
OFFPRINT

Breakdown of the Kratky-Porod wormlike
chain model for semiflexible polymers in two

dimensions

Hsiao-Ping Hsu, Wolfgang Paul and Kurt Binder

EPL, 95 (2011) 68004

Please visit the new website
www.epljournal.org



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL
EPL is a leading international journal publishing original, high-quality Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary research 

to astrophysics, geophysics, plasma and fusion sciences, including those with 

application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles continue to ensure EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work with 

others across the whole of the physics community.

Run by active scientists, for scientists 
EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community.  The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

IM
PA

CT 
FA

CTO
R

 2
.7

53
*

*A
s r

an
ke

d b
y I

SI
 2
01

0

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 40+ Co-Editors, who are experts in their fields, oversee the 

entire peer-review process, from selection of the referees to making all final 

acceptance decisions

Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the 

right place to be cited by your peers

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from acceptance to online publication is 30 days

High visibility – All articles are free to read for 30 days from online 

publication date

International reach – Over 2,000 institutions have access to EPL, 

enabling your work to be read by your peers in 100 countries

Open Access – Articles are offered open access for a one-off author 

payment

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to help gain recognition for your high-quality work through 

worldwide visibility and high citations. 2.753*
* As listed in the ISI® 2010 Science  

Citation Index Journal Citation Reports

IMPACT FACTOR

500 000
full text downloads in 2010

OVER

30 DAYS

16 961

average receipt to online 

publication in 2010

citations in 2010
37% increase from 2007

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We’ve had a very positive 

experience with EPL, and 

not only on this occasion.  

The fact that one can 

identify an appropriate 

editor, and the editor 

is an active scientist in 

the field, makes a huge 

difference.”

Dr. Ivar Martinv

Los Alamos National Laboratory, 
USA



EPL Compilation Index

Visit the EPL website to read the latest articles published in 
cutting-edge fields of research from across the whole of physics.  

Each compilation is led by its own Co-Editor, who is a leading 
scientist in that field, and who is responsible for overseeing 
the review process, selecting referees and making publication 
decisions for every manuscript.

• Graphene 

• Liquid Crystals 

• High Transition Temperature Superconductors 

• Quantum Information Processing & Communication

• Biological & Soft Matter Physics

• Atomic, Molecular & Optical Physics

• Bose–Einstein Condensates & Ultracold Gases

• Metamaterials, Nanostructures & Magnetic Materials

• Mathematical Methods

• Physics of Gases, Plasmas & Electric Fields

• High Energy Nuclear Physics 

If you are working on research in any of these areas, the Co-Editors would be 

delighted to receive your submission. Articles should be submitted via the 

automated manuscript system at www.epletters.net

If you would like further information about our author service or EPL  

in general, please visit www.epljournal.org or e-mail us at 

info@epljournal.org

Biaxial strain on lens-shaped quantum rings of different inner 

radii, adapted from Zhang et al 2008 EPL 83 67004.

Artistic impression of electrostatic particle–particle  

interactions in dielectrophoresis, adapted from N Aubry 

and P Singh 2006 EPL 74 623.

Artistic impression of velocity and normal stress profiles 

around a sphere that moves through a polymer solution,

adapted from R Tuinier, J K G Dhont and T-H Fan 2006 EPL 

75 929.

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



September 2011

EPL, 95 (2011) 68004 www.epljournal.org

doi: 10.1209/0295-5075/95/68004

Breakdown of the Kratky-Porod wormlike chain model

for semiflexible polymers in two dimensions

Hsiao-Ping Hsu1(a), Wolfgang Paul2 and Kurt Binder1

1 Institut für Physik, Johannes Gutenberg Universität Mainz - Staudinger Weg 7, 55099 Mainz, Germany
2 Theoretische Physik, Martin-Luther-Universität Halle Wittenberg - von Senckendorffplatz 1,

06120 Halle, Germany

received 28 June 2011; accepted in final form 8 August 2011
published online 8 September 2011

PACS 82.35.Lr – Physical properties of polymers
PACS 87.15.A- – Theory, modeling, and computer simulation
PACS 36.20.Ey – Conformation (statistics and dynamics)

Abstract – By large-scale Monte Carlo simulations of semiflexible polymers in d= 2 dimensions
the applicability of the Kratky-Porod model is tested. This model is widely used as “standard
model” for describing conformations and force vs. extension curves of stiff polymers. It is shown
that semiflexible polymers in d= 2 show a crossover from hard rods to self-avoiding walks, the
intermediate Gaussian regime (implied by the Kratky-Porod model) is completely absent. Hence
the latter can also describe force vs. extension curves only if the contour length is only a few times
larger than the persistence length. Consequences for experiments on biopolymers at interfaces are
briefly discussed.

Copyright c© EPLA, 2011

Characterizing the flexibility or stiffness of polymer
chains is of basic importance for describing their struc-
ture and dynamics, and hence relevant for understanding
the functions of biopolymers, as well as the applica-
tion properties of synthetic polymers [1–4]. Moderately
stiff (“semiflexible”) macromolecules behave like rods on
small scales, and one captures this behavior by the
concept of the so-called “persistence length” ℓp. For larger
length scales, entropic flexibility prevails and random coil-
like structures occur. Important examples for such stiff
biopolymers are DNA, some proteins, actin, neurofila-
ments, but also mesoscopic objects such as viruses [5–7].
The experimental study of such biopolymers and the
interpretation of these observations by models is a very
active topic of research (e.g., [8–17]). In particular, the
conformation of these biopolymers can be directly visu-
alized by electron microscopy (EM) or scanning force
microscopy (SFM) techniques when such polymers are
adsorbed on substrates [8–10,12,14,17]; by atomic force
microscopy (AFM) also force vs. extension curves can
be measured [11,13]. The same methods also work for
synthetic polymers such as molecular brushes [18], where
stiffness is controlled by the length of side chains [19].
The standard theoretical model, that is almost exclu-

sively used (e.g., [20–31]) to interpret these experiments

(a)E-mail: hsu@uni-mainz.de

is the simple “wormlike chain (WLC) model” [32,33]. Its
Hamiltonian is, in the continuum limit,

H

kBT
=
κ

2

∫ L

0

dt

(

d2�r(t)

dt2

)2

. (1)

Here the curve �r(t) describes the linear macromolecule,
t is a coordinate along its contour which has the length
L. We choose units such that kBT = 1, and the bending
stiffness κ then is κ= ℓp/2, in d= 2 dimensions. In this
paper we shall focus on the case of chains confined to two-
dimensional geometry, since this case is relevant for the
EM and SFM imaging techniques, and also the subject of
numerous theoretical studies (e.g., [25,28–30]). However,
the applicability of eq. (1) in principle is questionable,
since it neglects excluded volume between the repeat units
of the chain completely. Thus, eq. (1) yields the end-to-end
distance of the polymer chains as

〈R2〉= 2ℓpL

{

1−
1

n
[1− exp(−n)]

}

, n=L/ℓp, (2)

and hence for n≫ 1 the chain behaves like a Gaussian coil
(〈R2〉= 2ℓpL) while for n< 1 it is essentially a rigid rod of
length L. The bond-autocorrelation function shows then
a simple exponential decay,

g(t) = 〈�ai ·�ai+s〉= ℓ
2
b exp(−t/ℓp), t= sℓb, (3)

where we now consider a chain where Nb bonds of length
ℓb connect repeat units at sites �ri, �ai = �ri+1−�ri, |�ai|= ℓb;
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so L=Nbℓb. Finally, if one considers the effect of a force
f acting on one chain end (the other being fixed at the
origin), by adding a term - fX to the Hamiltonian (X
being the x-component of the end-to-end distance), one
obtains from eq. (1) the force vs. distance relation to a
very good approximation, in d= 2 [29]

fℓp =
1

8

[

6
〈X〉

L
− 1+

(

1−
〈X〉

L

)

−2
]

. (4)

Since various experimental data have been described
by eqs. (2)–(4) with some success adjusting parameters
such as ℓp and L, it is widely believed that the basic
Kratky-Porod model, eq. (1), describes semiflexible chains
accurately, and a large body of work is concerned with
various refinements of this model (see, e.g., [26–30]).
However, in the present Letter we show that in fact in
d= 2 the validity of the Kratky-Porod model in the good
solvent regime is very restricted, it always holds only up
to contour lengths L of a few times ℓp, irrespective how
large the persistence length ℓp is. In particular, a regime
of L where Gaussian statistics holds, 〈R2〉= 2ℓpL, in d=
2 is completely absent, unlike the case of d= 3, where
for very large ℓp a double crossover (rods → Gaussian
coils → non-Gaussian swollen coils) is established both
experimentally [34] and theoretically [35]. Also eq. (4)
breaks down for L≫ ℓp, irrespective of how large ℓp is.
In d= 2, we will show that

〈R2〉1/2 ∝ ℓ1/4p L
3/4, L > ℓp (5)

and g(t)∝ t−1/2, for t > ℓp, rather than an exponential
decay as in eq. (3). The latter result is consistent with the
scaling prediction [36] g(t)∝ t−β with β = 2(1− ν) where
the Flory exponent ν = 3/4 in d= 2, as written already in
eq. (5).
There has been evidence for the scaling 〈R2〉1/2 ∝L3/4

for not so stiff polymers such as single stranded DNA
in d= 2 dimensions, see, e.g., [9,10,16], but it has been
widely believed that for very stiff polymers excluded-
volume interactions (that cause the non-trivial exponent
ν = 3/4 rather than the Gaussian result ν = 1/2 which
follows from eq. (2)) can be neglected, except for extremely
long chains. We will show, however, that excluded-volume
effects set in strongly already for L≈ 5ℓp, invalidating
the straightforward use of eqs. (2)–(4) for many cases of
interest.
We carried out Monte Carlo simulations of self-avoiding

walks (SAWs) on the square lattice, applying an energy εb
if the orientation of bond vector �ai differs (by ±π/2) from
that of �ai−1, and using the pruned-enriched Rosenbluth
method [35,37,38]. The partition function of SAWs with
Nb steps and Nbend local bends is

ZN,Nbend(qb, b) =
∑

config

C(Nb, Nbend, X)q
Nbend
b bX , (6)

where qb = exp(−εb/kBT ), b= exp(f/kBT ) and X is the
x-component of the end-to-end distance (assuming that
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Fig. 1: (Colour on-line) Semi-log plots of the bond-correlation
g(t) vs. the contour length t, for the ranges (for a definition of
the parameters see eq. (6)) 0.1� qb � 1.0 (a) and 0.005� qb �
0.05 (b). The data are taken for L= 25600 and b= 1, averaging
over the site i in eq. (3). Straight lines indicate fits of the initial
decay of g(t) to eq. (3). The resulting values of ℓp are quoted
in the figure. (c) Log-log plot of g(t) vs. t, for qb from 0.005 to
1.0 (from top to bottom). The straight line shows a fit of the
data for qb = 1 and t� 10 to the power law g(t)∝ t

−0.5.

the force f acts in the +x-direction). In experiments where
a force is applied to an end of a strongly adsorbed chain,
that takes essentially two-dimensional conformations, it
is possible to direct this force either perpendicular or
parallel to the surface; only the latter case is considered
here. Note qb = 1 for flexible chains (standard SAWs) and
b= 1 in the absence of the force f . We generated data for
C(Nb, Nbend, X) for 0.005� qb � 1.0 and Nb � 25600.
Figure 1 shows the bond-orientational correlations (for

the case f = 0). For rather flexible chains, qb = 0.4, there
are at best a few values, t= 1, 2, 3, compatible with an
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Fig. 2: (Colour on-line) Log-log plot of 〈R2〉/(2L) vs. L=Nbℓb
(a) and log-log plot of 〈R2〉/(2ℓpL) vs. L/ℓp (b), for b= 1 and
several choices of qb, as indicated. Full curves show the WLC
prediction, eq. (2), using ℓp (highlighted by arrows in (a))
from fig. 1(a)(b) as an input. Straight lines in (b) indicate the
power laws in the rod regime (〈R2〉=L2) and the SAW regime
(eq. (5)), respectively.

exponential decay (we use ℓb = 1 here and in the follow-
ing). For small qb, eq. (3) has a more extended range of
applicability, and ℓp strongly increases when qb decreases,
ℓp ≈ 0.61/qb. But the asymptotic decay always is the
expected power law (fig. 1(c)). As has been emphasized
recently [39], in the presence of excluded volume “the”
persistence length is a somewhat ill-defined concept; for
the present model, ℓp henceforth is defined from the initial
slope of the curves ln g(t) vs. t as t→ 0.
Figure 2 presents a test of eq. (2). While eq. (2)

trivially works for L< ℓp (the rod-like regime), significant
deviations become visible for L> 5ℓp, irrespective of how
large ℓp is, as the scaling plot (fig. 2(b)) shows. In contrast
to occasional claims in the literature [12], a regime of
Gaussian-like coils is completely absent in d= 2. This
result can be rationalized by the proper adaptation of
Flory-type arguments [40] to d= 2. The free energy of a
stiff chain is taken as the sum of an elastic energy (R2/ℓpL)
and the enthalpy due to repulsions, proportional to the
2nd virial coefficient (υ2 = ℓp (see footnote

1); prefactors
of order unity are suppressed throughout)

ΔF =R2/(ℓpL)+ υ2R
2[(L/ℓp)/R

2]2. (7)

1A rod of ℓp subsequently occupied lattice sites on the square

lattice blocks a square size ℓ2p for occupation to another rod, oriented

perpendicularly to the first one.
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Fig. 3: (Colour on-line) Log-log plot of 〈X〉/L vs. fℓp for
L= 200. Equation (4) is shown by the full curve for comparison
(a). Rescaled force fℓp plotted against 〈X〉/L for L= 1600 (b)
and L= 25600 (c). Various values of qb are shown as indicated.

In d= 2, the “volume” of a chain of radius R scales like R2,
and the density of the n=L/ℓp subunits is n/R

2 in this
volume. Minimizing ΔF with respect to R yields eq. (5).
The minimum length L where eq. (5) holds is found when
the enthalpic term in eq. (7) is unity for R2 = ℓpL, i.e. for
L∗ = ℓ3p/υ2 = ℓp, and there the rod-like regime starts: this
argument shows that we should expect a single crossover
from rods to SAWs, as seen in fig. 2(b), unlike the d= 3
case [35,40].
How, then, can we understand the apparent success

(suggested in the literature) of the Porod-Kratky model
to analyze force-extension curves in 2d? In fig. 3 we show
some of our results on force vs. extension curves in d= 2
and compare our data to the theoretical prediction based
on the WLC model, eq. (4). Here the persistence length
estimates quoted in figs. 1(a), (b) were used, so we can
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compare our simulation results that are based on eq. (6) to
the prediction, eq. (4), without adjusting any parameter
whatsoever. One can see that the latter equation works
only approximately (fig. 3(a)) for very stiff chains in a very
restrictive range of contour lengths, where we can deduce
from a detailed inspection of the data that 6<L/ℓp < 10
must be fulfilled: if L/ℓp is too small, the chain behaves
as a flexible rod, which can be oriented by a force but
not stretched; if L/ℓp is too large, excluded-volume effects
invalidate eq. (4), similarly as eq. (2) fails then. For
qb = 0.4, the chains have hardly any rod-like regime as
fig. 1(a) reveals, ℓp is less than three lattice spacings, and
so large deviations from eq. (4) are no surprise, of course.
For small qb, where for the chosen values of L= 200 in
fig. 3(a) L is only a few times larger than ℓp (recall ℓp ≃ 62
for qb = 0.01, fig. 1(b)), the deviations of the data from
eq. (4) go into the opposite direction (〈X〉/L for fℓp < 1
is smaller than predicted by eq. (4), while 〈X〉/L is larger
than predicted if ℓp is small). This finding implies that
for L= 200 and intermediate values of ℓp, the observed
variation of 〈X〉/L with fℓp is close to the predicted one,
for the intermediate range of L/ℓp quoted above, but this
agreement is somewhat accidental.
Note also that a sensible test of the Kratky-Porod

model (which is a continuum model) by our discrete
lattice model is only possible for forces such that fℓp < 1,
since important deviations between discrete chain models
and the Kratky-Porod model occur [26] when the so-
called deflection length λ∝ (fℓp)

−1/2 of worm-like chains
becomes smaller than the bond length ℓb. Thus our data
do not converge to eq. (4) even for large fℓp, although
for very strongly stretched chains (〈X〉/L) close to unity)
excluded-volume effects must become irrelevant.
If L is very large, such a crossing of the simulated curves

for 〈X〉/L as a function of fℓp with eq. (4) when ℓp is
varied does no longer occur (fig. 3(b), (c)). The simulation
results for 〈X〉/L are now always significantly larger than
the prediction, eq. (4), particularly for small values of
fℓp. This huge discrepancy for small values of fℓp can be
understood readily in terms of a linear-response argument:
actually, eq. (4) is found from adding a term −fX to the
Hamiltonian, eq. (1). Therefore it is straightforward to
derive, in the limit f → 0, the linear-response relation

∂〈X〉/∂f |f=0= 〈X
2〉f=0. (8)

Since 〈X2〉f=0 = 〈R
2〉/2, where according to the Kratky-

Porod model (eq. (2)) for L≫ ℓp we have simply 〈R
2〉=

2ℓpL, we conclude that 〈X〉= 〈X
2〉f = ℓpfL (in agreement

with the Taylor expansion of eq. (4) to first order in
〈X〉/L, as it must be, of course). However, in d= 2 for
vanishing force and L≫ ℓp the relation 〈X

2〉= ℓpL must

be replaced by 〈X2〉 ∝ ℓ
1/2
p L3/2, as is readily seen from

eq. (5). Therefore we predict for the linear-response regime
a very different scaling for the force-extension behavior,
namely

〈X〉/L∝ ℓ1/2p L
1/2f. (9)

 0.1
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Fig. 4: (Colour on-line) Log-log plot of f(Lℓp)
1/2 vs. 〈X〉/L,

including several values of qb as indicated, and data for Nb =
400, 1600, 6400, and 25600 (from bottom to top at the right
side of the diagram, respectively). The lower straight (black)
line indicates the linear-response behavior, and the straight
(red) solid line indicates the non-linear behavior, i.e. f ∝ 〈X〉3

(see text).

This relation is tested in fig. 4. A wide range of choices
of contour lengths L=Nbℓb and several choices of qb
and hence ℓp (the relation between qb and ℓp is quoted
in fig. 1(a), (b)) are included. An interesting issue also
is the regime of relative extensions over which linear
response holds: while eq. (4) implies a linear-response
regime applying almost up to 〈X〉/L≈ 0.3, irrespective
of ℓp, we suggest that the linear response breaks down if
〈X〉2 ≈ 〈X2〉, i.e. for 〈X〉/L∝ (ℓp/L)

1/4→ 0 as ℓp/L→ 0.
In the non-linear regime, fig. 3(b), (c) suggests that 〈X〉/L
can be described by some universal function of ℓpf , that
does not depend on ℓp: this is the universality of d= 2
SAWS, not the Kratky-Porod model.
Of course, the scaling 〈X〉 ∝L3/2f for small f is consis-

tent with the scaling behavior proposed by Pincus [41]
for stretched flexible polymers in the presence of excluded
volume

〈X〉=R0F (R0/ξp), (10)

where R0 is the radius of chain in the absence of a
stretching force, F (R0/ξp) is a scaling function, and ξp ∝
1/f is the size of “Pincus blobs”, and hence in the
linear-response regime 〈X〉 ∝R20f , i.e. eq. (9) results. The
condition that 〈X〉/L is of order unity then leads to [41]
〈X〉 ∝ f1/ν−1 = f1/3 in d= 2 dimensions, i.e. a strongly
non-linear relation between f and 〈X〉. This power law in
fact is compatible with the data in fig. 4 for large enough
〈X〉/L.
In conclusion, we have shown that in d= 2 dimensions

the Kratky-Porod model, that is ubiquitously used to
analyze the internal end-to-end distances of biopolymers
such as DNA (e.g., [15,17]) or of synthetic polymers such
as the bottle brushes (e.g., [18]) and to analyze force vs.
extension curves (e.g., [11,13]) has a very limited validity:
it trivially describes the rod-like regime, L� ℓp, but this
regime is not useful in the context of such measurements,
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which are devoted to understanding the dependence of
the persistence length on various parameters (such as
particular amino acid sequences in DNA, or side-chain
length in bottle brushes, etc.). In d= 2, a regime where
Gaussian statistics (requiring L≫ ℓp) holds is completely
absent.
Our findings imply that conformations of semiflexible

polymers in d= 2 (equilibrated surface adsorbed case)
depend on their relative length L/ℓp very differently from
the case d= 3 (dilute bulk solution). Thus there is no
direct way to infer properties (such as ℓp) in the bulk
from measurements on surface adsorbed chains: there is
no simple relation between the effective persistence lengths
either (in our model ℓp ∝ 1/(4qb) for d= 3 but ℓp ∼= 0.61/qb
in d= 2 for qb→ 0).
Going beyond the strictly 2-dimensional case, exploring

the crossover to weak adsorption (chains with dangling
non-adsorbed “tails” and “loops” in addition to adsorbed
“trains”) will be intriguing. Also, the effects of excluded
volume on force vs. extension curves when strongly
adsorbed chains are pulled off a surface in the direction
normal to the surface by an AFM tip need to be studied
carefully. Thus, much further work is needed for a better
modeling of biopolymers and other stiff polymers at
interfaces, and for the interpretation of the corresponding
experiments.
The effects studied in our work should also be relevant

when one studies semiflexible chains confined to the
surface of a sphere or its interior [42], a problem believed
to be of great biological relevance.
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