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Abstract. We perform numerical simulations of the lattice-animal problem at the upper critical dimension
d = 8 on hypercubic lattices in order to investigate logarithmic corrections to scaling there. Our stochastic
sampling method is based on the pruned-enriched Rosenbluth method (PERM), appropriate to linear
polymers, and yields high statistics with animals comprised of up to 8000 sites. We estimate both the
partition sums (number of different animals) and the radii of gyration. We re-verify the Parisi-Sourlas
prediction for the leading exponents and compare the logarithmic-correction exponents to two partially
differing sets of predictions from the literature. Finally, we propose, and test, a new Parisi-Sourlas-type
scaling relation appropriate for the logarithmic-correction exponents.

1 Introduction

A lattice animal is a cluster of connected sites on a regular
lattice. The enumeration of such objects – also called poly-
ominoes – is a combinatorial problem of interest to math-
ematicians [1], while in physics, they are closely linked to
the problems of percolation [2] and clustering in spin mod-
els [3]. In chemistry they form a basis for models of ran-
domly branched polymers in good solvents [4–6]. Lattice
animals linked by translations are considered as belonging
to the same equivalence class, and as such are considered
to be essentially the same. Of interest is ZN , the number of
distinct animals containing N sites. A related objective is
the calculation of the radius of gyration RN , related to the
average distance of occupied sites from the centre of mass
of the lattice animal. A number of variants of the lattice
animal are studied: bond lattice animals, which are clus-
ters of connected bonds; weakly embedded and strongly
embedded trees. It is believed that all these different mod-
els belong to the same universality class [7,8].

It is now established that the number of lattice animals
and the radius of gyration behave, to leading order in N ,
as [4–6]

ZN ∼ μNN−θ, (1)

RN ∼ Nν . (2)

Here θ is related to the rate of growth of ZN and ν = 1/dH

where dH is the Hausdorff (fractal) dimension of the lattice
animals.
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It is useful to define the generating function (or grand-
canonical partition function) for the model as

Z =
∞∑

N=0

KNZN . (3)

The growth constant μ is related to the critical fugacity
Kc defining the radius of convergence of the generating
function (3). To leading order,

Z ∼ |1 − μKc|θ−1, (4)

giving the identification μ = 1/Kc. The growth constant μ
is related to the critical fugacity of the corresponding field
theory and depends on the lattice coordination number,
while the entropic exponent θ and the correlation-length
exponent ν are universal [9,10].

Lattice animals may be viewed as the graphs aris-
ing from high-temperature expansions of related magnetic
models, in particular the high temperature expansion of
(the derivative of) the free energy of the q = 1 Potts mod-
els, which in turn is related to the percolation problem.
Parisi and Sourlas related the problem of branched poly-
mers, and hence lattice animals, in d dimension with the
Yang-Lee edge problem in d− 2 dimension, and predicted
that θ and ν are related by [11]

θ = (d − 2)ν + 1. (5)

This relation was re-derived in an interesting fashion [12]:
identifying Z as the high-temperature expansion of a mag-
netic model leads to the identification of K with the
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magnetic and thermal scaling fields of the related mag-
netic model, indicating that the lattice animal is con-
trolled by a single scaling field. This leads to the relations
3− θ = γ = α. The exponents α and γ are the usual crit-
ical indices related to the divergence of the specific heat
and susceptibility of the related Potts model. Substituting
the mean-field exponents into the usual hyperscaling rela-
tion α = 2− dν would lead to an upper critical dimension
of 6, whereas the correct upper critical dimension is 8,
indicating that there is an anomalous scaling and that
hyperscaling is modified, with d replaced by d − 2:

α = 2 − (d − 2)ν (6)

and equation (5) is recovered.
In reference [7,8], the Parisi-Sourlas predictions for the

leading behaviour for both equations (1) and (2) were ver-
ified in dimensions d = 2 to d = 9 using a high-statistics
numerical study with lattice animals with up to several
thousand sites in each case. The measured values of θ and
ν were compatible with the Parisi-Sourlas scaling relation.

Although experimentally inaccessible, a complete un-
derstanding of the lattice-animal problem includes the up-
per critical dimension d = 8. At and above this dimen-
sion, the critical exponents take on the mean-field values
ν = 1/4 and θ = 5/2 [13]. In eight dimensions, the scal-
ing forms (1) and (2) are modified by multiplicative log-
arithmic corrections. Indeed, in the high-precision study
of reference [7,8], very large corrections to equations (1)
and (2) were reported in eight dimensions. While it was
presumed that these corrections are logarithmic in nature,
no attempt at a detailed fit to them was made because the
authors were unaware of theoretical predictions beyond
the leading order, and because of the notorious difficulty
in fitting to such logarithms. It is expected that at the
upper critical dimension dc = 8, ZN and RN scale as

ZN ∼ μNN−θ(ln N)θ̂, (7)

RN ∼ Nν(ln N)ν̂ , (8)

with θ = 5/2 and ν = 1/4. The values of the logarithmic
correction exponents θ̂ and ν̂ are the subject of the present
article.

The mean-field exponents for the lattice animal model
correspond to the exponents calculated from a φ3 theory
with reduced temperature t = 0 and where the reduced
magnetic field h is used as a temperature-like variable.
This is consistent with the realisation, stated above, that
in this model there is only one scaling field, linked to the
magnetic field of the underlying magnetic model. The full
set of mean-field exponents are

α =
1
2
, β =

1
2
, γ =

1
2
, δ = 2, ν =

1
4
, and η = 0.

(9)
These exponents are related by Fisher renormalisation to
the standard mean-field exponents obtained setting h = 0
and varying t. These Fisher-renormalised exponents are

αX =−1, βX =1, γX =1, δX =2, νX =
1
2
, and ηX =0.

(10)

Whilst in the lattice animal model there is only a single
scaling field (h), in the equivalent Yang-Lee model it is
possible to vary both t and h independently.

This pairing via Fisher renormalisation and scaling re-
lations have permitted new analytic predictions for the
logarithmic corrections [14]: θ̂ = 1/3, consistent with the
prediction of reference [15] and ν̂ = 1/9. The latter differs
from a previous renormalisation-group based prediction:
ν̂ = −1/72 [15]. We therefore considered it worthwhile
to revisit the problem of lattice animals in d = 8 dimen-
sions in an attempt to discern whether the numerics sup-
port either of these analytic predictions for logarithmic
corrections.

In what follows we find numerical support for
logarithmically-corrected scaling behaviour in eight di-
mensions, with θ̂ = 1/3. Although the numerics for the
radius of gyration yield less convincing results, they ap-
pear more compatible with the value ν̂ = 1/9 predicted in
reference [14] than ν̂ = −1/72 predicted in reference [15].

2 Scaling at the upper critical dimension

While the leading exponents θ and ν in equations (7)
and (8) are not in doubt, there are two sets of predictions
in the literature for their logarithmic-correction counter-
parts θ̂ and ν̂. In reference [15], Ruiz-Lorenzo analyti-
cally studied these and other logarithmic corrections for
a generic φ3 scalar field theory at its upper critical di-
mension d = 6. This theory, with imaginary coupling, is
known to describe the Yang-Lee problem [16]. The latter
originates from the study of the Yang-Lee edge singular-
ity, which may be regarded as a critical or pseudo-critical
point.

Parisi and Sourlas advanced a relationship between
the Yang-Lee singularity in D dimensions and the lattice-
animal problem in d = D + 2 dimensions [11]. Recently,
an exact mapping between the two problems estab-
lished this relationship on a rigorous footing [17–20]. The
renormalisation-group calculation of reference [15] for the
Yang-Lee problem (φ3 theory with imaginary coupling) in
d = 6 dimensions yields a free energy as a function of the
magnetic field, the singular part of which is of the form

f ∼ h
3
2 (ln h)

1
3 . (11)

The grand canonical partition function for the lattice an-
imals is

Z =
∑

N

KNZN , (12)

where, with ZN given by equation (8), scales as

Z ∼ |1 − Kμ|θ−1| ln |1 − Kμ||θ̂. (13)

The Parisi-Sourlas mapping, then, identifies equation (11)
for the Yang-Lee problem with equation (13) for the lattice
animals, with the magnetic field in the former case being
replaced by the fugacity in the latter. This leads to the
predictions θ = 5/2 and θ̂ = 1/3 for the lattice-animal
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problem in d = 8 dimensions [15], which are supported by
previous direct calculations [4–6]. The φ3-approach also
leads to analytic predictions for the correlation length,

ξ(h) ∼ h−1/4| ln h|−1/72, (14)

which translates to ν = 1/4 and ν̂ = −1/72 for lattice
animals.

The lattice animal and Yang-Lee problems can be
considered either with the field or the order parameter
held constant, with constant field being the more natural
in field theory [21]. The corresponding two sets of criti-
cal exponents are linked via Fisher renormalization [22].
The Fisher renormalization scheme for logarithmic-
corrections was recently established in reference [14].
In reference [15], Ruiz-Lorenzo has also determined
the constant-order-parameter critical exponents and,
in particular, the constant-order-parameter logarithmic-
correction exponent for the correlation-length is given as
ν̂X = 5/18 [15]. Applying the Fisher-renormalization re-
lations from reference [14] with this value yields the pre-
diction ν̂ = 1/9, which is different to the constant-field
estimate ν̂ = −1/72 quoted above.

To summarize, the renormalization-group approach
of reference [15] yields constant-field estimates for the
leading entopic and Flory critical exponents which agree
with mean-field, have been checked numerically in refer-
ence [7,8] and which are not in doubt. The correspond-
ing logarithmic exponents are θ̂ = 1/3 and ν̂ = −1/72.
In reference [15], constant-order-parameter estimates are
also given, which, when Fisher renormalized also yield
θ̂ = 1/3 but ν̂ = 1/9. while all leading exponents and
Ruiz-Lorenzo’s RG calculations for the φ3 theory agree
with mean-field predictions, and while calculations for the
logarithmic-correction exponents agree with all previous
estimates where they exist (besides the Yang-Lee prob-
lem, these include for spin glasses and for percolation
in six dimensions), the disparity between the estimates
for ν̂ requires further investigation and we chose a non-
perturbative, numerical approach. It is also necessary to
check if θ̂ = 1/3 is supported numerically, as this has not
been tested non-perturbatively before.

3 Numerical approach

The numerical data was obtained using the prune-enriched
Rosenbluth method (PERM) which is a variant of the
Rosenbluth-Rosenbluth Monte Carlo method for self-
avoiding walks designed to avoid the ensembles being
dominated by a few high weight clusters and to avoid
undue time being used calculating clusters with small
weights [23,24]. This is avoided by reducing the width of
the weights distribution by pruning low-weight configu-
rations while cloning high-weight ones. To apply this ap-
proach to lattice animals, we have to estimate the cluster
weight while it is still growing. The approach, which is dis-
cussed in detail in reference [7,8], generates independent
clusters from different Monte Carlo tours and therefore
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Fig. 1. (Color online) The leading dependency of the partition
sum ZN on the animal size N with a = ln μ = 3.554830. The
line is of slope −5/2 to guide the eye.
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Fig. 2. (Color online) The three sets of data correspond to
a = ln μ = 3.554827 (upper set) a = 3.554830 (middle) a =
3.554833 (lower). The asymptotic slope is expected to yield the

logarithmic-correction exponent θ̂. While the pre-asymptotic,
smaller-N data has a slope of about 0.58, the middle data of
the inset, which corresponds to larger N values has a line of
slope ∼1/3 and a line of this slope is included to guide the eye.

leads to straightforward estimates for the errors in the
raw data for the partition sums and gyration radii.

In Figure 1 lnZN − aN is plotted against lnN . The
constant a = lnμ is set to the best fit value a = lnμ =
3.554830. The asymptotic value of the slope is consistent
with the expected value of θ = 5/2. To investigate the
logarithmic corrections, the leading scaling behaviour is
subtracted out, and ln ZN − aN + (5/2) lnN is plotted
against ln (lnN) in Figure 2. The middle line shows the
plot corresponding to the best fit value of a = 3.554830,
whilst the other two lines correspond to the upper and
lower error bounds a = 3.554827 (upper line) and a =
3.554833 (lower line). The insert shows the last section of
the curve, which can be seen to have a slope consistent
with θ̂ = 1/3. (Note that although the horizontal axis
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Fig. 3. (Color online) The points show the log correction to

Z2
N/Z2N . The solid line has the expected slope of θ̂ = 1/3.

The dashed line is a fit to the data and has slope 0.58. The
measured slope corresponds to the slope of the pre-asymptotic
part of the curve shown in Figure 2 (see text).

has relatively short range, since it is on a log-log scale it
corresponds to a wide range of animals sizes, from N ≈
6000 to N = 8000.)

The slope in the sizes of animals calculated is sensitive
to the precise value of a. One may attempt to eliminate a
by using two values of N , as

Z2
N

Z2N
∼ N−θ

(
ln2 N

ln 2N

)θ̂

. (15)

In Figure 3 we plot ln(Z2
N/Z2N ) + 5/2 lnN against

ln(ln2 N/ ln 2N), and the larger-N value of the slope
appears closer to 0.58 than to the expected θ̂ = 1/3.
However, this method relies heavily on the first half of the
data, which corresponds to relatively small N values and
is far from asymptotic. Indeed, the pre-asymptotic por-
tion of the best-fit curve in Figure 2 is also well fitted by
a straight line of slope 0.58, and we therefore consider the
asymptotic regime not to have been reached in Figure 3.

The situation for ν̂ is less clear. Although the leading
behaviour is again well verified, as shown by Figure 4,
the curve for the logarithmic correction is far from having
reached its asymptote. The insert in Figure 4 compares
the last portion of the graph with the prediction ν̂ = 1/9.
Whilst tending towards the correct value in the insert, the
true asymptotic value remains to be determined. However,
the graph does indicate that the logarithmic correction
exponent ν̂ is likely positive, and so supports ν̂ = 1/9 more
than ν̂ = −1/72.

4 Discussion

The scaling relation θ = (d − 2)ν + 1, introduced in ref-
erence [11], is essentially hyperscaling with the dimension
replaced by d − 2 for lattice animals corresponding to di-
mensional reduction arising in the mapping from lattice

0 2 4 6 8
ln N

-2

-1

0

1

2

3

4

5

ln
 (

R
N

)2

Fig. 4. (Color online) The leading dependency of the squared
radius of gyration R2

N on the animal size N . The line is of slope
2ν = 1/2 to guide the eye.
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Fig. 5. (Color online) The curve identifying the effective log-
arithmic corrections for the gyration radius R2

N , while not
asymptotic, is of positive slope. The insert is a zoom for the 10
largest animals and the the line is of slope 2ν̂ = 2/9 to guide
the eye.

animals to the Yang-Lee model. In references [25,26], a
set of scaling relations for logarithmic corrections were
developed, which included the corresponding hyperscaling
relation α̂ = d(q̂− ν̂) in which α̂ is the correction exponent
for the specific heat or free energy and q̂ is a logarithmic-
correction exponent for the finite-size scaling of the corre-
lation length.

In the case of lattice animals, α̂ may be identified
with θ̂, from equation (13). Then, reducing the dimen-
sionality appropriately, we find

θ̂ = (d − 2)(q̂ − ν̂). (16)

This is the logarithmic counterpart to the Parisi-Sourlas
equation.

The value q̂ = 1/6 was proposed in reference [25,26]
for lattice animals, also on the basis of scaling relations.
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Together with the estimates θ̂ = 1/3 and ν̂ = 1/9, equa-
tion (16) holds in the present case. Indeed, the value
ν̂ = 1/9 fits the full set of scaling relations for logarith-
mic corrections proposed in reference [25,26]. On the other
hand, ν̂ = −1/72 does not satisfy the scaling relations
when used in conjunction with the other exponent values
known and reported in reference [15].

We have revisited the problem of lattice animals at
the upper critical dimension d = 8 and re-verified that
the universal exponents θ and ν take their mean-field val-
ues there. We also provide numerical evidence in support
of the (uncontested) logarithmic counterpart to the en-
topic index, θ̂ = 1/3 and give an estimate for the growth
non-universal constant μ. Regarding the logarithmic coun-
terpart of the ν exponent, there are two candidate values
in the literature. One of these is a direct constant-field cal-
culation in reference [15], and the other is a Fisher renor-
malized version of the constant-order-parameter value also
determined in reference [15]. Only the latter is consistent
with the scaling relations, including a logarithmic version
of the Parisi-Sourlas relation proposed herein. Our numer-
ical evidence also indicates that the latter value is more
likely to be the correct one, but, because of difficulties in
achieving the asymptotic scaling regime, does not abso-
lutely confirm the particular value.
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