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Prefa
e
The aim of this note is to give a self-
ontained treatment of weak 
onvergen
e of martingales andintegrable additive fun
tionals in general Harris re
urrent Markov pro
esses in 
ontinuous time.If a Harris pro
ess X = (Xt)t�0 has a re
urrent atom, then ne
essary and suÆ
ient 
onditions forweak 
onvergen
e of martingales asso
iated to X have two 
omponents: �rst, either ergodi
ityof X or { in 
ase of null re
urren
e { regular variation at in�nity of tails of life
y
le lengthdistributions (life 
y
les are ex
ursions of the pro
ess between suitably de�ned su

essive visits tothe atom); se
ond, an integrability 
ondition (with respe
t to invariant mesure) on the predi
tablequadrati
 variation. The norming fun
tions are expressed in terms of tails of the life
y
le lengthdistribution; they vary regularly at in�nity with some index 0 < � � 1.Limit pro
esses are either Brownian motion (
ase � = 1), or Brownian motion subje
t to indepen-dent time 
hange by a Mittag-Le�er pro
ess (the pro
ess inverse to a stable in
reasing pro
ess)of index 0 < � < 1. No other weak limits under linear s
aling of time and suitable norming 
ano

ur. Brownian motion in the limit does not 
hara
terize ergodi
ity of the pro
ess X, but arisesalso in a null re
urrent 
ase on the frontier to ergodi
ity.For general Harris pro
esses, re
urrent atoms and thus i.i.d life 
y
les for the pro
ess X do notexist. So we 
onsider instead of X a family of Harris pro
esses ( eXm)m where eXm for large mis very 
lose to X, and where traje
tories of eXm have from time to time 
ats of independentexponential length over whi
h Nummelin splitting 
an be applied. In this way we get for everyone of the pro
esses eXm a re
urrent atom, i.i.d life 
y
les and thus limit theorems as above, formartingales and integrable additive fun
tionals of eXm. These limit theorems depend on m onlythrough a set of 
onstants whi
h 
onverge to a limit as m tends to in�nity. In this way, we 
andedu
e the desired limit theorem for martingales and integrable additive fun
tionals of X fromthe family of limit theorems for ( eXm)m . Of 
ourse, sin
e life 
y
les for eXm have been introdu
edarti�
ially and are di�erent at ea
h stage m, we need an intrinsi
 representation of the normingfun
tion for X-martingales: this intrinsi
 norming fun
tion is given in terms of regular variationat 0 of resolvants of X.
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This is a new look on a partially very old topi
. A �rst famous paper on 
onvergen
e of integ-rable additive fun
tionals is by Darling and Ka
 in 1957 ([D-K 57℄, re-exposed in the book byBingham, Goldie and Teugels [B-G-T 87℄): they prove that under a 'Darling-Ka
 
ondition', nor-ming fun
tions for additive fun
tionals of X are ne
essarily regularly varying, and limit laws (forone-dimensional marginals) are ne
essarily Mittag-Le�er laws. Weak 
onvergen
e of martingalesunder a Lindeberg 
ondition implies weak 
onvergen
e of quadrati
 variation pro
esses (for weak
onvergen
e of sto
hasti
 pro
esses, we rely on the book by Ja
od and Shiryaev [J-Sh 87℄). Sothe Darling-Ka
 result remains a main argument in the 'ne
essary part' of the result on weak
onvergen
e of martingales (we note here that the 
ase of slow variation of tails of life 
y
le lengthdistributions, present in the Darling-Ka
 theorem, does not 
orrespond to weak 
onvergen
e, butonly to 
onvergen
e of �nite-dimensional distributions: this explains the absen
e of the 
ase � = 0in our treatment). In a spirit similiar to [D-K 57℄, additive fun
tionals of null re
urrent birth anddeath pro
esses or bran
hing pro
esses with immigration were treated by Karlin and M
Gregor[K-MG 61℄, Zubkov [Zu 72℄ and Pakes [Pa 75℄. For one-dimensional di�usions, Khasminskii ([Has80℄, see also [Kh 00℄, [Kh 01℄) took a 
ompletely di�erent route { based on di�erential equationte
hniques { to limit theorems for integrable additive fun
tionals.The 'suÆ
ient part' of the result of weak 
onvergen
e of martingales is an assertion 'regular va-riation of tails of life 
y
le length distributions implies 
onvergen
e of martingales to Brownianmotion time-
hanged by an independent Mittag-Le�er pro
ess'. The key step for this appears ina paper by Greenwood and Resni
k [Gr-R 78℄: they 
onsider joint 
onvergen
e of bidimensionalrandom walks where the �rst marginal is attra
ted to Brownian motion, the se
ond to a stablepro
ess, and proved { with strong referen
e to P. L�evy { that ne
essarily Brownian motion andstable pro
ess involved in su
h limits are independent. In the sequel, similiar ideas reappear inKasahara [Ka 84℄ and other papers.The next important progress was the paper by Touati [Tou 88℄ 
onsidering 
ompletely generalHarris pro
esses. Touati argued that using Nummelin splitting along a sequen
e of independentexponential times, life 
y
les may always be introdu
ed arti�
ially, and he gave a very goodargument allowing to avoid 'Darling-Ka
 
onditions' { whi
h for general pro
esses are highly
umbersome and rather impossible to verify { by use of 'spe
ial fun
tions'. The 
orrespondingparts of our treatment below are entirely based on this idea. However, we do not follow Touati in3



his argument on arti�
ial introdu
tion of life 
y
les (in 
ontinuous-time setting) whi
h seems to usproblemati
. Instead of this, we propose another approa
h via an 'a

ompanying family' ( eXm)mfor X su
h that at every stage m, Nummelin-like splitting of eXm is possible. Touati was the�rst to enoun
e a result on weak 
onvergen
e of martingales and integrable additive fun
tionalsof a general Harris pro
ess in 
omplete generality and under minimal hypotheses; unfortunately,a �nal publi
ation of his paper never took pla
e, and some points in his preprint version (e.g.treatment of 
ase � = 1 where errors o

ur) have to be 
orre
ted.We now state the general result under minimal hypotheses in a preliminary way; see se
tion 3(theorems 3.15 and 3.16 there) for the 
omplete set of assumptions and the de�nitive formulation.Theorem (preliminary version): Consider a strong Markov pro
ess X = (Xt)t�0, de�ned on(
;A; (Ft)t�0; (Px)x2E), with Polish state spa
e (E; E), and with 
�adl�ag paths. Assume that Xis Harris re
urrent with invariant measure �.a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) are equivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants of the pro
ess X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the ex
eptional set depending on g);ii) for every integrable additive fun
tional A of X, 0 < E�(A1) <1, one has weak 
onvergen
e(Atn)t�0n�= l(n) ! E�(A1)W�in D(IR+; IR) as n!1, under Px, for all x 2 E.For 0 < � < 1, the pro
ess W� o

urring in ii) is the Mittag-Le�er pro
ess of index �, i.e. thepro
ess inverse of the stable in
reasing pro
ess S�; for � = 1, W 1 is the deterministi
 pro
essid := (t)t�0.b) The 
ases in a) are the only ones where weak 
onvergen
e of (Atn)t�0v(n) to a 
ontinuousnonde
reasing limit pro
ess W (with W0 = 0 and L(W1) not degenerate at 0) is available forsome norming fun
tion v.
) Consider a lo
ally square integrable lo
al martingale M on (
;A; IF; Px), 
�adl�ag and withM0 = 0. Assume that its predi
table quadrati
 variation hMi is a lo
ally bounded pro
ess whi
h4



is an integrable additive fun
tional of X.If a)i) holds for some 0 < � � 1 and some l(�) varying slowly at 1, we have1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�)(weak 
onvergen
e in D(IR+; IR) as n!1, under Px).If in addition the sequen
e 1pn�=l(n) (Mtn)t�0, n � 1, satis�es a Lindeberg 
ondition, we haveweak 
onvergen
e of pairs 1pn�=l(n)Mtn ; 1n�=l(n) hMitn!t�0 ! ��E� (hMi1)�1=2B(W�) ; �E� (hMi1)�W��in D(IR+; IR� IR) as n!1, under Px.Here our notations are as usual in semimartingale theory, see e.g. the book Ja
od and Shiryaev[J-Sh 87℄; in parti
ular, the predi
table quadrati
 variation hMi of a lo
ally square integrablelo
al martingale M is the unique predi
table in
reasing pro
ess su
h that M2 � hMi is a lo
almartingale. An extension of 
) to multidimensional martingales M is straightforward: repla
eB in 
) by a multidimensional standard Brownian motion, and the 
ovarian
e by the matrix�E� �hM i;M ji1��i;j, where M i, M j are the 
omponents of M . Also, by the ratio limit theorem,the se
ond assertion of 
) yields 
onvergen
e of martingales together with arbitrary integrableadditive fun
tionals of X.However, there is an essential diÆ
ulty related to this general formulation. Usually in appli
ati-ons, one spe
i�es a Markov pro
ess by its in�nitesimal generator, and { ex
ept some rare examples{ there is no possibility to put hands { in a sense of expli
it representations { on the semigroupitself. As a 
onsequen
e, expli
it 
al
ulation of resolvents from the semigroup seems possible onlyin very few 
ases, so 
ondition a)i) is of rather limited pra
ti
al interest. This is why the study ofpro
esses with life 
y
les presents an interest in itself: various tools to 
al
ulate expli
it normingfun
tions from tails of suitable life 
y
le distributions do exist. Some 
are is needed in order tode�ne properly these life 
y
les in 
ontinuous time. We state a preliminary rough version of theresult 'with life 
y
les', see se
tion 3 for the de�nitive formulation with all details, in parti
ularfor our assumptions 
on
erning life 
y
les (theorem 3.1 together with 
orollaries 3.2, 3.3, andproposition 3.4). 5



Theorem (preliminary version): Assume that the Harris pro
ess X has a re
urrent atom.For suitably de�ned life 
y
les of X { with life 
y
le length distribution F { and appropriatenorming of the invariant measure, 
ondition a)i) on resolvents of X in the pre
eding theorem(with 0 < � � 1 and l(�) varying slowly at 1) is equivalent tor(t) := Z t0 (1� F (x)) dx � 1�(2� �) t1�� l(t) ; t " 1 ;with same � and l(�), and in 
ase � < 1 also equivalent to1� F (x) � 1�(1� �) x�� l(x) ; x " 1 :
There are several points whi
h are not treated in this text. First, we do not 
onsider the 
ase ofslowly varying norming fun
tions; this arises e.g. in 
onne
tion with two-dimensional Brownianmotion, see Kasahara and Kotani [K-K 79℄ or Hu and Yor [H-Y 98℄. Here interesting time trans-formations are non-linear, and only �nite-dimensional 
onvergen
e 
an be obtained: our text isbased on weak 
onvergen
e te
hniques, fun
tional in time, for semimartingales. Thus for the 
ase� = 0, we refer the reader to the work of Kasahara ([Ka 82℄, [Ka 86℄, [Ka 85℄), and { relying onKasahara here { Touati [Tou 88℄. Next, we do not 
onsider dis
rete time pro
esses: for dis
retetime, there are re
ent results of Chen ([Che 99℄, [Che 00℄) who uses Nummelin splitting and 'spe-
ial fun
tions', but is interested in 
onvergen
e of one-dimensional marginals only. Touati [Tou88℄ treated the 
ontinuous time 
ase parallel to dis
rete time: he has the dis
rete-time versionsof all above results. Third, there is work on strong approximation of additive fun
tionals: see thepapers by Cs�aki, Cs�org�o, F�oldes, R�ev�esz [C-C-F-R 92℄, and [C-C 95℄, [C-S 96℄.The present text is organized as follows. First, there are two introdu
tory se
tions: se
tion 1deals with Harris re
urren
e, and se
tion 2 with stable pro
esses and 
lassi
al 
onvergen
e tostable laws. All our main results are formulated in se
tion 3. Here subse
tion 3.1 is devoted topro
esses X whi
h admit a re
urrent atom and thus i.i.d life 
y
les. Subse
tion 3.2 gives a familyof examples whi
h apply the result 'with life 
y
les' to 
lassi
al one-dimensional di�usions, withstrong referen
e to Khasminskii (his expli
it representation of tails of life-
y
le length distributi-ons in null re
urrent one-dimensional di�usions is a key tool here). Finally subse
tion 3.3 statesthe general result (without assuming existen
e of life 
y
les for X) under minimal hypotheses.6



All proofs together then form the rest of our text: se
tion 4 proves the 'suÆ
ient part' in 
aseof life 
y
les, se
tion 5 the 
orresponding 'ne
essary part', se
tion 6 re
alls 
lassi
al Nummelinsplitting as introdu
ed by [Num 78℄, and se
tion 7 { devoted to general pro
esses without life
y
les { 
onstru
ts the family ( eXm)m of pro
esses 'a

ompanying' X su
h that Nummelin-likesplitting 
an introdu
e atoms and life 
y
les arti�
ially into eXm, at every stage m, and thendedu
es the 
onvergen
e theorem for X from the family of 
onvergen
e theorems for ( eXm)m.We hope that the present text may 
ontribute to make existing theorems on weak 
onvergen
e ofmartingales and integrable additive fun
tionals in null re
urrent Markov pro
esses better knownin the probabilisti
 and statisti
al 
ommunity, and may be useful as a self-
ontained referen
e inappli
ations su
h as statisti
al inferen
e for sto
hasti
 pro
esses.

A
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 organized by bothauthors in the summer term 2000 at the University of Mainz. We thank Frau J. Gonska for skilfultyping of most parts of our manus
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1 Harris re
urren
eThis introdu
tory se
tion states some main fa
ts about Harris re
urren
e. These fa
ts will beused througout this text. An essential referen
e is Az�ema-Du
o-Revuz [A-D-R 69℄.Throughout this note, we 
onsider a sto
hasti
 basis (
;A; IF ), IF right-
ontinuous, and on(
;A; IF; (Px)x) a pro
ess X = (Xt)t�0 whi
h is strongly Markov, taking values in a Polish spa
e(E; E), with 
�adl�ag paths, and with X0 = x Px-a.s., x 2 E. We have shift operators (#t)t�0 on(
;A; IF ), and write (Pt)t�0 for the semigroup of X.1.1 De�nition: ([A-D-R 69℄) X is 
alled Harris re
urrent if there exists some �-�nite measurem on (E; E) su
h that(�) m(A) > 0 =) 8x 2 E : Px�Z 10 1A(Xs)ds =1� = 1:Sometimes also the terminology m-irredu
ible is used for (�).1.2 Theorem: ([A-D-R 69℄) If X is Harris re
urrent, then there is a unique (up to 
onstantmultiples) invariant measure � for X (i.e. a �-�nite measure su
h that �Pt = � for all t � 0),and property (�) in 1.1 holds with � in pla
e of m.De�nition: A Harris re
urrent pro
ess X with invariant measure � is 
alled positive re
urrent(or ergodi
) if �(E) <1, null re
urrent if �(E) =1.We give the major ideas of the proof of 1.2; the notions developped here will reappear as maintools in se
tion 7.Sket
h of the proof of 1.2: For � > 0, the �-potential kernel isU�(x;A) = Ex(Z 10 e��t1A(Xt)dt) = Z 10 e��tPt(x;A)dti) A �rst step is to prove that �Pt = � for all t if and only if �U1 = �. The nontrivial dire
tion8



is (=. The proof starts from the resolvent equation (see [Chu 82, p.83℄)U� = U� + (� � �)U�U� = U� + (� � �)U�U�for all � > 0, � > 0. In parti
ular for � � 1U1 = U� + U1I��1U�where I��1 is a multipli
ation kernel. Assume �U1 = �, and � � 1; 
onsider sets � 2 E with�(�) <1. Then U�(x;�) � U1(x;�) and thus �U�(�) <1; this gives�(�) = �U�(�) + (�� 1)�U�(�) = ��U�(�) 8 � � 1:Integrating the l.h.s with respe
t to the probability law �e��tdt gives�U�(�) = Z 10 e��t�(�)dt:Sin
e �U�(�) = R10 e��t�Pt(�)dt by de�nition, we get8 � � 1 : Z 10 e��t�Pt(�)dt = Z 10 e��t�(�)dt:On open subsets of (0;1), Lapla
e transforms 
hara
terize the underlying measures on (0;1)uniquely, thus �Pt(�) = �(�) for �-almost all t � 0 (with notation � for Lebesgue measure).Sin
e X is strongly Markov, t! Pt(�) is 
ontinuous, and so we have �Pt(�) = �(�) for all t � 0.ii) Let X denote a dis
rete-time Markov 
hain with one-step transition kernel U1: this meansthat the 
ontinuous-time pro
ess X is observed at the jump times of an independent Poissonpro
ess with rate 1 (a typi
al reasoning in order to transfer results available in dis
rete time tothe 
ontinuous-time setting). By i), a �-�nite measure � is thus invariant for X = (Xt)t�0 if andonly if it is invariant for X = (Xn)n�0.iii) Following Harris (see [Har 56℄), the dis
rete time 
hain X = (Xn)n�0 is 
alled Harris re
urrentif there is some �-�nite measure m on (E; E) su
h that(+) m(A) > 0 =) 8x 2 E : Px 1Xn=1 1A(Xn) =1! = 1:Repla
ing the random variable in (+) by its expe
tation, the following weaker property(++) "9 x : 1Xn=1(U1)n(x;A) = 0# =) m(A) = 09



was used by Foguel; he showed ([Fog 66, thm. 4℄) that (++) implies the existen
e of a �-�nitesubinvariant measure � for (Xn)n whi
h is dominating m:�U1 � � ; m << � :iv) Note that we have 1Xn=1(U1)n(x;A) = Z 10 Pt(x;A)dtsin
e (U1)n(x;A) = Z 10 e�t tn�1(n� 1)!Pt(x;A)dt :The 
ontinuous-time pro
ess X = (Xt)t�0 is by assumption Harris re
urrent, so this equalityshows that the dis
rete-time 
hain (Xn)n has the property (++). By [Fog 66℄, there is a �-�nitesubinvariant measure � for U1 whi
h is dominating m. Again by Harris re
urren
e of (Xt)t�0,for sets A 2 E meeting m(A) > 0 and (w.l.o.g.) �(A) <1, we have8x : 1Xn=1(U1)n(x;A) =1together with �nite boundsZ (�� �U1)(dx) NXn=1(U1)n(x;A) = �U1(A)� �(U1)N+1(A) � �(A) <1not depending on N : for � subinvariant, this implies� = �U1 :Hen
e � is invariant for (Xn)n and by ii) also invariant for X = (Xt)t�0.v) For the remaining parts of the proof we refer to [A-D-R 69℄: � of iv) is the only invariantmeasure for X, � is equivalent to mU1, and the property (�) in 1.1 holds with invariant measure� in pla
e of m. 2The above argument following [A-D-R 69℄ did not prove the dis
rete time 
hain X = (Xn)n�0 tobe Harris if X = (Xt)t�0 is Harris, establishing only the weaker property (++) . The equivalen
eof both properties is proved in the next theorem; here we will make use of the somewhat simpler
riterion (Æ) below to 
he
k Harris re
urren
e of a 
ontinuous time pro
ess.10



1.3 Proposition: (
f. Revuz-Yor [R-Y 91, pp. 395-396℄) If X = (Xt)t�0 is strongly Markovwith invariant measure m and if(Æ) m(A) > 0 =) 8x 2 E : Px� lim supt!1 1A(Xt) = 1� = 1 ;then (�) of 1.1. holds, and X is Harris.Proof : Consider A 2 E with m(A) > 0; put Bt = R t0 1A(Xs)ds, t � 0, and �" = infft : Bt > "g.m being invariant for X, we have Em(B1) = m(A), so there is some " > 0 with Pm(B1 > ")stri
tly positive, hen
e mfx : Px(�" <1) > ag > 0for some a > 0. Property (Æ) then implieslim supt!1 PXt(�" <1) � a > 0 Px-a.s. for all x 2 E :Write Yt := 1ft+�"Æ#t<1g. For all x 2 E, PXt(�" < 1) is a version of Ex(YtjFt) . As t ! 1,Yt 
onverges to Y := 1\t ft+�"Æ#t<1g whi
h is F1-measurable. A 
orollary to 
lassi
al martingaletheorems ([R-Y 91, 
or. II.2.4℄) then showslimt!1PXt(�" <1) = Y � a > 0 Px-a.s. for all x 2 E :But Y is the indi
ator of a set, thus \t ft + �" Æ #t <1g = 
 Px-a.s. for all x 2 E. This impliesfB1 =1g = fR10 1A(Xs)ds =1g = 
 Px-a.s. for all x 2 E, whi
h is (�) of 1.1. 2We resume the dis
ussion of Harris properties.1.4 Theorem: The assumption(H1): X = (Xt)t�0 is Harris with invariant measure �is equivalent to any of the following properties (H2) or (H2�), 0 < � <1:(H2): X = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(1)-waiting times independent of X(H2�): X� = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(�)-waiting times independent of Xwhere we put �0 = �0 = 0, and where the invariant measure for X or X� is �.Proof: We �x 0 < � <1. By proposition 1.3, (H2�) implies (H1); we prove the 
onverse.Lift X to a standard extension (
0;A0; IF 0 = (F 0t)t�0; (P 0x)x2E) of (
;A; IF = (Ft)t�0; (Px)x2E),11



with shifts again denoted by (#t)t�0, on whi
h X is strongly Markov and where �n��n�1, n � 1,are i.i.d exp(�)-waiting times independent of X.(This is done as follows: let 
00 denote the spa
e of all fun
tions f : IR+ ! IN0 whi
h are
�adl�ag, pie
ewise 
onstant, with jumps only of height +1 and f(0) = 0, equipped with �-�eldand �ltration generated by the 
oordinate proje
tions �t(!00) = !00(t): A00 = �(�t : t � 0),IF 00 = (F 00t )t�0, F 00t = �(�s : 0 � s � t). Then IF 00 is right-
ontinuous. We take P 00 the uniquelaw on (
00;A00) under whi
h the 
anoni
al pro
ess (�t)t is a Poisson pro
ess with parameter �.Then 
0 := 
�
00, A0 := A
A00, F 0t = Ft
F 00t , P 0x := Px
P 00 is the desired extension, we takeX(!0) := X(!), �(!0) := �(!00) if !0 = (!00; !), and (�n)n the sequen
e of jump times of �.)On (
0;A0; IF 0; (P 0x)x2E), we de�ne pro
essesN = 0�Xn�1 1fX�n2Ag1[[�n;1[[(t)1At�0 ; N̂ = �Z t0 �1A(Xs) ds�t�0where A 2 E is �xed. Then N � N̂ is a (IF 0; P 0x)-martingale for every x 2 E. Using Lepingle ([Le78℄), we know that Nt in
reases to 1 P 0x-a.s. on the event flimt!1 N̂t = 1g. But this eventequals fR10 1A(Xs) ds = 1g. If X = (Xt)t�0 is Harris with invariant measure �, then �(A) > 0implies P 0x �R10 1A(Xs) ds =1� = 1 for all x 2 E: so P 0x-a.s. for all x 2 E, (X�n)n visits the setA in�nitely often. 2Convention: From now on we assume throughout this note that X = (Xt)t�0 is Harris re
urrentwith invariant measure �.1.5 De�nition: An additive fun
tional of X is a pro
ess A = (At)t�0 with the properties(i) A is IF -adapted, A0 � 0;(ii) all paths of A are nonde
reasing and right-
ontinuous;(iii) for every x 2 E and for all s; t � 0, we have At+s = At +As Æ #t Px � a:s:.See Revuz-Yor ([R-Y 91, p.371, p.78℄). Examples of additive fun
tionals of X areAt = Z t0 g(Xs)ds
12



for g � 0 bounded measurable, or 
ounting pro
esses based on the point pro
ess of jumps of X�X = Xs>0:j�Xjs>0 �(s;Xs�;Xs)where �a is Dira
 measure sitting in a, or (suitable versions of) lo
al time in 
ase where X is aone-dimensional di�usion. For every additive fun
tional A of X, f(t) := E�(At) is linear in t, and�A(B) := E�(Z 10 1B(Xs)dAs) = 1t E�(Z t0 1B(Xs)dAs) ; B 2 Ede�nes a measure �A on (E; E). The additive fun
tional A is termed integrable ifk�Ak := �A(E) = E�(A1)is �nite. As an immediate 
onsequen
e of this de�nition, we note1.6 Remark: a) For A = id (i.e. At = t, t � 0), the measure �id(B) = �(B) ; B 2 E , is theinvariant measure � for X.b) For At = R t0 1A0(Xs)ds, A0 2 E , we have �A = �(� \A0) and thus k�Ak = �(A0):We quote the ratio limit theorem (RLT) for additive fun
tionals of X.1.7 Ratio Limit Theorem: ([A-D-R 69℄) For additive fun
tionals A;B of X, 0 < k�Bk <1,(i) limt!1 Ex(At)Ex(Bt) = k�Akk�Bk ��a.s. (with ex
eptional set depending on A, B),(ii) limt!1 AtBt = k�Akk�Bk Px�a.s. 8 x.Write (R�)�>0 for the resolvent of X:(R�f) (x) = Ex�Z 10 e��t f(Xs) ds� ; � > 0 :Then the RLT for additive fun
tionals of X implies a RLT for resolvants of X as �! 0.1.8 Corollary: For f , g nonnegative, E-measurable, 0 < �(f) <1,lim�!0 (R�g) (x)(R�f) (x) = �(g)�(f) �-a.s. (with ex
eptional set depending on f and g).13



Proof: It is suÆ
ient to 
onsider f; g with 0 < �(f); �(g) <1. By partial integration, write(R�g) (x) = Z 10 �e��tEx (Agt ) dswith Agt = R t0 g(Xs)ds . By Harris re
urren
e, Ex(Agt ) in
reases to 1 as t ! 1, for all x 2 E,thus (R�g) (x) in
reases to 1 as � # 0. For �xed t0 arbitrarily large, we have(R�g) (x) = o(1) + Z 1t0 �e��tEx (Agt ) ds ; � # 0whereas by the RLT for additive fun
tionals, there is some �-null set Nf;g su
h that Ex(Agt )Ex(Aft ) 
on-verges to �(g)�(f) as t!1 for all x =2 Nf;g. Both arguments 
ombined show 1.8. 2In some 
ases, we have naturally a de
omposition of the traje
tory of X into i.i.d. ex
ursionsaway from some re
urrent atom - two examples are given below, two others at the end of thisse
tion. In some 
ases, Nummelin's splitting te
hnique ([Num 78℄, see se
tion 6) allows to intro-du
e re
urrent atoms arti�
ially.1.9.A De�nition: We 
all atom for X a set A 2 E su
h thati) �A := infft > 0 : Xt 2 Ag and �A := infft > 0 : Xt =2 Ag are IF -stopping times;ii) for x 2 A, L(X�A jX0 = x) =: �A does not depend on x 2 A.An atom A is 
alled re
urrent if Px-a.s. for all x 2 A: 8N 9 t > N with Xt 2 A.Examples: a) Consider the one-dimensional Ornstein-Uhlenbe
k di�usion dXt = �aXtdt+ dWtwith a � 0. The pro
ess is Harris (take m the Lebesgue measure in 1.1), A = f0g is a re
urrentatom, with �A the Dira
 measure at 0.b) Fix some measurable fun
tion � on IR taking values in some interval [a; b℄, 0 < a < b < 1,de�ne a transition probability �(�; �) on (IR;B(IR)) by�(x; �) := N (x�x0; 1) if x > x0 ; �(x; �) := N (0; 1) if x � x0with x0 � 0. Consider the Markov step pro
ess X = (Xt)t�0 having exponential holding timeswith parameter �(x) in states x 2 IR, and su

essor states for x sele
ted a

ording to �(x; �). Thispro
ess is Harris (sets of positive Lebesgue measure will be visited in�nitely often in the sense of1.1) and admits A = (�1; x0℄ as a re
urrent atom, with �A given by N (0; 1) 
onditioned on A
,14




f. 1.9.A ii).To a re
urrent atom, we 
an asso
iate a sequen
e of IF -stopping times (Rn)n whi
h de
ompose -by the strong Markov property - the path of X into i.i.d ex
ursions [[Ri; Ri+1[[, i = 1; 2; :::, plusan initial segment [[0; R1[[.1.9.B De�nition: A life 
y
le de
omposition of X asso
iated to a re
urrent atom A is a sequen
e(Rn)n of IF -stopping times in
reasing to 1 (R0 � 0) su
h that Px-a.s. for every x 2 E:i) 8n � 1: Rn <1 and Rn = Rn�1 +R1 Æ #Rn�1 ;ii) 8n � 1: (XRn+t)t�0 is independent of FR�n with L(XRn) = �Awhere �A is given in 1.9.A (thus a.s. all Rn, n � 1, are times where the pro
ess leaves A).Examples: a) In the Ornstein-Uhlenbe
k example a) above, one may takeR1 := infft > S0 : Xt = 0gwhere S0 is an independent exponential time. One may take as wellR1 := infft > S0 : Xt = 0g with S0 := infft > 0 : jXtj � 1gor more generally S0 := infft > 0 : Xt 2 Bg where B 2 B(IR) has positive Lebesgue measure anddoes not interse
t some "-neighbourhood of 0, " > 0. There are i.g. many ways to de�ne stoppingrules R1 meeting 1.9.B.b) Any atom with �(A) > 0 is a re
urrent atom. In this 
ase one may takeR1 := infft > S0 : Xt =2 Agwhere S0 is an exponential waiting time spent in the atom A. In parti
ular, this applies to theMarkov step pro
ess example b) above.1.10 Proposition: If X has a re
urrent atom A, then for every life 
y
le de
omposition (Rn)nasso
iated to A:a) the invariant measure � (unique up to 
onstant multiples) is given by�(A0) = 
st E(Z R2R1 1A0(Xs)ds) ; A0 2 E15



b) X is positive re
urrent if and only if E(R2 �R1) <1.Proof: Consider additive fun
tionals A, B, with 0 < k�Bk <1. Then by SLLNlimt!1 AtBt = limn!1 ARnnBRnn = E(AR2 �AR1)E(BR2 �BR1) Px-a.s. 8 x:The RLT yields limt!1 AtBt = k�Akk�Bk Px-a.s. 8 xwhi
h together give k�Ak = 
st E(AR2 �AR1)up to some 
onstant whi
h does not depend on A. Considering in parti
ular At = R t0 1A0(Xs)ds,A0 2 E , assertion a) follows from 1.6.b); then � has �nite total mass i� E(R2 �R1) <1. 2We end this se
tion with two more examples illustrating de�nition 1.9.A.1.11 Example: The pro
ess X = (Xt)t under 
onsideration is of the following type: pie
ewise onsuitable random intervals, the �rst 
omponent X1 is a Brownian motion; the se
ond 
omponentX2 attributes '
olours' 0 or 1 to the traje
tory of X1; this 
olour is initially 0, later 
hanges to1, �nally a jump o

urs in the �rst 
omponent; this jump time is a renewal time for the pro
ess,thus 'IR 
oloured 1' will be an atom for X.a) Prepare on some (
;F ; IF; P ) a real valued IF -Brownian motion and a IF -standard Poissonpro
ess N , independent and both starting from 0. De�ne a transition probability K(�; �) onE = IR� f0; 1g as follows:K((x; 0); �) := �x 
 �12�0 + 12�1� ; K((x; 1); �) := � 
 �0 ; x 2 IRfor some �xed probability law � on (IR;B(IR)), and �a the Dira
 measure at a. Let (Tj)j denotethe sequen
e of jump times of N . The pro
ess X is 
onstru
ted as follows: �rst, putXs = (Bs; 0) ; 0 � s < T1 ;then su

essively for j � 1, sele
t XTj a

ording to K(XT�j ; �), and putXs = �X1Tj + (Bs �BTj );X2Tj� ; Tj � s < Tj+1 :16



The resulting pro
ess X is de�ned i.g. on an extension of the original (
;F ; IF; P ). On thisextension, let IFX denote the �ltration generated by X: FXt = \r>t�(Xs : 0 � s � r), t � 0.Then X is strongly Markov w.r.t. IFX , with Polish state spa
e, and is Harris (take m in 1.1 su
hthat its restri
tion to IR� f0g and IR� f1g is Lebesgue measure on IR).X admits A = IR� f1g as re
urrent atom with �A = �
�0, and the ruleR1 := inffTj+1 : j � 1;XTj 2 Aggenerates a life 
y
le de
omposition (Rn)n�1 for X a

ording to 1.9.A+B.Note that (XRn+t)t�0 is independent of FXR�n , but not of FXRn .b) A more general variant of the example in a) 
ould be formulated using suitable position de-pendent killing of X at rate �(�) | if X is in position (x; 0) at time t, 
olour will swit
h to 1 ina small time interval (t; t+h℄ with probability �(x)h+ o(h) | instead of killing at 
onstant rate1 as above.1.12 Example: Consider a Markov step pro
ess (Xt)t�0 with Polish state spa
e (E; E), Harrisre
urrent, with exp(�(x))-distributed holding times in states x 2 E (� is measurable and takesvalues in [a; b℄, 0 < a < b < 1), and with su

essor states for x sele
ted a

ording to a transi-tion probability �(�; �) on (E; E). In general, X will not have a re
urrent atom. Let (Tj)j denotethe sequen
e of jump times of X. Sin
e � is bounded and bounded away from 0, also (XTj )j isHarris with one-step transition probability � (
ompare with the 
ompletely di�erent situationin Proof of 1.2, steps ii) and iii)). Let us assume that �(�; �) satis�es Nummelin's minorization
ondition (M) with k = 1, see [Num 78℄. Then Nummelin's splitting te
hnique applied to (XTj )jyields a representation of (Xt)t�0 as �rst 
omponent of a 'split' pro
ess (X�t )t�0 with state spa
eE� = E�f0; 1g su
h that X� is again Harris and admits a re
urrent atom A� � E�. See se
tion 6.
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2 Stable in
reasing pro
esses and Mittag-Le�er pro
essesIn this se
tion, we 
olle
t some main fa
ts about one-sided stable laws, their domains of attra
tion,stable in
reasing pro
esses and their pro
ess inverse 
alled Mittag-Le�er pro
esses. The mainreferen
es are Feller ([Fe 71℄) and Bingham-Goldie-Teugels ([B-G-T 78℄). For regularly varyingfun
tions and their properties, we refer always to [B-G-T 78℄.2.1 De�nition: A mesurable fun
tion ` : (0;1)! (0;1) is slowly varying at 1 iflimx!1 `(�x)`(x) = 1 8� > 0:The 
lass of slowly varying fun
tions is denoted by RV0. A mesurable fun
tion r : (0;1)! (0;1)is regularly varying at 1 if it is of formr(x) = `(x) � x%; x > 0; ` 2 RV0; % 2 IR;where % is termed index of regular variation. The 
lass of fun
tions varying regularly at 1 withindex % is denoted by RV%, % 2 IR, and RV is the 
lass of regularly varying fun
tions with arbi-trary index.These notions go ba
k to Karamata, about 1930. Examples of slowly varying fun
tions are`(x) = log(x) and its iterates logm(x); with `(�) also 1`(�) is slowly varying. We mention thatfor r 2 RV%, the 
onvergen
e r(�x)r(x) ! �% as x ! 1 is (at least) uniform in � 2 K for arbitray
ompa
ts K 
ontained in (0;1), see [B-G-T 78, thm. 1.5.2℄.2.2 De�nition: A probability law F on (IR;B(IR)) is 
alled (stri
tly) stable ifL(X1 + : : :+Xk) = L(akX) ; k 2 INfor (Xn)n�1 i.i.d. with L(X1) = F and for suitable 
hoi
e of a norming sequen
e (ak)k.The word 'stri
tly' will be omitted in the sequel.2.3 Theorem: ([Fe 71, XIII.6℄) For 0 < � < 1 the fun
tion '�(�) = e��� is the Lapla
e trans-form of a probability law G� with the propertiesi) G� is 
on
entrated on (0;1); 18



ii) G� is stable and an = n1=�;iii) 1�G�(x) � x���(1� �) (x!1):G� is 
alled the one sided stable law of index �, 0 < � < 1.Domains of attra
tion of G�, 0 < � < 1, are 
hara
terized as follows.2.4.A Theorem: ([Fe 71, XIII.6℄) Consider a probability law F 
on
entrated on IR+, a normingsequen
e (an)n, and a probability law G on [0;1) whi
h is not a Dira
 measure.a) Assume weak 
onvergen
e of res
aled 
onvolutions:(�) F �n(anx)! G(x) (n!1)at all 
ontinuity points of G. Then there is some 0 < � < 1 and some ` 2 RV0 su
h that(��) 1� F (x) � x��`(x)�(1� �) (x!1):b) If the tails of F satisfy (��) for some 0 < � < 1 and some ` 2 RV0, then (�) holds with G = G�and an = a(n) where a(�) is an asymptoti
 inverse tot 7! 1�(1� �)(1� F (t)) 2 RV�;i.e. n � `(an) � a�n as n!1.There is a 
ase � = 1, 
overing the SLLN and more generally 'relative stability' in the termi-nology of Bingham, Goldie and Teugels [B-G-T 87℄. In 2.4.A, limit distributions G 
on
entratedat one point in (0;1) were ex
luded. Write G1 for the Dira
 measure sitting at 1; obviously G1meets 2.2 with an = n. Domains of attra
tion of G1 are as follows.2.4.B Theorem: ([B-G-T 87, 8.8℄) Consider a probability law F 
on
entrated on IR+, withr(t) := Z t0 (1� F (u))du " Z 10 xF (dx) � 1;and a norming sequen
e (an)n. Then weak 
onvergen
e(�) F �n(an�)! G1(�) (n!1)19



is equivalent to(��) r 2 RV0:Under (��), (�) holds with an = a(n) where a(�) is an asymptoti
 inverse tot 7! tr(t) 2 RV1;i.e. n � r(an) � an as n!1.As a 
onsequen
e of 2.4.A and 2.4.B, there are no other stable laws 
on
entrated on (0;1) ex
eptG�, 0 < � � 1 (up to s
aling by a 
onstant).2.5 De�nition: A stable in
reasing pro
ess of index �, 0 < � < 1, is a pro
ess X with thefollowing properties:i) all paths of X are 
�adl�ag and nonde
reasing, and X0 � 0 ;ii) X is a PIIS (independent and stationary in
rements) with E(e��Xt) = e�t�� , � � 0, t � 0.We write S� for the stable in
reasing pro
ess of index �, 0 < � < 1. Note that i)+ii) of 2.5 de�nea unique probability law on the Skorohod spa
e D(IR+; IR) with Borel-�-�eld D and 
anoni
al�ltration IG. De�ned on a suitable sto
hasti
 basis (e.g. on (D;D; IG)), S� is ne
essarily a Fellerpro
ess and thus strongly Markov. In 2.7 below we will give a 
onstru
tion of S�. Note that byde�nition, almost all paths t! S�t in
rease to 1 as t!1 and do not have 
ats.2.6 De�nition: For 0 < � < 1, the pro
ess inverse of S�W�t := inffs > 0 : S�s > tg; t � 0is a pro
ess W� with W� � 0, nonde
reasing, having almost all paths 
ontinuous and in
reasingto 1 as t!1. W� is 
alled Mittag-Le�er pro
ess of index �.In the sequel, we shall always use versions of S� where all paths t! S�t in
rease to 1 as t!1and do not have 
ats, and versions of W� having all paths 
ontinuous and in
reasing to 1 ast ! 1. We shall also need a de�nition of S� and W� for � = 1: we take S1 = W 1 = id, the20



deterministi
 pro
ess.In order to prepare for the essential point in the limit theorems of se
tion 3 (the independen
e ofBrownian motion and stable pro
ess involved in the limit, see 4.12 and 4.21 below), we dis
ussin detail the stru
ture of the stable in
reasing pro
ess S�.2.7 Remark: (see Ito-M
Kean [I-MK 65, p.32℄) Let �(dt; dx), t 2 IR+, x 2 IR+ denote Poissonrandom measure (PRM) on some (
;A; P ) with intensity �(dt; dx) = dt m(dx);m(dx) := 
�1(0;1)(x)�(1� �)x�+1 dx:By de�nition (e.g. [I-W 89, I.8℄), Poisson random measure �(dt; dx) is an integer-valued randommeasure on IR+ � IR+, 
hara
terized by the properties:i) for F 2 B(IR+)
B(IR+): the r.v. �(F ) has Poisson law with parameter �(F );ii) for pairwise disjoint sets F1 : : : ; Fn 2 B(IR+)
B(IR+), �(F1); : : : ; �(Fn) are independent.De�ne St := Z t0 Z(0;1) x�(ds; dx) ; t � 0:Up to the s
aling fa
tor 
, this gives a version of the stable in
reasing pro
ess S� withE(e��St) = e�
t�� ; � � 0 ; t � 0:This is seen as follows: Approximate the pro
ess Xt := e�sSt byXnt := e�sn�2nPk=1 R t0 R( k�12n ; k2n ℄ k�12n �(ds;dx):Then Xnt # Xt; n!1: By independen
e of � �(0; t℄� (k�12n ; k2n ℄� for k = 1; :::; n2n, we seeE(e�sSt) = limn E(Xnt )= limn n�2nYk=1E he�s k�12n �((0;t℄�( k�12n ; k2n ℄)i= limn et n�2nPk=1 m(( k�12n ; k2n ℄)��e�s k�12n �1�n!1�! e�t R(0;1)(1�e�sx)m(dx) = e�
ts�where by partial integrationZ(0;1)(1� e�sx)m(dx) = Z (1� e�sx)�x���1dx � 
�(1� �) = 
 � s� :21



Independen
e and stationarity of the in
rements of S follow dire
tly from the 
orrespondingproperties of PRM. We prove that St < 1 for all t � 0, a.s.. Contribution of small jumpsR t0 R(0;1℄ x�(dt; dx) is summable a.s. sin
e 0 < � < 1 impliesZ t0 Z(0;1℄ x�(dt; dx) = t � Z 10 �x��dx � 
�(1� �) <1 :There are only �nitely many big jumps over �nite time intervals: � ((0; t℄� [1;1)) <1 a.s. sin
e� ((0; t℄� [1;1)) = t � Z 11 �x���1dx � 
�(1� �) <1:Thus N 
 := f! 2 
 : Sn(!) <1 8 ng is a set of full measure, and paths of S are right-
ontinuousand nonde
reasing on N 
. Moreover P (St+h = St) = P (�((t; t + h℄� (0;1)) = 0) = 0; so pathsof S a.s. do not have 
ats. S being a PIIS, the paths of S a.s. in
rease to1. Modifying the pathsof S on a set of measure 0, we get all path properties required in 2.5. 22.8 Remark: ([Fe 71, p.453℄) For 0 < � < 1, W�t has Lapla
e transform t(�) = 1Xn=0 (��)n�(1 + n�) tn�and thus admits �nite moments of arbitrary order n � 1mn(t) = n!�(1 + n�) tn�:Note also that P (W�t � x) = P (S�x > t) = 1 � P (S�x � t) = 1 � F � tx1=�� where F is thedistribution fun
tion of of S�1 . Using the last expression one hasL (W�1 ) = L �(S�1 )��� ;this representation of the Mittag-Le�er law appears e.g. in Khasminskii [Has 80, Ch. IV.11℄.2.9 Remark: For � = 12 , stable in
reasing pro
ess S1=2 and Mittag-Le�er pro
essW 1=2 o

ur inwell known 
onne
tion with one-dimensional Brownian motion. First, by [R-Y 91, p. 76, p.102℄,the pro
ess of level 
rossing times of Brownian motion is equal in law to 2S1=2. The pro
essinverse to 2S1=2 is 1p2W 1=2. Thus 1p2W 1=2 is equal in law to the maximum pro
ess of Brownianmotion, or to lo
al time of Brownian motion in 0 with 
hoi
e of norming 
onstant su
h that lo
altime is an o

upation time density: see [R-Y 91, p. 223, p. 207-209℄.22



3 The main theoremIn this se
tion, we state the main theorem on weak 
onvergen
e of integrable additive fun
tionalsand lo
al martigales whose predi
table quadrati
 variation is an integrable additive fun
tional ofthe Harris pro
ess X (the integrability assumption is 
ru
ial and in null re
urrent 
ases indeed arestri
tive 
ondition).The theorem has a long history. A key argument for one dire
tion of the proof is the 
las-si
al Darling-Ka
 theorem ([D-K 57℄) on ne
essary 
onditions for 
onvergen
e in law of (one-dimensional marginals of) additive fun
tionals of X. In the other dire
tion, the proof relies on apaper by Greenwood and Resni
k ([R-Gr 79℄) who study weak 
onvergen
e of bivariate randomwalks where one 
omponent is attra
ted to a Gaussian and the other to a stable limit pro
ess,with strong referen
e to P. L�evy. In a highly interesting but unfortunately never published paper,Touati ([Tou 88℄) gave the theorem in very general form (general state spa
e, Nummelin splittingapplied to 
ontinuous time, and avoiding restri
tive Darling-Ka
 
onditions; a gap left was the
ase of relative stability whi
h was ignored there, and some lines of argument { namely for Num-melin splitting in 
ontinuous time { whi
h seem problemati
). Touati's arguments relied heavilyon semimartingale theory and weak 
onvergen
e of pro
esses in the sense of the book Ja
od andShiryaev ([J-Sh 87℄). For related work, see [Bin 71℄, [B-G-T 87, 
h. 8.11℄; see Khasminskii [Has80, 
h. IV.10-11℄ for one-dimensional di�usions; a note on Markov step pro
esses with 
ountablestate spa
e (where things are mu
h simpler) was [H�o 88℄.One appli
ation of this theorem is in a 
ontext of lo
al asymptoti
 statisti
s where 
onvergen
e ofthe s
ore fun
tion martingale is essential for 
onvergen
e of statisti
al experiments (weak 
onver-gen
e of �ltered statisti
al experiments to Gaussian or Mixed Gaussian limit models), or simplywhen 
onvergen
e of e.g. maximum likelihood estimators is 
onsidered: see [Lu 92℄, [Lu 94℄, [Lu95℄ for general semimartingale models, see [H-J-L 90℄, [H�o 90 a, b℄, [H�o 93 a, b℄ for Markov steppro
esses, [L�o 97℄, [L�o 99 a-
℄ for systems of di�using parti
les with bran
hing and killing; forergodi
 di�usions, see the forth
oming book of Kutoyants [Ku 01℄; there seem to be relatively few
ases of models for null re
urrent di�usions where the above integrability 
ondition indeed holds,see [H-K 01℄ for an example. It is interesting to note that 'martingale 
onvergen
e theorems'typi
ally 
an not deal with general nullre
urrent 
ases (the reason is that martingale 
onvergen
etheorems need 
onvergen
e in probability of angle bra
ketts; in most null re
urrent 
ases there is23



only 
onvergen
e in law).The se
tion is organized as follows. In subse
tion 3.1, we state the theorems in 
ase where theHarris pro
ess X has life 
y
les. Subse
tion 3.2 is devoted to examples. Subse
tion 3.3 states thetheorems for general Harris pro
esses where no life 
y
les exist. All proofs will be postponed tose
tions 4, 5, 7.
3.1 Pro
esses with life 
y
lesIf X has life 
y
les, the main result is theorem 3.1 together with its 
orollaries 3.2 and 3.3.The 'suÆ
ient part' of the assertion (regular variation of tails of life 
y
le length distributionimplies weak 
onvergen
e of normed and linearly time-s
aled martingales or additive fun
tionalsto suitable 
ontinuous limit pro
esses) will be proved in se
tion 4 below (see 4.12 and 4.22).The 'ne
essary part' (there are no other possibilities for weak 
onvergen
e to 
ontinuous limitpro
esses, under linear time-s
aling and suitable norming) will be proved in se
tion 5 (see 5.27).In this subse
tion, we assume the following for the pro
ess X:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a re
urrent atom A 2 E and a life 
y
le de
omposition (Rn)n�1, see 1.9.A + 1.9.B;(H4): There is some fun
tion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, su
h thaty ! Ey �Z R10 f(Xs) ds� is bounded on E ;below, fun
tions f with this property will be 
alled weakly spe
ial for X and R1.We will des
ribe at the end of this subse
tion (see proposition 3.4 below) a large 
lass of life 
y
lede
ompositions (Rn)n whi
h satisfy (H4).LetM2;lo
(Px; IF ) denote the 
lass of lo
ally square integrable lo
al (Px; IF )-martingales, 
�adl�agand withM0 = 0. Here Px is some probability measure on (
;A; IF ) as in the beginning of se
tion1. For M 2 M2;lo
(Px; IF ), the pro
ess hMi is (a version of) the predi
table quadrati
 variation24



of M (or angle bra
kett) relative to Px and IF , and [M ℄ is the quadrati
 variation (or squarebra
kett) of M . We assume that M meets the following assumptions:(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;the pro
esses hMi and [M ℄ are additive fun
tionals of X, and E� (hMi1) <1.(H5B): For the life 
y
le de
omposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respe
t to FR�n , for all n � 1or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .Assumption (H5B) guarantees that the martingales under 
onsideration a

umulate independentand square integrable in
rements over life 
y
les of X. This is not obvious: for the Harris pro
essof example 1.11 a), examples of martingales meeting or violating (�) or (��) of (H5B) will appearin 4.27 below.3.1 Theorem: For suitable 
hoi
e of a norming fun
tion v(�) " 1, 
onsider a res
aled sequen
eMn :=  1pv(n)Mtn!t�0 ;satisfying the Lindeberg 
ondition1v(n) Z tn0 Z jxj2 1fjxj>"pv(n)g�(ds; dx) �! 0 in Px-probability, for all t, all " > 0where �(ds; dx) is the 
ompensator of the point pro
ess of jumps of M under Px.a) If there is some limit pro
ess W = (Wt)t�0, with W0 � 0 and L(W1) not 
on
entrated at 0su
h that Mn L�!W(weak 
onvergen
e in D(IR+; IR), under Px, as n!1), then only the following 
ases 
an arise:either W = J1=2B with standard Brownian motion B, and with J 2 (0;1) a 
onstant,25



or W = J1=2B ÆW� for some 0 < � < 1, where W� is a Mittag Le�er pro
ess independent ofB, a
ting as time 
hange for the Brownian motion: B ÆW� = (B(W�t ))t�0.b) One has Mn L�! J1=2B () r 2 RV0where r is the fun
tion r(t) = Z t0 P (R2 �R1 > x)dx:In this 
ase, norming fun
tion v { up to asymptoti
 equivalen
e { and limiting 
onstant J aregiven by v(t) � t=r(t) ; t!1 ; J = E(< M >R2 � < M >R1) :
) For 0 < � < 1, one hasMn L�! J1=2B ÆW� () t! P (R2 �R1 > t) 2 RV�� ;in this 
ase, norming fun
tion and limiting 
onstant arev(t) � (�(1� �)P (R2 �R1 > t))�1 ; t!1 ; J = E(< M >R2 � < M >R1) :
Remark : a) If X is ergodi
, we have r(1) = E(R2 � R1) < 1 and thus pn-norming formartingales M 2M2lo
: v(n) � nE(R2 �R1) ; n!1 :b) In the ergodi
 
ase, the martingale limit theorem (see [J-Sh 87, VIII.3.22℄) applies and theassertion of theorem 3.1 
ould be derived from it. The same is true in the limiting 
ase of 'rela-tive stability' (null re
urren
e with index � = 1). In null re
urrent 
ases with index 0 < � < 1however, we do not have 
onvergen
e in probability of angle bra
ketts of martingales, but only
onvergen
e in law: so a basi
 assumption needed in martingale 
onvergen
e theorems fails.3.2 Corollary: In parts b) and 
) of theorem 3.1 we also have the stronger assertion (re
all the
onvention W 1 = id) (Mn ; < Mn >) L�! �J1=2B ÆW� ; J W��(weak 
onvergen
e in D(IR+; IR� IR), under Px, as n!1).26



We mention that the proof of the 'suÆ
ient part' in the above assertions (regular variation at 1of tails of life-
y
le length distributions implies weak 
onvergen
e of res
aled martingales to Brow-nian motion or to Brownian motion time-
hanged by an independent Mittag-Le�er pro
ess) doesnot need all assumptions made above. The Lindeberg 
ondition 
omes in to prove that arbitraryweak limits of sequen
es of res
aled martingales are again martingales, and that 
onvergen
e ofmartingales implies weak 
onvergen
e of their bra
kett pro
esses. Condition (H4), introdu
ed byTouati [Tou 88℄, is needed to prove that regular variation of tails of life-
y
le length distributionsis ne
essary for weak 
onvergen
e: it repla
es the original Darling-Ka
 
ondition whi
h is ratherintra
table (ex
ept in simple 
ases su
h as 
ountable state spa
e). The following 
orollary 3.3redu
es to merely notational 
hanges in the proofs leading to 3.1 and 3.2.3.3 Corollary: 3.1 and 3.2 remain true for d-dimensional M = (M i)1�i�d 2 M2lo
(Px; IF )provided E(< M j >R2 � < M j >R1) <1 ; 1 � j � d :it is suÆ
ient to repla
e B by a d-dimensional standard Brownian motion and to takeJ = �J (i;j)�i;j=1;:::;d = �E(< M i;M j >R2 � < M i;M j >R1)�i;j=1;:::;d :
At the end of this subse
tion, we dis
uss a large 
lass of life 
y
le de
ompositions whi
h satis�esassumption (H4). For �(�) E-measurable, [0; 1℄-valued, �(�) > 0, write bT� for the stopping time
orresponding to position-dependent killing of X at rate �: this means that 
onditionally on theevent that bT� has not o

urred up to time t, it will o

ur in a following small time interval (t; t+h℄will probability �(Xt)h+ o(h), h # 0. If � is of form 1B , B 2 E , �(B) > 0, we write for short bTBand speak of killing of X in B at rate 1; if B = E, bTE is simply an exponential waiting time. Ingeneral, killing times are stopping times on an extension of the original (
;A; IF ), but this willnot appear in our notations. For sets B 2 E , a �rst entry time to B is denoted by TB; obviouslyone has TB � bTB. The following proposition will be proved in se
tion 5 (see 5.28).3.4 Proposition: A suÆ
ient 
ondition for (H4) is as follows: the life 
y
le de
omposition in27



(H3) is de�ned from a stopping time R1 of form(+) R1 � S0 + max1�i�l TBi Æ #S0 ; S0 � max1�j�m bT�jwhere Bi are sets in E with �(Bi) > 0, and �j(�) are E-measurable, [0; 1℄-valued, with �(�j) > 0.Examples: We 
ontinue the examples dis
ussed in se
tion 1 after the de�nitions 1.9.A + B.a) For the one-dimensional Ornstein-Uhlenbe
k di�usion dXt = �aXtdt + dWt with a � 0,A = f0g is a re
urrent atom; then (H4) holds for the three 
hoi
es of life 
y
le de
ompositionsspe
i�ed there. We show this in 
aseR1 = infft > S0 : Xt = 0g ; S0 = infft > 0 : Xt 2 Bgwhere B 2 B(IR) has positive Lebesgue measure (thus �(B) > 0, the invariant measure being� = N �0; 12a� ) and does not interse
t some "-neighbourhood of 0. R1 has form (+) in 3.4 sin
eS0 � maxf bTB+ ; bTB�g ; R1 � S0 +maxfTB+ ; TB�g Æ #S0in 
ase where both sets B+ := B \ (0;1), B� := B \ (�1; 0) have positive �-measure; if B
oin
ides with B+, this simpli�es to S0 � bTB+ and R1 � S0 + TB� Æ #S0 .b) If the Harris pro
ess X meeting (H3) has an atom A of positive mass �(A) > 0, life 
y
lesR1 = infft > S0 : Xt 2 A
g ; S0 = bTA :(�rst entry times to A
 after an independent exponential time spent in A) satisfy (H4).
3.2 ExamplesFor Harris pro
esses with re
urrent atom and life 
y
le de
omposition meeting (H4), the theoremsin subse
tion 3.1 require quite 
omplete knowledge on regular variation of tails of life 
y
le lengthdistributions in the null re
urrent 
ase, and on integrability with respe
t to invariant measure. Inthis subse
tion, we illustrate the results of subse
tion 3.1 by some examples. For one-dimensionaldi�usions, the ne
essary results on regular variation of tails of tails of life 
y
le length distri-butions have been proved by Khasminskii ([Has 80℄, [Kh 00℄, [Kh 01℄). We give the details in28



examples 3.5 and 3.10 below; example 3.9 
onsiders the '
lassi
al' spe
ial 
ase of one-dimensionalBrownian motion. For birth and death pro
esses (see Karlin and M
Gregor [K-MG 61℄) and forbran
hing pro
esses with immigration (see Zubkov [Zu 72℄ and Pakes [Pa 75℄), regular variationof tails of life 
y
le length distributions is available under 
onditions on the birth-, death-, orbran
hing rates in large populations, in whi
h 
ase also asymptoti
 behaviour of invariant mea-sure is known. More sophisti
ated examples 
an be treated on this ba
kground, e.g. for �nitesystems of di�using parti
les with bran
hing and immigration where the void 
on�guration is anatom for the pro
ess; under suitable 
onditions, the parti
le pro
ess is Harris and has the void
on�guration as re
urrent atom of positive mass under the invariant measure; see [H�o-L�o 99 a,b℄,[L�o 99 a,b,
℄ and the referen
es quoted there.3.5 Example: We 
onsider one-dimensional di�usions.a) A one-dimensional di�usion dXt = �(Xt)dBt with � 
ontinuous and stri
tly positive (thusnonexploding in �nite time, see [K-S 91, p. 332℄) is Harris re
urrent with invariant measure2�2(x) dx (write X as time-
hanged Brownian motion and use [Le 78℄). Assuming in addition that� is lo
ally Lips
hitz and satis�es a global linear growth 
ondition, Khasminskii [Has 80, se
tionsIV.10-11℄ gives a suÆ
ient 
ondition for regular variation of tails of life 
y
le length distributionswith index ��, 0 < � < 1 . He uses life 
y
le de
ompositions (Rn)n de�ned by(3:50) Rn = infft > Sn : Xt = 0g; Sn = infft > Rn�1 : Xt = 1g; n � 1; R0 = 0(whi
h satify (H4), see 3.4 above) and 
al
ulates ([Has 80, lemma 10.5℄)(3:500) E �Z R2R1 f(Xs)ds� = �(f); �(dx) = 2�2(x)dx ;f nonnegative, measurable, in L1(�). Khasminskii's 
ondition is2�2(x) � A+x� ; x! +1; 2�2(x) � A�jxj� ; x! �1(3.6)with � := �2 + 1� > �1 and nonnegative 
onstants A+, A� meeting A+ +A� > 0 (here A� = 0is written for 2�2(x) = o(jxj�) as x! �1); he shows that (3.6) implies(3:60) P (R2 �R1 > t) � �2� ((A+)� + (A�)�)�(1 + �) t��; t!1 :This is proved in [Has 80, theorem 11.2, 
orollary, remark 3, theorem 11.3℄, or in [Kh 00, theorem2.2℄ with a di�erent proof, see also [Kh 01, theorem 1.1℄. So the result on 
onvergen
e in law of29



integrable additive fun
tionals of XP (R2 �R1 > t) � 
 t��; t!1 =) 1(�(1� �)P (R2 �R1 > t))�1 Z t0 f(Xs)ds! �(f)W�1([Has 80, theorem 11.1℄, [Kh 01, theorem 1.1℄) is { via RLT { a spe
ial 
ase of theorem 3.1 and
orollary 3.2 above.b) A one-dimensional di�usion dXt = b(Xt)dt + �(Xt)dBt is Harris re
urrent with invariantmeasure equivalent to Lebesgue measure if the fun
tion SS(x) := Z x0 s(y)dy ; s(y) := exp�� Z y0 2b�2 (v)dv�(3.7)is a spa
e transformation on IR, i.e.limx!�1S(x) = �1 ; S(0) = 0 ; limx!+1S(x) = +1(see [Has 80, example 2 in se
tion III.8℄). In this 
ase, the pro
ess eX := (S(Xt))t�0 is a di�usionwithout drift, with same passage times to 0 as X, and with di�usion 
oeÆ
iente� = (s � �) Æ S�1(3.8)where S�1 is the fun
tion inverse of S on IR; the invariant measure of X is given by(3:80) �(dx) = 2�2(x) exp�Z x0 2b�2 (v)dv�dx; x 2 IR: 23.9 Example : We 
onsider '
lassi
al' results in 
ase of one-dimensional Brownian motion.a) In the spe
ial 
ase � � 1 of 3.6.a), X is Brownian motion; for the life 
y
les as there one hasE(e��(R2�R1)) = e�2�p2�; � � 0([R-Y 91, p. 67℄) and thus L(R2 �R1) = L(8S1=21 ). As a 
onsequen
e (
f. 2.3),P (R2 �R1 > t) � P (S1=21 > t8) � 2r 2� t�1=2 ; t!1 :By theorem 3.1 and 
orollary 3.2, for f 2 L1(�), we have weak 
onvergen
e in D(IR+; IR) asn!1 1pn Z (�n)0 f(Xs)ds ! ZIR f(x)dx 1p2W 1=2 ; t!1:30



Note that 1p2W 1=2 is the pro
ess inverse to 2S1=2. Sin
e 2S1=2 is equal in law to the pro
essof level 
rossing times of Brownian motion B ([R-Y 91, p. 67, p. 102℄), 1p2W 1=2 is equal in lawto the maximum pro
ess B� := (max0�s�tBs)t�0. For lo
al time of Brownian motion de�nedas o

upation time density ([R-Y 91, p. 207-209℄), the pro
ess 1p2W 1=2 is thus equal in law tolo
al time at 0 of Brownian motion ([R-Y 91, p. 223℄). In this form, weak 
onvergen
e of additivefun
tionals of Brownian motion has been proved by Papani
olaou, Strook and Varadhan ([P-S-V77℄), reported by Hu and Yor in their survey [H-Y 98, theorem A.1℄.b) [P-S-V 77℄ also prove that for f in L1(�) having 
ompa
t support and �(f) = 01n1=4 Z (�n)0 f(Xs)ds ! C1=2B Æ ( 1p2W 1=2)(weak 
onvergen
e in D(IR+; IR), as n!1) withC := 4 Z +1�1 �Z x�1 f(y)dy�2 dx :Applying the Ito formula to the semimartingale 2F (X), F (x) := R x�1 dy R y�1 dzf(z) being boun-ded on IR, this result is again 
ontained in theorem 3.1 above.3.10 Example : We 
onsider a typi
al family of null re
urrent di�usions with drift.a) With notations of 3.5, 
onsider a pro
ess X solution of dXt = b(Xt)dt + �(Xt)dBt with b, �
ontinuous and � stri
tly positive. Assume that for a family of parameters �, 
 ranging over thedomain � < 1, �1 + 2� < 
 < 1, drift and di�usion 
oeÆ
ient have representations�(x) � 
st� jxj�; x! �1; b(x) = �2(x)2 �
 1x + Æ(x)� ; jxj > 1(3.11)where Æ(�) is some fun
tion with Rjxj>1 jÆ(x)jdx < 1 (whi
h may also depend on � and 
). In(3.11) and below, all o

uring 
onstants '
st' { varying from line to line { 
an be 
al
ulated forgiven b and � using the methods of example 3.5 a)+b); see [H-K 01℄ for an appli
ation.Sin
e 
 < 1, S of (3.7) is a spa
e transformation, and X is Harris. The invariant measure � of Xnormed as in (3.8') behaves as�(dx) � 
st� jxj
�2� dx; x! �1:(3.12)Sin
e 
 � 2� > �1, it has in�nite total mass on IR, so X is re
urrent null. Cal
ulating e� of (3.8)e�(x) � 
st� jxj ��
1�
 ; x! �131



the invariant measure e� of eX = S(X) has density2e�2(x) � 
st� jxj�2+ 1� ; x! �1; � := 1� 
2(1� �)(3.13)where � = �(�; 
) ranges over the full interval (0; 1) sin
e � < 1, �1 + 2� < 
 < 1.b) De�ne life 
y
les for X byRn = infft > Sn : Xt = 0g; Sn = infft > Rn�1 : Xt = S�1(1)g; n � 1; R0 = 0where S�1 is the fun
tion inverse of S. By (3.5") applied to eX and by (3.7)-(3.8'), we see thatE �Z R2R1 f(Xs)ds� = E �Z R2R1 (f Æ S�1)( eXs)ds� = e�(f Æ S�1) = �(f)for f 2 L1(�); moreover, (3.13) is 
ondition (3.6) relative to eX = S(X), and so we 
an 
al
ulateas in (3.6') the fa
tor C(�) su
h thatP (R2 �R1 > t) � C(�) t��; t!1:(3.14)
) Thus for fun
tions h 2 L2(�), theorem 3.1 and 
orollary 3.2 yield weak 
onvergen
e of� 1n�=2 Z tn0 h(Xs)dBs; 1n� Z tn0 h2(Xs)ds�t�0(B 
an be re
overed from the observed X) as n!1 to�K1=2B(W�); K W�� ; K = K(h; �) = �(h2)C(�) �(1� �)with � of (3.13) and C(�) of (3.14). Note that the 
ondition h 2 L2(�) { depending on � and 
via (3.12) { is a very strong 
ondition if � and 
 range over the domain � < 1, �1 + 2� < 
 < 1:essentially, we are redu
ed to 
onsider h 2 CK, CK the 
lass of 
ontinuous fun
tions with 
ompa
tsupport.d) In analogy to 3.9 b), we 
onsider also the 
ase of integrable additive fun
tionals with �(f) = 0,f 2 CK. With s of (3.7), the fun
tionF (x) = Z x1 s(y)�(1(�1;y℄f) dyis bounded on IR and solves AF = f ; AF := bF 0 + 12�2F 00 :32



From Ito formula for F (X) together with the result of 
) applied to the martingale part of F (X),we get weak 
onvergen
e as n!1� 1n�=2 Z tn0 f(Xs)ds�t�0 ! eK1=2B(W�) ; eK := � �(F 0�)2�C(�) �(1� �)in 
ase �(f) = 0. 2
3.3 General Harris pro
essesMany interesting Harris pro
esses do not have re
urrent atoms; thus life 
y
le de
ompositions asused in the pre
eding subse
tion are not available. However, it is possible to 
onsider instead ofX itself a family of new Harris pro
esses whi
h are arbitrarily 
lose to the original one; in thisfamily, life 
y
les 
an be introdu
ed arti�
ially via Nummelin's splitting te
hnique. Using thisidea, the above results 
arry over to general Harris pro
esses where life 
y
les do not exist.In this general setting, 
onditions on regular variation at 0 of resolvants of X repla
e the former
onditions on regular variation at 1 of tails of life 
y
le length distributions; note that we 
ouldhave formulated theorems 3.1 - 3.3. already in this way. A slight disadvantage of resolvant 
ondi-tions remains: unless using resolvants for very parti
ular fun
tions of X (the 'spe
ial fun
tions'of 5.28 whi
h are essentially non
onstru
tive), the required regular variation holds only �-a.s. inx. In this subse
tion, we do not need more than the basi
 
ondition(H1): X = (Xt)t�0 is Harris with invariant measure �.The proofs of the two theorems 3.15 and 3.16 stated in this subse
tion is the aim of se
tions6 and 7, and is given in theorems 7.16 and 7.20 there. The results are in 
omplete analogy tosubse
tion 3.1 although we 
hoose a di�erent presentation.3.15 Theorem : a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) areequivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 of33



resolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the ex
eptional set depending on g);ii) for every additive fun
tional A of X with 0 < E�(A1) <1, one has weak 
onvergen
e(Atn)t�0n�= l(n) ! E�(A1)W�(in D(IR+; IR) as n ! 1, under Px for all x 2 E) where W� is the Mittag-Le�er pro
ess ofindex �.b) The 
ases in a) are the only ones where weak 
onvergen
e of (Atn)t�0v(n) to a 
ontinuous non-de
reasing limit pro
ess W (with W0 = 0 and L(W1) not degenerate at 0) is available for somenorming fun
tion v.We turn to martingales M 2 M2;lo
(Px; IF ) with the property that hMi is a lo
ally boundedpro
ess (this slight restri
tion 
oming in here was not needed in subse
tion 3.1). We require only(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;the pro
esses hMi and [M ℄ are additive fun
tionals of X, and E� (hMi1) <1.3.16 Theorem : Consider 0 < � � 1 and l(�) varying slowly at 1. Assume that 3.15 a)i) holdsfor � and l(�). Then we have weak 
onvergen
e1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�)in D(IR+; IR) as n!1, under Px.Under a Lindeberg 
ondition on 1pn�=l(n) (Mtn)t�0, we 
an again dedu
e from the last assertionof theorem 3.16 weak 
onvergen
e of pairs (martingale, angle bra
kett) as in 
orollary 3.2, andthen 
on
lude from 3.15 that no other weak limits (under linear time s
aling, with 
ontinuouslimit pro
ess as in 3.1, and for some sequen
e of norming 
onstants) 
an arise. The extension to34



multidimensional martingales (as in 
orollary 3.3) is obvious.It might look strange that the seemingly simpler 
ase with life 
y
les required more assumptionsthan the general 
ase. The reason is the following. In our proof, we swit
h from the pro
ess Xof interest to a family of new Harris pro
esses, arbitrarily 
lose to X, where life 
y
les are intro-du
ed arti�
ially: so we 
an use the degrees of freedom in this 
onstru
tion to make sure thatall additional assumptions needed in subse
tion 3.1 are satis�ed at these auxiliary stages, andthings be
ome surprisingly simple at the level of the �nal result.
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4 Proofs for subse
tion 3.1 - suÆ
ient 
onditionIn this se
tion, we prove the 'suÆ
ient' part of theorem 3.1 and its 
orollaries given in subse
tion3.1: for pro
esses X with life 
y
les, regular variation of tails of life 
y
le length distributionsimplies 
onvergen
e of res
aled martingales to either Brownian motion or Brownian motion time-
hanged by an independent Mittag-Le�er pro
ess. This result is formulated in theorem 4.12 andin proposition 4.22, see also the remarks 4.25 and 4.26.We work in the setting of subse
tion 3.1, but under weaker 
onditions: we list the assumptions onX and on the martingalesM to be 
onsidered in this subse
tion, and then retra
e the argumentsgiven by Greenwood and Resni
k ([R-Gr 79℄) on weak 
onvergen
e of bidimensional randomwalks. From this, weak 
onvergen
e of martingales follows by time 
hange. An extension of thisargument yields weak 
onvergen
e of pairs (martingale, angle bra
kett). (H4) is never needed inthe present se
tion.Let us re
all { for later use in se
tions 4 and 5 { the arguments proving theorems 2.4.A and 2.4.B,see [Fe 71℄ or [B-G-T 87℄. Classi
al fa
ts about regular variation (like Tauberian theorems et
.)are quoted from the �rst 
hapter of [B-G-T 87℄.4.1 Proof of 2.4.A and 2.4.B : The proof is in several steps. Notations F , G, G� are as in2.4.A and 2.4.B: F , G are probability laws on [0;1), G is not a Dira
 measure at 0. bF , bG denotesthe Lapla
e transform (LT) of F , G.A) (
f. [B-G-T 87, Cor. 8.1.7℄) For 0 � � � 1 and ` 2 R0, the assertion1� bF (s) � s�`(1=s) s # 0(4.2)is equivalent to r(t) = Z t0 (1� F (x)) dx � 1�(2� �) t1��`(t); t " 1;(4.3)in 
ase � < 1, the last assertion is again equivalent to1� F (x) � 1�(1� �)x��`(x); x " 1:(4.4)This is seen as follows: the fun
tion r de�nes a measure on IR+; partial integration givesZ 10 e��x(1� F (x)) dx = 1� (1� bF (�))36



= Z 10 e��xr(dx) = br(�):The Tauberian theorem ([B-G-T 87, p. 37℄) shows that for 0 � � � 1br(s) � s��1`(1=s) s # 0()r(t) � 1�(2��) t1��`(t) t " 1;this shows (4.2) () (4.3); (4.3) () (4.4) for � < 1 is the monotone density theorem ([B-G-T87, p. 39℄) und the Karamata theorem ([B-G-T 87, p. 26℄).B) We determine possible limit laws for F �n(an�) for suitable norming sequen
es an " 1. The
onvergen
e F �n(anx) �! G(x) 8 x 
ontinuity point of Gis equivalent to 
onvergen
e of LT�n log bF (�=an) �! � log bG(�); 8 � > 0and thus to n(1� bF (�=an)) �! � log bG(�); 8 � > 0:(4.5)Consider U := 1� bF whi
h is nonde
reasing: then for an � x � an+1U(�=an+1)U(1=an) � U(�=x)U(1=x) � U(�=an)U(1=an+1)and (4.5) implies(4:50) 8 � > 0 : U(�=x)U(1=x) �! � log bG(�)� log bG(1) ; x!1:This is regular variation of the fun
tion U = 1 � bF in 0, and at the same time determines (
f.[B-G-T 87, p.17℄) the possible limits in (4.5'):1� bF RV% in 0; � log bG(�) = 
 � �%; � > 0(4.6)for some % 2 IR and some 
onstant 
 > 0. We have ne
essarily % � 0 sin
e bG is nonin
reasingas LT of a probability law 
on
entrated on [0;1); ne
essarily % � 1 sin
e otherwise � ! e��%would not be `
ompletely monotone' and thus not a LT of a measure on [0;1) ([Fe 71, p. 439℄);ne
essarily also % > 0 sin
e G by assumption is not the Dira
 measure at 0. Finally, a 
onstant37




 in (4.6) 
an always be absorbed into the norming sequen
e (an)n, so we put 
 = 1. The onlyremaining possibilities areG = G�; 0 < � < 1; with 1� bF RV� in 0;(4.7) G = G1; with 1� bF RV1 in 0:(4.8)A

ording to A) we have for 0 � � � 11� bF RV� in 0 () r RV1�� in 1:C) Comparison of (4.5) and (4.5') shows: with 
 = 1 in (4.6), the norming sequen
e (an)n satis�esn � 11� bF (1=an) ; n!1;(4.9)when
e an = a(n) where a(�) is an asymptoti
 inverse tot �! 11� bF (1=t) � tbr(1=t) � t�(2� �)r(t)(4.10)where we have used A); for 0 < � < 1 the fun
tion in (4.10) is asymptoti
ally equivalent tot �! 1�(1� �)(1� F (t)) :(4.11)D) Steps B)+C) prove part a) of theorem 2.4.A, and the 
orresponding dire
tion in 2.4.B. The
onverse is proved by using the arguments of B)+C) in reverse order. 2On this basis, we turn to the topi
 of subse
tion 3.1. The proof of the `suÆ
ient' part of 3.1is 
ontained in the following theorem 4.12. Our arguments follow the referen
es Greenwood andResni
k [R-Gr 79℄, Touati [Tou 88℄, [H�o 88℄. For ba
kground on semimartingales and weak 
onver-gen
e we refer to Ja
od and Shiryaev [J-Sh 87℄, Ikeda and Watanabe [I-W 89℄, Billingsley [Bill 68℄.For the rest of of this se
tion, the following assumptions on the pro
ess X will be in for
e:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a re
urrent atom A 2 E and a life 
y
le de
omposition (Rn)n�1, see 1.9.A + 1.9.B.We 
onsider martingales M 2M2;lo
(Px; IF ) for some Px on (
;A; IF ) as in se
tion 1, meeting(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;38



the pro
esses hMi and [M ℄ are additive fun
tionals of X, and E� (hMi1) <1;(H5B): For the life 
y
le de
omposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respe
t to FR�n , for all n � 1 ;or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .Only these assumptions will be needed in the remaining parts of this se
tion.With respe
t to the sequen
e (Rn)n�1 of (H3), we write r(�) for the fun
tionr(t) := Z t0 P (R2 �R1 > s) ds ;and we �x the norming 
onstant for � (
f. 1.10) by(4:110) �(F ) = E �Z R2R1 1F (Xs) ds� ; F 2 E :We re
all also the 
onvention W 1 = S1 = id.4.12 Theorem: Assume regular variation r(�) 2 RV1�� at 1, for some 0 < � � 1:8<: P (R2 �R1 > �) 2 RV�� falls 0 < � < 1,r(�) 2 RV0 falls � = 1.De�ne v(t) = 8<: 1�(1��)P (R2�R1>t) ; 0 < � < 1;t=r(t); � = 1:Then one has Mn :=  1pv(n)Mtn!t�0 �! J1=2 B ÆW�:(weak 
onvergen
e in D(IR+; IR), under Px, as n ! 1), where Brownian motion B and MittagLe�er pro
ess W� are independent, and whereJ := E ( hMiR2 � hMiR1) :
39



Proof: 0) First we mention that due to 1.9.A+B and (H5A)+(H5B),(4:120) (MRn �MR1 ; Rn �R1)n�1is a random walk either w.r.t. (FR�n )n or w.r.t. (FRn)n (see example 4.27 for illustration of sometypi
al problems). (H5A) and Markov property giveEPx �e��1(Rn+1�Rn)��2(MRn+1�MRn)jFRn� = EXRn �e��1R1��2MR1 � ; �1; �2 � 0 :Conditioning w.r.t. FR�n a

ording to 1.9.A+B, we seeEPx �e��1(Rn+1�Rn)��2(MRn+1�MRn)jFR�n � = E�A �e��1R1��2MR1 � =:  A(�1; �2) :Thus we have always�Rn+1 �Rn;MRn+1 �MRn� is independent of FR�n , for all n � 1 :If (�) of (H5B) holds, the r.v. (MRj �MR1 ; Rj �R1) is FR�j -measurable (Rj as a stopping timeis always FR�j -measurable), thus (4.12') is a random walk w.r.t. (FR�n )n under Px.If (��) of (H5B) holds, then { mu
h simpler { (4.12') is a random walk w.r.t. (FRn)n.This holds under every starting law for the pro
ess X.1) We 
onsider the bivariate random walk �MRj �MR1 ; Rj �R1�j�1 under Px.Writing Sj :=MRj , we res
ale the 
omponents of this random walk separatelyY n := � 1pnS[�n℄; 1a(n)R[�n℄�(4.13)a

ording to 2.4.A and 2.4.B where a(�) is an asymptoti
 inverse for v(�). For every n 2 IN ,the bivariate pro
ess Y n is a PII, and has approximately as n ! 1 stationary in
rements.Considering the 
omponents of Y n separately, we have weak 
onvergen
e under Px as n!11pnS[�n℄ �! J1=2Bin D(IR+; IR) a

ording to Donsker's theorem, and 
onvergen
e of �nite-dimensional distributions1a(n)R[�n℄ �! S�as n!1 by independen
e of in
rements 
ombinded with theorems 2.4.A and 2.4.B: so possiblelimits for the sequen
e (Yn)n in (4.13) under Px, in the sense of �nite-dimensional distributions,are Y = (J1=2 �B;S�)(4.14) 40



for some bivariate pro
ess having marginals B and S�.2) The essential point is to prove that the 
omponents B, S� of the limit pro
ess Y in (4.14) arene
essarily independent. A short argument, see Greenwood and Resni
k [R-Gr 79℄, is as follows.Being limit of a bivariate random walk, Y is ne
essarily a PIIS. The L�evy-Khint
hine formulashows that Y 
an be represented as independent sum of a Gaussian and a non-Gaussian (sum ofbig jumps and 
ompensated sum of small jumps) Levy pro
ess plus a deterministi
 linear term:Y = C � id+BY +KY :Comparison with (4.14) givesC = 0� 00 1A ; BY = 0� J1=2 �B0 1A ; KY = 0� 0S� 1A :Thus B, S� in (4.14) are independent. (We will give a detailed and more general argumentfollowing Ikeda and Watanabe [I-W 89, p. 77-78℄ - a Poisson random measure and a Brownianmotion de�ned with respe
t to the same �ltration are ne
essarily independent - in 4.21 below.)3) By step 2) we know that under PxY n = � 1pnS[�n℄; 1a(n)R[�n℄� f.d.�! Y = (J1=2 �B;S�)where Brownian motion B and stable in
reasing pro
ess S� are ne
essarily independent. WriteNt for the number of life 
y
les of X (in
luding the initial segment) 
ompleted at time t:Nt = supfn 2 IN0 : Rn � tg:Then we have eY n := � 1pnS[�n℄; 1nN�a(n)� f.d.�! eY := (J1=2 �B;W�)(4.15)where W� is the pro
ess inverse to S� and thus B and W� are independent: for 0 � t1 < t2 <: : : < t` <1, for x1; : : : ; xn 2 (0;1), as n!1�Ntia(n)n < xi; 1 � i � `� = �R[xin℄ > tia(n); 1 � i � `	4Nn= �R[xin℄a(n) > ti; 1 � i � `�4Nnup to symmetri
 di�eren
e with small sets Nn meeting Px(Nn) ! 0; sin
e n � v(a(n)) witha(�) 2 RV1=�, we identify 1nN�a(n) with a subsequen
e of 1v(n)N�n as n ! 1. We show that thesequen
e (eY n)n in (4.15) is tight in D(IR+; IR2) under Px: tightness of the �rst 
omponent in41



D(IR+; IR) is 
lear from step 1); for tightness of the se
ond 
omponent in D(IR+; IR), we use([J-Sh 87, VI.3.37℄): sin
e the se
ond 
omponents of (eY n)n are in
reasing pro
esses and sin
eW�is 
ontinuous, �nite-dimensional 
onvergen
e (4.15) implies1nN�a(n) n!1�! W� (weak 
onvergen
e in D(IR+; IR) under Px):Thus both 
omponents of (eY n)n form tight sequen
es in D(IR+; IR), and so the bivariate sequen
e(eY n)n is tight in D(IR+; IR2) ([J-Sh 87, VI.3.33℄). By (4.15), there is a unique limit law forarbitrary subsequen
es of (eY n)n, so we have8<: eYn = � 1pnS[�n℄; 1nN�a(n)� �! eY = (J1=2 �B;W�)weak 
onvergen
e in D(IR+; IR2) under Px as n!1:(4.16)By Billingsley [Bill 68, p.145℄, both 
omponents of the limit pro
ess in (4.16) being 
ontinuous,the se
ond 
omponent in (4.16) may be used as a time transformation for the �rst: so we get8<: 1pnS[( 1nN�a(n))n℄ �! J1=2 �B(W�)weak 
onvergen
e in D(IR+; IR) under Px(4.17)and after repla
ing n by v(n) - whi
h amounts to an insertion of members into the sequen
e -one arrives at 8><>: 1pv(n)SN�n �! J1=2 �B(W�)weakly in D(IR+; IR) under Px as n!1:(4.18)4) It remains to show that (4.18) implies1pv(n)M�n �! J1=2 �B(W�) weakly in D(IR+; IR) under Px as n!1 :(4.19)The proof of (4.19) is in three parts.i) For every starting point x for the Harris pro
ess X, the measuret ! Ex(Nt) = Xl�1 Px(Rl � t)is (with notations of 1.9.A+B) a 
onvolutionPx(R1 2 �) � 1Xm=0P�A(Rm 2 �)! :The asymptoti
 behaviour of its Lapla
e transform (
f. [B-G-T 87, p. 361)� ! Ex �e��R1� 11�E�A (e��R1) ; � > 042



as � # 0 does not depend on x. Combining (4.2)-(4.4) and Karamata's Tauberian theorem (B-G-T87, p. 37), we see that Ex(Nt) � 1�(1 + �) v(t) as t!1independently of the starting point x.ii) We show that for every t > 0, " > 0 �xed,(+) Px 1pv(n) jSNtn �Mtnj > "! ! 0as n!1. Sin
e limn!1 Px(R1 > nt) = 0 , is is suÆ
ient to 
onsider(++) Px�sups�0 �Ms^RNtn+1 �Ms^RNtn�2 > "2v(n) ; R1 � nt� :Note that the last renewal time RNtn before tn is not a stopping time: an event fRNtn � 
g with0 < 
 < tn does not belong to the �-�eld generated by observation of X only up to time 
. By1.9.A+B and (H5), rewrite (++) as1Xl=1 Ex0�1fRl�ntg Ex0�1fRl+1�Rl>nt�Rlg 1fsups�0�Ms^Rl+1�Ms^Rl�2>"2v(n)g j FR�l 1A1A= Z nt0 du (Ex(Nu))P�A �R1 > nt� u ; sups�R1(Ms)2 > "2v(n)�= Z 10 P�A(R1 2 dr) f (n)(r) �Ex(Nnt)�Ex(N(nt�r)_0)�with notation f (n)(r) := P�A � sups�R1(Ms)2 > "2v(n) j R1 = r� :By assumption in (H5),J = E (hMiR2 � hMiR1) = E�sups�0 (Ms^R2 �Ms^R1)2� = E�A � sups�R1M2s�= Z 10 P�A(R1 2 dr)E�A � sups�R1M2s j R1 = r� < 1 ;thus we have for PR1�A - a.a. r > 0 as n!1"2 v(n) f (n)(r) � E�A  ( sups�R1M2s ) 1f sups�R1(Ms)2>"2v(n)g j R1 = r! ! 0and from this by dominated 
onvergen
eZ 10 P�A(R1 2 dr) v(n) f (n)(r) ! 0 :43



By part i) above and regular variation of v, we thus have provedZ 10 P�A(R1 2 dr) f (n)(r) �Ex(Nnt)�Ex(N(nt�r)_0)� ! 0whi
h via (++) establishes (+).iii) Part ii) together with (4.18) implies1pv(n)M�n f.d.�! J1=2B(W�):It remains to prove tightness of this sequen
e in D(IR+; IR) under Px in order to 
omplete theproof of theorem 4.12. By [J-Sh 87, VI.4.13℄, it is enough to verify * 1pv(n)M�n+!n is C-tight in D(IR+; IR);we will prove weak 
onvergen
e* 1pv(n)M�n+ �! J �W� weakly in D(IR+; IR) as n!1:(4.20)Again by [J-Sh 87, VI.3.37℄, it is enough to show �nite-dimensional 
onvergen
e in (4.20) - the pre-limiting pro
esses are in
reasing, and the limit pro
ess is 
ontinuous - and this is a 
onsequen
eof (4.15) (with n repla
ed by v(n)) 1v(n)N�n f.d.�! W�and the ratio limit theoremP � a:s: : limt!1 < M >tNt = E (< M >R2 � < M >R1) = J:So (4.20) is proved, and thus (4.19): this 
on
ludes the proof of 4.12. 2By 4.12, we have proved the 'suÆ
ent' dire
tion in 3.1. Before pro
eding to joint 
onvergen
e ofpairs (martingale, angle bra
kett) in proposition 4.22, we give an alternative argument for step2) of the pre
eding proof.4.21 Remark : We give an alternative argument repla
ing step 2) of the previous proof, basedon [I-W 89, pp. 77-78℄. Consider any possible 
�adl�ag limit pro
ess Y for (Y n)n of (4.13), in the44



sense of �nite-dimensional distributions: Y is de�ned on some (
0;A0; IF 0; P 0) where IF 0 is the�ltration generated by YIF 0 = (Ft)t�0; F 0t = \T>tF0T ; F0T := �(Ys : 0 � s � T );by (4.14), its �rst marginal denoted by B is a Brownian motion (for simpli
ity, we put J = 1);its se
ond marginal denoted by S� is a stable in
reasing pro
ess with index �. Sin
e Y n hasindependent in
rements whi
h asymptoti
ally as n ! 1 are stationary, the limit pro
ess Y isa PIIS w.r.to IF 0: for 0 � s < t < 1, the 
onditional law PYt�YsjF0s = L(Yt�s) is independentof F0s . Sin
e Y is right-
ontinuous, Y is also a PIIS w.r.to the �ltration IF 0: for arbitrary Znonnegative and F 0s-measurable, F 0s = TnF0s+1=n, for h 2 Cb(IR2), we haveE(Zh(Yt � Ys)) = limn E(Zh(Yt � Ys+1=n))= limn E �ZE �h(Yt � Ys+1=n) j F0s+1=n��= EZ limn E(h(Yt � Ys+1=n))= EZ E(h(Yt � Ys))whi
h proves that PYt�YsjF 0s = L(Yt�s) is independent of F 0s. By this argument, the �rst 
ompo-nent of Y is a IF 0-Brownian motion:PBt�BsjF 0s = N (0; t� s)and the point pro
ess � of jumps of the se
ond 
omponent of Y is a IF 0-Poisson random measure:8><>: P (�(℄s;t℄�Ui)1�i�`)jF 0s = Ǹi=1P((t� s)��(Ui))for disjoint sets U1; : : : ; U` in B(IR) having ��(Ui) <1where we write ��(dx) for the measure �x���1dx on (0;1), see remark 2.7. Following [I-W 89,pp. 77-78℄, we will show that Poisson random measure and Brownian motion de�ned on the same(
0;A0; P 0) with respe
t to the same �ltration IF 0 are ne
essarily independent (whi
h implies thedesired independen
e of B and S�). To this aim we 
onsider transformsIR� (IR+)` 3 (�; �1; : : : ; �`)! '(�; �1; : : : ; �`) := E �ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui) j F 0s�(0 � s < t <1, Ui disjoint sets having ��(Ui) <1; ` 2 IN); if we prove that(�) '(�; �1; : : : ; �`) = e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄;45



then Bt � Bs, �(℄s; t℄ � Ui), 1 � i � ` will be independent and independent of F 0s, and as a
onsequen
e, the �-�elds �(Bt : t � 0) and �(�(℄s; t℄�U : 0 � s < t <1; U 2 B(IRd)) generatedby B and � will be independent, whi
h 
on
ludes the proof.To prove (�), we 
onsider the bounded and 
omplex-valued semimartingale F (Z)F (Zt) := ei�Bt�Pì=1 �i�(℄0;t℄�Ui)Z = (B;�(℄0; �℄� U1); : : : �(℄0; �℄� U`)) :Itô's formula (see e.g. [J-Sh 87, p. 57℄) for F (Z) givesF (Zt)� F (Zs) = i� Z ts F (Zu�)dBu + (�12�2)Z ts F (Zu�)du+Z ts ZIR hF (Zu�)�e�Pì=1 �i1Ui (x) � 1�i�(ds; dx)| {z }=Pu2(s;t℄(F (Zu)�F (Zu�))= (Mt �Ms) + (�12�2)Z ts F (Zu)du+Z ts ZIR F (Zu)�e�Pì=1 �i1Ui (x) � 1� du��(dx)for some lo
al martingaleM su
h that < M >t is bounded; sin
e the sets Ui are disjoint, the lastterm on the r.h.s equals Z ts F (Zu)"X̀i=1(e��i � 1)��(Ui)# du:For Y nonnegative, bounded, F 0s-measurable we 
onsider E[Y (F (Zt)� F (Zs))℄: with notation'Y (t) := E �Y ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui)� ; t � s(thus 'Y (s) = E(Y )) we get from E(Mt �MsjF 0s) = 0 after absorption of the fa
tor F (Zs) in YE �Y hei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui) � 1i� = 'Y (t)� 'Y (s)= Z ts du 'Y (u)"�12�2 + X̀i=1(e��i � 1)��(Ui)# du:The solution of this di�erential equation is well known'Y (t) = E(Y ) � e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄; t � s:Taking in parti
ular Y = 1A, for arbitrary A 2 F 0s, we getE �ei�(Bt�Bs)�Pì=1 �i�(℄s;t℄�Ui)jF 0s� = e(t�s)[� 12 �2+Pì=1(e��i�1)��(Ui)℄:46



This is (�), and 
on
ludes the proof. 2The argument leading to theorem 4.12 
an be strengthened to obtain weak 
onvergen
e of pairs(martingale, angle bra
kett). Note that we do not require a Lindeberg 
ondition here.4.22 Proposition : Under all assumptions of theorem 4.12, we have(Mn ; < Mn >) L�! �J1=2B ÆW� ; J W��(weak 
onvergen
e in D(IR+; IR� IR), as n!1, under Px).Proof : We repla
e the bivariate random walk in step 1) of the proof of 4.12 by a trivariate one�MRj �MR0 ; < M >Rj � < M >R0 ; Rj �R0�j2IN0and 
onsider Y n := � 1pnS[�n℄; 1nK[�n℄; 1a(n)R[�n℄�(4.23)whereKj :=< M >Rj . The se
ond 
omponent 
onverges weakly inD(IR+; IR) to the deterministi
pro
ess (J � t)t�0. Inverting the last 
omponent and using it as a time 
hange for the pair of �rst
omponents in analogy to (4.16)-(4.18), we get8><>: � 1pv(n)SN�n ; 1v(n)KN�n� �! �J1=2 �B(W�); J �W��weakly in D(IR+; IR� IR) as n!1:(4.24)Up to obvious 
hanges, the remaining parts of the proof are on the lines of 4.12. 24.25 Remark : In the same way, we may 
onsider d-dimensional lo
al martingales M 2 M2lo
by in
luding all 
omponents M i of M and < M i;M j > of < M > into the random walk (4.23).4.26 Remark : Via the RLT, see 1.7, the last result implies joint weak 
onvergen
e of martin-gales with arbitrary integrable additive fun
tionals.We end this se
tion with an example illustrating why we need assumption (H5B) to make surethat in
rements of the martingale over life 
y
les of X form indeed a random walk.47



4.27 Example: We 
ontinue example 1.11 a), will all notations as there.a) For F open in IR with 0 < �(F ) < 1, 
onsider the IFX -
ounting pro
essNt =Xn�1 1fTn�tg1fXTn2F�f0ggand let M denote the 
ompensated 
ounting pro
essMt = Nt � Z t0 �121F�f0g(Xs) + �(F )1A(Xs)� dswhere A = IR� f1g is the atom of X. By de�nition of (Rn)n in 1.11 as passage times from A toA
, XRn is always in IR� f0g, is distributed a

ording to �
�0, and we haveXRn 2 F � f0g if and only if MRn+t �MRn = �12 t for t suÆ
iently smallXRn 2 F 
 � f0g if and only if MRn+t �MRn = 0 for t suÆ
iently smallas well as MRn =MR�n + 1F�f0g(XRn) :So both (�) and (��) of (H5B) are violated, and it is 
lear thatM�MRn andMRn are dependent.So �MRj �MR1 ; Rj �R1�j�1 is not a random walk.b) In example 1.11 a) we have 
onstant intensity for '
hange of 
olour' on E�f0g and E�f1g,thus Rn+1 �Rn is independent of FRn . ConsiderN1t =Xn�1 1fRn�tg1fXRn2F�f0gg ; M1t = N1t � Z t0 �(F )1A(Xs)ds :M1 is a martingale su
h thatM1� (M1)Rn is independent of FRn , n � 1. So (��) of (H5B) holdsfor M1.
) Consider nowN2t =Xn�1 1fTn�tg1fXTn2F�f1gg ; M2t = N2t � Z t0 �121F�f0g(Xs)� dsThen (M2)Rn is FR�n -measurable, so (�) of (H5B) holds for M2. 2
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5 Proofs for subse
tion 3.1 - ne
essary 
onditionIn this se
tion, we 
onsider pro
esses with life 
y
les and prove that the 
onditions on regularvariation of tails of life-
y
le length distributions in theorem 3.1 are ne
essary 
onditions forweak 
onvergen
e of res
aled martingales under a Lindeberg 
ondition - this 
ondition impliesthat the limit pro
ess is a 
ontinuous lo
al martingale, and that we have also weak 
onvergen
e of(predi
table) quadrati
 variations. To these one applies the 
lassi
al Darling-Ka
 theorem ([D-K57℄, see [B-G-T 87, 
h. 8.11℄) whi
h states that norming fun
tions are ne
essarily regular varying,and that limit laws for (one-dimensional marginals of) res
aled additive fun
tionals of X arene
essarily Mittag-Le�er laws. However, the Darling-Ka
 theorem needs a uniformity 
ondition(see [B-G-T 87, p. 390℄) whi
h is rather restri
tive ex
ept for simple situations su
h as Markovstep pro
esses with 
ountable state spa
e. Touati ([Tou 88℄) proposed to avoid 'Darling-Ka
 
on-ditions' by use of 'spe
ial fun
tions'. We give the argument exa
tly in this way.In a �rst part of this se
tion, we shall use only assumptions on the pro
ess X:(H1): X = (Xt)t�0 is Harris with invariant measure �;(H3): X has a re
urrent atom A 2 E and a life 
y
le de
omposition (Rn)n�1, see 1.9.A + 1.9.B;(H4): There is some fun
tion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, su
h thatx ! Ex�Z R10 f(Xs) ds� is bounded on E(a 'weakly spe
ial fun
tion for X and R1').With respe
t to (Rn)n, we �x the norming 
onstant for � as in (4.11').(H1), (H3) and (H4) allow to prove a variant of the 
lassi
al Darling-Ka
 theorem withoutDarling-Ka
 
onditions: weak 
onvergen
e of (linearly time-s
aled and suitably normed) additi-ve fun
tionals of X implies regular variation of tails of life-
y
le length distributions (theorems5.6.A and 5.6.B below). We will use in this se
tion the following abuse of language: we writeEA(�) := E�A(�) with �A the law of XRn as in 1.9.A+B, and we term fun
tions f meeting (H4)for short weakly spe
ial without expli
it referen
e to X and R1.As in (4.2)-(4.4), write bF for the Lapla
e transform of the life 
y
le length distribution:bF (�) = E(e��(R2�R1)) = EA(e��R1) ; � 2 IR+49



and introdu
e a fun
tion v : IR+ ! IR+v(t) = �1�EA �e� 1tR1���1 = �1� bF (1t )��1(5.1)whi
h is nonde
reasing, with v(0) = 1 and v(t) " 1 as t ! 1. This fun
tion v - whi
h wasimpli
it already in (4.2)-(4.4) - will play a key role in the sequel. We will work with resolvantsand de�ne for f nonnegative, bounded, measurableR�f(x) = Z 10 �e��tEx�Z t0 f(Xs)ds� dt = Ex�Z 10 e��tf(Xt)dt� :5.2 Lemma : ([Tou 88℄) R� admits the de
ompositionR�f(x) = R1�f(x) +R2�f(x)where R1�f(x) = Ex�Z R10 e��tf(Xt)dt�and R2�f(x) = v( 1� )Ex �e��R1�EA�Z R10 e��tf(Xt)dt� :Proof: We start fromR�f(x) = Ex�Z 10 e��tf(Xt)dt�= Ex�Z R10 e��tf(Xt)dt�+Ex0�Xn�1Z Rn+1Rn e��tf(Xt)dt1A :Here, the �rst term on the r.h.s is R1�f(x). For the se
ond one, note thatEx�Z Rn+1Rn e��tf(Xt)dt� = Ex�e��Rn �Z R10 e��vf(Xv)dv� Æ �Rn�= Ex �e��Rn�EA�Z R10 e��vf(Xv)dv�by the strong Markov property, whereEx �e��Rn� = Ex �e��R1�Ex �e��(Rn�R1)� = Ex �e��R1�EA �e��R1�n�1 :By de�nition of v in (5.1), the assertion follows. 250



For weakly spe
ial fun
tions, lemma 5.2 
an be strengthened.5.3 Lemma : ([Tou 88℄) For f weakly spe
ial and C := supxEx �R R10 f(Xs)ds� < 1, for �normed a

ording to (4.11'), one has for arbitrary x 2 E(i) R�f(x)v( 1�) �!�#0 �(f)(ii) 8 � > 0 : v( 1�)"R�f(x)v( 1�) � �(f)# � C :Proof: For � # 0, this follows from inspe
tion of the termsR�f(x)v( 1�) = Ex �Cz }| {�Z R10 e��tf(Xt)dt�v( 1�) + Ex �e��R1�| {z }�1 "1 � EA�Z R10 e��tf(Xt)dt�| {z }��(f); "�(f)arising in the de
omposition of lemma 5.2. 2Next, for f weakly spe
ial, we 
onsider moments of arbitrary order for additive fun
tionals At =R t0 f(Xs)ds. De�ne Mn(t; x) := Ex��Z t0 f(Xs)ds�n�and 
Mn(�; x) = Z 10 �e��tMn(t; x)dt; � > 0:Then the following modi�
ation of [D-K 57℄ or [B-G-T 87℄ { due to Touati { holds.5.4 Lemma : ([Tou 88℄) For f weakly spe
ial, one has for all x 2 E:(i) 
Mn(�; x)n! (v( 1�))n �!�#0 (�(f))n;(ii) 8 � > 0 : v( 1�)" 
Mn(�; x)n! (v( 1�))n � �(f)n# � C(C + 2�(f))n�1where C is the 
onstant of lemma 5.3. 51



Proof : 1) We start fromEx ��Z t0 f(Xs)ds�n� = Z t0 : : : Z t0 Ex(f(Xu1) : : : f(Xun))du1 : : : dun= n! Z t0 du1 Z tu1 du2 : : :Z tun�1 dunEx(f(Xu1) : : : f(Xun))whi
h gives
Mn(�; x) = Z 10 �e��tMn(t; x)dt= n! Z 10 du1 Z 1u1 du2 : : : Z 1un�1 dune��unEx(f(Xu1) : : : f(Xun)):Conditioning on Xun�1 and using the strong Markov property we get
Mn(�; x) = n! Z 10 du1 : : : Z 1un�2 dun�1e��un�1Ex(f(Xu1) : : : f(Xun�1)R�f(Xun�1))where we have used thatEx Z 1un�1 e��(un�un�1)f(Xun)dun���Xun�1! = Ex�Z 10 e��uf(Xun�1+u)du���Xun�1�= EXun�1 �Z 10 e��uf(Xu)du�= R�f(Xun�1):Iterating this argument, we arrive at
Mn(�; x) = n! Z R�(x; dx1)f(x1)Z R�(x1; dx2) : : : f(xn�1)Z R�(xn�1; dxn)f(xn)whi
h in short notation 0(�; x) := 0;  1(�; x) := R�f(x); : : : ;  n(�; x) := Z R�(x; dx1)f(x1) n�1(�; x1)takes the form 
Mn(�; x) = n!  n(�; x):2) In a next step we prove that there is some sequen
e of 
onstants (Kn)n su
h that for all n thefollowing (+) and (++) hold:(+)  n(�; x)(v( 1�))n � Kn 8�; x(++)  n(�; x)(v( 1�))n �!�#0 (�(f))n 8x:52



The proof is by indu
tion on n. The 
ase n = 1 is lemma 5.3 together with v( 1�) � 1. For arbitraryn > 1, we write n(�; x)(v( 1�))n � (�(f))n�1 1(�; x)v( 1� ) = 1v( 1�) Z R�(x; dx1)f(x1)" n�1(�; x1)(v( 1� ))n�1 � (�(f))n�1#(5.5)and de
ompose again R� = R1� +R2�a

ording to lemma 5.2. Assuming (+) and (++) for n�1, the expression [: : :℄ in square bra
kettsin (5.5) 
onverges to 0 pointwise in x1 as � # 0, and is bounded by Kn�1 + (�(f))n�1. Thusf 2 L1+(�) implies x1 7! f(x1) j[: : :℄j 2 L1+(�)and the last fun
tion is weakly spe
ial sin
e f is weakly spe
ial. Using this property, we have����� 1v( 1�) Z R1�(x; dx1)f(x1)[: : :℄����� � Kn�1 + �(f)n�1v( 1�) � C ! 0 (� # 0)for all x, and dominated 
onvergen
e and the de�nition of R2� give����� 1v( 1�) Z R2�(x; dx1)f(x1)[: : :℄����� � Z �(dx1)f(x1) � j[: : :℄j ! 0 (� # 0)whi
h implies (+) and (++) for n.3) Assertion (i) in lemma 5.4 is proved by (++). From (5.5), we then prove by indu
tion alsoassertion (ii) of 5.4, using exa
tly the same arguments as in step 2) above. 2For sake of 
ompleteness, we now in
lude the proof of the Darling-Ka
 theorem, under assumpti-ons (H1), (H3), and (H4), and thus in a version where the use of weakly spe
ial fun
tions avoidsDarling-Ka
 
onditions. The prin
ipal assertion of theorems 5.6.A and 5.6.B is that if we ha-ve weak 
onvergen
e of (one-dimensional marginals of) additive fun
tionals of X, then normingfun
tions are automati
ally regularly varying.5.6.A Theorem : ([D-K 57℄, [B-G-T 87, 
h. 8.11℄, [Tou 88℄) Consider an additive fun
tional(At)t�0 of X, �-integrable and su
h that E�(A1) > 0. If we have 
onvergen
e in law under Px(�) Atv(t) w�! Yto some limit variable Y su
h that L(Y ) is not a Dira
 measure, for some norming fun
tion v(�)(v : IR+ ! IR+ nonde
reasing, v(t) " 1 as t!1), then we have ne
essarily53



(i) v(t) � 
 � v(t) as t!1 for some 
 > 0, where v is given by (5.1);(ii) v 2 RV� for some 0 � � < 1;(iii) 1v(t)At w�! E�(A1) �W�1 under Pxwhere the norming 
onstant for � is as in (4.11'), and where W 01 � exp(1) is de�ned for � = 0 ina

ordan
e with 2.8 (the spe
ial 
ase of a Mittag-Le�er law with parameter 0).5.6.B Theorem : Under all assumptions of 5.6.A ex
ept that the limit variable Y in (�) isrepla
ed by a 
onstant y 2 (0;1), we have the following:(i) v(t) � 
 � v(t) as t!1 for some 
 > 0, where v is given by (5.1);(ii) v 2 RV1 ;(iii) 1v(t)At w�! E�(A1) under Pxwith norming 
onstant of (4.11').We add a remark before proving the theorems.5.7 Remark : a) Remark 2.8 shows that the limiting 
ase � = 0 of a Mittag-Le�er pro
essis a pro
ess with time-independent marginals on the stri
tly positive half axis: the pro
ess hasthe form W 0 = �1(0;1) where � is exponentially distributed with parameter 1. This pro
ess isnot 
ontinuous and thus will not arise in the setting of theorem 3.1 where - under the Lindeberg
ondition - limit pro
esses will be 
ontinuous.b) For 0 < � � 1, (4.2)-(4.4) guarantee that the norming fun
tion v of (5.1) in theorems 5.6.Aand 5.6.B 
oin
ides (up to asymptoti
 equivalen
e) with the norming fun
tions used in theorems3.1 and 3.2 (or in 4.12).
) By (i) in lemma 5.3, we 
an repla
e the norming fun
tion v of (5.1) by a resolvent of a spe
ialfun
tion - for an arbitrary starting point x - and thus give a version of 5.6.A and 5.6.B wherea life 
y
le de
omposition of the pro
ess X does not appear in the formulation of the theorem.This will be important for se
tion 7.
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5.8 Proof of 5.6.A and 5.6.B : By the ratio limit theorem, it is suÆ
ient to prove the theoremsfor additive fun
tionals of form At = Z t0 f(Xs)dswhere the fun
tion f is weakly spe
ial. W.l.o.g., we 
an take �(f) = 1. This will be assumed inthe sequel. The proof, following [B-G-T 87, p. 392℄, is in several steps. During the �rst ones, we
onsider a limit variable Y in (�) whose law (
ertainly 
on
entrated on [0;1)) is not a Dira
measure at 0; this is the 
ommon assumption in 5.6.A and 5.6.B.1) Lemma 5.4 gives Z 10 �e��tEx (At)n(v( 1�))n! dt �! n! (� # 0)or after substituting u = �t Z 10 e�uEx� (Au=�)n(v(1=�))n� du �! n! :Choose some r.v. T exponentially distributed with parameter 1, and independent of the pro
essX. Then the last 
onvergen
e is8n : Ex� (AT=�)n(v(1=�))n�! n! (� # 0):(5.9)But (n!) is the sequen
e of moments of the exponential law exp(1) with parameter 1, whi
h isuniquely determined by its moments: by the method of moments, we have weak 
onvergen
eAT=�v(1=�) �! � (� # 0)where � � exp(1), or Z 10 e�tPx� At=�v(1=�) � 
� dt �! 1� e�
 8
 � 0:(5.10)2) We have assumed weak 
onvergen
e At=�v(t=�) w! Y as � # 0, for some r.v Y whose law is not aDira
 measure at 0. Consider fun
tions g�(t) := v(t=�)v(1=�) whi
h are nonde
reasing in t for �xed �.Helly's sele
tion pro
edure applied to families fg�n : n � 0g (distribution fun
tions of �-�nitemeasures) allows to sele
t for every sequen
e (�n)n with �n # 0 a subsequen
e (�n0)n0 and somenon-de
reasing fun
tion g taking values in [0;1℄ su
h that at all 
ontinuity points t of gv(t=�n0)v(1=�n0) �!(n0) g(t):(5.11)
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We take g right-
ontinuous. Let G denote the distribution fun
tion of Y . Along the sequen
e(�n0)n0 , we write the l.h.s of (5.10) asZ 10 e�tPx At=�n0v(t=�n0) � 
v(1=�n0)v(t=�n0)!dt:(5.12)At 
ontinuity points t of bothG and g and along (�n0)n0 , the probability in the integrand 
onvergesto P (Y � 
=g(t)) = G(
=g(t)) (with 
=0 =1, 
=1 = 0); there are at most 
ountably many su
hdis
ontinuities. So (5.10) gives8 
 � 0 : Z 10 e�tG(
=g(t))dt = 1� e�
:(5.13)From (5.13) we see that g is (0;1)-valued: g � 1 on some half axis [t0;1) would imply that theintegrand in (5.13) equals G(0)e�t on [t0;1) whi
h is impossible: let 
 " 1 in (5.13), and re
allthat G(0) < 1 by assumption. A similiar argument ex
ludes 
ases where g � 0 on some [0; t0).So g takes values in (0;1), and (5.13) readsP (Y �g(T ) � 
) = E(G(
=g(T ))) = 1� e�
; 
 � 0:(5.14)Here we have used that T and Y are independent sin
e T was independent of the pro
ess X.(5.14) with 
 = 0 then shows that also Y is (0;1)-valued; thus we may take logarithms and havelog Y + log g(T ) d= log T:(5.15)3) Consider 
hara
teristi
 fun
tions 'Y of log Y , 'g(T ) of log g(T ), 'T of log T , then'Y (u)'g(T )(u) = 'T (u); u 2 IR:(5.16)None of these 
an take the value 0 sin
e'T (u) = Z xiue�xdx = �(1 + iu) 6= 0; u 2 IR:So 'g(T ) = 'T ='Y is uniquely determined from Y , so the distribution fun
tion of g(T ) and thusthe (right-
ontinuous) fun
tion g itself are uniquely determined from Y . In parti
ular, g does notdepend on 
hoi
e of subsequen
es (�n0)n0 of sequen
es (�n)n, so (5.11) is improved tov(t=�)v(1=�) �!�#0 g(t) for almost all t(5.17)whi
h gives v(t=�)v(1=�) �!�#0 g(t)g(1) for almost all t .(5.18) 56



But (5.17) and (5.18) implyv 2 RV�; g(t) = g(1)t�; v 2 RV�; v(t) � g(1)v(t) as t " 1(5.19)for some � 2 IR; ne
essarily � � 0 sin
e g is nonde
reasing.4) It remains to show that not all 
ases � � 0 
an o

ur in (5.19), and to identify the limitlaw L(Y ); by (5.17) - (5.19) and in virtue of (5.14), we have spe
i�ed the initial assumption on
onvergen
e in law to Atv(t) w! g(1)Y as t " 1;(5.20)for some r.v Y 
on
entrated on (0;1).i) If � = 0, then the fun
tion g is 
onstant by (5.19), so (5.14) shows that g(1)Y has law exp(1).ii) Consider the 
ase 0 < � < 1. Sin
e At = R t0 f(Xs)ds where f is spe
ial and �(f) = 1, we applylemma 5.4 a) whi
h gives the asymptoti
s as � # 0 of the Lapla
e transform bUn of the measureUn(ds) :=Mn(s; x)ds: bUn(�) �#0� 1� n! �v( 1� )�n :Sin
e v 2 RV�, the Tauberian theorem ([B-G-T 87, p. 37℄) givesUn([0; t℄) t"1� t n! (v(t))n�(2 + �n) ;sin
eMn(�; x) is by de�nition monotone, the monotone density theorem ([B-G-T 87, p. 39℄) showsMn(t; x) t"1� n! (v(t))n�(1 + �n)whi
h we write in the formEx�� Atv(t)�n� �! n!�(1 + �n) ; t!1(5.21)for arbitrary n 2 IN . On the r.h.s of (5.21), we �nd the sequen
e of moments of the Mittag-Le�ervariable W�1 , 
f. 2.8: so the method of moments gives 
onvergen
e in law under PxAtv(t) w! W�1 ; t!1(5.22)and thus spe
i�es the limit law in (5.20).iii) We show that under the assumptions of theorem 5.6.A, other 
ases � > 0 ex
ept 0 < � < 1are impossible. Indeed, the ratio limit theorem and (5.20) - where �(f) = 1 - imply 
onvergen
ein law Ntv(t) w! g(1)Y; t!1;(5.23) 57



with notations as in the proof of theorem 4.12. v being regularly varying by (5.19) with positiveindex, the arguments in step 3) of the proof of 4.12 show that we have weak 
onvergen
e of Rna(n)as n!1 to some limit law whi
h is 
on
entrated on (0;1) and whi
h is not a Dira
 measure;here a(�) is an asymptoti
 inverse of v. Then theorem 2.4.A 
ombined with (4.2)-(4.4) and (5.1)show that the index � of regular variation of v is ne
essarily in (0; 1). So all assertions of theorem5.6.A are proved.iv) We show that under the assumptions of theorem 5.6.B, all 
ases � 6= 1 are impossible. Stepsi) and ii) above ex
lude 0 � � < 1. With the same arguments as in iii) ex
ept that Rna(n) now
onverges in probability as n ! 1 to some stri
ly positive 
onstant, we apply theorem 2.4.B
ombined with (4.2)-(4.4) and (5.1) to show that the index � of regular variation of v ne
essarilyequals 1. Then g in (5.19) is linear, so g(1)Y = 1 by (5.14), and all assertions of theorem 5.6.Bare proved. 2Now we turn to 
onvergen
e of martingalesM 2M2;lo
(Px; IF ), on a spa
e (
;A; IF ) as in se
tion1. Theorems 5.6.A and 5.6.B 
ontain one essential argument for the proof of the 'ne
essary' partof theorem 3.1; the other is the following.5.24 Theorem : Consider M 2M2lo
(Px; IF ) whose angle and square bra
kett are �-integrableadditive fun
tionals of X. For some norming fun
tion v(�), letMn =  1pv(n)Mtn!t�0
onverge (weakly in D(IR+; IR), under Px, as n ! 1) to some limit pro
ess W = (Wt)t�0 su
hthat W0 = 0 and L(W1) is not the Dira
 measure at 0, and assume that the sequen
e (Mn)nsatis�es the Lindeberg 
ondition1v(n) Z tn0 Z jxj2 1fjxj>"pv(n)g�(ds; dx) �! 0 in Px-probability, for all t, all " > 0(5.25)where �(ds; dx) is the Px-
ompensator of the point pro
ess of jumps ofM . Then the limit pro
essW is a 
ontinuous lo
al martingale with respe
t to its own �ltration, and we have(Mn; [Mn℄) �! (W;< W >) ; (Mn; < Mn >) �! (W;< W >)(5.26)(weak 
onvergen
e in D(IR+; IR� IR), under Px, as n!1).58



Proof : We de
ompose Mn = Mn;1 +Mn;2 where Mn;1 has bounded jumps j�Mn;1j � b andwhere Mn;2 is the 
ompensated sum of 'big' (i.e. j�Mnj > b) jumps of Mn. Then the Lindeberg
ondition (3.25) implies P �sups�T jMn;2s j > "�! 0 (n!1) 8 T > 0and thus Mn;2 w! 0 ; Mn;1 w!W(weak 
onvergen
e in D(IR+; IR), under Px, as n ! 1). Then by [J-Sh 87, VI.3.26℄, the weaklimit W is a 
ontinuous pro
ess. By [J-Sh 87, IX.1.19℄, sin
e Mn;1 has bounded jumps, W is alo
al martingale with respe
t to its own �ltration (letW be de�ned on some (
0;A0; P 0), 
onsiderthe �ltration IF 0 generated by W ). So W has bra
ketts < W >= [W ℄. Again by boundedness ofjumps of Mn;1, [J-Sh 87, VI.6.1℄ gives(Mn; [Mn℄) �! (W;< W >)(weak 
onvergen
e inD(IR+; IR�IR), under Px, as n!1). In this last assertion, square bra
ketts
an be repla
ed by angle bra
ketts(Mn; < Mn >) �! (W;< W >)sin
e < M >, [M ℄ are additive fun
tionals of X having the same expe
ted in
rement over life
y
les of X: this is again the RLT 
ombined with the argument of step 3) in the proof of 4.12that weak 
onvergen
e of in
reasing pro
esses to a 
ontinuous in
reasing pro
ess is equivalent to
onvergen
e of �nite dimensional marginals. 25.27 Proof of theorem 3.1, 'ne
essary' 
ondition : Consider (Mn)n as in 5.24. We haveto prove that if Mn 
onverges weakly in D(IR+; IR) under Px as n ! 1 to some limit pro
essW = (Wt)t�0 su
h that W0 = 0 and L(W1) is not the Dira
 measure at 0, then ne
essarily thetails of life-
y
le length distributions in the pro
ess X are regulary varying as stated in theorem3.1. First we apply 5.24: W is 
ontinuous and a lo
al martingale, and we have 
onvergen
e in law1v(n) < M >n�!< W >1as n!1 under Px, where also L(< W >1) is not a Dira
 measure at 0. Then 5.6.A and 5.6.Bapply to show the following: if < W >1 is a.s. 
onstant, then we have v 2 RV1 and1v(n) < M >n�! J59



where v is given by (5.1) and J = E(< M >R2 � < M >R1); if < W >1 is not a.s. 
onstant,then v 2 RV� and 1v(n) < M >n�! J W�1for some 0 � � < 1. It remains to ex
lude the 
ase � = 0: if the norming fun
tion v is slowlyvarying at 1, then < W >�, the limit in law of 1v(n) < M >�n, and < W >1, the limit in lawof 1v(�n) < M >�n, ne
essarily have the same law exp(1); sin
e < W > is in
reasing, its pathsmust be 
onstant on (0;1); but < W > is 
ontinuous on [0;1) with < W >0= 0 whi
h isa 
ontradi
tion. So 0 < � < 1, and by (5.1) and (4.2)-(4.4), regular variation of the normingfun
tion v is translated into regular variation of tails of life-
y
le length distributions of X asspe
i�ed in theorem 3.1. 2The 'ne
essary' part of theorem 3.1 in subse
tion 3.1 is thus proved, under assumption (H1), (H3)and (H4) for the pro
ess, and under 
onditions mu
h weaker than (H5A)+(H5B) on the martin-gales under 
onsideration. It remains to prove proposition 3.4 whi
h gives a suÆ
ient 
ondition {in terms of upper bounds for the life 
y
le variable R1 { for existen
e of weakly spe
ial fun
tionsfor X and R1. In fa
t, the only assumption whi
h we need for this is (H1).5.28 Proof of proposition 3.4 : We assume only Harris re
urren
e (H1) of the pro
ess X.The proof is in several steps.1) Consider �rst the pro
ess X = (Xt)t�0 at jump times �n of an independent Poisson pro
esswith rate 1: by theorem 1.4, we have (H2), i.e. the dis
rete-time pro
ess X = (X�n)n2IN is Harriswith invariant measure �. Revuz terms f : E ! IR+ a spe
ial fun
tion for X (see [Re 75, p. 182,p. 48℄) if f is E-measurable and ifx ! Ex 1Xn=1(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)!is bounded in x 2 E, for every h 2 U+ having �(h) > 0; here U+ denotes the set of E-measurablefun
tions h on E with 0 � h(�) � 1. Spe
ial fun
tions of X do exist, see [Re 75, 6.4.3 and 6.4.6℄;the set of spe
ial fun
tions forms a 
onvex 
one in L1(�) ([Re 75, 6.4.2℄); thus in parti
ular spe
ialfun
tions exist whi
h are bounded.2) We prove that for h 2 U+ with �(h) > 0 and f � 0 measurable, one hasEx 1Xn=1(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)! = Ex�Z 10 f(Xt)e� R t0 h(Xs) dsdt� :(5.29) 60



Indeed, �n has law �(n; 1), and � �1�n ; : : : ; �n�1�n �is independent of �n and distributed as the orderstatisti
s of n� 1 uniform r.v.'s on (0; 1); thus the summands on the l.h.s of (5.29) areEx �(1� h(X�1)) � � � (1� h(X�n�1))f(X�n)�= Ex0�Z 10 dt e�t f(Xt) Z t0 dt1 Z tt1 dt2 : : : Z ttn�2 dtn�1 en�1Pi=1 g(Xti )1Awith g := log(1� h), for n 2 IN . Fix some t and de�ne fun
tions Sm(�) = Stm(�) on [0; t℄ byS0(r) � 1; S1(r) := Z tr dr0eg(Xr0); Sm(r) := Z tr dt1 Z tt1 dt2 : : :Z ttm�1 dtm e mPi=1 g(Xti); m � 2:Note that Sm(r) � tmm! and that Sm(r) = R tr dr0eg(Xr0)Sm�1(r0) form � 1. De�ning S(�) = St(�) :=Pm�0Sm(�) on [0; t℄, we have ddrS(r) = �eg(Xr)S(r) and St(t) = 1, thusSt(r) = Xm�0Sm(r) = eR tr (1�h)(Xr0 )dr0 ; 0 � r � t:As a 
onsequen
e, we have written the l.h.s of (5.29) asEx Z 10 dt e�tf(Xt) 1Xn=1Stn�1(0)! = Ex�Z 10 dt f(Xt) e� R t0 h(Xs) ds�whi
h is the assertion.3) We give an interpretation of the r.h.s of (5.29) in terms of position-dependent killing of thestrong Markov pro
ess X = (Xt)t�0 at rate h 2 U+ with �(h) > 0: given that X has not beenkilled up to time r, it will be killed in a small time interval (r; r+�℄ with probability � h(Xr)+o(�).First, for h bounded away from 0 and for f bounded, partial integrationEx�Z 10 f(Xt)e� R t0 h(Xs) dsdt� = Ex�Z 10 dr h(Xr)e� R r0 h(Xs) ds Z r0 f(Xv) dv� ;allows to write the r.h.s of (5.29) as Ex Z bTh0 f(Xt) dt!where bTh is the killing time, de�ned on an extension of the sto
hasti
 basis (
;A; IF ). Se
ond,sto
hasti
 ordering of bThn as hn # h and monotone 
onvergen
e showEx�Z 10 f(Xt)e� R t0 h(Xs) dsdt� = Ex Z bTh0 f(Xt) dt!61



for arbitrary h 2 U+ with �(h) > 0 and f � 0; note that bTh < 1 Px-a.s for all x 2 E sin
e�(h) > 0.4) Write bTB if h = 1B, for B 2 E with �(B) > 0, and let SB denote the �rst entry time of thedis
rete 
hain X to B: then (5.29) yieldsEx SBXn=1 f(X�n)! = Ex Z bTB0 f(Xt) dt! ; x 2 E:(5.30)If f is a spe
ial fun
tion of X as in 1), the expressions in (5.29), for h 2 U+ with �(h) > 0, andin (5.30), for B 2 E with �(B) > 0, are bounded fun
tions of x 2 E. From now on, we will omitthe referen
e to X and speak for short during this proof of spe
ial fun
tions.Consider a �rst entry time TB to BTB := infft > 0 : Z t0 1B(Xs)ds > 0g � bTB ;then TB is a IF -stopping time, and by 
onstru
tion, between TB and bTB, the pro
ess X has tospend an independent exponential time in the set B. In parti
ular, for B = E, S := bTE is anindependent exponential time. Comparison with (5.30) shows: if f is spe
ial, thenEx�Z TB0 f(Xt) dt� ; Ex Z bTB0 f(Xt) dt! ; Ex�Z S0 f(Xt) dt�(5.31)(B 2 E with �(B) > 0) are bounded fun
tions of x 2 E.5) Consider now a re
urrent atom A 2 E forX and a life 
y
le de
omposition (Rn)n as in 1.9.A+Bsu
h that R1 has the form spe
i�ed in proposition 3.4:R1 � S0 + (max1�j�lTBj ) Æ #S0 ; S0 � max1�i�k bThi(5.32)where Bj 2 E have positive invariant measure �(Bj) > 0, 1 � j � l, and where hi are E-measurable, [0; 1℄-valued, with �(hi) > 0. By the strong Markov property, for f spe
ial andbounded,x �! Ex�Z R10 f(Xt) dt� � Ex0�Z S00 f(Xt) dt+ lXj=1EXS0  Z bTBj0 f(Xv) dv!1A :using (5.31), this is is again a bounded fun
tion in x 2 E. Thus we have proved that for R1meeting (5.32), spe
ial fun
tions for X are weakly spe
ial for X and R1. This is the assertion ofproposition 3.4. 262



6 Nummelin splitting in dis
rete timeThe results of subse
tion 3.1 were formulated under the assumption that a Harris pro
ess X =(Xt)t�0 has a re
urrent atom A su
h that suitably de�ned exit times (Rn)n from this atom de-
ompose the traje
tory of X into a sequen
e of i.i.d life 
y
les. Unfortunately, many interestingpro
esses X do not possess su
h re
urrent atoms.Nummelin ([Num 78℄) showed that dis
rete-time Harris 
hains 
an be embedded as �rst 
om-ponent into a a two-dimensional Harris 
hain (the 'split' 
hain) where the se
ond 
omponentintrodu
es a re
urrent atom of positive mass. As a preparation to se
tion 7, we retra
e the ap-proa
h of Nummelin in 
ase of dis
rete time.In this se
tion, we 
onsider a Markov 
hain Y = (Yn)n2IN0 taking values in a Polish spa
e (E; E),with one-step transition kernel P (x; dy), and assume that Y is Harris with invariant measure �.Nummelin used the following minorization assumption(s) (Mk), k 2 IN .6.1 Minorization assumption (Mk) : There is some E-measurable fun
tion h : E ! [0; 1℄with �(h) > 0 and some probability measure � on (E; E) su
h thatPk(x;A) � h(x)�(A) 8 x 2 E; 8 A 2 E :
For our purposes, the dis
rete time 
hain Y of interest will be X = (X�n)n, i.e. the 
ontinuous-time Harris pro
ess X = (Xt)t�0 evaluated after independent exponential waiting times; hen
eP (x; dy) will be the potential kernel U1(x; dy) and � the invariant measure of X, 
f. proof oftheorem 1.2 and theorem 1.4. The main result of the this se
tion is proposition 6.7: it states thatin 
ase P (x; dy) = U1(x; dy), the minorization assumption (M1) is automati
ally satis�ed.Under (M1), Nummelin splitting transforms the state spa
e (E; E), measures � on (E; E), tran-
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sition probabilities P (�; �) on (E; E), ..., as follows. For points x 2 E and sets A 2 E , splitE 3 x x0 := (x; 0) 2 E0 := E � f0g%& x1 := (x; 1) 2 E1 := E � f1g
E 3 A A0 := A� f0g � E0%& A1 := A� f1g � E1 :We write E� := E0 �[ E1; E� = �(A0; A1 : A 2 E)and identify sets A 2 E with their pre-image under the proje
tion from E� to E:E 3 A  ! A� f0; 1g 2 E�:By (M1) with h as there, a �-�nite measure � on (E; E) splits a

ording to�(A) R 1A(x)h(x)�(dx) =: ��(A1)%& R 1A(x)(1� h)(x)�(dx) =: ��(A0) ;A 2 E ; this de�nes a �-�nite measure �� on (E�; E�) su
h that��(A� f0; 1g) = �(A); A 2 E :Identifying A 2 E with A�f0; 1g 2 E� as above, we write again � for the restri
tion of �� to thesub-�-�eld fA� f0; 1g : A 2 Eg of E�. Extending E-measurable f : E ! IR to (E�; E�) viaf(x0) := f(x) =: f(x1); x 2 E;we may 
onsider integrals ZE f d� = ZE� f d�without distin
tion on either (E; E) or (E�; E�).64



Next, one uses (M1) and the kernel h
�(x; dy) := h(x)�(dy) to transform the transition kernelP (�; �) on (E; E). The aim is to de�ne a transition probability P �(�; �) on (E�; E�) su
h thati) the original Markov 
hain Y = (Yn)n2IN0 evolving under P is embedded as �rst 
omponent intoa new 
hain Y � = (Y �n )n2IN0 on (E�; E�) evolving under P �(�; �): we then write Y �n = (Yn; "n);ii) transitions away from points x1 = (x; 1) 2 E1 do no longer keep tra
e of the �rst 
omponentx of points in E1: thus E1 2 E� will be
ome an atom for Y �.To get i) and ii), one has to solveE0 E E1��(dx0) = (1� h)(x)�(dx)  � �(dx) �! h(x)�(dx) = ��(dx1)P �(x0; dy) & . P �(x1; dy) := �(dy): : :  � �(dx)P (x; dy) �! : : :whi
h { noti
ing that �(dy) = 1h(x) (h 
 �)(x; dy) whenever h(x) > 0 { leads to a kernel P �(�; �)de�ned for points x� in E� = E � f0; 1g byP �(xi; dy) = 8><>: 11�h(x)(P � h
 �)(x; dy) if i = 0 and h(x) < 1�(dy) else .So far, we have de�ned P �(x�; dy) as a transition probability from (E�; E�) to (E; E): it remainsto split all measures P �(x�; dy), x� 2 E�, a

ording to the above rule (from y to y0 = (y; 0)with probability 1�h(y), and to y1 = (y; 1) with probability h(y)) to de�ne the desired transitionkernel P �(x�; dy�) on (E�; E�).Resuming this dis
ussion, we obtain6.2 Proposition : Consider a dis
rete time 
hain Y = (Yn)n2IN0 with one-step transition kernelP (�; �) on (E; E) satisfying (M1), with arbitrary initial distribution �. Consider a 
hain (Y �n )n on(E�; E�) with one-step transition kernel P �(�; �) as de�ned above, and with starting law ��.(i) For arbitrary N � 1 and An 2 E ; 0 � n � N , we haveP�(Yn 2 An; 0 � n � N) = P��(Y �n 2 An � f0; 1g; 1 � n � N)65



thus the �rst 
omponent of Y � is equal in law to the original 
hain Y . (Moreover, we may
onstru
t Y jointly with Y � su
h that Y is the �rst 
omponent of Y � = (Yn; "n)n, these
ond 
omponent ("n)n taking values in f0; 1g.)(ii) If Y is Harris with invariant measure �, then Y � is Harris with invariant measure ��:��(A1) = ZA h(x)�(dx) ; ��(A0) = ZA(1�h)(x)�(dx) ; A 2 E :(iii) E1 is an atom for Y � having ��(E1) = RE h(x)�(dx) > 0:To apply 6.2, we have to be able to 
he
k the minorization 
ondition (M1).6.3 Remark : In some 
ases one has expli
it densities p(�; �), E 
 E-measurable,P (x; dy) = p(x; y)m(dy); x; y 2 Ewith respe
t to some �-�nite measure m on (E; E) whi
h is equivalent to the invariant measure�, and one 
an spe
ify some set C 2 E having8><>: inf(x;y)2C�C p(x; y) > 0m(C) > 0 (w.l.o.g also m(C) < 1)(thus C will be visited in�nitely often, and also transitions C ! C will o

ur in�nitly often):then for x 2 E, A 2 EP (x;A) � P (x;A \ C) = Z 1A\C(y) p(x; y)m(dy)� 1C(x) � inf(x;y)2C�C p(x; y)�m(A \ C)� h(x) �(A) = (h
 �)(x;A)where the fun
tion h and the probability measure � are given in terms of the set C alone8><>: h := 1C � inf(x;y)2C�C p(x; y) ^ 1�m(C) = � 1C� := m(� \ C)=m(C)for some � 2 (0; 1). In this 
ase, the minorization 
ondition (M1) holds in a very parti
ular form,with h and � determined from C. 266



This leads to the following sharper form of minorization 
onditions (Mk), k � 1:6.4 Minorization assumption (fMk) : There is some set C 2 E with �(C) > 0, some probabilitymeasure � on (E; E) equivalent to �(� \ C), some fun
tion h of form � 1C , � 2 (0; 1), su
h thatPk(x;A) � h(x)�(A) 8 x 2 E; 8 A 2 E :We quote the following result from Revuz [Rev 75℄.6.5 Proposition : ([Rev 75, p. 160℄) Consider a Harris 
hain Y = (Yn)n2IN0 taking values in(E; E), E 
ountably generated, with one-step transition kernel P (x; dy) and invariant measure �.Let m denote a probability measure on (E; E) whi
h is equivalent to �. Then there is a family ofLebesgue de
ompositions of k-step transition probabilities Pk(x; �) with respe
t to mPk(x; dy) = pk(x; y)m(dy) + �Pk(x; dy) ; x; y 2 E; k � 1with the following properties: pk(�; �) is E 
 E-measurable for all k � 1, and there is some setC 2 E with m(C) > 0 and some integer k 2 IN su
h that inf(x;y)2C�C pk(x; y) > 0.As a 
onsequen
e, arguing exa
tly as in remark 6.3 above, we dedu
e from 6.5:6.6 Proposition : Consider a Harris 
hain Y = (Yn)n2IN0 taking values in (E; E), E 
ountablygenerated, with one-step transition kernel P (x; dy). Then there is some k � 1 su
h that theminorization 
ondition (fMk) is satis�ed.We apply this to the spe
ial situation of interest for us.6.7 Proposition : Consider X = (Xt)t�0, a 
ontinuous-time Harris pro
ess with semigroup(Pt(�; �))t�0 and invariant measure �, taking values in a Polish spa
e (E; E).Then for all 0 < � <1, the transition kernels�U�(x; dy) = Z 10 �e��tPt(x; dy)dtsatisfy a minorization 
ondition (fM1). 67



Proof : Consider X� = (X�n)n�0 where �n+1��n, n � 0, are i.i.d exp(�)-waiting times in-dependent of X, �0 = 0. Then �n has law �(n; �), and a mixture formula for Gamma lawsgives 1Xn=0(1�q)qn�(n+1; �) = �(1; �(1�q))for arbitrary 0 < q < 1. Thus we have�(1�q)U�(1�q) = 1Xn=0(1�q)qn Z 10 �(n+1; �)(dt)Pt = 1Xn=0(1�q)qn (�U�)n+1 :Sin
e X = (Xt)t�0 is by assumption Harris, we know from theorem 1.4 that (H2�) holds forarbitrary 0 < � < 1: thus X� with one-step transition kernel �U� is by assumption Harris.Then proposition 6.6 yields that at least one of the kernels (�U�)n, n � 1, satis�es a minorization
ondition (fM1). So we have a minorization 
ondition (fM1) also for �0U�0 where �0 = �(1�q).Sin
e � and q were arbitrary, this proves the assertion. 2
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7 Nummelin-like splitting for general 
ontinuous time Harris pro-
esses and proofs for subse
tion 3.3The results of subse
tion 3.1 were formulated under the assumption that the Harris pro
essX = (Xt)t�0 under 
onsideration has a life 
y
le de
omposition. This restri
tive assumption willbe removed now, and we will prove the general results 'without life 
y
les' of subse
tion 3.3.Touati ([Tou 88℄) used Nummelin splitting to argue that for Harris pro
esses X = (Xt)t�0 withPolish state spa
e, life 
y
les may always be introdu
ed arti�
ially: he thus 
ould state the maintheorem of se
tion 3 without expli
it referen
e to 
on
rete life 
y
les of X, giving by the way theresult in its most general form. Using quite di�erent arguments, we will prove this result in thepresent se
tion (theorems 7.16 and 7.20 below).The setting is the following: we 
onsider a 
ontinuous-time strong Markov pro
ess X = (Xt)t�0with semigroup (Pt(�; �))t�0, taking values in a Polish spa
e (E; E), and with 
�adl�ag paths. Slight-ly more restri
tive than in se
tion 1, we take X as 
anoni
al pro
ess on (
;A; IF ), where 
 isthe Skorohod spa
e D(IR+; E) with 
anoni
al �-�eld and with 
anoni
al �ltration; we have shifts(#t)t�0 on (
;A; IF ) (note that for results on weak 
onvergen
e of sto
hasti
 pro
esses, this 
hoi
eis no restri
tion of generality). We do not assume more than(H1): X = (Xt)t�0 is Harris with invariant measure �.By theorem 1.4, we know that (H1) implies the property(H2): X = (X�n)n�0 is Harris, with �n��n�1 iid exp(1)-waiting times independent of Xand that in virtue of proposition 6.7 the following holds:(H6): The one-step transition kernel U1(�; �) of X satis�es a minorization 
ondition (fM1): thereis some set C 2 E with �(C) > 0, some probability measure � on (E; E) equivalent to �(� \ C),and some 0 < � < 1 su
h that U1(x; dy) � �1C(x)�(dy) , for all x; y 2 E.We start with embedding X as �rst 
omponent into a ri
her Harris pro
ess �X = ( �Xt)t�0. To�X we will asso
iate pro
esses eXm whi
h - 
lose to �X if m is large - 
an be equipped with are
urrent atom eAm and a life 
y
le de
omposition ( eRmn )n. Then the idea is as follows: shiftingadditive fun
tionals of X to eXm by means of ratio limit theorems, we 
an apply theorem 3.169



in eXm to prove that 'additive fun
tionals of X 
onverge as if X had life 
y
les', where normingfun
tion and limiting pro
ess are now determined from regular variation at 0 of the resolvent ofX.7.1 The pro
ess �X : Prepare i.i.d. exponential times �n; n � 1; and i.i.d. random variablesUn; Vn, n � 1, uniformly distributed on (0; 1), all independent and independent of X. WriteTn := �1 + � � �+ �n, n � 1, T0 := 0. De�ne the pro
ess �X by�Xt := (Xt; Nt) ; Nt = (N1t ; N2t ; N3t ) := 1[[0;T1[[(t)(z; u; v) +Xn�1 1[[Tn;Tn+1[[(t)(XTn ; Un; Vn)t � 0, under initial 
onditions �X0 = (x; z; u; v). �E := E�E�[0; 1℄�[0; 1℄ is the state spa
e for �X,equipped with Borel-�-�eld �E .�X is de�ned on a standard extension (�
; �A; �IF ; (P�x)�x2 �E) of the original spa
e (
;A; IF; (Px)x2E):for this extension, we take also N as 
anoni
al pro
ess on its 
anoni
al path spa
e, the set of allright-
ontinuous pie
ewise 
onstant fun
tions IR+ ! E�[0; 1℄�[0; 1℄, with 
anoni
al �-�eld and
anoni
al �ltration; without ambiguity, we write again (#t)t�0 for the shifts on (�
; �A; �IF ). By
onstru
tion, �X is then the 
anoni
al pro
ess on (�
; �A; �IF ), �IF the �ltration generated by �X, andthe original pro
ess X appears now as �rst 
omponent of �X.Jumps in the N -
omponent of �X o

ur at 
onstant rate 1; note that sin
e the Tn, n � 1, are
onstru
ted from independent exponential waiting times, they have a.s. no interse
tion with the
ountably many jump times of the original 
�adl�ag pro
ess X. Thus at a jump time Tn, thesu

essor state �XTn for �XT�n is sele
ted a

ording to K( �XT�n ; �), for the transition probabilityK( (x; z; u; v); d(x0; z0; u0; v0) ) := �(x;x)(dx0; dz0)R(du0; dv0)on ( �E; �E), where � denotes Dira
 measure and R(du; dv) = 1(0;1)(u)du1(0;1)(v)dv . Between su
-
essive jumps of the N -
omponent, the X-
omponent of �X evolves a

ording to the semigroup ofX, and the N -
omponent remains 
onstant. So we are pasting together in a Markovian way pie
esof 'killed' strong Markov pro
esses; it is known that this preserves the strong Markov property,hen
e �X is strongly Markov with state spa
e ( �E; �E) (see [I-N-W 66 a,b℄, [I-N-W 68℄).We will prove now that(7:10) ��(dx; dz; du; dv) := �(dz)R(du; dv)U1(z; dx)70



is the invariant measure for �X. Sin
e the dis
rete time pro
ess (XTn)n is Harris with invariantmeasure � and sin
e U1(�; A) gives the expe
ted sojourn time of X in A up to an independentexponential time, (7.1') implies via 1.3 that the pro
ess �X is again a Harris pro
ess.We have to show that �� de�ned by (7.1') is invariant for the 1-potential kernel of �X. Write�A := A1�A2�A3�A4 for arbitrary A1; A2 2 E , A3; A4 2 B([0; 1℄). Write � for an exp(1)-waitingtime independent of �X. Conditioning with respe
t to T1, the �rst jump of the N -
omponent of�X, one hasE(x;z;u;v) �1 �A( �Xt)� = Z t0 dr e�r ZE�[0;1℄2 Pr(x; dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �Xt�r)�+ e�t Pt(x;A1) 1A2(z) 1A3�A4(u; v)for every t > 0; integrating this equation w.r.t. e�tdt, we getE(x;z;u;v) �1 �A( �X�)� = ZE�[0;1℄2 U2(x; dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �X�)�+ U2(x;A1) 1A2(z) 1A3�A4(u; v)where U2 is the 2-potential kernel ofX. � being invariant forX, we dedu
e from the last equationwith parti
ular initial 
ondition x = z12 ZE�[0;1℄2 �(dz)R(du; dv)E(z;z;u;v) �1 �A( �X�)� = ZE �(dz) 1A2(z)U2(z;A1)R(A3�A4) :As a 
onsequen
e of both last equations, we obtain for �� de�ned by (7.1')Z �E ��(dx; dz; du; dv)E(x;z;u;v) �1 �A( �X�)� = 12 ZE�[0;1℄2 �(dy)R(du0; dv0)E(y;y;u0;v0) �1 �A( �X�)�+ ZE �(dz) 1A2(z) �U1U2� (z;A1)R(A3�A4)= ZE �(dz) 1A2(z) �U2 + U1U2� (z;A1)R(A3�A4) :An obvious 
al
ulation on Gamma densities gives P1l=1 2�l�(l; 2) = �(1; 1); sin
e the transitionprobability 2U2 involves a �(1; 2)-waiting time, this gives P1l=1 2�l �2U2�l = U1 and thus�U2 + U1U2� = 12 �(2U2) + U1(2U2)� = U1 :Hen
e the last integral equals �� (A1�A2�A3�A4) = �� � �A� whi
h proves (7.1').
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Now we asso
iate to the pro
ess �X of 7.1 a family of pro
esses eXm, 
lose to �X for large m.To do this, we use (H6): whenever XTn visits the set C o

urring in the minoration 
ondition(fM1), n � 1, we will forget with probability 2�m the 
u
tuation of X on the remaining interval℄℄Tn; Tn+1[[.7.2 The pro
esses eXm, m � 0 : For C of (H6) and �X = (X;N) of 7.1, we de�neeXmt =Xn�0 1[[Tn;Tn+1[[(t) � �Xt 1f �XTn2 �EnFC;mg + �XTn 1f �XTn2FC;mg� ; t � 0with notation FC;m := E�C�(0; 2�m)�[0; 1℄.Viewed as �IF -adapted pro
ess, eXm is a fun
tional of �X: eXmt 
oin
ides with �Xt on intervals where�Xt visits (E�C�(0; 2�m)�[0; 1℄)
, and remains 
onstant right-
ontinuous as long as �Xt visitsE�C�(0; 2�m)�[0; 1℄. The N -
omponent of eXm is the N -
omponent of �X. In this sense, eXm is
lose to �X if m is large.Consider now the (smaller) �ltration eIFm generated by eXm alone. With respe
t to its own pasteIFm, eXm is again strongly Markov: jumps of the N -
omponent o

ur at 
onstant rate 1; at ajump time Tn, a su

essor state eXmTn for eXmT�n is sele
ted a

ording to the transition probabilityK( (x; z; u; v); d(x0; z0; u0; v0) ) on ( �E; �E) given by(7:20) ��x + 1C(z)1(0;2�m)(u) �U1(z; �)� �x�� (dx0) �x0(dz0)R(du0; dv0) ;between su

essive jumps of the N -
omponent, the X-
omponent of the pro
ess eXm evolves a
-
ording to the semigroup of X whenever eXm is in (E�C�(0; 2�m)�[0; 1℄)
, and remains 
onstantotherwise. With respe
t to eIFm, eXm is again Harris and has invariant measure(7:200) e�m(dx; dz; du; dv) := �(dz)R(du; dv) �U1(z; �) + 1C(z)1(0;2�m)(u) ��z � U1(z; �)�� (dx) :In the sense of equality of laws of pro
esses, i.e. of probability laws on the Skorohod spa
eD(IR+; �E), we shall always swit
h between these two interpretations of eXm.7.3 An atom for eXm : Let �, C, � be given by (H6). The Harris pro
ess eXm with respe
t toeIFm admits an interpretation in terms of Nummelin splitting with re
urrent atomeAm := E�C�(0; 2�m)�(0; �) 2 �E ; e�m( eAm) = �2�m�(C) > 0 :72



Indeed, at a jump time Tn, knowing eXmT�n and thus knowing whether eXm was 
onstant on[[Tn�1; Tn[[ or not (this is seen from the N -
omponent of eXmT�n ), we 
an rewrite the transiti-on kernel K(�; �) of (7.2') as follows:i) on fNT�n =2 C�(0; 2�m)�[0; 1℄g, we sele
t eXmTn a

ording to�XT�n (dx0) �x0(dz0)R(du0; dv0)(on this event, XT�n is the �rst 
omponent of eXmT�n );ii) on fNT�n 2 C�(0; 2�m)�[0; �)g, we sele
t eXmTn a

ording to�(dx0) �x0(dz0)R(du0; dv0) ;iii) on fNT�n 2 C�(0; 2�m)�[�; 1℄g, we sele
t eXmTn a

ording to11� � �U1(XTn�1 ; dx0)� ��(dx0)� �x0(dz0)R(du0; dv0)(on this event, XTn�1 is the se
ond 
omponent of eXmT�n ) in virtue of (H6).Note that we have applied Nummelin's splitting te
hnique only between those jump times of theN -
omponent of eXm where the pro
ess eXm itself remained 
onstant.As a 
onsequen
e of 7.3, eXm has life 
y
les. In order to apply the results of subse
tion 3.1 toeXm, we need (H4): we have to spe
ify a life 
y
le de
omposition ( eRmn )n for eXm su
h that weaklyspe
ial fun
tions for eXm and eRm1 do exist.7.4 Proposition : For the pro
ess eXm with re
urrent atom eAm := E�C�(0; 2�m)�(0; �), wede�ne a life 
y
le de
omposition ( eRmn )n byeRm1 := S0 + T( eAm)
 Æ #S0 ; S0 := infft : eXmt 2 eAmg(7.5)where T( eAm)
 is the �rst entry time to ( eAm)
. Then for any spe
ial fun
tion f for X, the fun
tion�f(x; z; u; v) := f(z) on ( �E; �E) is weakly spe
ial for eXm and eRm1 .Proof : 1) First note that eRm1 is de�ned as the �rst entry time to ( eAm)
 following the �rstvisit to the atom eAm; sin
e � in 7.3 ii) is by (H6) 
on
entrated on C, a visit in eAm during anindependent exponential time leads with probability �2�m to another visit in eAm during a new73



independent exponential time. So having entered the atom, the sojourn time of eXm in eAm isdistributed a

ording toXj�0(1��2�m)(�2�m)j�(j+1; 1) = �(1; 1��2�m) :2) Consider the original pro
ess X. In virtue of (H1)+(H2), spe
ial fun
tions f for X do exist,
f. 5.28; w.l.o.g., we take f bounded. Put h := �2�m 1C with �, C as in 7.3. Sin
e �(C) > 0 by(H6), we have with notations of 5.28z ! Ez  Z bTh0 f(Xs)ds! is bounded on Ewhere bTh is a killing time for position dependent killing of X at rate h. Prepare - on an extensionof (
;A; IF; P ) - a sequen
e �n " 1 su
h that �i � �i�1, i � 0 are i.i.d � exp(1), �0 = 0, andprepare (Un; Vn) i.i.d � R(du; dv) for n � 0, all independent and independent of X. By (5.29)we see that z ! Ez0�Xn�1 �1�h(X�1)� ::: �1�h(X�n�1)� f(X�n)1A is bounded.The expe
tation in the last relation is equal toEz0�Xn�1 �1�hC;m;�(W1)� ::: �1�hC;m;�(Wn�1)� f(X�n) (�n+1 � �n)1A(7.6)with notation hC;m;� := 1C�(0;2�m)�(0;�) and Wj := (X�j ; Uj; Vj): this is seen by multiplying outsummands and using the independen
e assumptions.3) Consider the pro
ess N arising in the 
onstru
tion of �X and eXm. In notation of 7.1 and 7.2,the expe
tation (7.6) equals E(z;u;v)�Z S+T1ÆST1 (f Æ �1)(Ns)ds�where we de�ne S := infft � T1 : Nt 2 C�(0; 2�m)�(0; �)g ;where �1 is the proje
tion (z; u; v)! z and where u; v are arbitrary. So we have proved in 2)+3)(z; u; v)! E(z;u;v)�Z S+T1ÆST1 (f Æ �1)(Ns)ds� is bounded on E�[0; 1℄�[0; 1℄.(7.7)4) Consider now eXm. With notation �f(x; z; u; v) := f(z); (7.7) reads�x! E�x�Z S+T1ÆST1 �f( eXms )ds� is bounded on �E .74



Noti
ing that �f is bounded and that T1 has law exp(1), we may repla
e the interval of integrationby [[0; S + T1 Æ S[[. By 
onstru
tion of the atom eAm in 7.3, the �rst entry time S0 of eXm to eAmequals the �rst entry time of N to C�(0; 2�m)�(0; �): thus we have S0 � S. By step 1), theinterval [[S0; S0+T( eAm)
Æ#S0 [[ has length distributed a

ording to �(1; 1��2�m). All this togetherwith the strong Markov property allows to dedu
e�x! E�x Z eRm10 �f( eXms )ds! is bounded on �E(7.8)with eRm1 de�ned by (7.5). We have proved that for every bounded spe
ial fun
tion f of X,�f(x; z; u; v) := f(z) is weakly spe
ial for eXm and eRm1 . 2Remark : As a 
onsequen
e of 7.2, 7.3 and 7.4, we know that assumptions (H1)+(H3)+(H4)hold for the pro
ess eXm with atom eAm and with life 
y
les de�ned by (7.5). So all results ofsubse
tion 3.1 (or of se
tions 4+5) 
an be applied to eXm.However, we have to reformulate the 
onditions on life 
y
le length distributions in eXm (whi
h isan arti�
ial obje
t) into 
onditions formulated for the original pro
ess X. After two preliminaryresults, this will be done in theorem 7.14.7.9 Lemma : For the life 
y
le de
omposition de�ned for eXm by (7.5), putevm(t) := �1�E �e� 1t ( eRm2 � eRm1 )���1 ; t > 0 :a) For 0 < � � 1 and elm(�) varying slowly at 1, the following assertions i) - iv) are equivalent:i) erm(t) := Z t0 P ( eRm2 � eRm1 > x) dx � 1�(2� �) t1�� elm(t) as t!1(in 
ase 0 < � < 1, this is equivalent to P ( eRm2 � eRm1 > x) � 1�(1��) x�� elm(x) as t!1 );ii) evm(t) � t� 1elm(t) as t!1 ;iii) for every bounded spe
ial fun
tion f of X, de�ning �f(x; z; u; v) := f(z), the resolvant of eXmsatis�es � eRm1=t �f� (�x) � t� 1elm(t) E Z eRm2eRm1 �f( eXms )ds! as t!175



for every �x 2 �E;iv) for every g nonnegative E-measurable with 0 < �(g) < 1, for N1 the se
ond 
omponent ofeXm (i.e the �rst 
omponent of N),E�x�Z 10 e� 1t s g(N1s ) ds� � t� 1elm(t) E Z eRm2eRm1 g(N1s ) ds! as t!1for e�m-almost all �x 2 �E.b) Under P(z;z;�;�), the law of N1 = Pn�0 1[[Tn;Tn+1[[XTn does not depend on m. There is some
onstant e
m su
h that E Z eRm2eRm1 g(N1s ) ds! = e
m �(g)(7.10)for all g in iv), and there is a slowly varying fun
tion l(�) not depending on m su
h that elm(�) ina) 
an be repla
ed by elm(t) = e
m l(t) ; t � 0 ; for arbitrary m:(7.11)Proof : 1) The equivalen
e of i) and ii) is (5.1) together with (4.2)-(4.4), the equivalen
e of ii)and iii) is the de
omposition of the resolvant in the proof of lemma 5.3, all this applied to thepro
ess eXm (the assumptions (H1)+(H3)+(H4) relative to eXm whi
h we need here have been
he
ked, and �f is weakly spe
ial for eXm and eRm1 if f is spe
ial for X). By de�nition of �f , iii) 
anbe written in terms of N1:iv') for every bounded spe
ial fun
tion f of X and for all �x 2 �E,E�x�Z 10 e� 1t s f(N1s ) ds� � t� 1elm(t) E Z eRm2eRm1 f(N1s ) ds! ; t!1 :So we have proved a) with iv') in pla
e of iv).2) Under P(z;z;�;�), the notation N1 = Pn�0 1[[Tn;Tn+1[[XTn is unambiguous, and the l.h.s of iv')is the resolvant of a Markov step pro
ess with exp(1)-holding times in all states and with jumpheigth governed by the potential kernel U1(�; �) of X. So in this 
ase, there is asymptoti
ally ast!1 no dependen
e on m in the r.h.s of iv'), and there is a fun
tion l(�) varying slowly at 1,not dependent on m, su
h that(�) elm(t) 1E �R eRm2eRm1 f(N1s ) ds� � l(t) 1�(f) ; t!1 :Proposition 1.10 applied to additive fun
tionals R t0 g(N1s ) ds of eXm - with invariant measure e�mwhose image under the proje
tion (x; z; u; v) ! z equals � - shows that there is a 
onstant e
m76



with property (7.10), so (*) implies (7.11).3) In order to 
omplete the proof of the lemma, note that assertion iv') is equivalent to iv) in a)by the ratio limit theorem 1.8 for resolvants in eXm. 27.12 Lemma : We have e
m = 2m= [�(C)�(1� �2�m)℄ in (7.10)+(7.11).Proof : Consider g nonnegative E-measurable with 0 < �(g) <1, and an arbitrary �E-measurablenonnegative fun
tion �g with 0 < e�m(�g) < 1. Proposition 1.10 applied to R t0 g(N1s ) ds andR t0 �g( eXms ) ds - additive fun
tionals of eXm with invariant measure e�m - shows that (7.10) 
an beextended to E Z eRm2eRm1 �g( eXms ) ds! = e
m e�m(�g) :(7.13)Consider the 
ounting pro
ess e�mt := Xn�1 1[[ eRmn ;1[[(t) ; t � 0asso
iated to the life 
y
le de
omposition ( eRmn )n in eXm. By (7.5), the ( eRmn )n�1 are passage timesfrom the atom eAm = E�C�(0; 2�m)�(0; �) to its 
omplement. By 7.3 ii), the measure � being
on
entrated on the set C, the atom eAm 
an only be left by a 
hange from (0; 2�m)�(0; �) to((0; 2�m)�(0; �))
 in the two last 
omponents of eXm. So the eIFm-
ompensator of the 
ountingpro
ess e�m is Z t0 (1� �2�m) 1 eAm( eXms ) dsand (7.13) gives1 = E �e�meRm2 � e�meRm1 � = (1� �2�m)E Z eRm2eRm1 1 eAm( eXms ) ds! = (1� �2�m)e
m e�m( eAm)and the assertion follows from e�m( eAm) = �2�m�(C). 2We dedu
e from 7.9 and 7.12 that regular variation at1 of tails of life 
y
le length distributionsin eXm 
an be expressed in terms of regular variation at 0 of the resolvant of the original pro
essX.7.14 Theorem : Consider 0 < � � 1 and l(�) varying slowly at1. Then for arbitrary m, for life
y
le de
ompositions ( eRmn )n of eXm given by (7.5) and 
onstants e
m given in 7.12, the following77



assertions i) - iii) are equivalent:i) erm(t) = Z t0 P ( eRm2 � eRm1 > x) dx � 1�(2� �) t1�� e
m l(t) as t!1(in 
ase 0 < � < 1, this is equivalent to P ( eRm2 � eRm1 > x) � 1�(1��) x�� e
m l(x) as t!1 );ii) evm(t) = �1�E �e� 1t ( eRm2 � eRm1 )���1 � t� 1e
m l(t) as t!1 ;iii) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants in the original pro
ess X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1(7.15)for �-almost all x 2 E (the ex
eptional set depending on g).Proof : Note that i) and ii) above rephrase assertions i) and ii) of 7.9 a). Note also that theresolvant (7.15) in X 
an be rewritten as a resolvant in the pro
ess �X = (X;N) of 7.1, of formE(x;z;u;v)�Z 10 e� 1t s g(Xs) ds�where z; u; v are arbitrary. Fix some bounded spe
ial fun
tion f for X. Consider(+) t! E�x�Z 10 e� 1t s g(Xs) ds� ; t! E�x�Z 10 e� 1t s f(N1s ) ds�as resolvants in �X with invariant measure �� on ( �E; �E). Sin
e N -
omponents 
oin
ide in �X andeXm, the se
ond expression in (+) is also a resolvent in eXm. Thus a

ording to 7.9 a) iii) togetherwith (7.10)+(7.11), regular variationE�x�Z 10 e� 1t s f(N1s ) ds� � t� 1l(t) �(f); t!1for all �x 2 �E is equivalent to i) and ii). It remains to apply the RLT 1.8 to the resolvants (+) in�X and to note that � is image of �� under proje
tions (x; z; u; v)! x and (x; z; u; v)! z. 27.16 Theorem : a) For 0 < � � 1 and l(�) varying slowly at 1, the following i) and ii) areequivalent:i) for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0 ofresolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!178



for �-almost all x 2 E (the ex
eptional set depending on g);ii) for every additive fun
tional A of X with 0 < E�(A1) <1, one has weak 
onvergen
e(Atn)t�0n�= l(n) ! E�(A1)W�(in D(IR+; IR) as n ! 1, under Px for all x 2 E) where W� is the Mittag-Le�er pro
ess ofindex �.b) The 
ases in a) are the only ones where weak 
onvergen
e of (Atn)t�0v(n) to a 
ontinuous non-de
reasing limit pro
ess W (with W0 = 0 and L(W1) not degenerate at 0) is available for somenorming fun
tion v.Proof : 1) The additive fun
tional A of X is also an additive fun
tional of �X = (X;N). TheRLT in �X with invariant measure �� showsAtR t0 g(N1s )ds ! E�(A1)�(g) as t!1, P�x-a.s. for all �x 2 �Ewhere g � 0 is any �xed E-measurable fun
tion with 0 < �(g) <1. We 
an also view R t0 g(N1s )dsas additive fun
tional of eXm sin
e N -
omponents in �X or eXm are the same, and 
ompare it viaratio limits in eXm with invariant measure e�m to the 
ounting pro
ess e�m = Pn�1 1[[ eRmn ;1[[, orto the 
ompensator (1� �2�m) Z t0 1 eAm( eXms ) dsof e�m relative to eIFm (see proof of 7.12). ThusR t0 g(N1s )dse�mt ! �(g)(1� �2�m)�2�m �(C) = e
m �(g) ; t!1P�x-a.s. for all �x 2 �E, where e
m is given in 7.12. So it remains to 
onsider weak 
onvergen
e ofthe 
ounting pro
ess e�m asso
iated to the life 
y
le de
omposition ( eRmn )n of eXm.2) Assume regular variation of the resolvant of X at 0 as in a) i), and thus by theorem 7.14 regularvariation of eXm-life 
y
le length distributions as in 7.14 a) i) together with regular variation ofthe fun
tion evm(�) in 7.14 a) ii). For this setting, it has been proved in se
tion 4 (see in parti
ular(4.16) with v � evm and with a(�) an asymptoti
 inverse to v(�)) that1evm(n) �e�mtn�t�0 ! W�(weakly in D(IR+; IR) as n!1, under Px for all x 2 E), or using the above ratio limits1evm(n) (Atn)t�0 ! E�(A1)e
mW� :79



By the stru
ture of evm in 7.14, the e
m 
an
els, and we have assertion a) ii) of the theorem.3) Assume now that one has weak 
onvergen
e of res
aled and suitably normed additive fun
tio-nals 1v(n) �e�mtn�t�0 of eXm as n!1 to a 
ontinuous limit pro
essW . Then in virtue of theorems5.6.A+B, we have ne
essarily regular variation of evm at 1 with some index 0 < � � 1 (see alsoremark 5.7), in whi
h 
ase we are ba
k in step 2) - so no other types of limits 
an arise underweak 
onvergen
e - and have by theorem 7.14 regular variation at 0 of the resolvant of X as ina) i). So the proof of theorem 7.16 is 
ompleted. 2Now we 
onsider martingales M 2M2;lo
(Px; IF ) meeting(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;hMi and [M ℄ are additive fun
tionals of X, and E� (hMi1) <1.By 
onstru
tion of �X in 7.1, we 
an lift the pro
esses M , hMi, [M ℄ to (�
; �A; �IF ): then M isin M2;lo
 with respe
t to �IF and to laws �P := P(x;z;u;v) with arbitrary z; u; v, with predi
tablequadrati
 variation and quadrati
 variation as before. (H5A) will remain true with respe
t toshifts (#)t�0 on (�
; �A; �IF ), with laws P(y;z0;u0;v0) repla
ing Py, and with E�� repla
ing E�.(Note that IF -stopping times be
ome �IF -stopping times; to see that martingale properties relativeto (Px; IF ) do 
arry over to ( �P ; �IF ) as asserted, 
onsider a (Px; IF )-martingale M 0, s < t, and sets�F 2 �Fs of form�F = f �Xsi 2 �Ai := Ai1�Ai2�Ai3�Ai4; 0 � i � l g ; 0 = s0 < s1 < ::: < sl = s ; l 2 INwith Ai1; Ai2 2 E , Ai3; Ai4 2 B([0; 1℄). Then for every nE(x;z;u;v) �1 �F\fTn+1>sg(M 0t �M 0s)�= E(x;z;u;v)�Z 10 :::Z 10 dt1e�t1 :::dtn+1e�tn+1 1ft1+:::+tn+1>sg �Gt1;:::;tn+1z;u;v (M 0t �M 0s)�where �Gt1;:::;tn+1z;u;v is given bylYi=0 1fsi<t1g1 �Ai(Xsi ; z; u; v) + nXk=1 1ft0+:::+tk�si<t0+:::+tk+1g 1 �Ai(Xsi ;Xt0+:::+tk ; Uk; Vk)!with notations of 7.1 and t0 = 0. By the independen
e assumptions in 7.1, the above integral isZ 10 :::Z 10 dt1e�t1 :::dtn+1e�tn+1 1ft1+:::+tn+1>sg 
t1;:::;tn+1z;u;v Ex �Gt1;:::;tn+1(M 0t �M 0s)�80



with Gt1;:::;tn+1 the indi
ator fun
tion of an event in � �Xsi ; 0 � i � l; X(t0+:::+tk)^s; 0 � k � n�,thus in Fs, and for suitable 
t1;:::;tn+1z;u;v 2 [0; 1℄. Thus the last integral equals 0. As n!1, we haveE �P (1 �F (M 0t �M 0s)) = 0 for �P = P(x;z;u;v). Sin
e �IF is the �ltration generated by �X, one dedu
esE �P (1 �F 0(M 0t �M 0s)) = 0 for arbitrary events �F 0 2 �Fs.)7.17 Lemma : From martingalesM 2M2;lo
(Px; IF ) meeting (H5A), and su
h that in additionhMi is a lo
ally bounded pro
ess, 
onsiderMmt =Xn�0 1f �XTn =2FC;mg �MTn+1 �MTn�t ; t � 0de�ned on (�
; �A), where FC;m = E�C�(0; 2�m)�[0; 1℄ is the set o

urring in 7.2.Then the following holds, for arbitrary m � 1.a) The pro
ess Mm is eIFm-adapted.b) Mm belongs toM2;lo
( eIFm; �P ) with �P = P(x;z;u;v) for arbitrary z; u; v.
) Write hMmi, [Mm℄ for angle and square bra
kett of Mm with respe
t to ( eIFm; �P ). On(�
; �A; eIFm; (#t)t�0; (P�y)�y2 �E), with life
y
les for eXm de�ned by (7.5) and invariant measure e�mgiven by (7.2"), the pro
esses Mm, hMmi, [Mm℄ satisfy all 
onditions (H5A) + (H5B); one hase
mEe�m (hMmi1) = E �hMmi eRm2 � hMmi eRm1 � <1(7.18)with e
m as in 7.12.Proof : a) To see that the pro
ess Mm on (�
; �A) is eIFm-adapted, we shall prove(+) �(n; t) := (t� Tn) _ 0 is an � eFmTn+u�u�0 -stopping time(++) the pro
ess �1f �XTn =2FC;mg �MTn+1 �MTn�Tn+u�u�0 is � eFmTn+u�u�0 -adaptedfor n 2 IN0, t � 0. Combining (+) and (++) yields1f �XTn =2FC;mg �MTn+1 �MTn�Tn+�(n;t) is eFmTn+�(n;t)-measurable .Now Tn + �(n; t) = Tn _ t is an eIFm-stopping time whi
h equals t on fTn � tg = fTn _ t � tg.Thus by de�nition of eFmTn_tfTn � tg \ f �XTn =2 FC;mg \ f�MTn+1 �MTn�t 2 Ag 2 eFmt81



for sets A 2 B(IR): thusMm = 1Xn=0 1f �XTn =2FC;mg 1[[Tn;1[[ �MTn+1 �MTn�is eIFm-adapted whi
h is a). We show (+) and (++).Sin
e Tn is an eIFm-stopping time, �(n; t) is eFmT�n -measurable and nonnegative, hen
e (+) is obvioussin
e f�(n; t) � vg 2 eFmT�n � eFmTn+v, v � 0. To see (++), note �rst that by (H5A)h1f �XTn =2FC;mg �MTn+1 �MTn�Tn+ui (!) = h1f �X0 =2FC;mgMT1u i (#Tn(!)) :Now M is �IF -adapted; stopped at time T1, the pro
ess MT1 is � �Fu^T1�u�0-adapted, thus(�) f �X0 =2 FC;mg \ fMT1u 2 Ag 2 �FT1^u ; A 2 B(IR) ; u � 0 :Sin
e ��
; �A; �IF� is the 
anoni
al path spa
e for �X, see 7.1 - 7.2, we have by 
onstru
tion of eXm(��) the �-�elds �FT1^u and eFmT1^u 
oin
ide in restri
tion to f �X0 =2 FC;mg.By (*) and (**), the pro
ess 1f �X0 =2FC;mgMT1 is in parti
ular eIFm-adapted. Then (H5A) showsthat h1f �XTn =2FC;mg �MTn+1 �MTn�Tn+ui (!) = h1f �X0 =2FC;mgMT1u i (#Tn(!))is eFmTn+u-measurable, for all n 2 IN0, u � 0 : this is (++). So assertion a) is proved.b) By assumption,M and thusMm belong toM2;lo
( �IF ; �P ). Sin
e eIFm is smaller than �IF , ( �IF ; �P )-martingales whi
h are eIFm-adapted will be ( eIFm; �P )-martingales. By a), Mm is eIFm-adapted. Itremains to show that there are lo
alizing sequen
es (e�ml )l�1 for Mm whi
h are eIFm-stoppingtimes: then Mm will belong toM2;lo
( eIFm; �P ).We 
onsider �rst the parti
ular 
ase where the pro
ess hMi is 
ontinuous. ThenY m := 1Xn=0 1f �XTn =2FC;mg �hMiTn+1 � hMiTn�is 
ontinuous and nonde
reasing, and one proves exa
tly as in a) that Y m is eIFm-adapted. Soe�ml := infft > 0 : Y mt > lg ; l � 1is a sequen
e of eIFm-stopping times in
reasing to 1 su
h that(Mm)(e�ml ) is inM2( eIFm; �P ) with angle bra
kett (Y m)(e�ml ), l � 1.82



Now we 
onsider the 
ase of a lo
ally bounded pro
ess hMi. Then there is a sequen
e (�l)l�1 of�IF -stopping times in
reasing to 1 and a sequen
e of 
onstants (Cl)l�1 su
h thathMi(�l) � Cl on IR+ � 
, for every l � 1.We restri
t �l to the event f �X0 =2 FC;mg on whi
h we observe eXm up to time T1, by 
onstru
tionof eXm in 7.2, and de�ne e�ml := (�l)f �X0 =2FC;mg ^ T1 ; l � 1 :By 
onstru
tion we havee�ml � T1 8 l ; e�ml " as l!1 , and fe�ml < T1g # ; as l!1 .Let us prove that e�ml are eIFm-stopping times, l � 1.Sin
e e�ml has been 
onstru
ted as �IF -stopping time, one hasfe�ml � vg = fe�ml � v ^ T1g 2 �Fv^T1 ; v � 0 :By (**) above, the �-�elds �Fv^T1 and eFmv^T1 
oin
ide in restri
tion to f �X0 =2 FC;mg, thusf �X0 =2 FC;mg \ fe�ml � vg 2 eFmv^T1 ; v � 0 :Sin
e T1 and v ^ T1 are eIFm-stopping times,f �X0 2 FC;mg \ fe�ml � vg = f �X0 2 FC;mg \ fT1 � T1 ^ vg 2 eFmv^T1 ; v � 0 :Both assertions together prove that e�ml are eIFm-stopping times, l � 1. Sin
e (Tn)n are eIFm-stopping times, also �n;ml := Tn + e�ml Æ (#Tn) ; l � 1 ; n 2 IN0are eIFm-stopping times. The sequen
e ��n;ml �l�1 has the propertiesTn � �n;ml � Tn+1 8 l ; �n;ml " as l!1 , and f�n;ml < Tn+1g # ; as l!11f �XTn =2FC;mg �hMiTn+1 � hMiTn��n;ml = �1f �X0 =2FC;mg hMiT1e�ml � Æ (#Tn) � Cl ; l � 1where we have used (H5A). Let us de�ne for l � 1e�ml := ��0;ml �f�0;ml <T1g ^ ::: ^ ��l�1;ml �f�l�1;ml <Tlg ^ Tl :83



Then �e�ml �l�1 is an in
reasing sequen
e of eIFm-stopping times. Sin
e f�n;ml < Tn+1g # ; asl!1 for every n �xed, the sequen
e in
reases to 1 as l!1 , and meets by 
onstru
tion(Y m)(e�ml ) � l�1Xn=0 1f �XTn =2FC;mg �hMiTn+1 � hMiTn��n;ml � l � Clon IR+�
, for every l � 1. Thus we have a sequen
e of eIFm-stopping times in
reasing to1 su
hthat (Mm)(e�ml ) is inM2( eIFm; �P ) with angle bra
kett (Y m)(e�ml ), l � 1.This proves b).
) By assumption we have (H5A) for M 2 M2;lo
( �IF ; �P ): the pro
esses hMi, [M ℄ are additivefun
tionals of �X, and M satis�es8 �y ; 8 s; t : Mt+s �Mt =Ms Æ #Tn P�y-a.s.These properties 
arry over to Mm, hMmi with respe
t eXm sin
edMms = 1(C�(0;2�m)�[0;1℄)
(Ns�) dMs ; dhMmis = 1(C�(0;2�m)�[0;1℄)
(Ns�) dhMisdepend only on the traje
tory of eXm, by 
onstru
tion in 7.2; for the quadrati
 variation [Mm℄,use approximation by sums of quadrati
 in
rements over time partitions with mesh tending to 0.(7.18) is obtained from the ratio limit theorem together with (7.13) or (7.10). This shows that thepro
essesMm, hMmi, [Mm℄ on (�
; �A; eIFm; (#t)t�0; (P�y)�y2 �E) satisfy assumption (H5A). We 
he
k(H5B). With life
y
les for eXm de�ned by (7.5) and invariant measure e�m given by (7.2"), notethat every eRmn , n � 1, is a passage time from eAm to � eAm�
: sin
e Mm is 
onstant before timeeRmn and sin
eM is 
�adl�ag, the paths ofMm are 
ontinuous at eRmn . Hen
e (Mm) eRmn is measurablewith respe
t to eFm( eRmn )� , whi
h is (*) of (H5B). 27.19 Lemma : We have in (7.18)Ee�m (hMmi1) = E�� (hMmi1) ; limm!1 E�� (hMmi1) = E�� (hMi1) = E� (hMi1) :Proof : For m �xed, 
hoose a fun
tion �g nonnegative, �E-measurable, 0 < ��(�g) <1 su
h that �gequals 0 on E�C�(0; 2�m)�[0; 1℄ : then ��(�g) = e�m(�g), and R t0 �g( �Xs)ds = R t0 �g( eXms )ds . We applythe RLT to hMmit and R t0 �g( eXms )ds as eIFm-additive fun
tionals, and to hMmit and R t0 �g( �Xs)ds as84



�IF -additive fun
tionals. Sin
e ��(�g) = e�m(�g), this gives Ee�m (hMmi1) = E�� (hMmi1). As m!1,the se
ond assertion follows by dominated 
onvergen
e sin
eE�� (hMi1 � hMmi1) = E���Z 10 1E�C�(0;2�m)�[0;1℄( �Xs)dhMis� : 27.20 Theorem : Consider 0 < � � 1 and l(�) varying slowly at1. Assume that 
ondition (7.15)holds: for every g nonnegative E-measurable with 0 < �(g) < 1, one has regular variation at 0of resolvants in X�R1=tg� (x) = Ex�Z 10 e� 1t s g(Xs) ds� � t� 1l(t) �(g); t!1for �-almost all x 2 E (the ex
eptional set depending on g).Then for lo
al martingales M 2 M2;lo
(Px; IF ) meeting (H5A) and su
h that hMi is lo
allybounded:a) for every m �xed, we have weak 
onvergen
e in D(IR+; IR) as n!1 under �P1pn�=l(n) (Mmtn)t�0 ! �E�� (hMmi1)�1=2B(W�)where B(W�) is Brownian motion time-
hanged by an independent Mittag Le�er pro
ess;b) we have weak 
onvergen
e in D(IR+; IR) as n!1 under �P1pn�=l(n) (Mtn)t�0 ! �E�� (hMi1)�1=2B(W�) ;
) we have weak 
onvergen
e in D(IR+; IR) as n!1 under Px1pn�=l(n) (Mtn)t�0 ! �E� (hMi1)�1=2B(W�) :Proof : By lemma 7.17, for every (Px; IF )-lo
al martingaleM meeting (H5A) and su
h that hMiis a lo
ally bounded pro
ess, Mm de�ned in 7.17 is an ( �P; eIFm)-lo
al martingale on (�
; �A), andmeets assumptions (H5A)+(H5B) with respe
t to eXm, eIFm and with respe
t to the life 
y
les( eRmn )n de�ned in (7.5). By the remark pre
eding lemma 7.9, we know that all assumptions neededin se
tion 4 are met for eXm and Mm.Combining 7.14+(7.18)+7.19 with theorem 4.12 for Mm, we get a).It remains to prove b). By de�nition of Mm and by Lenglart's inequality ([J-Sh 87, p. 35℄),�P  sup0�t�t0 1pn�=l(n) jMtn �Mmtn j > p"!85



(for arbitrary m, t0 <1 and "; � > 0) is bounded by�" + �P � 1n�=l(n) Z t0n0 1E�C�(0;2�m)�[0;1℄( �Xs)dhMis > ��where the last expression de
reases to 0 as m tends to 1. Thus, for t0 < 1 and " > 0 there issome m0 = m0(t0; ") su
h thatlimn!1  supm�m0 �P  sup0�t�t0 1pn�=l(n) jMtn �Mmtn j > p"!! < "where we have used theorem 7.16. Let G be nonnegative, uniformly 
ontinuous and boundedon the 
anoni
al path spa
e D(IR+; IR) of 1pn�=l(n) (Mtn)t�0. Then for every Æ > 0, there are
onstants C1; C2 su
h that for arbitrary m � m0lim supn!1 E �P  G 1pn�=l(n)M�n!! � limn!1E �P  G 1pn�=l(n)Mm�n!!+ C1Æ + C2"lim infn!1 E �P  G 1pn�=l(n)M�n!! � limn!1E �P  G 1pn�=l(n)Mm�n!!� C1Æ � C2"(this is seen as follows: a

ording to the de�nition of Skorohod distan
e d(:; :) on D(IR+; IR) ,see [J-Sh 87, 
h. VI℄, for every Æ > 0 there is �=�(Æ) > 0, "="(�) > 0, t0=t0(�) < 1 su
h thatsup0�t�t0 jf(t)�g(t)j < p" implies �rst d(f; g) < �, and se
ond jG(f) � G(g)j < C1Æ , for allf; g 2 D(IR+; IR) ). Combining these inequalities with weak 
onvergen
e1pn�=l(n) (Mmtn)t�0 ! �E�� (hMmi1)�1=2B(W�)a

ording to a) and using limm!1 E�� (hMmi1) = E�� (hMi1)as shown in 7.19, we get the assertion of b). 
) is a simple restatement of b). 2By theorems 7.16 and 7.20, all assertions of subse
tion 3.3 are proved.
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Overview: assumptions (H1) - (H6)We give a list of the assumptions used in this note and resume their 
onne
tions.X = (Xt)t�0 is a 
ontinuous-time strong Markov pro
ess with semigroup (Pt(�; �))t�0, takingvalues in a Polish spa
e (E; E), with 
�adl�ag paths, living on some (
;A; IF; (#t)t�0; (Px)x2E).Only in se
tion 7 we require thatX is the 
anoni
al pro
ess on its 
anoni
al path spa
eD(IR+; E).The �rst assumption is(H1): X = (Xt)t�0 is Harris with invariant measure �.This is the basi
 assumption used throughout the paper; (H1) is equivalent (see 1.4) to any ofthe following properties (H2) or (H2�), 0 < � <1:(H2): X = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(1)-waiting times independent of X(H2�): X� = (X�n)n�0 is Harris, with �n��n�1 i.i.d exp(�)-waiting times independent of Xwhere we put �0 = �0 = 0, and where the invariant measure for X or X� is �.Via (H2)+(H2�) for some � > 1, see 6.7, we have the following property (H6) whi
h is neededfor Nummelin splitting:(H6): The one-step transition kernel U1(�; �) of X satis�es the minorization 
ondition (fM1):there is some set C 2 E with �(C) > 0, some probability measure � on (E; E) equivalent to�(� \ C), and some 0 < � < 1 su
h that U1(x; dy) � �1C(x)�(dy) , for all x; y 2 E.A se
ond group of assumptions is used for pro
esses with life 
y
les:(H3): X has a re
urrent atom A 2 E and a life 
y
le de
omposition (Rn)n�1, see 1.9.A + 1.9.B.(H4): There is some fun
tion f , bounded, nonnegative, E-measurable, 0 < �(f) <1, su
h thatx ! Ex�Z R10 f(Xs) ds� is bounded on E(
alled weakly spe
ial for X and R1).Under suitable de�nition of the life 
y
le de
omposition (Rn)n in (H3), (H4) will hold in virtueof the Harris property (H2), see proposition 3.4.87



A third group of assumptions deals withM 2M2;lo
(Px; IF ), the 
lass of lo
ally square integrablelo
al martingales w.r.t. Px and IF , with 
�adl�ag paths and with M0 = 0:(H5A): M has the property8 y ;8 s; t : Mt+s �Mt =Ms Æ #t Py-a.s. ;angle bra
kett hMi and square bra
kett [M ℄ are additive fun
tionals of X, and E� (hMi1) <1.Whenever we work with a life 
y
le de
omposition (Rn)n of the pro
ess X, we need independentin
rements of M over life 
y
les of X:(H5B): For the life 
y
le de
omposition (Rn)n of (H3), M satis�es either (�):(�) MRn is measurable with respe
t to FR�n , for all n � 1or the following (��):(��) Rn+1 �Rn and M �MRn are independent of FRn , for all n � 1 .
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