
Polymers confined between two parallel plane walls
Hsiao-Ping Hsua) and Peter Grassbergerb)

John-von-Neumann Institute for Computing, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 12 September 2003; accepted 31 October 2003!

Single three-dimensional polymers confined to a slab, i.e., to the region between two parallel plane
walls, are studied by Monte Carlo simulations. They are described byN-step walks on a simple
cubic lattice confined to the region 1<z<D. The simulations cover both regionsD!RF and D
@RF ~where RF;Nn is the Flory radius, withn'0.587), as well as the cross-over region in
between. Chain lengths are up toN580 000, slab widths up toD5120. In order to test the analysis
program and to check for finite size corrections, we actually studied three different models:~a!
ordinary random walks~mimicking Q polymers!; ~b! self-avoiding walks; and~c! Domb–Joyce
walks with the self-repulsion tuned to the point where finite size corrections for free~unrestricted!
chains are minimal. For the simulations we employ the pruned-enriched-Rosenbluth method with
Markovian anticipation. In addition to the partition sum~which gives us a direct estimate of the
forces exerted onto the walls!, we measure the density profiles of monomers and of end points
transverse to the slab, and the radial extent of the chain parallel to the walls. All scaling laws and
some of the universal amplitude ratios are compared to theoretical predictions. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1636454#

I. INTRODUCTION

Although the behavior of flexible polymers in a good
solvent confined to different geometries has been studied for
many years,1,2 there are still a number of open questions. In
the present work we shall only discuss single polymer chains
between two parallel walls which act only as geometric con-
straints, without any energetic effects.

Theoretically, this problem is rather well understood. All
important scaling laws have been formulated, including the
crossover from the region of narrow slabs~where the dis-
tanceD between the walls is smaller than the Flory diameter
of a free coil! to the opposite case of wide slabs. In particu-
lar, there exists an important theoretical prediction: Near
such a wall the monomer density profile increases as

r~z!;z1/n, ~1!

where z is the distance from the wall andn is the Flory
exponent.1 This is supposed to hold for all dimensions~not
only for d53), and both for ordinary random walks~ideal
polymers! for which n51/2 and for self-avoiding walks with
n'0.587~in d53).

It is intuitively obvious that the force exerted by the
polymer onto the wall is proportional to the monomer den-
sity near the wall. The ratio between the two can be ex-
pressed in terms of a universal amplitude ratio which is easy
to calculate for ideal chains, and which was calculated by
Eisenriegler3 as an expansion ine542d. Several authors
have tried to verify these detailed predictions by Monte
Carlo simulations,4–7 but the results are not yet convincing.
While the scaling of the density near the wall is roughly

verified, the amplitude ratio consistently has come out too
large, casting even doubt on the validity of thee expansion.

In Ref. 8 we had studied confined polymers in a strip in
two dimensions where the amplitude ratio had been pre-
dicted by Eisenriegler9 ~using conformal invarianceresults
of Cardy et al.10!. There we verified all predictions, but we
found that this was less easy than anticipated: There are very
large corrections to Eq.~1! which can easily be missed, and
overlooking them would give wrong estimates of the ampli-
tude ratio. This suggests of course that the same effect was
the source of difficulties ind53.

It is the purpose of the present paper to present a careful
numerical study, in order to settle these questions. We not
only simulated much larger systems than previous authors,
going to chain lengths up toN580 000, slab widths up to
D5120, and collecting rather high statistics. Since it is well
known that asymptotic scaling of unconstrained self-
avoiding walks~SAWs! is reached rather slowly, with cor-
rection terms decreasing only asN20.5,11–13 we studied also
the Domb–Joyce~DJ! model14 with w50.6 ~where conver-
gence to asymptotia is much faster12,13! in addition to SAWs.

The DJ model is defined by the partition sum

ZN~w!5 (
configs.

wk, ~2!

where the sum extends over all random walk~RW! configu-
rations withN steps, 0<w<1, andk is the total number of
monomer pairs occupying a common site. Forw51 the DJ
model describes just ordinary random walks. Forw50 it is
just the SAW model. Asymptotically~for N→`) the model
is in the SAW universality class for allw,1, but the speed
with which the renormalization group fixed point is ap-
proached depends onw. Moreover, it is approached from
opposite sides whenw,w* and whenw.w* , with w*
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'0.6.12,13 For w5w* the approach to asymptotia is fastest,
and we thus expect also smaller finite size corrections for the
present problem of confined polymers.

Finally, we also performed simulations of the ordinary
RW model, just to check the simulation and analysis pro-
grams, as everything can be calculated there analytically.

For the simulation we used the pruned-enriched-
Rosenbluth method~PERM!15 with k-step Markovian
anticipation.8,16–18 Apart from being fast~notice that the
pivot algorithm which is very fast for unconstrained
polymers11 is very inefficient for narrow slabs!, it has the
advantage that the partition sum is computed by default with
very high precision. Thus we could estimate the dependence
of the monomer fugacity on the widthD, and from that
directly the total forces exerted onto the walls. For more
details see Ref. 8.

Details of the scaling predictions are discussed in Sec. II,
while results and their comparison with theoretical predic-
tions are presented in Sec. III. Conclusions are finally given
in Sec. IV.

II. SCALING PREDICTIONS

The end-to-end distanceRN of a free SAW in infinite
d-dimensional volume scales as

RN
2 [^~xN2x0!2&'d ~kN!2nd ~11b/NDd!, ~3!

wherend is the Flory exponent,Dd is the leading correction
to scaling exponent, andb andk are nonuniversal constants
which depend on the microscopic realization. Ind52 one
hasn253/4,1 while the best published estimates ford53 are
n350.5877(6),11 0.5874~2!,19 and 0.58758~7!.12 In the latter
paper it was assumed that the leading correction to Eq.~3! is
11b/N0.5. Since this is questionable~our own simulations
gave D3'0.4513,20!, we use in the following n3

50.587 65(20) which also incorporates results from exten-
sive simulations of the DJ model withw50.6.20 For the DJ
modelw* is defined byb(w5w* )50. The absence of large
corrections to scaling leads to a rather precise estimate of the
constant k in case of the DJ model withw50.6: k
50.3259(4),20 but for 3-d SAWs the estimate is much less
stable. The valuek5.4640(4) of Ref. 11 depends crucially
on the estimateD'0.56 made by these authors. Assuming
insteadD50.5 as in Ref. 12 and the value ofn3 found by
these authors, the same data would givek'0.4655, while an
even larger value would be obtained ifD,0.5. In the fol-
lowing we shall usek50.4657(7) for 3-d SAWs.

Equation~3! with d52 also describes the behavior of
the parallel components~i.e., parallel to the wall! in the re-
gime 1!D!Nn3 where the polymer is essentially two di-
mensional. The constantk depends then on the slab widthD.
A scaling ansatz for the crossover between the two regimes
1!Nn3!D and 1!D!Nn3 is1

RN,i
2 ~D !5RN

2 F~RN /D !, ~4!

whereRN
2 is given by Eq.~3! with d53, and

F~h!5H 2/3 for h→0

h2(n2 /n321) for h→` .
~5!

It leads to the prediction6

k~D !;D (n32n2)/n2n3. ~6!

The partition sum of a free SAW in infinite volume
scales forN→` as

ZN5m`
2NNgd21 const ~7!

with m` being the critical fugacity per monomer, and with
gd being a universal exponent. In two dimensionsg2

543/32,1 while the best published estimate ford53 is g3

51.1575(6).21 In the following we shall use the estimate
g351.1575(3) obtained from the DJ model withw50.6.20

For 3-d SAWs one hasm`50.213 491(4) from exact
enumerations22 and m`50.213 4910(3) from Monte Carlo
simulations.13,20 In the following we shall use the latter. For
the DJ model we usem`50.188 121 45(7).20

Again we must expect that the same ansatz, withg3

replaced byg2 , with m` replaced bym(D), and with the
constant replaced byc(D), holds for slabs in the limitD
!Nn3:

ZN~D !5m~D !2NNg221 c~D ! for D!Nn3. ~8!

The corresponding crossover ansatz is then

ZN~D !5ZN C~RN /D ! ~9!

with

C~h!

5H const for h→0

h (g22g3)/n3 expS 2
a

m`k
~h/) !1/n3D for h→` ,

~10!

m~D !5m`1aD21/n3, ~11!

and

c~D !5constD (g22g3)/n3. ~12!

Notice in particular that theD dependence ofm(D), Eq.
~11!, follows directly from the scaling ansatz for the cross-
over. We should also point out that the partition function for
a polymer in a slab is defined as the sum over all walks
starting at fixedx0,i5(x0 ,y0), but averaged over allz0

P@1,D#.
The force exerted onto the wall is most straightforwardly

expressed in terms of the work done when moving one of the
walls, i.e., by the dependence of the free energy—and thus
also of the partition sum—onD,

F5kBT
d ln ZN~D !

dD
, ~13!

where we have introduced a dummy temperatureT which
can take any positive value. From Eqs.~8! and~11!, the force
per monomer is then obtained as

f 5F/N5kBT
a

n3m`
D2121/n3 ~14!

in the limit of D→` andN@D1/n3.
The monomer density near the wall is predicted to scale

with Eq. ~1!. For ordinary random walks this givesr(z)
;z2, but in that case one can computer(z) exactly, with the
result
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Dr~z!512cos~2pz/D ![ f ~z/D ! ~15!

for D@1 @we normalizer(z) such that(z51
D r(z)51]. For

walks with excluded volumer(z) is not known, but one
expectsDr(z) to be universal.

One should expect that the density near the walls is pro-
portional to the force per monomer. Indeed it was shown by
Eisenriegler3 that

lim
z→0

k
r~z!

z1/n3
5B

f

kBT
5B

a

n3m`
D2121/n3 ~16!

with B being a universal amplitude ratio. For ideal chains
one hasB52, while for chains with excluded volume in 4
2e dimensions one hasB'2(12b1e) with b150.075.3 In
three dimensions this gives the predictionB'1.85.

Finally, the density profile of end points scales near the
walls with a new exponent which is related to the surface
exponent in spin systems.23 For polymers, the standard way
to introduce this exponent is via the partition sum of a SAW,
one end of which is glued to an impenetrable wall. For this
system one has

ZN
(1);m`

2NNgd
(1)

21 ~17!

with g3
(1)50.679(2).24 The end point density then scales

like25

rend~z!;z(g2g(1))/n;z0.814(6), ~18!

where the right-hand side holds ford53.

III. RESULTS

A. Random walks

In order to test our simulation and analysis methods, we
first simulate the simple model of RWs on a simple cubic
lattice between two hard walls atz50 andz5D11, confin-
ing the polymer to 1<z<D. We simulated widthD up to 80
and chain length between 3500~for D54) and 80 000~for
D580).

Monomer densities are shown in Fig. 1. They were ob-
tained by averaging over the central part of the chains, ex-
cluding 10% on either side to avoid errors from the fact that
Eq. ~1! should hold only far away from the ends, for mono-
mer indicesn satisfyingD2!n!N2D2 ~we should mention
thatN/D2.10 for all data sets!. For finiteD the scaling has
to be slightly modified, by replacing in Eq.~15! z/D by j
5z/(D11) andDr(z) by (D11)r(z). We see that all data,
even for smallD, fall precisely onto the predicted curve. To
show that also the regions near the walls are correctly
sampled, we plot in panel~b! of Fig. 1 the same data but
divided by the product of the two power laws forz'0 and
z'D, (D11)r(z)/ f 0(j) with f 0(j)52p2@j(12j)#2.

Critical fugacities are determined by plottingZNmD
N

against logN and demanding that these curves become hori-
zontal for largeN. Results are shown in Fig. 2, where we
plot mD2m` with m`51/6. The dashed line is not a fit to
the data, but fits their extrapolation toD→`, mD2m`

50.2741/(D11)2. This agrees with Eq.~11! ~since n
51/2) and givesa50.2741(2), where the error is obtained
by assuming that the slope is 2 as predicted. On the other

hand, Eqs.~16! and ~15! together withB52, k51/3, and
m`51/6 givea5p2/3650.27416, in perfect agreement. We
should point out that Eq.~11! is significantly violated for
small D in this model, and becomes exact only for largeD.
We shall see the same behavior also for SAWs and for the DJ
model, and we had seen the same also ind52.8

In Fig. 3 we show the transverse distribution of chain
ends. For ordinary RWs it should be just the square root of
the monomer density, i.e., proportional to sin(pj). This is
obviously true for our data, with high precision.

FIG. 1. Rescaled values of the monomer density, (D11) r(z) againstj
5z/(D11) for ordinary random walks. Also plotted is the functionf (j)
52 sin2(pj). ~b! The same values, but divided byf 0(j)52p2@j(12j)#2.

FIG. 2. Log–log plot ofmD2m` againstD11, for ordinary random walks.
The dashed line ismD2m`50.2741/(D11)2 and gives our best extrapola-
tion of the data for largeD.
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Finally we should mention that the crossover ansatzes,
Eqs. ~4! and ~9!, become trivial for RWs, since the critical
exponents are the same ind52 andd53. We therefore also
do not show data forRN,i which can be calculated approxi-
mately by assuming that all steps are uncorrelated, and that
vertical steps occur with probability 1/3 inside the slab and
with probability 1/5 at the boundaries.

B. Self-avoiding walks

Let us first discuss the trivial caseD51. In this case we
have ordinary 2-d SAWs, and therefore we can use the com-
parison with the known results as a test for our algorithm.
Our simulations, withN53000, gave indeed perfect agree-
ment for the critical exponents, and also the amplitude for
the end-to-end distance,Ri

2/N2n2'0.771(1), in agreement
with the value obtained in Ref. 11.

In our nontrivial simulations we used widths up toD
5120 and chain length up toN580 000. As first tests we
checked the crossover ansatzes Eqs.~4! and~9!. In these tests
we replacedRN andZN by parametrizations similar to Eqs.
~4! and ~9!, but including additional correction to scaling
terms. As seen from Figs. 4 and 5, the data collapse is ex-

cellent. Such a perfect collapse would not have been ob-
tained, if we had replacedRN and ZN by the leading
asymptotic powers ofN.26

Critical fugacities were determined by plotting logZN

2(g221)logN1Nx againstN and changingx until these
curves become horizontal for largeN. Thenm(D)5exp(x).
Results are shown in Fig. 6, where we plotm(D)2m`

againstD. As for ordinary RWs, the plot does not give a
straight line~replacingD by D11 would improve the situ-
ation a bit, but not much!, so the straight line shown in Fig.
6 indicates the estimated asymptotic behavior, assuming its
slope to be given by21/n3 . It provides us with the estimate
a50.44860.005.

The monomer densities for different values ofD, again
from the central region only, are shown in Fig. 7. Plotting the
densities directly as in panel~a! indicates that scaling is sat-
isfied. But it is not very informative, since deviations from
scaling in the important regions near the walls would not
show up. Also, panel~a! might suggest thatr(z) is simply
the product of two powers,

r~z!'
1

D11
f 0S z

D11D with f 0~j!5A@j~12j!#1/n3,

~19!

FIG. 3. Rescaled values of the probabilityrend(z) that the chain end is at the
distancez from a wall againstj5z/(D11), for ordinary random walks.
The solid line is the function (p/2)sin(j).

FIG. 4. Data collapse for testing the crossover ansatz Eq.~4! for self-
avoiding walks.

FIG. 5. Data collapse for testing the crossover ansatz Eq.~9! for self avoid-
ing walks.

FIG. 6. Log–log plot ofmD2m` againstD11. The dashed line ismD

2m`50.448(D11)21/n3.
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where the constantA518.74 is determined by normalization.
We had already seen for random walks thatr(z) is not that
simple, and indeed plotting (D11)r(z)/ f 0(z/(D11)) as in
panels~b! and ~c! shows that this would be a very bad ap-
proximation. In addition, panel~b! shows that one has to
introduce an ‘‘extrapolation length’’d as suggested in Ref. 6
so that the scaling variablej is replaced by

jd5
z1d

D1112d
. ~20!

Best scaling nearz50 andz5D @panel ~b!# and best data
collapse @panel ~c!# is obtained ford'0.15, although a
closer inspection of these figures shows that neither the scal-

ing nor the data collapse are perfect. These small persistent
discrepancies and the overestimation of the amplitudeB dis-
cussed in the next paragraph were the main reasons for
studying the Domb–Joyce model.

Figure 7~c! suggests thatD111/n3r(z)/z1/n3→0.87(4)
3A516.1(8) for z→0 and D→`. The very large uncer-
tainty reflects the rather steep slopes atz50 andz5D. Us-
ing this in Eq.~16! givesB52.1360.11. This is larger than
the prediction of Eisenriegler,3 but much less so than previ-
ous estimates.6,7 We believe that these previous authors had
missed the fact thatr(z)/ f 0(j) is not constant. If we would
assumer(z)} f 0(j), we would obtainB'2.48, which is in-
deed similar to the previous Monte Carlo estimates.

As a further test of scaling we checked in detail that
Ri(D);Nn2 for Nn2@D, and we estimated the asymptotic
ratios between the two. They are plotted in Fig. 8, where we
also plotted the scaling prediction,

Ri~D !2/N2n2;D22(n22n3)/n35D20.553. ~21!

Finally, we show in Fig. 9 the distributionrend(z) of
chain ends. We found thatrend(z) is very closely propor-
tional to (jd(12jd))0.865 with d50.3, but the~very small!
deviations are highly significant. Taking them into account,
we findFIG. 7. ~a! Rescaled values of the monomer density (D11) r(z) against

j5z/(D11). Also plotted is the functionf 0(j)518.74 (j(12j))1/n3. ~b!
The data forD5120 plotted against a modified scaling variable,jd5(z
1d)/(D1112d), and divided byf 0(jd), for three different values ofd.
~c! The data for allD, again divided byf 0(jd) with d50.15.

FIG. 8. Log–log plots ofRi
2(D)/N2n2 vs D. The dashed line is 0.697 (D

11)20.553.

FIG. 9. Rescaled values of the probabilityrend(z) that the chain end is at the
distancez from a wall, againstjd5(z1d)/(D1112d) with d50.3. The
solid line is the functiong(jd)54.78 (jd(12jd))0.865.
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rend~z!;z0.80(2) ~22!

near the walls, withd'0.2. This agrees nicely with Eq.~18!.

C. Domb–Joyce model

Domb–Joyce chains with interaction strengthw50.6,
which is very close to critical strengthw* where leading
corrections to scaling vanish,12,13 were studied for slab
widths up toD580. Chain lengths were up toN572 000.
The analysis of the data was done exactly as for the self-
avoiding walks described in Sec. III B.

As expected, the scaling functionsF~h! and C~h! are
very similar to those for SAWs~see Figs. 10 and 11!. This
universality verifies that the amplitudes and critical expo-
nents discussed in Sec. II are essentially correct, although
this should not be taken too seriously: Such data collapse
plots are not very sensitive to details~look at the huge range
of scales in Fig. 11!!.

Estimates of the critical fugacities are shown in Fig. 12,
where we plotmD2m` against D11. The straight line,
which again represents the extrapolation to largeD, provides
the estimatea50.2813(6).

Plots of the monomer density profile~Fig. 13! are very
similar to those for SAWs. But the extrapolation length is
now much smaller,d'0.04 as compared tod'0.15 for

SAWs. This is a first indication that corrections to scaling are
indeed smaller in the DJ model. More important, also the
scaling curve in Fig. 13~c! looks slightly different from that
in Fig. 7~b!: It is considerably smaller at the walls, with
limz→0,D→`D111/n3z21/n3r(z)/A50.71(3) as compared to
0.87~4! for SAWs. Given the fact that scaling corrections
should be smaller for the DJ model~in spite of the somewhat
smaller values ofD), we consider the DJ value as more
correct, and blame the discrepancy onto scaling corrections

FIG. 10. Data collapse for testing the crossover ansatz Eq.~4! for Domb–
Joyce walks.

FIG. 11. Data collapse for testing the crossover ansatz Eq.~9! for Domb–
Joyce walks.

FIG. 12. Log–log plot ofmD2m` againstD11 for the Domb–Joyce
model. The dashed line ismD2m`50.2813(D11)21/n3 with n3 used as
constraint.

FIG. 13. ~a! Rescaled values of the monomer density (D1112d) r(z) of
the Domb–Joyce model againstj5(z1d)/(D1112d) with d50.06. Also
plotted is the functionf 0(j)518.74 (j(12j))1/n3. ~b! The same values as
in ~a!, but divided byf 0(jd) with d50.04.
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for SAWs. With this new estimate of limz→0,D→`Dr(z), and
using the nonuniversal amplitudea determined earlier, we
obtain our final estimate for the universal amplitude ratioB,

B51.7060.08. ~23!

This is only 2 standard deviations away from thee prediction
B51.85 of Eisenriegler,3 which we consider as good agree-
ment.

Finally, we do not show our data forRN,i(D)/Nn2 and
for the end monomer profile, since they are very similar to
Figs. 8 and 9. But again the seemingly perfect agreement of
the end point density profile is again as deceptive as it was
for SAWs. This time our best estimate for the scaling of the
end point distribution is

rend~z!;z0.81(1), ~24!

with d'20.02, in even better agreement with Eq.~18! than
the estimate for SAWs. The rescaled density profile divided
by g(jd)54.358(jd(12jd))0.81 is shown in Fig. 14.

IV. SUMMARY

We have presented high statistics simulations of 3-d
polymers, modeled as walks on a simple cubic lattice with
either hard or soft excluded volume interactions, with chain
length up to 80 000 on slabs of widths up to 120. This was
possible with the PERM algorithm with Markovian anticipa-
tion. The fact that PERM gives by default very precise esti-
mates of free energies allowed us to measure precisely the
forces exerted onto the walls, by measuring how the critical
fugacities depend on the width of the slabs. We verified all
critical scaling laws predicted for this problem, including the
scaling of monomer and end point densities near the walls
and the scaling of the total pressure with chain length and
with slab width.

The theoretical prediction most difficult to verify nu-
merically concerns the amplitude ratio between the pressure
onto the wall and the monomer density close to the wall.
Previous simulations had not been able to obtain this with
sufficient precision, and also in the present paper we had
serious problems when using self-avoiding walks with strict

~hard-core! self repulsion. This might not be so surprising,
given the well-known fact that SAWs show rather large cor-
rections to scaling. These corrections to scaling can be mini-
mized by going over to Domb–Joyce polymers~character-
ized by soft repulsion! with carefully adjusted strength of the
repulsion~similarly, for off-lattice bead-spring models, one
can adjust the ratio between bead size and equilibrium spring
length to minimize corrections to scaling!. It was only when
going over to this Domb–Joyce model that we could verify
in detail all theoretical predictions.

Thus we have shown, first of all, that already the field
theoretice expansion to first order ine, as implemented in
Ref. 3, gives correct results. This was not obvious, in par-
ticular in view of persistent previous difficulties to verify it
by Monte Carlo simulations. Second, we have demonstrated
again the importance of using models with minimized cor-
rections to scaling. And last but not least we have again
shown that recursive sequential sampling methods with
resampling29 ~of which PERM is a particular implementa-
tion! can be very efficient.

ACKNOWLEDGMENTS

We thank Professor Erich Eisenriegler and Professor Ted
Burkhardt for valuable discussions, and Dr. Walter Nadler
for carefully reading the manuscript.

1P. G. de Gennes,Scaling Concepts in Polymer Physics~Cornell University
Press, Ithaca, NY, 1979!.

2E. Eisenriegler,Polymers Near Surfaces~World Scientific, Singapore,
1993!.

3E. Eisenriegler, Phys. Rev. E55, 3116~1997!.
4I. Webman, J. L. Lebowitz, and M. H. Kalos, J. Phys.~Paris! 41, 579
~1980!.

5T. Ishinabe, J. Chem. Phys.83, 423 ~1985!.
6A. Milchev and K. Binder, Eur. Phys. J. B3, 477 ~1998!; 13, 607 ~2000!.
7J. De Joannis, J. Jimenez, R. Rajagopalan, and I. Bitsanis, Europhys. Lett.
51, 41 ~2000!.

8H.-P. Hsu and P. Grassberger, Eur. Phys. J. B~to be published!; e-print
cond-mat/0308276~2003!.

9E. Eisenriegler, inField Theoretical Tools in Polymer and Particle Phys-
ics, edited by H. Meyer-Ortmanns and A. Klu¨mper~Springer, Heidelberg,
1997!.

10J. Cardy and G. Mussardo, Nucl. Phys. B410, 451 ~1993!.
11B. Li, N. Madras, and A. D. Sokal, J. Stat. Phys.80, 661 ~1995!.
12P. Belohorec and B. G. Nickel, Guelph University, 1997~preprint!.
13P. Grassberger, P. Sutter, and L. Scha¨fer, J. Phys. A30, 7039~1997!.
14C. Domb and G. S. Joyce, J. Phys. C5, 956 ~1972!.
15P. Grassberger, Phys. Rev. E56, 3682~1997!.
16H. Frauenkron, P. Grassberger, and N. Walter, e-print cond-mat/9806321

~1998!.
17H. Frauenkron, M. S. Causo, and P. Grassberger, Phys. Rev. E59, R16

~1999!.
18S. Caracciolo, M. S. Causo, P. Grassberger, and A. Pelissetto, J. Phys. A

32, 2931~1999!.
19T. Prellberg, J. Phys. A34, L599 ~2001!.
20P. Grassberger~unpublished!.
21S. Caracciolo, M. S. Causo, and A. Pellisetto, Phys. Rev. E57, 1215

~1998!.
22D. MacDonald, S. Joseph, D. L. Hunter, L. L. Moseley, N. Jan, and A. J.

Guttmann, J. Phys. A33, 5973~2000!.
23H. W. Diehl, in Phase Transitions and Critical Phenomenaedited by C.

Domb and J. L. Lebowitz~Academic, New York, 1986!, Vol. 10.
24P. Grassberger and R. Hegger, J. Phys. A27, 4069~1994!.
25E. Eisenriegler, K. Kremer, and K. Binder, J. Chem. Phys.77, 6296

~1982!.
26While RN,i

2 (D) increases monotonically with 1/D, this is not true for the

FIG. 14. Rescaled values of the probabilityrend(z) that the chain end is at
the distancez from a wall, divided by the functiong(jd)54.358(jd(1
2jd)0.81, againstjd5(z1d)/(D1112d) with d520.02.

2040 J. Chem. Phys., Vol. 120, No. 4, 22 January 2004 H.-P. Hsu and P. Grassberger

Downloaded 27 Jan 2004 to 134.94.100.199. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



full three-dimensionalRN
2 (D), since the compression in thez direction

overwhelms the swelling inx andy, for large and intermediate values of
D ~Refs. 27 and 28!.

27J. H. van Vliet and G. Brinke, J. Chem. Phys.93, 1436~1990!; J. H. van

Vliet, M. C. Luiken, and G. Brinke, Macromolecules25, 3802~1992!.
28C. E. Cordeiro, M. Molisana, and D. Thirumalai, J. Phys. II7, 433~1997!.
29J. S. Liu,Monte Carlo Strategies in Scientific Computing, Springer Series

in Statistics~Springer, New York, 2001!.

2041J. Chem. Phys., Vol. 120, No. 4, 22 January 2004 Polymers confined between two parallel plane walls

Downloaded 27 Jan 2004 to 134.94.100.199. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


