Reinhard Höpfner, Institut für Mathematik, Universität Mainz, Sommersemester 2020

VORLESUNG STOCHASTIK III (STOCHASTISCHE ANALYSIS)

Einige Übungsaufgaben zu Kapitel II

May 5, 2020

Aufgabe 2.1: Sei $(\Omega, \mathcal{A}, \mathbb{F}, P)$ eine stochastische Basis.

a) Sei $\varepsilon > 0$ deterministisch, sei T eine beliebige $I\!\!F$ -Stopzeit, dann ist

$$\widetilde{T} := T + \varepsilon$$

eine vorhersehbare IF-Stopzeit.

b) Für $F \in \mathcal{F}_0$ konstruiere man eine $I\!\!F$ -Stopzeit S mit der Eigenschaft

$$S$$
 ist IF -vorhersehbar , $[[S]] = [0] \times F$.

c) Für $0 \leq s < t, \, F \in \mathcal{F}_s$ und $\, R :=]s,t] \times F \,$ betrachte man den Anfang

$$D_R(\omega) := \inf\{t \ge 0 : (t, \omega) \in R\}$$

des vorhersehbaren Rechtecks R und zeige: auch ohne übliche Hypothesen ist D_R eine IF-Stopzeit.

d) Für das vorhersehbare Rechteck aus c) finde man eine vorhersehbare $I\!\!F$ -Stopzeit T mit

$$||D_R,T|| = R.$$

Aufgabe 2.2 : Sei $(\Omega, \mathcal{A}, \mathbb{F}, P)$ eine stochastische Basis. Betrachte das System

$$\mathcal{H} := \{][S,T]]: S,T$$
 beliebige IF -Stopzeiten, $S \leq T \} \bigcup \{ [0] \times F: F \in \mathcal{F}_0 \}$

von Teilmengen von $\mathbb{R}^+ \times \Omega$ und zeige:

$$\sigma(\mathcal{H}) = \mathcal{P}(IF)$$
.

Hinweis: man benutzte Aufgabe 2.1 c)+d).

Aufgabe 2.3: Auf demselben Grundraum (Ω, \mathcal{A}, P) seien Prozesse

$$N^{(i)} = (N_t^{(i)})_{t \geq 0}$$
 Standard-Poisson (Def. 13.14 aus der Stochastik II), $\ i \in I\!\!N_0,$

 $B = (B_t)_{t \ge 0}$ Standard-Brownsche Bewegung (Def. 13.9 aus der Stochastik II)

gegeben und unabhängig unter P. Als Filtration in \mathcal{A} definiere man

$$I\!\!F = (\mathcal{F}_t)_{t \ge 0} \quad , \quad \mathcal{F}_t := \bigcap_{r > t} \sigma \left(B_s \, , \, N_s^{(i)} \, , \, i \in I\!\!N_0 \, : \, 0 \le s \le r \, \right) \, .$$

Für $M \in \mathbb{N}$ beliebig gross aber fest (zum Beispiel $M := 10^{10^{137}}$) betrachte man den Prozess

$$X = (X_t)_{t \ge 0}$$
 , $X(t, \omega) := \sum_{i=0}^{M} 2^{-i} N^{(i)}(t, \omega)$

zusammen mit dem Prozess seiner linken Limiten

$$X^-(t,\omega) \; := \; \lim_{\substack{s \uparrow t \\ s < t}} X(s,\omega)$$

und definiere

$$\Delta X := X - X^{-}.$$

Man beweise die folgenden Aussagen.

- a) Die Zeit $T_\ell^{(i)}$ des $\ell\text{-ten}$ Sprunges von $N^{(i)}$ ist eine $I\!\!F\text{-Stopzeit}.$
- b) Für IF-Stopzeiten $S \leq T$ gilt

 $1_{[S,T]}B$ ist ein F-vorhersehbarer stochastischer Prozess .

c) Ist zusätzlich zu den Voraussetzungen aus b) S > 0 und existiert eine ankündigende Folge $(S_n)_n$ für S, so gilt auch

 $1_{[[S,T]]}B$ ist ein $I\!\!F$ -vorhersehbarer stochastischer Prozess .

d) Man zeige: X und BX sind F-optionale Prozesse, X^- und

$$Y := B X^-$$
 , $Y(t, \omega) := B(t, \omega) X^-(t, \omega)$

sind *IF*-vorhersehbare Prozesse.

e) Der Prozess ΔX ist $I\!\!F$ -optional. Für geeignet zu definierende $I\!\!F$ -Stopzeiten stelle man

$$\{\Delta X \neq 0\} \in \mathcal{O}(\mathbb{F})$$

als abzählbare Vereinigung von Stopzeitgraphen dar. Auch ohne 'übliche Hypothesen' ist der Anfang D_A von $A := \{\Delta X \neq 0\}$ eine IF-Stopzeit.

f) Man mache sich klar, wie der F-optionale Prozess

$$Z := B \Delta X$$
 , $Z(t, \omega) := B(t, \omega) (\Delta X)(t, \omega)$

aussieht (Hinweis: 13.30 im Vorspann zu Kapitel 2).

Aufgabe 2.4: Mit allen Voraussetzungen und Notationen aus Aufgabe 2.3:

a) Für M und X wie in Aufgabe 2.3 definiert zeige man: der Anfang D_A von $A := \{\Delta X \neq 0\}$ ist eine strikt positive IF-Stopzeit mit

$$P(D_A \le \varepsilon) = 1 - e^{-M\varepsilon} , \quad \varepsilon > 0.$$

Zur Zeit des ersten Sprunges von X wird jede der möglichen Sprunghöhen 2^{-i} , $1 \le i \le M$, mit derselben Wahrscheinlichkeit $\frac{1}{M}$ eintreten.

b) Indem man jeden der Prozesse $N^{(i)}$, $i \in \mathbb{N}_0$, zur Zeit seines ersten Sprunges einfriert, definiere man

$$\widetilde{X} = (\widetilde{X}_t)_{t \ge 0}$$
 , $\widetilde{X}(t, \omega) := \sum_{i=0}^{\infty} 2^{-i} 1_{[[T_1^{(i)}, \infty[[}(t, \omega)$

als nichtnegativen $I\!\!F$ -optionalen Prozess, ohne sich um Rechts- oder Linksstetigkeit der Pfade zu kümmern. Man überlege sich, dass der Anfang $D_{\widetilde{A}}$ von

$$\widetilde{A} := \left\{\widetilde{X} > 0\right\} \in \mathcal{O}(I\!\!F)$$

eine F-Stopzeit ist (hier braucht man keine 'üblichen Hypothesen'), und zeige:

$$P\left(D_{\widetilde{A}}=0\right) = 1.$$