit proess W = (Wt)t�0 suhthat W0 = 0 and L(W1) is not the Dira measure at 0, and assume that the sequene (Mn)nsatis�es the Lindeberg ondition1v(n) Z tn0 Z jxj2 1fjxj>"pv(n)g�(ds; dx) �! 0 in Px-probability, for all t, all " > 0(5.25)where �(ds; dx) is the Px-ompensator of the point proess of jumps ofM . Then the limit proessW is a ontinuous loal martingale with respet to its own �ltration, and we have(Mn; [Mn℄) �! (W;< W >) ; (Mn; < Mn >) �! (W;< W >)(5.26)(weak onvergene in D(IR+; IR� IR), under Px, as n!1).58



Proof : We deompose Mn = Mn;1 +Mn;2 where Mn;1 has bounded jumps j�Mn;1j � b andwhere Mn;2 is the ompensated sum of 'big' (i.e. j�Mnj > b) jumps of Mn. Then the Lindebergondition (3.25) implies P �sups�T jMn;2s j > "�! 0 (n!1) 8 T > 0and thus Mn;2 w! 0 ; Mn;1 w!W(weak onvergene in D(IR+; IR), under Px, as n ! 1). Then by [J-Sh 87, VI.3.26℄, the weaklimit W is a ontinuous proess. By [J-Sh 87, IX.1.19℄, sine Mn;1 has bounded jumps, W is aloal martingale with respet to its own �ltration (letW be de�ned on some (
0;A0; P 0), onsiderthe �ltration IF 0 generated by W ). So W has braketts < W >= [W ℄. Again by boundedness ofjumps of Mn;1, [J-Sh 87, VI.6.1℄ gives(Mn; [Mn℄) �! (W;< W >)(weak onvergene inD(IR+; IR�IR), under Px, as n!1). In this last assertion, square brakettsan be replaed by angle braketts(Mn; < Mn >) �! (W;< W >)sine < M >, [M ℄ are additive funtionals of X having the same expeted inrement over lifeyles of X: this is again the RLT ombined with the argument of step 3) in the proof of 4.12that weak onvergene of inreasing proesses to a ontinuous inreasing proess is equivalent toonvergene of �nite dimensional marginals. 25.27 Proof of theorem 3.1, 'neessary' ondition : Consider (Mn)n as in 5.24. We haveto prove that if Mn onverges weakly in D(IR+; IR) under Px as n ! 1 to some limit proessW = (Wt)t�0 suh that W0 = 0 and L(W1) is not the Dira measure at 0, then neessarily thetails of life-yle length distributions in the proess X are regulary varying as stated in theorem3.1. First we apply 5.24: W is ontinuous and a loal martingale, and we have onvergene in law1v(n) < M >n�!< W >1as n!1 under Px, where also L(< W >1) is not a Dira measure at 0. Then 5.6.A and 5.6.Bapply to show the following: if < W >1 is a.s. onstant, then we have v 2 RV1 and1v(n) < M >n�! J59



where v is given by (5.1) and J = E(< M >R2 � < M >R1); if < W >1 is not a.s. onstant,then v 2 RV� and 1v(n) < M >n�! J W�1for some 0 � � < 1. It remains to exlude the ase � = 0: if the norming funtion v is slowlyvarying at 1, then < W >�, the limit in law of 1v(n) < M >�n, and < W >1, the limit in lawof 1v(�n) < M >�n, neessarily have the same law exp(1); sine < W > is inreasing, its pathsmust be onstant on (0;1); but < W > is ontinuous on [0;1) with < W >0= 0 whih isa ontradition. So 0 < � < 1, and by (5.1) and (4.2)-(4.4), regular variation of the normingfuntion v is translated into regular variation of tails of life-yle length distributions of X asspei�ed in theorem 3.1. 2The 'neessary' part of theorem 3.1 in subsetion 3.1 is thus proved, under assumption (H1), (H3)and (H4) for the proess, and under onditions muh weaker than (H5A)+(H5B) on the martin-gales under onsideration. It remains to prove proposition 3.4 whih gives a suÆient ondition {in terms of upper bounds for the life yle variable R1 { for existene of weakly speial funtionsfor X and R1. In fat, the only assumption whih we need for this is (H1).5.28 Proof of proposition 3.4 : We assume only Harris reurrene (H1) of the proess X.The proof is in several steps.1) Consider �rst the proess X = (Xt)t�0 at jump times �n of an independent Poisson proesswith rate 1: by theorem 1.4, we have (H2), i.e. the disrete-time proess X = (X�n)n2IN is Harriswith invariant measure �. Revuz terms f : E ! IR+ a speial funtion for X (see [Re 75, p. 182,p. 48℄) if f is E-measurable and ifx ! Ex 1Xn=1(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)!is bounded in x 2 E, for every h 2 U+ having �(h) > 0; here U+ denotes the set of E-measurablefuntions h on E with 0 � h(�) � 1. Speial funtions of X do exist, see [Re 75, 6.4.3 and 6.4.6℄;the set of speial funtions forms a onvex one in L1(�) ([Re 75, 6.4.2℄); thus in partiular speialfuntions exist whih are bounded.2) We prove that for h 2 U+ with �(h) > 0 and f � 0 measurable, one hasEx 1Xn=1(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)! = Ex�Z 10 f(Xt)e� R t0 h(Xs) dsdt� :(5.29) 60



Indeed, �n has law �(n; 1), and � �1�n ; : : : ; �n�1�n �is independent of �n and distributed as the orderstatistis of n� 1 uniform r.v.'s on (0; 1); thus the summands on the l.h.s of (5.29) areEx �(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)�= Ex0�Z 10 dt e�t f(Xt) Z t0 dt1 Z tt1 dt2 : : : Z ttn�2 dtn�1 en�1Pi=1 g(Xti )1Awith g := log(1� h), for n 2 IN . Fix some t and de�ne funtions Sm(�) = Stm(�) on [0; t℄ byS0(r) � 1; S1(r) := Z tr dr0eg(Xr0); Sm(r) := Z tr dt1 Z tt1 dt2 : : :Z ttm�1 dtm e mPi=1 g(Xti); m � 2:Note that Sm(r) � tmm! and that Sm(r) = R tr dr0eg(Xr0)Sm�1(r0) form � 1. De�ning S(�) = St(�) :=Pm�0Sm(�) on [0; t℄, we have ddrS(r) = �eg(Xr)S(r) and St(t) = 1, thusSt(r) = Xm�0Sm(r) = eR tr (1�h)(Xr0 )dr0 ; 0 � r � t:As a onsequene, we have written the l.h.s of (5.29) asEx Z 10 dt e�tf(Xt) 1Xn=1Stn�1(0)! = Ex�Z 10 dt f(Xt) e� R t0 h(Xs) ds�whih is the assertion.3) We give an interpretation of the r.h.s of (5.29) in terms of position-dependent killing of thestrong Markov proess X = (Xt)t�0 at rate h 2 U+ with �(h) > 0: given that X has not beenkilled up to time r, it will be killed in a small time interval (r; r+�℄ with probability � h(Xr)+o(�).First, for h bounded away from 0 and for f bounded, partial integrationEx�Z 10 f(Xt)e� R t0 h(Xs) dsdt� = Ex�Z 10 dr h(Xr)e� R r0 h(Xs) ds Z r0 f(Xv) dv� ;allows to write the r.h.s of (5.29) as Ex Z bTh0 f(Xt) dt!where bTh is the killing time, de�ned on an extension of the stohasti basis (
;A; IF ). Seond,stohasti ordering of bThn as hn # h and monotone onvergene showEx�Z 10 f(Xt)e� R t0 h(Xs) dsdt� = Ex Z bTh0 f(Xt) dt!61



for arbitrary h 2 U+ with �(h) > 0 and f � 0; note that bTh < 1 Px-a.s for all x 2 E sine�(h) > 0.4) Write bTB if h = 1B, for B 2 E with �(B) > 0, and let SB denote the �rst entry time of thedisrete hain X to B: then (5.29) yieldsEx SBXn=1 f(X�n)! = Ex Z bTB0 f(Xt) dt! ; x 2 E:(5.30)If f is a speial funtion of X as in 1), the expressions in (5.29), for h 2 U+ with �(h) > 0, andin (5.30), for B 2 E with �(B) > 0, are bounded funtions of x 2 E. From now on, we will omitthe referene to X and speak for short during this proof of speial funtions.Consider a �rst entry time TB to BTB := infft > 0 : Z t0 1B(Xs)ds > 0g � bTB ;then TB is a IF -stopping time, and by onstrution, between TB and bTB, the proess X has tospend an independent exponential time in the set B. In partiular, for B = E, S := bTE is anindependent exponential time. Comparison with (5.30) shows: if f is speial, thenEx�Z TB0 f(Xt) dt� ; Ex Z bTB0 f(Xt) dt! ; Ex�Z S0 f(Xt) dt�(5.31)(B 2 E with �(B) > 0) are bounded funtions of x 2 E.5) Consider now a reurrent atom A 2 E forX and a life yle deomposition (Rn)n as in 1.9.A+Bsuh that R1 has the form spei�ed in proposition 3.4:R1 � S0 + (max1�j�lTBj ) Æ #S0 ; S0 � max1�i�k bThi(5.32)where Bj 2 E have positive invariant measure �(Bj) > 0, 1 � j � l, and where hi are E-measurable, [0; 1℄-valued, with �(hi) > 0. By the strong Markov property, for f speial andbounded,x �! Ex�Z R10 f(Xt) dt� � Ex0�Z S00 f(Xt) dt+ lXj=1EXS0  Z bTBj0 f(Xv) dv!1A :using (5.31), this is is again a bounded funtion in x 2 E. Thus we have proved that for R1meeting (5.32), speial funtions for X are weakly speial for X and R1. This is the assertion ofproposition 3.4. 262



6 Nummelin splitting in disrete timeThe results of subsetion 3.1 were formulated under the assumption that a Harris proess X =(Xt)t�0 has a reurrent atom A suh that suitably de�ned exit times (Rn)n from this atom de-ompose the trajetory of X into a sequene of i.i.d life yles. Unfortunately, many interestingproesses X do not possess suh reurrent atoms.Nummelin ([Num 78℄) showed that disrete-time Harris hains an be embedded as �rst om-ponent into a a two-dimensional Harris hain (the 'split' hain) where the seond omponentintrodues a reurrent atom of positive mass. As a preparation to setion 7, we retrae the ap-proah of Nummelin in ase of disrete time.In this setion, we onsider a Markov hain Y = (Yn)n2IN0 taking values in a Polish spae (E; E),with one-step transition kernel P (x; dy), and assume that Y is Harris with invariant measure �.Nummelin used the following minorization assumption(s) (Mk), k 2 IN .6.1 Minorization assumption (Mk) : There is some E-measurable funtion h : E ! [0; 1℄with �(h) > 0 and some probability measure � on (E; E) suh thatPk(x;A) � h(x)�(A) 8 x 2 E; 8 A 2 E :
For our purposes, the disrete time hain Y of interest will be X = (X�n)n, i.e. the ontinuous-time Harris proess X = (Xt)t�0 evaluated after independent exponential waiting times; heneP (x; dy) will be the potential kernel U1(x; dy) and � the invariant measure of X, f. proof oftheorem 1.2 and theorem 1.4. The main result of the this setion is proposition 6.7: it states thatin ase P (x; dy) = U1(x; dy), the minorization assumption (M1) is automatially satis�ed.Under (M1), Nummelin splitting transforms the state spae (E; E), measures � on (E; E), tran-
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sition probabilities P (�; �) on (E; E), ..., as follows. For points x 2 E and sets A 2 E , splitE 3 x x0 := (x; 0) 2 E0 := E � f0g%& x1 := (x; 1) 2 E1 := E � f1g
E 3 A A0 := A� f0g � E0%& A1 := A� f1g � E1 :We write E� := E0 �[ E1; E� = �(A0; A1 : A 2 E)and identify sets A 2 E with their pre-image under the projetion from E� to E:E 3 A  ! A� f0; 1g 2 E�:By (M1) with h as there, a �-�nite measure � on (E; E) splits aording to�(A) R 1A(x)h(x)�(dx) =: ��(A1)%& R 1A(x)(1� h)(x)�(dx) =: ��(A0) ;A 2 E ; this de�nes a �-�nite measure �� on (E�; E�) suh that��(A� f0; 1g) = �(A); A 2 E :Identifying A 2 E with A�f0; 1g 2 E� as above, we write again � for the restrition of �� to thesub-�-�eld fA� f0; 1g : A 2 Eg of E�. Extending E-measurable f : E ! IR to (E�; E�) viaf(x0) := f(x) =: f(x1); x 2 E;we may onsider integrals ZE f d� = ZE� f d�without distintion on either (E; E) or (E�; E�).64



Next, one uses (M1) and the kernel h
�(x; dy) := h(x)�(dy) to transform the transition kernelP (�; �) on (E; E). The aim is to de�ne a transition probability P �(�; �) on (E�; E�) suh thati) the original Markov hain Y = (Yn)n2IN0 evolving under P is embedded as �rst omponent intoa new hain Y � = (Y �n )n2IN0 on (E�; E�) evolving under P �(�; �): we then write Y �n = (Yn; "n);ii) transitions away from points x1 = (x; 1) 2 E1 do no longer keep trae of the �rst omponentx of points in E1: thus E1 2 E� will beome an atom for Y �.To get i) and ii), one has to solveE0 E E1��(dx0) = (1� h)(x)�(dx)  � �(dx) �! h(x)�(dx) = ��(dx1)P �(x0; dy) & . P �(x1; dy) := �(dy): : :  � �(dx)P (x; dy) �! : : :whih { notiing that �(dy) = 1h(x) (h 
 �)(x; dy) whenever h(x) > 0 { leads to a kernel P �(�; �)de�ned for points x� in E� = E � f0; 1g byP �(xi; dy) = 8><>: 11�h(x)(P � h
 �)(x; dy) if i = 0 and h(x) < 1�(dy) else .So far, we have de�ned P �(x�; dy) as a transition probability from (E�; E�) to (E; E): it remainsto split all measures P �(x�; dy), x� 2 E�, aording to the above rule (from y to y0 = (y; 0)with probability 1�h(y), and to y1 = (y; 1) with probability h(y)) to de�ne the desired transitionkernel P �(x�; dy�) on (E�; E�).Resuming this disussion, we obtain6.2 Proposition : Consider a disrete time hain Y = (Yn)n2IN0 with one-step transition kernelP (�; �) on (E; E) satisfying (M1), with arbitrary initial distribution �. Consider a hain (Y �n )n on(E�; E�) with one-step transition kernel P �(�; �) as de�ned above, and with starting law ��.(i) For arbitrary N � 1 and An 2 E ; 0 � n � N , we haveP�(Yn 2 An; 0 � n � N) = P��(Y �n 2 An � f0; 1g; 1 � n � N)65



thus the �rst omponent of Y � is equal in law to the original hain Y . (Moreover, we mayonstrut Y jointly with Y � suh that Y is the �rst omponent of Y � = (Yn; "n)n, theseond omponent ("n)n taking values in f0; 1g.)(ii) If Y is Harris with invariant measure �, then Y � is Harris with invariant measure ��:��(A1) = ZA h(x)�(dx) ; ��(A0) = ZA(1�h)(x)�(dx) ; A 2 E :(iii) E1 is an atom for Y � having ��(E1) = RE h(x)�(dx) > 0:To apply 6.2, we have to be able to hek the minorization ondition (M1).6.3 Remark : In some ases one has expliit densities p(�; �), E 
 E-measurable,P (x; dy) = p(x; y)m(dy); x; y 2 Ewith respet to some �-�nite measure m on (E; E) whih is equivalent to the invariant measure�, and one an speify some set C 2 E having8><>: inf(x;y)2C�C p(x; y) > 0m(C) > 0 (w.l.o.g also m(C) < 1)(thus C will be visited in�nitely often, and also transitions C ! C will our in�nitly often):then for x 2 E, A 2 EP (x;A) � P (x;A \ C) = Z 1A\C(y) p(x; y)m(dy)� 1C(x) � inf(x;y)2C�C p(x; y)�m(A \ C)� h(x) �(A) = (h
 �)(x;A)where the funtion h and the probability measure � are given in terms of the set C alone8><>: h := 1C � inf(x;y)2C�C p(x; y) ^ 1�m(C) = � 1C� := m(� \ C)=m(C)for some � 2 (0; 1). In this ase, the minorization ondition (M1) holds in a very partiular form,with h and � determined from C. 266



This leads to the following sharper form of minorization onditions (Mk), k � 1:6.4 Minorization assumption (fMk) : There is some set C 2 E with �(C) > 0, some probabilitymeasure � on (E; E) equivalent to �(� \ C), some funtion h of form � 1C , � 2 (0; 1), suh thatPk(x;A) � h(x)�(A) 8 x 2 E; 8 A 2 E :We quote the following result from Revuz [Rev 75℄.6.5 Proposition : ([Rev 75, p. 160℄) Consider a Harris hain Y = (Yn)n2IN0 taking values in(E; E), E ountably generated, with one-step transition kernel P (x; dy) and invariant measure �.Let m denote a probability measure on (E; E) whih is equivalent to �. Then there is a family ofLebesgue deompositions of k-step transition probabilities Pk(x; �) with respet to mPk(x; dy) = pk(x; y)m(dy) + �Pk(x; dy) ; x; y 2 E; k � 1with the following properties: pk(�; �) is E 
 E-measurable for all k � 1, and there is some setC 2 E with m(C) > 0 and some integer k 2 IN suh that inf(x;y)2C�C pk(x; y) > 0.As a onsequene, arguing exatly as in remark 6.3 above, we dedue from 6.5:6.6 Proposition : Consider a Harris hain Y = (Yn)n2IN0 taking values in (E; E), E ountablygenerated, with one-step transition kernel P (x; dy). Then there is some k � 1 suh that theminorization ondition (fMk) is satis�ed.We apply this to the speial situation of interest for us.6.7 Proposition : Consider X = (Xt)t�0, a ontinuous-time Harris proess with semigroup(Pt(�; �))t�0 and invariant measure �, taking values in a Polish spae (E; E).Then for all 0 < � <1, the transition kernels�U�(x; dy) = Z 10 �e��tPt(x; dy)dtsatisfy a minorization ondition (fM1). 67



Proof : Consider X� = (X�n)n�0 where �n+1��n, n � 0, are i.i.d exp(�)-waiting times in-dependent of X, �0 = 0. Then �n has law �(n; �), and a mixture formula for Gamma lawsgives 1Xn=0(1�q)qn�(n+1; �) = �(1; �(1�q))for arbitrary 0 < q < 1. Thus we have�(1�q)U�(1�q) = 1Xn=0(1�q)qn Z 10 �(n+1; �)(dt)Pt = 1Xn=0(1�q)qn (�U�)n+1 :Sine X = (Xt)t�0 is by assumption Harris, we know from theorem 1.4 that (H2�) holds forarbitrary 0 < � < 1: thus X� with one-step transition kernel �U� is by assumption Harris.Then proposition 6.6 yields that at least one of the kernels (�U�)n, n � 1, satis�es a minorizationondition (fM1). So we have a minorization ondition (fM1) also for �0U�0 where �0 = �(1�q).Sine � and q were arbitrary, this proves the assertion. 2

68



7 Nummelin-like splitting for general ontinuous time Harris pro-esses and proofs for subsetion 3.3The results of subsetion 3.1 were formulated under the assumption that the Harris proessX = (Xt)t�0 under onsideration has a life yle deomposition. This restritive assumption willbe removed now, and we will prove the general results 'without life yles' of subsetion 3.3.Touati ([Tou 88℄) used Nummelin splitting to argue that for Harris proesses X = (Xt)t�0 withPolish state spae, life yles may always be introdued arti�ially: he thus ould state the maintheorem of setion 3 without expliit referene to onrete life yles of X, giving by the way theresult in its most general form. Using quite di�erent arguments, we will prove this result in thepresent setion (theorems 7.16 and 7.20 below).The setting is the following: we onsider a ontinuous-time strong Markov proess X = (Xt)t�0with semigroup (Pt(�; �))t�0, taking values in a Polish spae (E; E), and with �adl�ag paths. Slight-ly more restritive than in setion 1, we take X as anonial proess on (
;A; IF ), where 
 isthe Skorohod spae D(IR+; E) with anonial �-�eld and with anonial �ltration; we have shifts(#t)t�0 on (
;A; IF ) (note that for results on weak onvergene of stohasti proesses, this hoieis no restrition of generality). We do not assume more than(H1): X = (Xt)t�0 is Harris with invariant measure �.By theorem 1.4, we know that (H1) implies the property(H2): X = (X�n)n�0 is Harris, with �n��n�1 iid exp(1)-waiting times independent of Xand that in virtue of proposition 6.7 the following holds:(H6): The one-step transition kernel U1(�; �) of X satis�es a minorization ondition (fM1): thereis some set C 2 E with �(C) > 0, some probability measure � on (E; E) equivalent to �(� \ C),and some 0 < � < 1 suh that U1(x; dy) � �1C(x)�(dy) , for all x; y 2 E.We start with embedding X as �rst omponent into a riher Harris proess �X = ( �Xt)t�0. To�X we will assoiate proesses eXm whih - lose to �X if m is large - an be equipped with areurrent atom eAm and a life yle deomposition ( eRmn )n. Then the idea is as follows: shiftingadditive funtionals of X to eXm by means of ratio limit theorems, we an apply theorem 3.169



in eXm to prove that 'additive funtionals of X onverge as if X had life yles', where normingfuntion and limiting proess are now determined from regular variation at 0 of the resolvent ofX.7.1 The proess �X : Prepare i.i.d. exponential times �n; n � 1; and i.i.d. random variablesUn; Vn, n � 1, uniformly distributed on (0; 1), all independent and independent of X. WriteTn := �1 + � � �+ �n, n � 1, T0 := 0. De�ne the proess �X by�Xt := (Xt; Nt) ; Nt = (N1t ; N2t ; N3t ) := 1[[0;T1[[(t)(z; u; v) +Xn�1 1[[Tn;Tn+1[[(t)(XTn ; Un; Vn)t � 0, under initial onditions �X0 = (x; z; u; v). �E := E�E�[0; 1℄�[0; 1℄ is the state spae for �X,equipped with Borel-�-�eld �E .�X is de�ned on a standard extension (�
; �A; �IF ; (P�x)�x2 �E) of the original spae (
;A; IF; (Px)x2E):for this extension, we take also N as anonial proess on its anonial path spae, the set of allright-ontinuous pieewise onstant funtions IR+ ! E�[0; 1℄�[0; 1℄, with anonial �-�eld andanonial �ltration; without ambiguity, we write again (#t)t�0 for the shifts on (�
; �A; �IF ). Byonstrution, �X is then the anonial proess on (�
; �A; �IF ), �IF the �ltration generated by �X, andthe original proess X appears now as �rst omponent of �X.Jumps in the N -omponent of �X our at onstant rate 1; note that sine the Tn, n � 1, areonstruted from independent exponential waiting times, they have a.s. no intersetion with theountably many jump times of the original �adl�ag proess X. Thus at a jump time Tn, thesuessor state �XTn for �XT�n is seleted aording to K( �XT�n ; �), for the transition probabilityK( (x; z; u; v); d(x0; z0; u0; v0) ) := �(x;x)(dx0; dz0)R(du0; dv0)on ( �E; �E), where � denotes Dira measure and R(du; dv) = 1(0;1)(u)du1(0;1)(v)dv . Between su-essive jumps of the N -omponent, the X-omponent of �X evolves aording to the semigroup ofX, and the N -omponent remains onstant. So we are pasting together in a Markovian way pieesof 'killed' strong Markov proesses; it is known that this preserves the strong Markov property,hene �X is strongly Markov with state spae ( �E; �E) (see [I-N-W 66 a,b℄, [I-N-W 68℄).We will prove now that(7:10) ��(dx; dz; du; dv) := �(dz)R(du; dv)U1(z; dx)70



is the invariant measure for �X. Sine the disrete time proess (XTn)n is Harris with invariantmeasure � and sine U1(�; A) gives the expeted sojourn time of X in A up to an independentexponential time, (7.1') implies via 1.3 that the proess �X is again a Harris proess.We have to show that �� de�ned by (7.1') is invariant for the 1-potential kernel of �X. Write�A := A1�A2�A3�A4 for arbitrary A1; A2 2 E , A3; A4 2 B([0; 1℄). Write � for an exp(1)-waitingtime independent of �X. Conditioning with respet to T1, the �rst jump of the N -omponent of�X, one hasE(x;z;u;v) �1 �A( �Xt)� = Z t0 dr e�r ZE�[0;1℄2 Pr(x; dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �Xt�r)�+ e�t Pt(x;A1) 1A2(z) 1A3�A4(u; v)for every t > 0; integrating this equation w.r.t. e�tdt, we getE(x;z;u;v) �1 �A( �X�)� = ZE�[0;1℄2 U2(x; dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �X�)�+ U2(x;A1) 1A2(z) 1A3�A4(u; v)where U2 is the 2-potential kernel ofX. � being invariant forX, we dedue from the last equationwith partiular initial ondition x = z12 ZE�[0;1℄2 �(dz)R(du; dv)E(z;z;u;v) �1 �A( �X�)� = ZE �(dz) 1A2(z)U2(z;A1)R(A3�A4) :As a onsequene of both last equations, we obtain for �� de�ned by (7.1')Z �E ��(dx; dz; du; dv)E(x;z;u;v) �1 �A( �X�)� = 12 ZE�[0;1℄2 �(dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �X�)�+ ZE �(dz) 1A2(z) �U1U2� (z;A1)R(A3�A4)= ZE �(dz) 1A2(z) �U2 + U1U2� (z;A1)R(A3�A4) :An obvious alulation on Gamma densities gives P1l=1 2�l�(l; 2) = �(1; 1); sine the transitionprobability 2U2 involves a �(1; 2)-waiting time, this gives P1l=1 2�l �2U2�l = U1 and thus�U2 + U1U2� = 12 �(2U2) + U1(2U2)� = U1 :Hene the last integral equals �� (A1�A2�A3�A4) = �� � �A� whih proves (7.1').
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Now we assoiate to the proess �X of 7.1 a family of proesses eXm, lose to �X for large m.To do this, we use (H6): whenever XTn visits the set C ourring in the minoration ondition(fM1), n � 1, we will forget with probability 2�m the utuation of X on the remaining interval℄℄Tn; Tn+1[[.7.2 The proesses eXm, m � 0 : For C of (H6) and �X = (X;N) of 7.1, we de�neeXmt =Xn�0 1[[Tn;Tn+1[[(t) � �Xt 1f �XTn2 �EnFC;mg + �XTn 1f �XTn2FC;mg� ; t � 0with notation FC;m := E�C�(0; 2�m)�[0; 1℄.Viewed as �IF -adapted proess, eXm is a funtional of �X: eXmt oinides with �Xt on intervals where�Xt visits (E�C�(0; 2�m)�[0; 1℄), and remains onstant right-ontinuous as long as �Xt visitsE�C�(0; 2�m)�[0; 1℄. The N -omponent of eXm is the N -omponent of �X. In this sense, eXm islose to �X if m is large.Consider now the (smaller) �ltration eIFm generated by eXm alone. With respet to its own pasteIFm, eXm is again strongly Markov: jumps of the N -omponent our at onstant rate 1; at ajump time Tn, a suessor state eXmTn for eXmT�n is seleted aording to the transition probabilityK( (x; z; u; v); d(x0; z0; u0; v0) ) on ( �E; �E) given by(7:20) ��x + 1C(z)1(0;2�m)(u) �U1(z; �)� �x�� (dx0) �x0(dz0)R(du0; dv0) ;between suessive jumps of the N -omponent, the X-omponent of the proess eXm evolves a-ording to the semigroup of X whenever eXm is in (E�C�(0; 2�m)�[0; 1℄), and remains onstantotherwise. With respet to eIFm, eXm is again Harris and has invariant measure(7:200) e�m(dx; dz; du; dv) := �(dz)R(du; dv) �U1(z; �) + 1C(z)1(0;2�m)(u) ��z � U1(z; �)�� (dx) :In the sense of equality of laws of proesses, i.e. of probability laws on the Skorohod spaeD(IR+; �E), we shall always swith between these two interpretations of eXm.7.3 An atom for eXm : Let �, C, � be given by (H6). The Harris proess eXm with respet toeIFm admits an interpretation in terms of Nummelin splitting with reurrent atomeAm := E�C�(0; 2�m)�(0; �) 2 �E ; e�m( eAm) = �2�m�(C) > 0 :72



Indeed, at a jump time Tn, knowing eXmT�n and thus knowing whether eXm was onstant on[[Tn�1; Tn[[ or not (this is seen from the N -omponent of eXmT�n ), we an rewrite the transiti-on kernel K(�; �) of (7.2') as follows:i) on fNT�n =2 C�(0; 2�m)�[0; 1℄g, we selet eXmTn aording to�XT�n (dx0) �x0(dz0)R(du0; dv0)(on this event, XT�n is the �rst omponent of eXmT�n );ii) on fNT�n 2 C�(0; 2�m)�[0; �)g, we selet eXmTn aording to�(dx0) �x0(dz0)R(du0; dv0) ;iii) on fNT�n 2 C�(0; 2�m)�[�; 1℄g, we selet eXmTn aording to11� � �U1(XTn�1 ; dx0)� ��(dx0)� �x0(dz0)R(du0; dv0)(on this event, XTn�1 is the seond omponent of eXmT�n ) in virtue of (H6).Note that we have applied Nummelin's splitting tehnique only between those jump times of theN -omponent of eXm where the proess eXm itself remained onstant.As a onsequene of 7.3, eXm has life yles. In order to apply the results of subsetion 3.1 toeXm, we need (H4): we have to speify a life yle deomposition ( eRmn )n for eXm suh that weaklyspeial funtions for eXm and eRm1 do exist.7.4 Proposition : For the proess eXm with reurrent atom eAm := E�C�(0; 2�m)�(0; �), wede�ne a life yle deomposition ( eRmn )n byeRm1 := S0 + T( eAm) Æ #S0 ; S0 := infft : eXmt 2 eAmg(7.5)where T( eAm) is the �rst entry time to ( eAm). Then for any speial funtion f for X, the funtion�f(x; z; u; v) := f(z) on ( �E; �E) is weakly speial for eXm and eRm1 .Proof : 1) First note that eRm1 is de�ned as the �rst entry time to ( eAm) following the �rstvisit to the atom eAm; sine � in 7.3 ii) is by (H6) onentrated on C, a visit in eAm during anindependent exponential time leads with probability �2�m to another visit in eAm during a new73



independent exponential time. So having entered the atom, the sojourn time of eXm in eAm isdistributed aording toXj�0(1��2�m)(�2�m)j�(j+1; 1) = �(1; 1��2�m) :2) Consider the original proess X. In virtue of (H1)+(H2), speial funtions f for X do exist,f. 5.28; w.l.o.g., we take f bounded. Put h := �2�m 1C with �, C as in 7.3. Sine �(C) > 0 by(H6), we have with notations of 5.28z ! Ez  Z bTh0 f(Xs)ds! is bounded on Ewhere bTh is a killing time for position dependent killing of X at rate h. Prepare - on an extensionof (
;A; IF; P ) - a sequene �n " 1 suh that �i � �i�1, i � 0 are i.i.d � exp(1), �0 = 0, andprepare (Un; Vn) i.i.d � R(du; dv) for n � 0, all independent and independent of X. By (5.29)we see that z ! Ez0�Xn�1 �1�h(X�1)� ::: �1�h(X�n�1)� f(X�n)1A is bounded.The expetation in the last relation is equal toEz0�Xn�1 �1�hC;m;�(W1)� ::: �1�hC;m;�(Wn�1)� f(X�n) (�n+1 � �n)1A(7.6)with notation hC;m;� := 1C�(0;2�m)�(0;�) and Wj := (X�j ; Uj; Vj): this is seen by multiplying outsummands and using the independene assumptions.3) Consider the proess N arising in the onstrution of �X and eXm. In notation of 7.1 and 7.2,the expetation (7.6) equals E(z;u;v)�Z S+T1ÆST1 (f Æ �1)(Ns)ds�where we de�ne S := infft � T1 : Nt 2 C�(0; 2�m)�(0; �)g ;where �1 is the projetion (z; u; v)! z and where u; v are arbitrary. So we have proved in 2)+3)(z; u; v)! E(z;u;v)�Z S+T1ÆST1 (f Æ �1)(Ns)ds� is bounded on E�[0; 1℄�[0; 1℄.(7.7)4) Consider now eXm. With notation �f(x; z; u; v) := f(z); (7.7) reads�x! E�x�Z S+T1ÆST1 �f( eXms )ds� is bounded on �E .74



Notiing that �f is bounded and that T1 has law exp(1), we may replae the interval of integrationby [[0; S + T1 Æ S[[. By onstrution of the atom eAm in 7.3, the �rst entry time S0 of eXm to eAmequals the �rst entry time of N to C�(0; 2�m)�(0; �): thus we have S0 � S. By step 1), theinterval [[S0; S0+T( eAm)Æ#S0 [[ has length distributed aording to �(1; 1��2�m). All this togetherwith the strong Markov property allows to dedue�x! E�x Z eRm10 �f( eXms )ds! is bounded on �E(7.8)with eRm1 de�ned by (7.5). We have proved that for every bounded speial funtion f of X,�f(x; z; u; v) := f(z) is weakly speial for eXm and eRm1 . 2Remark : As a onsequene of 7.2, 7.3 and 7.4, we know that assumptions (H1)+(H3)+(H4)hold for the proess eXm with atom eAm and with life yles de�ned by (7.5). So all results ofsubsetion 3.1 (or of setions 4+5) an be applied to eXm.However, we have to reformulate the onditions on life yle length distributions in eXm (whih isan arti�ial objet) into onditions formulated for the original proess X. After two preliminaryresults, this will be done in theorem 7.14.7.9 Lemma : For the life yle deomposition de�ned for eXm by (7.5), putevm(t) := �1�E �e� 1t ( eRm2 � eRm1 )���1 ; t > 0 :a) For 0 < � � 1 and elm(�) varying slowly at 1, the following assertions i) - iv) are equivalent:i) erm(t) := Z t0 P ( eRm2 � eRm1 > x) dx � 1�(2� �) t1�� elm(t) as t!1(in ase 0 < � < 1, this is equivalent to P ( eRm2 � eRm1 > x) � 1�(1��) x�� elm(x) as t!1 );ii) evm(t) � t� 1elm(t) as t!1 ;iii) for every bounded speial funtion f of X, de�ning �f(x; z; u; v) := f(z), the resolvant of eXmsatis�es � eRm1=t �f� (�x) � t� 1elm(t) E Z eRm2eRm1 �f( eXms )ds! as t!175



for every �x 2 �E;iv) for every g nonnegative E-measurable with 0 < �(g) < 1, for N1 the seond omponent ofeXm (i.e the �rst omponent of N),E�x�Z 10 e� 1t s g(N1s ) ds� � t� 1elm(t) E Z eRm2eRm1 g(N1s ) ds! as t!1for e�m-almost all �x 2 �E.b) Under P(z;z;�;�), the law of N1 = Pn�0 1[[Tn;Tn+1[[XTn does not depend on m. There is someonstant em suh that E Z eRm2eRm1 g(N1s ) ds! = em �(g)(7.10)for all g in iv), and there is a slowly varying funtion l(�) not depending on m suh that elm(�) ina) an be replaed by elm(t) = em l(t) ; t � 0 ; for arbitrary m:(7.11)Proof : 1) The equivalene of i) and ii) is (5.1) together with (4.2)-(4.4), the equivalene of ii)and iii) is the deomposition of the resolvant in the proof of lemma 5.3, all this applied to theproess eXm (the assumptions (H1)+(H3)+(H4) relative to eXm whih we need here have beenheked, and �f is weakly speial for eXm and eRm1 if f is speial for X). By de�nition of �f , iii) anbe written in terms of N1:iv') for every bounded speial funtion f of X and for all �x 2 �E,E�x�Z 10 e� 1t s f(N1s ) ds� � t� 1elm(t) E Z eRm2eRm1 f(N1s ) ds! ; t!1 :So we have proved a) with iv') in plae of iv).2) Under P(z;z;�;�), the notation N1 = Pn�0 1[[Tn;Tn+1[[XTn is unambiguous, and the l.h.s of iv')is the resolvant of a Markov step proess with exp(1)-holding times in all states and with jumpheigth governed by the potential kernel U1(�; �) of X. So in this ase, there is asymptotially ast!1 no dependene on m in the r.h.s of iv'), and there is a funtion l(�) varying slowly at 1,not dependent on m, suh that(�) elm(t) 1E �R eRm2eRm1 f(N1s ) ds� � l(t) 1�(f) ; t!1 :Proposition 1.10 applied to additive funtionals R t0 g(N1s ) ds of eXm - with invariant measure e�mwhose image under the projetion (x; z; u; v) ! z equals � - shows that there is a onstant em76



with property (7.10), so (*) implies (7.11).3) In order to omplete the proof of the lemma, note that assertion iv') is equivalent to iv) in a)by the ratio limit theorem 1.8 for resolvants in eXm. 27.12 Lemma : We have em = 2m= [�(C)�(1� �2�m)℄ in (7.10)+(7.11).Proof : Consider g nonnegative E-measurable with 0 < �(g) <1, and an arbitrary �E-measurablenonnegative funtion �g with 0 < e�m(�g) < 1. Proposition 1.10 applied to R t0 g(N1s ) ds andR t0 �g( eXms ) ds - additive funtionals of eXm with invariant measure e�m - shows that (7.10) an beextended to E Z eRm2eRm1 �g( eXms ) ds! = em e�m(�g) :(7.13)Consider the ounting proess e�mt := Xn�1 1[[ eRmn ;1[[(t) ; t � 0assoiated to the life yle deomposition ( eRmn )n in eXm. By (7.5), the ( eRmn )n�1 are passage timesfrom the atom eAm = E�C�(0; 2�m)�(0; �) to its omplement. By 7.3 ii), the measure � beingonentrated on the set C, the atom eAm an only be left by a hange from (0; 2�m)�(0; �) to((0; 2�m)�(0; �)) in the two last omponents of eXm. So the eIFm-ompensator of the ountingproess e�m is Z t0 (1� �2�m) 1 eAm( eXms ) dsand (7.13) gives1 = E �e�meRm2 � e�meRm1 � = (1� �2�m)E Z eRm2eRm1 1 eAm( eXms ) ds! = (1� �2�m)em e�m( eAm)and the assertion follows from e�m( eAm) = �2�m�(C). 2We dedue from 7.9 and 7.12 that regular variation at1 of tails of life yle length distributionsin eXm an be expressed in terms of regular variation at 0 of the resolvant of the original proessX.7.14 Theorem : Consider 0 < � � 1 and l(�) varying slowly at1. Then for arbitrary m, for lifeyle deompositions ( eRmn )n of eXm given by (7.5) and onstants em given in 7.12, the following77



assertions i) - iii) are equivalent:i) erm(t) = Z t0 P ( eRm2 � eRm1 > x) dx � 1�(2� �) t1�� em l(t) as t!1(in ase 0 < � < 1, this is equivalent to P ( eRm2 � eRm1 > x) � 1�(1��) x�� em l(x) as t!1 );ii) evm(t) = �1�E �e� 1t ( eRm2 � eRm1 )���1 � t� 1em l(t) as t!1 ;iii) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants in the original proess X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1(7.15)for �-almost all x 2 E (the exeptional set depending on g).Proof : Note that i) and ii) above rephrase assertions i) and ii) of 7.9 a). Note also that theresolvant (7.15) in X an be rewritten as a resolvant in the proess �X = (X;N) of 7.1, of formE(x;z;u;v)�Z 10 e� 1t s g(Xs) ds�where z; u; v are arbitrary. Fix some bounded speial funtion f for X. Consider(+) t! E�x�Z 10 e� 1t s g(Xs) ds� ; t! E�x�Z 10 e� 1t s f(N1s ) ds�as resolvants in �X with invariant measure �� on ( �E; �E). Sine N -omponents oinide in �X andeXm, the seond expression in (+) is also a resolvent in eXm. Thus aording to 7.9 a) iii) togetherwith (7.10)+(7.11), regular variationE�x�Z 10 e� 1t s f(N1s ) ds� � t� 1l(t) �(f); t!1for all �x 2 �E is equivalent to i) and ii). It remains to apply the RLT 1.8 to the resolvants (+) in�X and to note that � is image of �� under projetions (x; z; u; v)! x and (x; z; u; v)! z. 27.16 Theorem : a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) areequivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!178



for �-almost all x 2 E (the exeptional set depending on g);ii) for every additive funtional A of X with 0 < E�(A1) <1, one has weak onvergene(Atn)t�0n�= l(n) ! E�(A1)W�(in D(IR+; IR) as n ! 1, under Px for all x 2 E) where W� is the Mittag-Le�er proess ofindex �.b) The ases in a) are the only ones where weak onvergene of (Atn)t�0v(n) to a ontinuous non-dereasing limit proess W (with W0 = 0 and L(W1) not degenerate at 0) is available for somenorming funtion v.Proof : 1) The additive funtional A of X is also an additive funtional of �X = (X;N). TheRLT in �X with invariant measure �� showsAtR t0 g(N1s )ds ! E�(A1)�(g) as t!1, P�x-a.s. for all �x 2 �Ewhere g � 0 is any �xed E-measurable funtion with 0 < �(g) <1. We an also view R t0 g(N1s )dsas additive funtional of eXm sine N -omponents in �X or eXm are the same, and ompare it viaratio limits in eXm with invariant measure e�m to the ounting proess e�m = Pn�1 1[[ eRmn ;1[[, orto the ompensator (1� �2�m) Z t0 1 eAm( eXms ) dsof e�m relative to eIFm (see proof of 7.12). ThusR t0 g(N1s )dse�mt ! �(g)(1� �2�m)�2�m �(C) = em �(g) ; t!1P�x-a.s. for all �x 2 �E, where em is given in 7.12. So it remains to onsider weak onvergene ofthe ounting proess e�m assoiated to the life yle deomposition ( eRmn )n of eXm.2) Assume regular variation of the resolvant of X at 0 as in a) i), and thus by theorem 7.14 regularvariation of eXm-life yle length distributions as in 7.14 a) i) together with regular variation ofthe funtion evm(�) in 7.14 a) ii). For this setting, it has been proved in setion 4 (see in partiular(4.16) with v � evm and with a(�) an asymptoti inverse to v(�)) that1evm(n) �e�mtn�t�0 ! W�(weakly in D(IR+; IR) as n!1, under Px for all x 2 E), or using the above ratio limits1evm(n) (Atn)t�0 ! E�(A1)emW� :79



By the struture of evm in 7.14, the em anels, and we have assertion a) ii) of the theorem.3) Assume now that one has weak onvergene of resaled and suitably normed additive funtio-nals 1v(n) �e�mtn�t�0 of eXm as n!1 to a ontinuous limit proessW . Then in virtue of theorems5.6.A+B, we have neessarily regular variation of evm at 1 with some index 0 < � � 1 (see alsoremark 5.7), in whih ase we are bak in step 2) - so no other types of limits an arise underweak onvergene - and have by theorem 7.14 regular variation at 0 of the resolvant of X as ina) i). So the proof of theorem 7.16 is ompleted. 2Now we onsider martingales M 2M2;lo(Px; IF ) meeting(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;hMi and [M ℄ are additive funtionals of X, and E� (hMi1) <1.By onstrution of �X in 7.1, we an lift the proesses M , hMi, [M ℄ to (�
; �A; �IF ): then M isin M2;lo with respet to �IF and to laws �P := P(x;z;u;v) with arbitrary z; u; v, with preditablequadrati variation and quadrati variation as before. (H5A) will remain true with respet toshifts (#)t�0 on (�
; �A; �IF ), with laws P(y;z0;u0;v0) replaing Py, and with E�� replaing E�.(Note that IF -stopping times beome �IF -stopping times; to see that martingale properties relativeto (Px; IF ) do arry over to ( �P ; �IF ) as asserted, onsider a (Px; IF )-martingale M 0, s < t, and sets�F 2 �Fs of form�F = f �Xsi 2 �Ai := Ai1�Ai2�Ai3�Ai4; 0 � i � l g ; 0 = s0 < s1 < ::: < sl = s ; l 2 INwith Ai1; Ai2 2 E , Ai3; Ai4 2 B([0; 1℄). Then for every nE(x;z;u;v) �1 �F\fTn+1>sg(M 0t �M 0s)�= E(x;z;u;v)�Z 10 :::Z 10 dt1e�t1 :::dtn+1e�tn+1 1ft1+:::+tn+1>sg �Gt1;:::;tn+1z;u;v (M 0t �M 0s)�where �Gt1;:::;tn+1z;u;v is given bylYi=0 1fsi<t1g1 �Ai(Xsi ; z; u; v) + nXk=1 1ft0+:::+tk�si<t0+:::+tk+1g 1 �Ai(Xsi ;Xt0+:::+tk ; Uk; Vk)!with notations of 7.1 and t0 = 0. By the independene assumptions in 7.1, the above integral isZ 10 :::Z 10 dt1e�t1 :::dtn+1e�tn+1 1ft1+:::+tn+1>sg t1;:::;tn+1z;u;v Ex �Gt1;:::;tn+1(M 0t �M 0s)�80



with Gt1;:::;tn+1 the indiator funtion of an event in � �Xsi ; 0 � i � l; X(t0+:::+tk)^s; 0 � k � n�,thus in Fs, and for suitable t1;:::;tn+1z;u;v 2 [0; 1℄. Thus the last integral equals 0. As n!1, we haveE �P (1 �F (M 0t �M 0s)) = 0 for �P = P(x;z;u;v). Sine �IF is the �ltration generated by �X, one deduesE �P (1 �F 0(M 0t �M 0s)) = 0 for arbitrary events �F 0 2 �Fs.)7.17 Lemma : From martingalesM 2M2;lo(Px; IF ) meeting (H5A), and suh that in additionhMi is a loally bounded proess, onsiderMmt =Xn�0 1f �XTn =2FC;mg �MTn+1 �MTn�t ; t � 0de�ned on (�
; �A), where FC;m = E�C�(0; 2�m)�[0; 1℄ is the set ourring in 7.2.Then the following holds, for arbitrary m � 1.a) The proess Mm is eIFm-adapted.b) Mm belongs toM2;lo( eIFm; �P ) with �P = P(x;z;u;v) for arbitrary z; u; v.) Write hMmi, [Mm℄ for angle and square brakett of Mm with respet to ( eIFm; �P ). On(�
; �A; eIFm; (#t)t�0; (P�y)�y2 �E), with lifeyles for eXm de�ned by (7.5) and invariant measure e�mgiven by (7.2"), the proesses Mm, hMmi, [Mm℄ satisfy all onditions (H5A) + (H5B); one hasemEe�m (hMmi1) = E �hMmi eRm2 � hMmi eRm1 � <1(7.18)with em as in 7.12.Proof : a) To see that the proess Mm on (�
; �A) is eIFm-adapted, we shall prove(+) �(n; t) := (t� Tn) _ 0 is an � eFmTn+u�u�0 -stopping time(++) the proess �1f �XTn =2FC;mg �MTn+1 �MTn�Tn+u�u�0 is � eFmTn+u�u�0 -adaptedfor n 2 IN0, t � 0. Combining (+) and (++) yields1f �XTn =2FC;mg �MTn+1 �MTn�Tn+�(n;t) is eFmTn+�(n;t)-measurable .Now Tn + �(n; t) = Tn _ t is an eIFm-stopping time whih equals t on fTn � tg = fTn _ t � tg.Thus by de�nition of eFmTn_tfTn � tg \ f �XTn =2 FC;mg \ f�MTn+1 �MTn�t 2 Ag 2 eFmt81



for sets A 2 B(IR): thusMm = 1Xn=0 1f �XTn =2FC;mg 1[[Tn;1[[ �MTn+1 �MTn�is eIFm-adapted whih is a). We show (+) and (++).Sine Tn is an eIFm-stopping time, �(n; t) is eFmT�n -measurable and nonnegative, hene (+) is obvioussine f�(n; t) � vg 2 eFmT�n � eFmTn+v, v � 0. To see (++), note �rst that by (H5A)h1f �XTn =2FC;mg �MTn+1 �MTn�Tn+ui (!) = h1f �X0 =2FC;mgMT1u i (#Tn(!)) :Now M is �IF -adapted; stopped at time T1, the proess MT1 is � �Fu^T1�u�0-adapted, thus(�) f �X0 =2 FC;mg \ fMT1u 2 Ag 2 �FT1^u ; A 2 B(IR) ; u � 0 :Sine ��
; �A; �IF� is the anonial path spae for �X, see 7.1 - 7.2, we have by onstrution of eXm(��) the �-�elds �FT1^u and eFmT1^u oinide in restrition to f �X0 =2 FC;mg.By (*) and (**), the proess 1f �X0 =2FC;mgMT1 is in partiular eIFm-adapted. Then (H5A) showsthat h1f �XTn =2FC;mg �MTn+1 �MTn�Tn+ui (!) = h1f �X0 =2FC;mgMT1u i (#Tn(!))is eFmTn+u-measurable, for all n 2 IN0, u � 0 : this is (++). So assertion a) is proved.b) By assumption,M and thusMm belong toM2;lo( �IF ; �P ). Sine eIFm is smaller than �IF , ( �IF ; �P )-martingales whih are eIFm-adapted will be ( eIFm; �P )-martingales. By a), Mm is eIFm-adapted. Itremains to show that there are loalizing sequenes (e�ml )l�1 for Mm whih are eIFm-stoppingtimes: then Mm will belong toM2;lo( eIFm; �P ).We onsider �rst the partiular ase where the proess hMi is ontinuous. ThenY m := 1Xn=0 1f �XTn =2FC;mg �hMiTn+1 � hMiTn�is ontinuous and nondereasing, and one proves exatly as in a) that Y m is eIFm-adapted. Soe�ml := infft > 0 : Y mt > lg ; l � 1is a sequene of eIFm-stopping times inreasing to 1 suh that(Mm)(e�ml ) is inM2( eIFm; �P ) with angle brakett (Y m)(e�ml ), l � 1.82



Now we onsider the ase of a loally bounded proess hMi. Then there is a sequene (�l)l�1 of�IF -stopping times inreasing to 1 and a sequene of onstants (Cl)l�1 suh thathMi(�l) � Cl on IR+ � 
, for every l � 1.We restrit �l to the event f �X0 =2 FC;mg on whih we observe eXm up to time T1, by onstrutionof eXm in 7.2, and de�ne e�ml := (�l)f �X0 =2FC;mg ^ T1 ; l � 1 :By onstrution we havee�ml � T1 8 l ; e�ml " as l!1 , and fe�ml < T1g # ; as l!1 .Let us prove that e�ml are eIFm-stopping times, l � 1.Sine e�ml has been onstruted as �IF -stopping time, one hasfe�ml � vg = fe�ml � v ^ T1g 2 �Fv^T1 ; v � 0 :By (**) above, the �-�elds �Fv^T1 and eFmv^T1 oinide in restrition to f �X0 =2 FC;mg, thusf �X0 =2 FC;mg \ fe�ml � vg 2 eFmv^T1 ; v � 0 :Sine T1 and v ^ T1 are eIFm-stopping times,f �X0 2 FC;mg \ fe�ml � vg = f �X0 2 FC;mg \ fT1 � T1 ^ vg 2 eFmv^T1 ; v � 0 :Both assertions together prove that e�ml are eIFm-stopping times, l � 1. Sine (Tn)n are eIFm-stopping times, also �n;ml := Tn + e�ml Æ (#Tn) ; l � 1 ; n 2 IN0are eIFm-stopping times. The sequene ��n;ml �l�1 has the propertiesTn � �n;ml � Tn+1 8 l ; �n;ml " as l!1 , and f�n;ml < Tn+1g # ; as l!11f �XTn =2FC;mg �hMiTn+1 � hMiTn��n;ml = �1f �X0 =2FC;mg hMiT1e�ml � Æ (#Tn) � Cl ; l � 1where we have used (H5A). Let us de�ne for l � 1e�ml := ��0;ml �f�0;ml <T1g ^ ::: ^ ��l�1;ml �f�l�1;ml <Tlg ^ Tl :83



Then �e�ml �l�1 is an inreasing sequene of eIFm-stopping times. Sine f�n;ml < Tn+1g # ; asl!1 for every n �xed, the sequene inreases to 1 as l!1 , and meets by onstrution(Y m)(e�ml ) � l�1Xn=0 1f �XTn =2FC;mg �hMiTn+1 � hMiTn��n;ml � l � Clon IR+�
, for every l � 1. Thus we have a sequene of eIFm-stopping times inreasing to1 suhthat (Mm)(e�ml ) is inM2( eIFm; �P ) with angle brakett (Y m)(e�ml ), l � 1.This proves b).) By assumption we have (H5A) for M 2 M2;lo( �IF ; �P ): the proesses hMi, [M ℄ are additivefuntionals of �X, and M satis�es8 �y ; 8 s; t : Mt+s �Mt =Ms Æ #Tn P�y-a.s.These properties arry over to Mm, hMmi with respet eXm sinedMms = 1(C�(0;2�m)�[0;1℄)(Ns�) dMs ; dhMmis = 1(C�(0;2�m)�[0;1℄)(Ns�) dhMisdepend only on the trajetory of eXm, by onstrution in 7.2; for the quadrati variation [Mm℄,use approximation by sums of quadrati inrements over time partitions with mesh tending to 0.(7.18) is obtained from the ratio limit theorem together with (7.13) or (7.10). This shows that theproessesMm, hMmi, [Mm℄ on (�
; �A; eIFm; (#t)t�0; (P�y)�y2 �E) satisfy assumption (H5A). We hek(H5B). With lifeyles for eXm de�ned by (7.5) and invariant measure e�m given by (7.2"), notethat every eRmn , n � 1, is a passage time from eAm to � eAm�: sine Mm is onstant before timeeRmn and sineM is �adl�ag, the paths ofMm are ontinuous at eRmn . Hene (Mm) eRmn is measurablewith respet to eFm( eRmn )� , whih is (*) of (H5B). 27.19 Lemma : We have in (7.18)Ee�m (hMmi1) = E�� (hMmi1) ; limm!1 E�� (hMmi1) = E�� (hMi1) = E� (hMi1) :Proof : For m �xed, hoose a funtion �g nonnegative, �E-measurable, 0 < ��(�g) <1 suh that �gequals 0 on E�C�(0; 2�m)�[0; 1℄ : then ��(�g) = e�m(�g), and R t0 �g( �Xs)ds = R t0 �g( eXms )ds . We applythe RLT to hMmit and R t0 �g( eXms )ds as eIFm-additive funtionals, and to hMmit and R t0 �g( �Xs)ds as84



�IF -additive funtionals. Sine ��(�g) = e�m(�g), this gives Ee�m (hMmi1) = E�� (hMmi1). As m!1,the seond assertion follows by dominated onvergene sineE�� (hMi1 � hMmi1) = E���Z 10 1E�C�(0;2�m)�[0;1℄( �Xs)dhMis� : 27.20 Theorem : Consider 0 < � � 1 and l(�) varying slowly at1. Assume that ondition (7.15)holds: for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0of resolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the exeptional set depending on g).Then for loal martingales M 2 M2;lo(Px; IF ) meeting (H5A) and suh that hMi is loallybounded:a) for every m �xed, we have weak onvergene in D(IR+; IR) as n!1 under �P1pn�=l(n) (Mmtn)t�0 ! �E�� (hMmi1)�1=2B(W�)where B(W�) is Brownian motion time-hanged by an independent Mittag Le�er proess;b) we have weak onvergene in D(IR+; IR) as n!1 under �P1pn�=l(n) (Mtn)t�0 ! �E�� (hMi1)�1=2B(W�) ;) we have weak onvergene in D(IR+; IR) as n!1 under Px1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�) :Proof : By lemma 7.17, for every (Px; IF )-loal martingaleM meeting (H5A) and suh that hMiis a loally bounded proess, Mm de�ned in 7.17 is an ( �P; eIFm)-loal martingale on (�
; �A), andmeets assumptions (H5A)+(H5B) with respet to eXm, eIFm and with respet to the life yles( eRmn )n de�ned in (7.5). By the remark preeding lemma 7.9, we know that all assumptions neededin setion 4 are met for eXm and Mm.Combining 7.14+(7.18)+7.19 with theorem 4.12 for Mm, we get a).It remains to prove b). By de�nition of Mm and by Lenglart's inequality ([J-Sh 87, p. 35℄),�P  sup0�t�t0 1pn�=l(n) jMtn �Mmtn j > p"!85



(for arbitrary m, t0 <1 and "; � > 0) is bounded by�" + �P � 1n�=l(n) Z t0n0 1E�C�(0;2�m)�[0;1℄( �Xs)dhMis > ��where the last expression dereases to 0 as m tends to 1. Thus, for t0 < 1 and " > 0 there issome m0 = m0(t0; ") suh thatlimn!1  supm�m0 �P  sup0�t�t0 1pn�=l(n) jMtn �Mmtn j > p"!! < "where we have used theorem 7.16. Let G be nonnegative, uniformly ontinuous and boundedon the anonial path spae D(IR+; IR) of 1pn�=l(n) (Mtn)t�0. Then for every Æ > 0, there areonstants C1; C2 suh that for arbitrary m � m0lim supn!1 E �P  G 1pn�=l(n)M�n!! � limn!1E �P  G 1pn�=l(n)Mm�n!!+ C1Æ + C2"lim infn!1 E �P  G 1pn�=l(n)M�n!! � limn!1E �P  G 1pn�=l(n)Mm�n!!� C1Æ � C2"(this is seen as follows: aording to the de�nition of Skorohod distane d(:; :) on D(IR+; IR) ,see [J-Sh 87, h. VI℄, for every Æ > 0 there is �=�(Æ) > 0, "="(�) > 0, t0=t0(�) < 1 suh thatsup0�t�t0 jf(t)�g(t)j < p" implies �rst d(f; g) < �, and seond jG(f) � G(g)j < C1Æ , for allf; g 2 D(IR+; IR) ). Combining these inequalities with weak onvergene1pn�=l(n) (Mmtn)t�0 ! �E�� (hMmi1)�1=2B(W�)aording to a) and using limm!1 E�� (hMmi1) = E�� (hMi1)as shown in 7.19, we get the assertion of b). ) is a simple restatement of b). 2By theorems 7.16 and 7.20, all assertions of subsetion 3.3 are proved.
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Overview: assumptions (H1) - (H6)We give a list of the assumptions used in this note and resume their onnetions.X = (Xt)t�0 is a ontinuous-time strong Markov proess with semigroup (Pt(�; �))t�0, takingvalues in a Polish spae (E; E), with �adl�ag paths, living on some (
;A; IF; (#t)t�0; (Px)x2E).Only in setion 7 we require thatX is the anonial proess on its anonial path spaeD(IR+; E).The �rst assumption is(H1): X = (Xt)t�0 is Harris with invariant measure �.This is the basi assumption used throughout the paper; (H1) is equivalent (see 1.4) to any ofthe following properties (H2) or (H2�), 0 < � <1:(H2): X = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(1)-waiting times independent of X(H2�): X� = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(�)-waiting times independent of Xwhere we put �0 = �0 = 0, and where the invariant measure for X or X� is �.Via (H2)+(H2�) for some � > 1, see 6.7, we have the following property (H6) whih is neededfor Nummelin splitting:(H6): The one-step transition kernel U1(�; �) of X satis�es the minorization ondition (fM1):there is some set C 2 E with �(C) > 0, some probability measure � on (E; E) equivalent to�(� \ C), and some 0 < � < 1 suh that U1(x; dy) � �1C(x)�(dy) , for all x; y 2 E.A seond group of assumptions is used for proesses with life yles:(H3): X has a reurrent atom A 2 E and a life yle deomposition (Rn)n�1, see 1.9.A + 1.9.B.(H4): There is some funtion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, suh thatx ! Ex�Z R10 f(Xs) ds� is bounded on E(alled weakly speial for X and R1).Under suitable de�nition of the life yle deomposition (Rn)n in (H3), (H4) will hold in virtueof the Harris property (H2), see proposition 3.4.87



A third group of assumptions deals withM 2M2;lo(Px; IF ), the lass of loally square integrableloal martingales w.r.t. Px and IF , with �adl�ag paths and with M0 = 0:(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;angle brakett hMi and square brakett [M ℄ are additive funtionals of X, and E� (hMi1) <1.Whenever we work with a life yle deomposition (Rn)n of the proess X, we need independentinrements of M over life yles of X:(H5B): For the life yle deomposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respet to FR�n , for all n � 1or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .
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