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D-52425 Jülich, Germany

(received 11 March 2004; accepted in final form 21 April 2004)
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PACS. 34.20.Gj – Intermolecular and atom-molecule potentials and forces.
PACS. 44.05.+e – Analytical and numerical techniques.

Abstract. – We study numerically the effective pair potential between two star polymers with
equal arm lengths and equal number f of arms. The simulations were done for the soft-core
Domb-Joyce model on the simple cubic lattice, to minimize corrections to scaling and to allow
for an unlimited number of arms. For the sampling, we used the pruned-enriched Rosenbluth
method (PERM). We find that the potential is much less soft than claimed in previous papers,
in particular for f � 1. While we verify the logarithmic divergence of V (r), with r being
the distance between the two cores, predicted by Witten and Pincus, we find that the Mayer
function for f > 20 is hardly distinguishable from that for a Gaussian potential.

Interactions between polymers in diluted solutions are of interest for several reasons, not
the least because they influence both the equilibrium and the rheological properties of complex
fluids. In an early work by Flory et al. [1], it was suggested that polymer coils can be
approximated by hard spheres, but this was shown to be wrong in [2]. Since then it is
well understood that both linear and branched polymers are soft in the sense that they can
penetrate each other, and that the effective potential is a rather smooth function of their
distance. As shown in [3, 4], this can have dramatic effects on the phase diagram for semi-
dilute solutions of star polymers, and can —with the effective potentials assumed by these
authors— lead to a multitude of novel phases.

When discussing effective potentials between polymers —be they linear or star-shaped—
one has to distinguish between U(r), where r is the distance between the two centers of mass,
and V (r), where r is the distance between the two central monomers. In both cases, the
potential is defined by

exp[−βU(r)], exp[−βV (r)] = Z(2)(r)/
[
Z(1)

]2
, (1)

where Z(1) is the partition function of a single polymer, while Z(2)(r) is the partition function
of two polymers with fixed distance r. Finally, β = 1/kBT is used to give V (r) the usual di-
mension of a potential, although any temperature is of course dummy for an a-thermal system
as in the present case. For ease of writing, we shall set β = 1 in the following. Finally, all data
shown in the following refer to lattice simulations with r = (r, 0, 0), but we checked in a few
cases that distances not parallel to one of the coordinate axes gave basically the same results.
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Fig. 1 – Logarithms of the effective potential U(r) with r being the center-of-mass distance, for star
polymers with f = 2, 3, 4, 5, 6, 8, and 10 arms (bottom to top), plotted against (r/Rg)

2, where Rg

is the gyration radius of a single star. Arm lengths are N = 400 monomers. Linear curves would
correspond to Gaussian U(r).

In the following we shall only discuss the case where the number f of arms is the same
for both polymers (and might include the case f = 2 describing linear chains), and each arm
has the same length N . Even if not spelled out explicitly, the main point of [3–5] is that, for
large f , the potential V (r) is more relevant than U(r) for equations of state of semi-dilute
or dense solutions, and that V (r) is very different from U(r): While the latter is essentially
Gaussian, the former has a more complex structure with a Yukawa tail at large r. We will
show in the following that at least the second claim is not correct, and that V (r) can also be
approximated by a Gaussian for most practical purposes.

The center-of-mass potential U(r) is well known to be approximately Gaussian for linear [2,
6–8] polymers. For star polymers there are much fewer computations [9], so we present in
fig. 1 our own results which clearly indicate that U(r) is roughly Gaussian, too. Notice that
the deviation from a Gaussian at small r (i.e. the upward bending in fig. 1) is practically
irrelevant for > 8 arms per star, since it occurs only when e−U(r) ≤ 10−3.

The data in fig. 1, like all data in this paper, were obtained for the soft repulsion Domb-
Joyce model [10] at the “magic” value v∗ = 0.6 of the repulsion parameter, on the simple cubic
lattice. This model was chosen because it leads to minimal corrections to scaling and it allows
an arbitrary number f of arms to be attached to a single central site [11](1). The simulations
were made with the PERM algorithm [12], adapted for star polymers as described in [11].
The partition sum Z(2)(r) was estimated as usual (e.g., [7]) by simulating two independent
stars simultaneously, and computing their overlaps at different distances.

From general scaling arguments we expect U(r) and V (r) to depend on the arm length
N , for N � 1, only via the scaling variable x = r/Rg, where Rg is the gyration radius of
the star (for large N , Rg scales as Rg ≈ √

AfNν , with values of Af given in table I). We
checked this by making plots similar to fig. 1 also for other values of N (not shown here)
and by estimating U(0) for different N . As argued in [6, 8] for linear polymers (f = 2), the
convergence for N → ∞ is from above, UN,f (0) ≈ U∞,f (0) + a/N0.7, for small f (f ≤ 6); for
larger f the data were ambiguous. For f = 2 and 4, which are the only cases where precise

(1)In [11] we had considered two versions, one where the center of the star is occupied by a single monomer
and one with f -fold occupation. In the present paper we calculated centers of mass and gyration radii as if the
centers were singly occupied (else, the center would have too large a weight). But we computed Boltzmann
weights as if the centers were f -fold occupied. The latter has little effect on the outcome, except that it makes
the simulations more efficient.
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Table I – Main results. The numbers in brackets are single standard deviations in the last digit. Af

is defined by R2
g ≈ AfN2ν , bf is obtained through eq. (5) from the data of [11], U(0) is the effective

potential when the two centers of mass coincide, and af is defined in eq. (4), cf and df are defined
in eq. (8), and τf is defined in eq. (10). We do not quote errors for the latter four, since they are
strongly correlated and individual error estimates would not make sense.

f Af bf U(0) af cf df τf

2 0.2902(2) 0.815(2) 1.791(2) 1.869 0.372 0.405 4.5
3 0.3587(2) 1.540(3) 3.357(6) 1.759 0.74 0.473 2.2
4 0.4017(2) 2.415(5) 5.11(2) 1.720 1.17 0.506 1.35
5 0.4337(3) 3.42(1) 7.27(4) 1.707 1.76 0.527 1.00
6 0.4596(4) 4.52(2) 9.60(11) 1.682 2.90 0.548 0.98
8 0.5008(5) 7.05(2) 15.9(4) 1.690 4.62 0.582 0.62
10 0.5343(6) 9.90(3) 23.2(11) 1.691 7.0 0.600 0.50
12 0.5629(8) 13.15(6) 34.(4) 1.70 10.6 0.610 0.53
14 0.588(1) 16.71(8) – 1.71 14.1 0.62 ≈ 0.6
16 0.612(2) 20.54(10) – 1.67 19.0 0.65 ≈ 0.6
18 0.632(2) 24.73(14) – 1.69 22.5 0.65 ≈ 0.5
20 0.652(2) 29.3(2) – 1.73 26. 0.64 ≈ 0.5
24 0.689(3) 39.7(3) – 1.76 39. 0.65 ≈ 0.7
30 0.735(3) 57.3(6) – 1.75 54. 0.67 ≈ 0.7
35 0.764(4) 76.3(11) – 1.78 76. 0.68 ≈ 0.5
40 0.790(4) 94.6(20) – – – – –
50 0.846(5) – – – – – –
60 0.870(7) – – – – – –

comparisons to previous work are possible, the data shown in fig. 1 are in perfect agreement
with [8, 9]. Values of U(0), extrapolated to N → ∞, are also given in table I. They seem to
scale as U(0) ≈ 0.6f1.58.

Much more attention had been given in the literature previously to the potential V (r) with
r being the central monomer distance, and we shall also concentrate on V (r) in the following.
The first result on it was obtained by Witten and Pincus [13]. They pointed out that the
scaling [14]

Z
(1)
N,f ∼ µ−fNNγf−1 (2)

of the partition sum of a star with f arms and arm length N , together with the assumption
that Z

(2)
N,f (r)/[Z

(1)
N,f ]

2 is for any fixed f a function of x ≡ r/Rg only,

Z
(2)
N,f (r)/

[
Z

(1)
N,f

]2

= ψf

(
r/Rg

)
, (3)

implies that
V (r) ≈ VWP(r) ≡ bf ln

(
afRg/r

)
(4)

for 1 � r � Rg with
bf =

(
2γf − γ2f − 1

)
/ν . (5)

Precise estimates of γf can be found in [11]. They show that the scaling bf ∼ f3/2 obtained
in [13] by assuming the phenomenological Daoud-Cotton model [15] is not exact; a power law
fit gives instead bf ≈ 0.27f1.58. Both af and bf should be universal and should not depend
on the specific microscopic realization.
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Fig. 2 Fig. 3

Fig. 2 – Logarithms of partition functions Z
(2)
N,f (r) against N for f = 12. The data collapse expected

from the crossover ansatz eq. (3) is shown in the insert.

Fig. 3 – V (r) for f = 18, plotted on a logarithmic scale against r/Rg. The short continuous curve on
the left corresponds to eq. (4), the dashed curve is a Gaussian.

This is illustrated in fig. 2 where we show lnZ
(2)
N,f (r) as a function of N , for f = 12 and for

three different values of r. In contrast to the data shown in fig. 1, these data were obtained
by growing the two stars at distance r and with the mutual interactions taken into account
during the growth(2). This allows to measure Z

(2)
N,f (r) down to very small distances and large

N , where it is so small that the ratio Z
(2)
N,f (r)/[Z

(1)
N,f ]

2 measured from independently grown
stars would be indistinguishable from zero. On the other hand, at large distances this second
method would give very bad estimates of V (r), since it is obtained by subtracting the (nearly
equal) free energies obtained in two independent runs. Therefore, in the following, all plots will
show data obtained either by the first or by the second method, or will contain combinations
of both types of data.

Equation (4) cannot hold for large distances, and it is there where previous results were
most uncertain. An analytic ansatz which is supposed to cover all values of r was made by
Likos et al. [5]. Using a “corona” radius σ [13] which is roughly comparable in size to the
gyration radius, they assumed that

V (r) =
5f3/2

18




− ln(r/σ) +
1

1 +
√

f/2
for r ≤ σ,

σ/r

1 +
√

f/2
exp

[ − √
f(r − σ)/2σ

]
for r > σ.

(6)

This was supported by molecular-dynamics simulations and was also shown to be compatible
with experimental results. It was used in extensive simulations of semi-dilute and concentrated
solutions, and gave rise to a number of very interesting predictions [3, 4]. But for linear
polymers it disagrees with the analytic results of [6] and seems hard to be reconciled with the
simulations of [6,8,9]. In particular, it was shown in [16] that eq. (6) is in gross violation with

(2)These interactions change the Boltzmann weight and thus influence the cloning/pruning probabilities in
PERM. Notice that this strategy cannot be used for calculating U(r), since the center-of-mass distance is not
fixed even if the central monomers have a fixed distance.
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Fig. 4 – Rescaled radial Mayer functions against r/Rg for f = 18. The dashed curve is the prediction
from eq. (6) with σ = 1.3Rg [17].

simulations of off-lattice stars with up to 18 arms. But these arms were very short, whence
one might doubt the relevance of the results of [16].

Anyhow, in a later paper Jusufi et al. [18] proposed to use eq. (6) only for f > 10, and to
replace it for f < 10 by an ansatz with Gaussian decay for r > σ,

V (r) =
5
18

f3/2



− ln(r/σ) +

1
2τ2σ2

for r ≤ σ,

1
2τ2σ2

exp
[ − τ2

(
r2 − σ2

)]
for r > σ.

(7)

Notice that this does not alleviate the serious conflict with [16]. Also, we would expect that
the center of mass gets closer to the central monomer as f increases. Thus, if U(r) is roughly
Gaussian for large r, we should expect that also V (r) is Gaussian there for f � 1.

Let us for the moment concentrate on f = 18 arms, the case studied in [5]. In order to get
a first overall impression of V (r), we show in fig. 3 its logarithm, obtained for fixed r = 20
and for all N ≤ 400, against r/Rg. The short continuous curve at small r is the Witten-
Pincus prediction, modified by taking the measured values of γf and γ2f . It is relevant only
for r � Rg. For r � Rg the MC data can be approximated by a parabola, i.e. V (r) is
roughly Gaussian,

V (r) ≈ VGauss(r) ≡ cfe−df r2/R2
g . (8)

We conjecture that cf and df are universal. A Yukawa tail as in eq. (6) would essentially
correspond to a straight line in fig. 3 and is definitely ruled out(3).

Since r = 20 is not very large, one might be worried about finite-size corrections. When
plotted as in fig. 3, finite-size corrections would be visible only in the r.h.s. tail where V is so
small that they are irrelevant. Thus we plotted in fig. 4 the rescaled radial Mayer function,

(
r/Rg

)2
fM(r) =

(
r/Rg

)2(1− exp[−V (r)]), (9)

(3)Actually, V (r) decays for r → ∞ faster than Gaussian, as V (r) ∼ e−rδ· const with δ = (1 − ν)−1 > 2 [19].
This follows from the fact that arms are very far from each other for r � Rg, and thus the potential is
proportional to the product of the densities in a single unbranched chain [19]. But we expect this to hold only
for very large r, far beyond the distances we could study in this paper.
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Fig. 5 – Rescaled radial Mayer functions against r/Rg for several values of f . Curves are obtained
from eq. (10), with fitted parameters af , cf , df and τf given in table I.

which is the most interesting quantity, for three values of r. This plot agrees very well with
the simulations of [16], although those authors used a continuum model with much shorter
arms. On the other hand, our data disagree strongly with eq. (6) which is indicated by the
dashed curve.

Linking the small- and large-r behaviours seen in fig. 3 into a piecewise analytic form as
in eqs. (6) or (7) would obviously give a discontinuous slope and a bad fit. Rather, we found
that the following ansatz describes all our data quantitatively, for all 2 ≤ f < 35 and for all
values of r:

V (r) =
1
τf

ln
[
eτf VWP(r)−df r2/R2

g + eτf VGauss(r)
]
, (10)

with VWP(r) and VGauss(r) defined in eqs. (4) and (8), and with τf being an additional param-
eter for every f . It is easy to see that V (r) > 0 for all r and that V (r) = VGauss(r) [1+O(r−bf )]
for r → ∞, while V (r) = VWP(r) [1 +O(r2)] for r → 0. Like the previous parameters, also τf

should be universal. Values for af , cf , df , and τf obtained by fitting our MC simulations are
given in table I. One sees that τf is between 1/2 and 1, except for the smallest values of f . The
strength of VGauss(r) increases roughly as cf ≈ 0.1f1.88. Its range increases faster than Rg and
the peak of the radial Mayer function increases even faster, roughly as Rg ln f . For several val-
ues of f , radial Mayer functions are shown in fig. 5 together with the fits obtained with eq. (10).
For f � 1, their peaks are at r/Rg > af , i.e. at distances where VWP(r) would be negative.

For f > 20, our ansatz for V (r) can be simplified. For such stars the potential is so big for
small r that the Witten-Pincus term can be neglected for dilute solutions: Whenever it would
be relevant in comparison to the Gaussian term, the pair distribution function exp[−V (r)] is
already zero for all practical purposes(4). The Witten-Pincus part becomes important only
for very dense systems. But there the description in terms of effective two-body forces is
questionable. For the same reason, also the parameter τf is less precisely determined than af ,
cf and df .

(4)This might not be true if there are chemically reactive radicals at the star centers. In that case, even a
very small probability for the star centers to meet might be important, and the difference between eqs. (10)
and the purely Gaussian approximation might be relevant.
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In summary, we have obtained very precise Monte Carlo estimates of the effective poten-
tials between two star polymers with equal number of arms and equal arm lengths. Using a
soft-core polymer model (the Domb-Joyce model), we have reduced corrections to scaling to a
minimum, and we have been able to simulate many arms without having to use a large central
particle. We thus believe that our results present essentially the scaling limit of long arms.
Our most important finding is that effective potentials are much harder than previously be-
lieved. This refers to the case where the central monomers are used to define the distance. For
the alternative case of the center-of-mass distance, it had already been assumed by previous
authors that the potential is relatively hard at large r and approximately Gaussian. We found
that basically the same is true also for the central-mass definition. Which of these two alter-
natives is a better starting point for effective potentials in systems with finite concentration
is another question, but our results suggest that it does not make much difference.

∗ ∗ ∗
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6177.
[19] de Gennes P. G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca) 1979.


