Reinhard Höpfner – WS 19/20 – Übungsaufgaben zur Stochastik II

November 25, 2019

Übungsaufgabe 10 : Seien P, P' zwei Wahrscheinlichkeitsmasse auf demselben (Ω, \mathcal{A}) . Sei $I\!\!F = (\mathcal{F}_t)_{t\geq 0}$) eine Filtration in \mathcal{A} ; für $0 \leq t < \infty$ bezeichne Q_t bzw. Q'_t die Restriktion der Wahrscheinlichkeitsmasse P bzw. P' auf die Sub-σ-Algebra \mathcal{F}_t . Unter der Voraussetzung

(*) für jedes
$$0 \le t < \infty$$
 gilt $Q'_t \ll Q_t$

existiert für jedes $0 \le t < \infty$ eine \mathcal{F}_t -messbare Festlegung $L_t : \Omega \to [0, \infty)$ der Dichte $\frac{d(Q'_t)}{d(Q_t)}$ auf \mathcal{F}_t .

- a) Zeige: der Prozess $L=(L_t)_{t\geq 0}$ ist ein (P, \mathbb{F}) -Martingal.
- b) Unter der zusätzlichen Voraussetzung $P' \ll P$ (dies bedeutet eine wesentliche Verschärfung der Voraussetzung (*)!) gebe man für L einen Abschluss als Martingal nach rechts an.

<u>Übungsaufgabe 11</u>: Sei $M = (M_t)_{t \geq 0}$ ein nichtnegatives Martingal auf $(\Omega, \mathcal{A}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, P)$ mit der Eigenschaft $E(M_t) = 1$ für alle $t \geq 0$. Für beliebige Wahrscheinlichkeitsmasse P' auf (Ω, \mathcal{A}) bezeichne P'_t die Restriktion auf \mathcal{F}_t , $0 \leq t < \infty$.

Zeige: es gibt genau ein Wahrscheinlichkeitsmass Q auf $(\Omega, \bigvee_{t\geq 0} \mathcal{F}_t)$ so dass gilt:

für jedes $0 \le t < \infty$ gilt $Q_t \ll P_t$, und M_t ist eine Festlegung der Dichte $\frac{d(Q_t)}{d(P_t)}$.

<u>Übungsaufgabe 12</u>: Sei gegeben ein Wahrscheinlichkeitsmass ν auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, eine messbare Funktion $\rho: \mathbb{R} \to (0,1)$, und eine Übergangswahrscheinlichkeit K(.,.) auf $(\mathbb{R}, \mathcal{B})$ mit der Eigenschaft

$$\int_{I\!\!R} |y| K(x, dy) < \infty \quad \text{für jedes } x \in I\!\!R \ .$$

Bezeichne $\mathcal{G}(q)$ die gedächtnislose Verteilung auf \mathbb{N} (d.h.: Gewichte $(1-q)q^{k-1}$ auf $k=1,2,\ldots$) mit Parameter 0 < q < 1. Betrachte einen reellwertigen stochastischen Prozess der Form

$$X = (X_n)_{n \in \mathbb{N}_0}$$
 , $X_n = \zeta_0 1_{\{n < \tau\}} + \zeta_1 1_{\{\tau \le n < \infty\}}$, $n \in \mathbb{N}_0$

('Ein-Sprung-Sprungprozess'), bezeichne $I\!\!F^X=(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ die Geschichte von X. Man setze voraus

- der Startwert ζ_0 wird ausgewürfelt durch ν
- τ und ζ_1 sind bedingt unabhängig gegeben ζ_0
- die bedingte Verteilung von τ gegeben ζ_0 ist gedächtnislos mit Parameter $\rho(\zeta_0)$
- die bedingte Verteilung von $\zeta_1 \zeta_0$ gegeben ζ_0 ist gegeben durch $K(\zeta_0,\cdot)$

und zeige:

- a) τ ist eine \mathbb{F}^X -Stopzeit; $\Delta := \zeta_1 \zeta_0$ ist eine \mathcal{F}_{τ} -messbare Zufallsvariable;
- b) für jedes $n \in IN_0$ ist \mathcal{F}_n die von ζ_0 , $\tau 1_{\{\tau \leq n\}}$ und $\Delta 1_{\{\tau \leq n\}}$ erzeugte σ -Algebra, und es gilt

$$P(X_{n+1}|\mathcal{F}_n) = \zeta_0 + \Delta 1_{\{\tau \le n\}} + 1_{\{\tau > n\}} (1 - \rho(\zeta_0)) \int_{\mathbb{R}} y K(\zeta_0, dy)$$

c) Die Semimartingalzerlegung von X bezüglich \mathcal{F}^X ist gegeben durch

$$X = X_0 + M + A^{\tau}$$

wobei A den Prozess

$$n \longrightarrow A_n := n (1 - \rho(\zeta_0)) \int_{\mathbb{R}} y K(\zeta_0, dy)$$

(bedingt deterministisch gegeben ζ_0) und $M=(M_n)_{n\in\mathbb{N}_0}$ das Martingal mit

$$M_n := (X_n - E(X_n | \mathcal{F}_{n-1})) = \sum_{i=1}^n ((X_n - X_{n-1}) - E((X_n - X_{n-1}) | \mathcal{F}_{n-1}))$$
 , $n \ge 1$

und Startwert $M_0 \equiv 0$ bezeichnet; für dieses gilt M gilt $M = M^{\tau}$ nach Definition.