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Abstract. The intrinsic local stiffness of a polymer is characterized by
its persistence length. However, its traditional definition in terms of the
exponential decay of bond orientational correlations along the chain
backbone is accurate only for Gaussian phantom-chain-like polymers.
Also care is needed to clarify the conditions when the Kratky-Porod
wormlike chain model is applicable. These problems are elucidated by
Monte Carlo simulations of simple lattice models for polymers in both
d = 2 and d = 3 dimensions. While the asymptotic decay of the bond
orientational correlations for real polymers always is of power law form,
the Kratky-Porod model is found to be applicable for rather stiff (but
not too long) thin polymers in d = 3 (but not in d = 2). However, it does
not describe thick chains, e.g., bottle-brush polymers, where stiffness
is due to grafted flexible side-chains, and the persistence length grows
proportional to the effective thickness of the bottle-brush. A scaling
description of bottle-brushes is validated by simulations using the bond
fluctuation model.

1 Introduction

The stiffness of macromolecules is a central parameter that influences many proper-
ties of macromolecular materials [1–3]. Semiflexible polymers are building blocks for
liquid crystalline devices [4] and play a role in living matter (biopolymers such as
double-stranded (ds)DNA, actin etc. are fairly stiff [5]). While in many cases stiffness
is an intrinsic chain property (e.g., controlled by bond angle and torsional poten-
tials [1]), in the very important class of polyelectrolytes chain stiffness is controlled
by the interplay with the counterions in the polymer solution [6–13], and this led to
problems with an unambiguous quantitative characterization of the stiffness of these
polymers (see, e.g., [10,12]). We will come back to this point in Sect. 4.
To characterize the stiffness of macromolecules quantitatively, the notion of “per-

sistence length” is introduced, with the statement [2] “the directional correlation of
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two segments of a macromolecule diminishes exponentially with the growth of the
chain length separating them”. So if a bond vector ai between two repeat units at
positions ri, ri+1(ai = ri+1 − ri) is projected on a bond vector aj s steps along the
contour apart, the contour length between the bonds is s�b = (j − i)�b with �b = |ai|
and hence

〈cos θ(s)〉 = 〈ai · aj〉/�2b = exp(−s�b/�p) , (1)

where �p is the persistence length of the macromolecule. Often it is convenient to
disregard the fact that a macromolecule is a sequence of discrete monomeric units,
and treat it rather by a continuous curve r(s), s being then the curvilinear coordinate
along the chain contour. The Hamiltonian of the chain then is [14]

H = κ
2

L∫

0

(∂2r(s)
∂s2

)2
ds , κ =

{
kBT�p (d = 3)

2kBT�p (d = 2)
(2)

while L is the contour length of the chain ((L = (N − 1)�b in the discrete case when
the “chain length”, the number of repeat units, is N). From Eq. (2) one finds the
mean square end-to-end distance 〈R2e〉 as [14]

〈R2e〉 = 2�pL
{
1− �p
L

[
1− exp

(
− L/�p

)]}
. (3)

For very long chains, L � �p, Eq. (3) reduces to the standard result for polymers
obeying Gaussian statistics, 〈R2e〉 = �kL (�k = 2�p then is the Kuhn step length). For
L� �p one simply recovers the behavior of rigid rods, 〈R2e〉 = L2.
Note that the monomer diameter (or the diameter of the rigid rods, dr) does not

show up in Eqs. (1) and (3), and actually it is tacitly assumed that the chain molecule
is an infinitely thin phantom chain (dr = 0), no interaction between monomeric units
whatsoever is included. Therefore, the validity of Eqs. (1)–(3) is rather restricted
(although this fact often is ignored in the literature, taking the Kratky-Porod worm-
like chain model as something like the “gold standard” when one deals with semiflex-
ible polymers).
The outline of this paper now is as follows: In Sect. 2, we discuss Monte Carlo

results for a simple lattice model, namely the self-avoiding walk (SAW) on square and
simple cubic lattices with an energy penalty εb when the SAW makes a kink [15–17].
While this model describes polymers in a very good solvent, also results for the stan-
dard SAW model under Theta point conditions [18] will be included. It will be seen
that Eq. (1) always fails, while Eq. (3) fails in d = 2, but can be used in d = 3 for
very stiff (and thin) chains of intermediate length. Section 3 gives an interpretation
of these results, summarizing also Flory-type arguments [17,19–21]. Section 4 then
briefly discusses Monte Carlo simulations of bottle-brush polymers [18] using the bond
fluctuation model [28] and their interpretation [15,21,22], while Sect. 5 summarizes
our conclusions.

2 Monte Carlo test of the Kratky-Porod model

Using the pruned-enriched Rosenbluth method (PERM) [23], very precise data for
SAW’s on square and simple cubic lattices have been generated, varying the Boltz-
mann factor qb = exp(−εb/kBT ) over two decades and using N up to N = 50000
[15–17]. Figure 1 gives plots of 〈cos θ(s)〉 vs. s, both in the form of semi-log plots (on
which Eq. (1) would be a straight line) and as log-log plots, for both d = 2 and d = 3.
The parameter qb controlling chain stiffness varies from qb = 1 (i.e., flexible chains)
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Fig. 1. (a) Semilog plot of 〈cos θ(s)〉 versus s for d = 2 (left) and d = 3 (right), showing
three choices of qb, namely 0.005 (red diamonds), 0.01 (green stars), and 0.05 (blue circles).
Data are taken for N = 50000 (d = 3) and 25000 (d = 2). Straight lines indicate Eq. (1),
with �p ≈ 12 (d = 2) and 5.7 (d = 3) for qb = 0.05. (b) Log-log plot of 〈cos θ(s)〉 versus
s for d = 2 (left) and d = 3 (right), showing three choices of qb, namely 0.05 (magenta x),
0.2 (cyan triangles), and 1.0 (violet crosses). Straight lines indicate Eq. (5). In all legends,
the values for the respective persistence lengths are given. {Adapted with permission from
H.-P. Hsu, W. Paul, K. Binder, Europhysics Lett. 92, 28003 (2010) and 95, 68004 (2011).}

to qb = 0.005 (very stiff chains: then �p ≈ 118 in d = 2 and lp ≈ 52 in d = 3, choosing
�b = 1 as our length unit here). It is seen that in d = 2 systematic deviations from
Eq. (1) start already when 〈cos θ(s)〉 has decayed down to about 0.5, while in d = 3
Eq. (1) seems to hold down to about 〈cos θ(s)〉 ≈ 0.02, for rather stiff chains, but
then also systematic deviations set in. For more flexible chains, Eq. (1) does not work
at all, but rather there is clear evidence for a power law decay [24]. But in all cases
one way to define a persistence length �p is to extract it from the initial slope of these
curves, i.e. from 〈cos θ(s = 1)〉, via

�p/�b = −1/ ln(〈cos θ(s = 1)〉), (4)

even in cases where most of the data fall in the regime where a power law holds,

〈cos θ(s)〉 ∝ s−β , 1� s� N , β = 2− 2ν , (5)

where ν is the Flory exponent for SAW’s, 〈R2e〉 ∝ N2ν , with ν ≈ 0.588 (d = 3) [25]
and ν = 3/4 (d = 2) [2].
One might think that the problem that Eq. (1) for large s always fails is a conse-

quence of the excluded volume interactions prevailing in dilute solutions under good
solvent conditions only. However, this is not the case: also for both dense melts [26]
and dilute solutions at the Theta temperature [18,27] Eq. (1) fails and there occurs
a power law decay, but the decay is faster, described by an exponent β = 3/2 in both
cases. Thus there is no contradiction with the result that with respect to distances
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Fig. 2. Log-log plot of 〈cos θ(s)〉 vs. s, for the standard SAW’s on the simple cubic lattice
for isolated long chains at the Theta temperature, T = θ = 3.717ε/kB . Three choices of N
are included, as indicated. {Adapted from H.-P. Hsu, W. Paul, K. Binder, Macromolecules
43, 3094 (2010), Copyright ACS (2010).}
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Fig. 3. Log-log plot of 〈R2e〉/(2L�p) vs. L/�p, for d = 2 (a) and d = 3 (b). In (a) both data
from a bead-spring model, simulated by Molecular Dynamics [29] (MD) and square lattice
Monte Carlo data (MC), taken from [16], are included. Three choices of �p/�b for the MC
data are indicated, while the MD data were taken for a wide range of �p/�b, 2 < �p/�b < 533,
but using only N = 400. Adapted from A. Huang, H.-P. Hsu, A. Bhattacharya, K. Binder,
J. Chem. Phys. 143, 243102 (2015) with permission of AIP publishing. In case (b) the
wormlike chain (WLC) model prediction, Eq. (3), is included, and L is normalized by �p. A
wide range of choices for �p is included, as indicated.

between monomeric units Gaussian statistics holds, 〈R2e〉 = 2�pL applies for large �p
and L � �p. Remember that we can write the end-to-end vector Re as a sum over
all the successive bond vectors. Hence 〈R2e〉 can be written as a sum over all bond
vector correlations 〈ai · ai+s〉. For β < 1 this sum diverges, and therefore the expo-
nents β and ν > 1/2 are related. For β > 1 the sum is convergent, however, and of
order N . In fact, for no real polymers does Eq. (1) describe the asymptotic decay.
Figure 2 illustrates the behavior at the Theta point, using Monte Carlo results [18]
for the standard SAW model where an energy ε occurs if two monomeric units are
nearest neighbors, and ε = kBT ln qθ with qθ = 1.3087 to reach θ-conditions [23].

Figure 3 presents a test of the basic result of the wormlike chain (WLC) model for
the end-to-end distance of semiflexible chains, Eq. (3). One always finds for L/�p < 1
the trivial rod behavior, 〈R2e〉/(2L�p) = (L/�p)/2. However, for L > �p in d = 2
(Fig. 3(a)) an immediate crossover to the SAW-like behavior 〈R2e〉 ∝ �1/2p L3/2 sets
in: recall that ν = 3/4 in d = 2; hence the horizontal plateau at 〈R2e〉/(2L�p) = 1
predicted by the WLC model is not seen at all, unlike the case of d = 3 (Fig. 3(b)).
In d = 3, ultimately also a crossover to the SAW result 〈R2e〉/(2L�p) ∝ L2ν−1, occurs
but when �p is very large the data follow the WLC prediction over some range, before
the SAW behavior sets in.
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The failure of the WLC result in d = 2 is also seen for a off-lattice model with a
bond angle potential [29] Ubend(θ) = εb(1−cos θ), where for large εb (then Ubend(θ) ≈
εbθ
2/2) typical angles between subsequent bond vectors are very small, unlike the 90◦

kinks of the lattice model, which should theoretically make this chain model better
representable by the Kratky-Porod model. Although the local chain conformations
for the lattice and continuum models thus are very different, the global properties
of the chains such as 〈R2e〉 behave very similar. Figure 3(a) needs to be taken into
account for the interpretation of AFM studies of stiff chains like DNA absorbed on
planar substrates.

3 Crossover from Gaussian semiflexible chains to SAW’s

The double crossover from rods to Gaussian coils and the SAW-like coils, swollen by
the excluded volume interaction, is well-known experimentally [30]. However, in this
work it was erroneously claimed (without support by the data!) that the crossover
from Gaussian to swollen coils occurs universally at L/�p = 100, irrespective how
large �p is. This is obviously incorrect, as also Fig. 3(b) shows, and as also can be
seen from simple Flory-type arguments [17,19–21].
For this it is convenient to consider a somewhat different model of semiflexible

polymers, describing them as freely jointed rods of length �p, and diameter dr. The
2nd virial coefficient then is proportional to υ2 = �

2
pdr (in d = 3). The free energy of

a chain is written as a function of Re as

ΔF ∝ R2e/(�pL) + υ2R3e[(L/�p)/R3e]2 , (6)

the first term being the elastic energy of the coil and the second term describes
binary interactions (proportional to the square of the density (L/�p)/R

3
e of the rods),

omitting all prefactors of order unity. For L→∞, minimization of ΔF with respect
to Re yields

Re ∝ (υ2/�p)1/5L3/5 ∝ (�pdr)1/5L3/5. (7)

Eq. (7) holds only, however, if L exceeds L∗, with

L∗ ∝ �3p/d2r , or , Re > R∗e = �2p/dr. (8)

In d = 2, however, υ2 ∝ �2p, and a similar argument yields Re ∝ �1/4p L3/4 and L∗ ∝ �p,
i.e. a direct crossover from rods to SAW’s occurs (as seen in Fig. 3(a)). Eqs. (7), (8)
imply R2e/R

∗2
e ∝ (L/L∗)6/5 or R2e/(2�pL) ∝ (L/L∗)1/5. This relation is tested in

Fig. 4, but using empirical estimates for L∗(qb), which imply L∗ ∝ �2.5p , however. It
is unclear whether the 20% discrepancy between this exponent 2.5 and the exponent
3 in Eq. (8) is meaningful; however, we recall that Flory theory also implies a 10%
discrepancy between the exponent 2ν − 1 in Fig. 4 as well, as is well known [25].

4 Thick, wormlike chains without Gaussian behavior

The archetypical example of thick polymer chains are bottle-brushes, i.e., macromole-
cules with a comb polymer chemical architecture, where side chains with N effective
monomers are grafted (grafting density σ) to a flexible chain with Nb units, act-
ing as backbone [31,32]. The excluded volume forces between the side chains cause
an effective stiffening of the backbone, Varying σ and N , the persistence length of
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these wormlike objects can be controlled. Hence they find much interest as building
blocks for various applications in material science, as well as in biological contexts
(e.g., aggrecan molecules in the articular cartilage are bottle-brushes [33]). However,
extracting �p for bottle-brushes from scattering experiments encounters enormous dif-
ficulties: polydispersity of both backbone and side chains; the cross sectional density
profile of the WLC is not known; the effective contour length of the “worm” Lcc is
unknown, Lcc < L since the actual backbone does not need to follow precisely the
cylinder axis; etc. Thus, experimental results for �p are controversial (e.g. [34,35]).
Large scale simulations of bottle-brushes do not suffer from the above difficul-

ties, and structural properties including the cross-sectional density profile are acces-
sible [36] in arbitrary detail. Using the bond fluctuation model [28] and advanced
algorithms [26], backbone chain lengths up to Nb = 1027 and side chain lengths
6 ≤ N ≤ 48 were accessible. In this lattice model [28] each monomeric unit blocks all
8 sites of an elementary cube of the lattice from further occupation, and bond lengths
can vary from 2 to

√
10 lattice spacings, so that �b ≈ 2.7 on average. A detailed

mapping of the mean square gyration radius 〈R2g〉 and the coherent structure factor
S(q), q being the scattering vector, on corresponding experiments [37] shows that the
model accurately reproduces the structure of the real bottle-brushes on mesoscopic
scales.
In rough agreement with experiments [34,35], a scaling of the cross-sectional

radius Rcs(N) ∝ Nν was found [15,18,21,22,37], and in contrast to theoretical pre-
dictions [38] no evidence whatsoever for a Gaussian regime (〈R2e〉 ∝ Nb) of the bottle-
brushes was found. It is possible that for much longer N(N > 103) and/or very
high σ a stronger stretching of the backbone occurs and the Kratky-Porod WLC
model would be validated [39], but for all practical purposes this is of no inter-
est. Rather a simple scaling description in terms of blobs with diameter 2Rcs(N)
was established (Fig. 5): from the mean square displacement between backbone
monomer 〈Δr2(s)〉 s steps apart along the contour we find sblob(N) from the con-
dition 〈Δr2(sblob(N))〉1/2 = 2Rcs(N) (Fig. 5(a)). Rescaling then the mean square
end-to-end distance of the backbone 〈R2e〉 with its asymptotic behavior for large Nb,〈R2e〉 = 2�b�p,RN2νb where now �p,R is an “effective” persistence length extracted
directly from these data, and rescaling Nb with sblob(N) we find all data for the dif-
ferent choices of N collapse on a master curve. If a Gaussian intermediate regime with
〈R2e〉 ∝ Nb would have been present, it would show up with a maximum exceeding
unity and subsequent decrease towards unity in this plot. The absence of the Gaussian
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Fig. 5. (a) Log-log plot of the root mean square displacement of backbone monomers as
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estimates for 2Rcs(N) are shown and highlighted by horizontal broken lines. The vertical
broken straight lines indicate how sblob(N) is extracted. (b) Rescaled mean square end-to-
end distance of bottle-brush backbones, 〈R2e〉/(2�b�p,RN2νb ), plotted vs. the rescaled chain
length Nb/sblob(N). {Reproduced with permission from H.-P. Hsu, W. Paul, K. Binder,
Europhysics Lett. 92, 28003 (2010).}

regime simply is understood from the Flory treatment also: when dr ∝ �p in Eq. (8),
L∗ ∝ �p, and a direct rod-SAW crossover must occur. Thus, stiffness due to chain
“thickness” leads to WLC’s that are not described by the Kratky-Porod model.
At this point we want to pose the question, whether this behavior might not also

be at the origin of the difficulties to identify a persistence length for polyelectrolyte
chains in solution. These chains consist of a backbone surrounded by its counterion
cloud. If we want to understand the bending stiffness of a polyelectrolyte, we would
need to consider the free energy of the compound object of backbone and cloud,
and not only the backbone, effectively leading to a description as a thick polymer.
Such considerations have also been used to analyze the isotropic-nematic transition
in solutions of rod-like polyelectrolytes [40–42]. The radial density distribution within
the counterion cloud has been determined experimentally [43] along the same lines
as discussed in [36]. Interestingly, it is qualitatively the same as the radial density
of side chain monomers obtained in [15] and used to define the effective thickness
of bottle-brush polymers. This would suggest that the correct coarse-grained picture
of a polyelectrolyte chain (as for the bottle-brush polymers) would not be provided
by the Kratky-Porod model but by a pearl-necklace model of blobs with a diameter
given by the effective thickness of the chains, and the persistence length of the chains
would be also given by their effective thickness.

5 Conclusion

By extensive Monte Carlo simulations and accompanying theoretical arguments, the
applicability of the Kratky-Porod (K-P) wormlike model was clarified. It was shown
that in d = 2 dimensions (i.e., for semiflexible polymers adsorbed on planar sub-
strates) it fails completely, one has a direct crossover from rods to SAW’s. In d = 3,
if the chains are sufficiently thin (dr � �p), there occurs a double crossover from rods
to Gaussian-like chains, well described by the K-P WLC model, and only for very
long chains (L � L∗(�p)) SAW-type behavior sets in. We have shown that L∗(�p)
is still incompletely understood. For bottle-brush polymers, where �p increases be-
cause dr = 2Rcs(N) increases with side chain length N , the Gaussian regime is
absent, and again a single crossover from rod-like chains to SAW’s occurs, even in
d = 3 dimensions.
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These considerations can be extended to the chain structure factor S(q) [44], to the
problem of semiflexible chains under the action of stretching forces (e.g. [17,44,45],
or under confinement (e.g. [29,46–49]). Also the adsorption transition of semiflexible
polymers has been of longstanding interest (e.g. [50,51]) as well their nematic or-
dering in semidilute solutions (e.g. [52,53]). Dynamics of semiflexible polymers is an
interesting issue (e.g. [54]), however, lack of space precludes a more detailed discus-
sion. Nevertheless, we hope that the present concise review shows that the physics
of semiflexible polymers still is a very active field, with many open problems, and
provides a motivation to the reader to study these problems in more detail. Only a
small selection of available results could be mentioned here, and we apologize to all
colleagues whose interesting contributions could not be included.

Two of us (K.B. and W.P.) have profited in our understanding of polymers from several
decades of fruitful collaboration and discussions with Kurt Kremer. H.-P. Hsu is grateful to
him for his valuable guidance after getting the chance to join his group. The original research
that is reviewed here was carried out in the framework of the collaborative research center
SFB625/D3 of the Deutsche Forschungsgemeinschaft (DFG). We also thank Aiqun Huang
and Aniket Bhattacharya for their fruitful cooperation (Ref. [29]) from which the MD results
in Fig. 3(a) were taken.
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