TOPOLOGIE WS 2016/17

Übungsblatt 2

1. Abschluss, Inneres, Komplement

Es sei X ein topologischer Raum. Für jede Teilmenge $V \subset X$ ist

$$\bar{V} = \bigcap_{\substack{A\supset V\\A \text{ abg.}}} A$$

der Abschluss von V in X,

$$V^o = \bigcup_{\substack{U \subset V \\ U \text{ offen}}} U$$

das Innere von V in X und $V^c := X \setminus V$ das Komplement von V in X.

- a) Zeigen Sie, dass $V^o \subset V \subset \bar{V}$.
- b) Zeigen Sie, dass aus $V \subset W$ sowohl $W^c \subset V^c$ als auch $\bar{V} \subset \bar{W}$ und $V^o \subset W^o$ folgt.
- c) Zeigen Sie, dass $(V^c)^c = V, \overline{V}^c = V$ und $(V^o)^o = V^o$ gelten.
- d) Zeigen Sie, dass $\overline{V} = ((V^c)^o)^c$ und $V^o = (\overline{V^c})^c$.
- e) Zeigen Sie, dass $\overline{(\overline{V^o})^o} = \overline{V^o}$ und $\overline{((\overline{V})^o)}^o = (\overline{V})^o$ gelten. Können Sie jeweils ein konkretes Beispiel mit $(\overline{V^o})^o \neq V^o$ und $\overline{((\overline{V})^o)} \neq (\overline{V})$ angeben?
- f) Leiten Sie aus c), d) und e) ab, dass sich maximal 14 verschiedene Teilmengen von X erzeugen lassen dadurch, dass man auf eine Teilmenge V die Operationen Abschluss und Komplement in X beliebig oft und beliebig kombiniert anwendet.

(30 Punkte)

2. Konvergenz von Folgen

Es sei $X=(X,d_X)$ ein metrischer Raum. Eine Folge $(x_n)_n$ in X heißt $\varepsilon-n_0$ -konvergent, wenn ein $x\in X$ existiert derart, dass für jedes $\varepsilon>0$ ein $n_0\in\mathbb{N}_0$ existiert mit $d(x_n,x)<\varepsilon$ für alle $n\geq n_0$.

Die Folge $(x_n)_n$ heißt konvergent gegen $x \in X$, wenn für jede offene Menge $U \subset X$ mit $x \in U$ ein $n_0 \in \mathbb{N}_0$ existiert mit $x_n \in U$ für alle $n \geq n_0$.

Zeigen Sie die Äquivalenz der folgenden Aussagen:

- a) Die Folge $(x_n)_n \varepsilon n_0$ -konvergiert gegen x.
- b) für jedes $\epsilon > 0$ existiert ein $n_0 \in \mathbb{N}_0$ mit $x_n \in U_{\epsilon}(x)$ für alle $n \geq n_0$.
- c) Die Folge $(x_n)_n$ konvergiert gegen x.

(10 Punkte)

3. Der projektive Raum

Es sei $p: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n$ die natürliche Projektion auf den komplex-projektiven Raum $\mathbb{C}P^n$. Zeigen Sie: Die Abbildung

$$\psi: \mathbb{C}P^n \to \operatorname{Herm}^{n+1}(\mathbb{C}) := \left\{ A \in \mathbb{C}^{(n+1)\times (n+1)} \,|\, A^* = A \right\}.$$

definiert durch $v\mapsto \frac{1}{v^*v}vv^*,\ v\in\mathbb{C}^{n+1}\setminus\{0\}$ ist eine Einbettung (Homöomorphismus aufs Bild) von $\mathbb{C}P^n$ in den Raum $\operatorname{Herm}^{n+1}(\mathbb{C})$ der Hermiteschen Matrizen.

(30 Punkte)

4. Quadrat mit Kantenverklebungen

Gegeben sei ein Quadrat $[0,1] \times [0,1]$. In (a) und (c) untersuchen wir Quotientenräume, die durch Verheften gegenüberliegender Kanten aus dem Quadrat hervorgehen.

- (a) Der zweidimensionale Torus T^2 entsteht durch gleichsinniges Verheften (via $(0,t) \sim (1,t)$ und $(s,0) \sim (s,1)$). Begründen Sie, dass die Zuordnung $f: [0,1] \times [0,1] \to \mathbb{C}$ definiert durch $(s,t) \mapsto (e^{2\pi i s}, e^{2\pi i t})$ eine Einbettung von T^2 in \mathbb{C}^2 ergibt.
- (b) Begründen Sie, dass die Ringwurst (zweidimensionale Sphäre modulo Verklebung des Nordpols mit dem Südpol) in \mathbb{R}^3 einbettet.
- (c) Begründen Sie, dass bei Vorliegen einer gegensinnigen und einer gleichsinnigen Verheftung stets eine Sphäre mit zwei Kreuzhauben entsteht. (Hinweis: cut and paste)

(30 Punkte)