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Polymers confined between two parallel plane walls
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Single three-dimensional polymers confined to a slab, i.e., to the region between two parallel plane
walls, are studied by Monte Carlo simulations. They are describeN-Btep walks on a simple
cubic lattice confined to the regionslz<D. The simulations cover both regios<Rr and D

>Rg (where Re~N" is the Flory radius, withv~0.587), as well as the cross-over region in
between. Chain lengths are upNe=80 000, slab widths up tb =120. In order to test the analysis
program and to check for finite size corrections, we actually studied three different m¢aels:
ordinary random walkgmimicking ® polymers; (b) self-avoiding walks; andc) Domb—-Joyce
walks with the self-repulsion tuned to the point where finite size corrections foldreestricted

chains are minimal. For the simulations we employ the pruned-enriched-Rosenbluth method with
Markovian anticipation. In addition to the partition sumhich gives us a direct estimate of the
forces exerted onto the wallswe measure the density profiles of monomers and of end points
transverse to the slab, and the radial extent of the chain parallel to the walls. All scaling laws and
some of the universal amplitude ratios are compared to theoretical predictio200®American
Institute of Physics.[DOI: 10.1063/1.1636454

I. INTRODUCTION verified, the amplitude ratio consistently has come out too
i ) ) large, casting even doubt on the validity of th@expansion.
Although the behavior of flexible polymers in a good |, Ref. 8 we had studied confined polymers in a strip in

solvent confined to different geometries has been studied fq(,,5 gimensions where the amplitude ratio had been pre-
Y2 . .
many years;” there are still a number of open questions. In gjcieq by Eisenriegl€r(using conformal invarianceresults
the present work we shall onl){ discuss single ponmer. chaingy Cardyet al1%. There we verified all predictions, but we
between two parallel walls which act only as geometric contong that this was less easy than anticipated: There are very
straints, without any energetic effects. large corrections to Eq1) which can easily be missed, and
Theoretically, this problem is rather well understood. All overlooking them would give wrong estimates of the ampli-

important scaling laws have been formulated, including thg,qe ratio. This suggests of course that the same effect was
crossover from the region of narrow slabshere the dis- 14 source of difficulties ird= 3.

tanceD between the walls is smaller than the Flory diameter |1 s the purpose of the present paper to present a careful
of a free coi) to the opposite case of wide slabs. In particu-pmerical study, in order to settle these questions. We not
lar, there exists an important theoretical prediction: Nearomy simulated much larger systems than previous authors,

such a wall the monomer density profile increases as going to chain lengths up tbl=80000, slab widths up to
N D =120, and collecting rather high statistics. Since it is well
p(2)~27", (1 known that asymptotic scaling of unconstrained self-

avoiding walks(SAWSs) is reached rather slowly, with cor-
where z is the distance from the wall and is the Flory rection terms decreasing only &k %5 ~13we studied also
exponent. This is supposed to hold for all dimensiofiot  the Domb—JoycéDJ) modet* with w=0.6 (where conver-
only for d=3), and both for ordinary random walKileal — gence to asymptotia is much fastety in addition to SAWs.
polymers for which v=1/2 and for self-avoiding walks with The DJ model is defined by the partition sum
»~0.587(in d=3).

It is intuitively obvious that the force exerted by the

polymer onto the wall is proportional to the monomer den- ZN(W):CWEﬁgS W, @
sity near the wall. The ratio between the two can be ex- '
pressed in terms of a universal amplitude ratio which is easwhere the sum extends over all random wéR) configu-
to calculate for ideal chains, and which was calculated byations withN steps, Bsw=1, andx is the total number of
Eisenriegle? as an expansion im=4—d. Several authors monomer pairs occupying a common site. Kot 1 the DJ
have tried to verify these detailed predictions by Montemodel describes just ordinary random walks. Bor 0 it is
Carlo simulationd” but the results are not yet convincing. just the SAW model. Asymptoticallffor N— o) the model
While the scaling of the density near the wall is roughlyis in the SAW universality class for alt<1, but the speed
with which the renormalization group fixed point is ap-
aElectronic mail: h.p.hsu@fz-juelich.de proached depends om. Moreover, it is approached from
YElectronic mail: p.grassberger@fz-juelich.de opposite sides whew<w* and whenw>w*, with w*
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~0.6.121 Forw=w* the approach to asymptotia is fastest, It leads to the predictidh
and we thus expect also_smaller finite size corrections for the K(D)~D (s~ v2lv2vs, (6)
present problem of confined polymers. . o

Finally, we also performed simulations of the ordinary ~ Th€ partition sum of a free SAW in infinite volume
RW model, just to check the simulation and analysis proScales foN— as
grams, as everything can be calculated there analytically. Zn= w2 "NY~ ! const (7)

For the simulation we used the pruned-enriched-with being the critical fugacity per monomer, and with
Rosenbluth method(PERM® with k-step Markovian Moo 9 gacity p ,

. 816-18 . . vq4 being a universal exponent. In two dimensions
a_ntlmpatlon._ Ap_art ffom being fast(notice that the =43/32} while the best published estimate fdr3 is y;
pivot algorithm which is very fast for unconstrained _ 21 : .

(o N . =1.157%6)." In the following we shall use the estimate
polymeréd! is very inefficient for narrow slabsit has the

advantage that the partition sum is computed by default withg?’ 1.1575(3) obtained from the DJ model wit=0.6.

. . . or 3-d SAWs one hasu,=0.213491(4) from exact
very high precision. Thus we could estimate the dependence ; _
) i enumeratior and u..=0.2134910(3) from Monte Carlo

of the monomer fugacity on the widt®, and from that . . 320 .

. simulationst>?° In the following we shall use the latter. For
directly the total forces exerted onto the walls. For more - 20

. the DJ model we usg.,,=0.188 121 467).

details see Ref. 8.

Details of the scaling predictions are discussed in Sec. ”re l:g:(;nbwe mvl;ilt,] expergt Ii]caet dtrg)e s(alljrr;e ;r?dsa\l/f/?t,hvf'rfz
while results and their comparison with theoretical predic- P Y72, Her TED YD),

tions are presented in Sec. lll. Conclusions are finally givenconstant replaced bg(D), holds for slabs in the limiD

. <N”3:
in Sec. IV.
Zny(D)=u(D) " NN"2"1 ¢(D) for D<Ns, (8)
The corresponding crossover ansatz is then
Il. SCALING PREDICTIONS
Z\(D)=2Zy ¥(Ry/D) 9

The end-to-end distanc®y of a free SAW in infinite  yith
d-dimensional volume scales as

RA=(( )?)~d (kN)?"d (1+b/NAq) 3 v

=((XN—X0)) = Y ,

NTAVIN o const for p—0
wherevy is the Flory exponentd is the leading correction _ a

to scaling exponent, and andk are nonuniversal constants p(r2= vl exp( - (77/\/§)1/V3> for p—oo,
which depend on the microscopic realization.ds2 one Pk

hasv,=3/4,! while the best published estimates tbr 3 are (10
v3=0.58776),'1 0.58742),'° and 0.5875).? In the latter w(D)=pu.+aD s, (11)
paper it was assumed that the leading correction to &ds
1+b/N%5, Since this is questionabl@ur own simulations I
gave A;~0.45%%9 we use in the following v ¢(D)=constDi72" 757, (12)
=0.58765(20) which also incorporates results from extenNotice in particular that théd dependence of.(D), Eq.
sive simulations of the DJ model withi=0.6.2° For the DJ  (11), follows directly from the scaling ansatz for the cross-
modelw* is defined byb(w=w*)=0. The absence of large over. We should also point out that the partition function for
corrections to scaling leads to a rather precise estimate of thee polymer in a slab is defined as the sum over all walks
constantk in case of the DJ model witw=0.6: k  starting at fixedxy;=(Xo,Yo), but averaged over alk,
=0.32594),%° but for 3-d SAWs the estimate is much less e[1D].
stable. The valu&k=.4640(4) of Ref. 11 depends crucially The force exerted onto the wall is most straightforwardly
on the estimate\ ~0.56 made by these authors. Assumingexpressed in terms of the work done when moving one of the
insteadA=0.5 as in Ref. 12 and the value of found by  walls, i.e., by the dependence of the free energy—and thus
these authors, the same data would diw€0.4655, while an  also of the partition sum—ob,
even larger value would be obtainedAf<0.5. In the fol- dInzy(D)
lowing we shall us&k=0.4657(7) for 3-d SAWSs. F= kBTT,
Equation(3) with d=2 also describes the behavior of
the parallel componentgi.e., parallel to the wallin the re-  where we have introduced a dummy temperaftirevhich
gime 1<D<N"3 where the polymer is essentially two di- can take any positive value. From E¢8) and(11), the force
mensional. The constaktdepends then on the slab width ~ per monomer is then obtained as

and

(13

A scaling ansatz for the crossover between the two regimes a
1<N"3<D and 1<D<N"3 js! f=F/N=kgT -~ D 1~ (14)
3Mxo
2 _p2
R\, (D)=Ry ®(R\/D), (4 in the limit of D—% andN>D"z,
whereRﬁ is given by Eq.(3) with d=3, and The monomer density near the wall is predicted to scale
with Eq. (1). For ordinary random walks this gives(z)
2/3 for 7—0 ©) ~Z2, but in that case one can compyii) exactly, with the

() =
(m) 222/ for poo. result
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Dp(z)=1—cog2wz/D)=f(z/D) (15 22
2 L
for D>1 [we normalizep(z) such thatzZD:lp(Z):l]. For 18 |
walks with excluded volume(z) is not known, but one 16
expectsDp(z) to be universal. o 14t
One should expect that the density near the walls is pro- & 12}
portional to the force per monomer. Indeed it was shownby 5 1}
Eisenrieglet that S osf
0.6
. p(2) f a
lim k—g,; =B-—==B——D 1" 16 041
20 273 kgT V3o (16) 0.2}
with B being a universal amplitude ratio. For ideal chains 0 01 02 03 04 05 06 07 08 09
one hasB=2, while for chains with excluded volume in 4 g
— e dimensions one haB~2(1—b;e) with b;=0.0752% In I . '
three dimensions this gives the predictiBr-1.85. ' b) D=20 =
Finally, the density profile of end points scales near the 16 /" "‘\\ p-% -
walls with a new exponent which is related to the surface . Bf gg
exponent in spin systenis.For polymers, the standard way % 4 b=
to introduce this exponent is via the partition sum of a SAW, = 14 f "%@
one end of which is glued to an impenetrable wall. For this = rd Y
system one has 3 A 5,
_ (1) = 12y ¢ B
ZP~ NN 17 ¢ %
11+ s »
with y§"=0.6792).2* The end point density then scales £ %
@25 T
like 0 01 02 03 04 05 0.6 07 08 09 1
peno(z),vz(yf 'y(l))/VNZO.814(6), (18) g
iyt ; FIG. 1. Rescaled values of the monomer densiy+(1) p(z) againsté¢
where the rlght hand side holds fdr=3. =2z/(D+1) for ordinary random walks. Also plotted is the functif(g)
=2 sirf(wé). (b) The same values, but divided thy(&)=2m2[£(1—&)]°.
IIl. RESULTS
A. Random walks hand, Egs(16) and (15) together withB=2, k=1/3, and

In order to test our simulation and analysis methods, wet-= 1/6 givea=72/36=0.27416, in perfect agreement. We
first simulate the simple model of RWs on a simple cubicshould point out that Eq(11) is significantly violated for
lattice between two hard walls at=0 andz=D+1, confin-  SmallD in this model, and becomes exact only for lafge
ing the polymer to &z<D. We simulated widttD up to 80  We shall see the same behavior also for SAWs and for the DJ

and chain length between 350@r D=4) and 80000for ~ model, and we had seen the same alsd#n2’
D =80). In Fig. 3 we show the transverse distribution of chain

Monomer densities are shown in F|g 1. They were ob_ends. For Ordinary RWs it should be jUSt the square root of
tained by averaging over the central part of the chains, exth® monomer density, i.e., proportional to std]. This is
cluding 10% on either side to avoid errors from the fact thatobviously true for our data, with high precision.

Eq. (1) should hold only far away from the ends, for mono-

mer indices satisfyingD?<n<N—D? (we should mention ;

thatN/D?>10 for all data sets For finite D the scaling has s

to be slightly modified, by replacing in Eq415) z/D by ¢ 04 [

=z/(D+1) andDp(z) by (D+1)p(z). We see that all data,

even for smalD, fall precisely onto the predicted curve. To 0.01 | \‘*\.*

show that also the regions near the walls are correctly 3 “+~~..,\

sampled, we plot in pandb) of Fig. 1 the same data but b 0.001 ¢ *‘\*\

divided by the product of the two power laws fa=0 and T

z=D, (D+1)p(2)/fo(é) with fo(é)=2m°[£(1- ) 0.000 ¢
Critical fugacities are determined by pIottinZ]N,ug 16:05 |

against log\N and demanding that these curves become hori-

zontal for largeN. Results are shown in Fig. 2, where we 16-06 . .

plot up— w. with u,=1/6. The dashed line is not a fit to 1 10 100

the data, but fits their extrapolation ©—®©, wup— D+1

_ 2 ; ; ;

_0'2741/(3_.? 1) - This agrees with Eq'(ll) ,(Smce _V FIG. 2. Log—log plot ofup— u.. againstD + 1, for ordinary random walks.
=1/2) and givesa=0.274X2), where the error is obtained The dashed line isip — u..=0.2741/0 + 1) and gives our best extrapola-
by assuming that the slope is 2 as predicted. On the othaion of the data for larg®.
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1.6 1 feow
D=20 o
4t D=32 | 1e-10 |
14 D=48 o
12 | Djeg :_ 1e-20 |
~ B =z 1e-30 | self avoiding walks
< 17 N
E o8 ~  1e-40 |
= S tes0}
A 06 N 0t D=20 +
= 1e-60 D3 «
04 r 1e-70 | D=48 =~
D=80 =
02| 1e-80F D=96 =
D=120 o
0 : ‘ 1e-90 ! ' :
0 0.2 0.8 0.1 1 10

Ry / (D+1)

FIG. 3. Rescaled values of the probability,{Z) that the chain end is at the FIG. 5. Data collapse for testing the crossover ansatd&dor self avoid-
distancez from a wall againstt=z/(D+1), for ordinary random walks. g walks.
The solid line is the function%/2)sin().

cellent. Such a perfect collapse would not have been ob-

Finally we should mention that the crossover ansatzesained, if we had replace®Ry and Zy, by the leading
Egs. (4) and (9), become trivial for RWs, since the critical asymptotic powers oi.?
exponents are the samedr=2 andd= 3. We therefore also Critical fugacities were determined by plotting 14g
do not show data foRy ; which can be calculated approxi- —(y,—1)logN+Nx againstN and changingx until these
mately by assuming that all steps are uncorrelated, and thatirves become horizontal for largé Then (D)= exp).
vertical steps occur with probability 1/3 inside the slab andResults are shown in Fig. 6, where we pla{D)— u..
with probability 1/5 at the boundaries. againstD. As for ordinary RWSs, the plot does not give a
straight line(replacingD by D+ 1 would improve the situ-
ation a bit, but not much so the straight line shown in Fig.
6 indicates the estimated asymptotic behavior, assuming its

Let us first discuss the trivial cag®= 1. In this case we slope to be given by-1/v3. It provides us with the estimate
have ordinary 2-d SAWSs, and therefore we can use the con2 = 0.448+0.005.
parison with the known results as a test for our algorithm. ~ The monomer densities for different valuesdf again
Our simulations, withN=3000, gave indeed perfect agree- from the central region only, are shown in Fig. 7. Plotting the
ment for the critical exponents, and also the amplitude fodensities directly as in pané) indicates that scaling is sat-
the end-to-end distancaf/N2V2~O.77](1), in agreement isfied. But it is not very informative, since deviations from
with the value obtained in Ref. 11. scaling in the important regions near the walls would not

In our nontrivial simulations we used widths up B>~ show up. Also, pane(a) might suggest thap(z) is simply
=120 and chain length up thN=80000. As first tests we the product of two powers,
checked the crossover ansatzes Edjsand(9). In these tests 1 7
we replacedRy and Zy by parametrizations similar to Egs. p(z)~ mfo(m with  fo(&)=A[&(1—&)]Ys,
(4) and (9), but including additional correction to scaling (19
terms. As seen from Figs. 4 and 5, the data collapse is ex-

B. Self-avoiding walks

D=20 -
D=32 «
b8y - o1k
D-80 o : .
~ D=96 = 4\**
D=120 o
< R X Py,
*h
= self avoiding walks % T,
[m] =, *,
= 1r L ++‘
= 0.001 "
z .
E’ oup ® *&**‘
0.0001 | o
‘ ' ‘ 1e-05 : s
0.01 0.1 1 10 1 10 100
Ry / (D+1) D+1

FIG. 6. Log—log plot of up—u.. againstD+1. The dashed line igp
— =0.448D + 1) 3,

FIG. 4. Data collapse for testing the crossover ansatz (Eqfor self-
avoiding walks.
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FIG. 7. (a) Rescaled values of the monomer densiy+1) p(z) against
£=z/(D+1). Also plotted is the functioriy(£)=18.74 ¢(1— £))s. (b)

The data forD=120 plotted against a modified scaling variabig=(z

+6)/(D+1+26), and divided byfy(¢;), for three different values of.

(c) The data for alD, again divided byfy(&5) with §=0.15.

where the constamt=18.74 is determined by normalization.
We had already seen for random walks thét) is not that
simple, and indeed plottingX+ 1)p(z)/fo(z/(D+1)) as in
panels(b) and (c) shows that this would be a very bad ap-
proximation. In addition, panelb) shows that one has to
introduce an “extrapolation lengths as suggested in Ref. 6
so that the scaling variablgis replaced by

z+ 6

$=Dr1+26° (20)

Best scaling neaz=0 andz=D [panel(b)] and best data
collapse [panel (c)] is obtained for §~0.15, although a

H.-P. Hsu and P. Grassberger

+
~~~~~~~~~~~~~ .
it
+~+++
y F,
N %,
< o1} T
T *+~~.+
g e, +.,+
0.01 . -
1 10 100
D+1

FIG. 8. Log-log plots ofR%(D)/N?"2 vs D. The dashed line is 0.69(
+ l)*OA553‘.

ing nor the data collapse are perfect. These small persistent
discrepancies and the overestimation of the ampliiidis-
cussed in the next paragraph were the main reasons for
studying the Domb-Joyce model.

Figure 7c) suggests thaD!"Y"3p(z)/z}"s—0.87(4)
XA=16.1(8) forz—0 andD—o. The very large uncer-
tainty reflects the rather steep slopegzat0 andz=D. Us-
ing this in Eq.(16) givesB=2.13+0.11. This is larger than
the prediction of Eisenrieglérbut much less so than previ-
ous estimate%/ We believe that these previous authors had
missed the fact thai(z)/fy(£) is not constant. If we would
assumep(z)fq(£), we would obtairB~2.48, which is in-
deed similar to the previous Monte Carlo estimates.

As a further test of scaling we checked in detail that
R,(D)~N"2 for N*2>D, and we estimated the asymptotic
ratios between the two. They are plotted in Fig. 8, where we
also plotted the scaling prediction,

R”(D)Z/NZVZND*Z(Vz*V3)/V3:D70.553_ (21)

Finally, we show in Fig. 9 the distributiop,{z) of
chain ends. We found that.,{z) is very closely propor-
tional to (£5(1— £5))°8 with §=0.3, but the(very smal)
deviations are highly significant. Taking them into account,
we find

1.6
14|
12t
N
= 08r
q D=32 x
T 06¢ D-48 =
(=] D=64 =&
T 04t D=80 =
DD=96 .
02 L =120 -
9(&5)
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
&s

FIG. 9. Rescaled values of the probability,{z) that the chain end is at the
distancez from a wall, agains¢s=(z+ 8)/(D+1+26) with §=0.3. The

closer inspection of these figures shows that neither the scalelid line is the functiorg(&,)=4.78 (¢5(1— £5))°%
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o m B ¥ X +

Domb-Joyce model

[Ru (D) / Ry

0.1 1
Ry/ (D+1)

0.01

FIG. 10. Data collapse for testing the crossover ansata&dor Domb—
Joyce walks.

Pend.Z) ~2080(2) (22
near the walls, withs~0.2. This agrees nicely with E¢L8).

C. Domb-Joyce model

Domb—Joyce chains with interaction strength=0.6,
which is very close to critical strengtv* where leading
corrections to scaling vanisf!® were studied for slab
widths up toD=80. Chain lengths were up td=72 000.

Polymers confined between two parallel plane walls 2039

01 F ™ |
-
-,
0.01 | R, 4
3 *k, -
% \k"+
=
0.001 | *, 1
+\+‘\
-
0.0001 | e
1e-05 L L
1 10 100
D+1

FIG. 12. Log-log plot of up—u. againstD+1 for the Domb-Joyce
model. The dashed line igp— u..=0.2813D +1) s with v, used as
constraint.

SAWSs. This is a first indication that corrections to scaling are
indeed smaller in the DJ model. More important, also the
scaling curve in Fig. 1@) looks slightly different from that
in Fig. 7(b): It is considerably smaller at the walls, with
lim,_op_..D" Y327 ¥3p(2)/A=0.71(3) as compared to
0.874) for SAWSs. Given the fact that scaling corrections
should be smaller for the DJ modéh spite of the somewhat
smaller values ofD), we consider the DJ value as more

The analysis of the data was done exactly as for the selfcorrect, and blame the discrepancy onto scaling corrections

avoiding walks described in Sec. Il B.
As expected, the scaling functiors(7) and W(#) are

very similar to those for SAWssee Figs. 10 and 11This 2 \ . ———
universality verifies that the amplitudes and critical expo- 18+ 9 B:;S .
nents discussed in Sec. Il are essentially correct, although 16 ¢ D=40 o
: . D=64 =
this should not be taken too seriously: Such data collapse o 14 D=80
plots are not very sensitive to detafleok at the huge range & 12¢ f
of scales in Fig. 11! § 1t
Estimates of the critical fugacities are shown in Fig. 12, T 08l
where we plotup—u,, againstD+1. The straight line, = 06 |
which again represents the extrapolation to ldbgeprovides 0.4 -
the estimatea=0.28136). 02 |
Plots of the monomer density profil&ig. 13 are very 0 e
similar to those for SAWSs. But the extrapolation length is 0 01 02 03 04 05 06 07 08 09 1
now much smaller,6~0.04 as compared té&~0.15 for 3
1.05
1 Foumo o i T g 1
1e-10 | 1 u:,i 0.95
1620 | 1 <
q 09
F 1e-30 | Domb-Joyce model ] h=
~  1e40} : § 08
S tes0 | ] g 08
™ jee0} D=16 - ] -
D=24 ~ 0.75
1e-70 f D=32 = 1
D=40 = o7 -
1e-80F D=64 = 1 0 01 02 03 04 05 06 07 08 08 1
D=80 -
1e-90 : : ; S

0.1 1
Ry / (D+1)

10

FIG. 13. (a) Rescaled values of the monomer densBy{1+248) p(z) of
the Domb—Joyce model agairtst (z+ 8)/(D + 1+ 26) with §=0.06. Also
plotted is the functiorf,(¢)=18.74 ¢(1— £))Y"s. (b) The same values as
in (a), but divided byfy(&s) with §=0.04.

FIG. 11. Data collapse for testing the crossover ansata®dor Domb—
Joyce walks.
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1.02 (hard-core self repulsion. This might not be so surprising,
given the well-known fact that SAWs show rather large cor-
2 1 rections to scaling. These corrections to scaling can be mini-
o 0.98 mized by going over to Domb—Joyce polymécharacter-
O ized by soft repulsionwith carefully adjusted strength of the
Qg 0.96 repulsion(similarly, for off-lattice bead-spring models, one
= can adjust the ratio between bead size and equilibrium spring
¥ 004 length to minimize corrections to scalindt was only when
g going over to this Domb—Joyce model that we could verify
092 1 in detail all theoretical predictions.
i Thus we have shown, first of all, that already the field
0% o1 02 03 04 05 06 07 08 09 1 theoretice expansion to first order im, as implemented in
£ Ref. 3, gives correct results. This was not obvious, in par-

ticular in view of persistent previous difficulties to verify it
FIG. 14. Rescaled values of the probability,{2) that the chain end is at by Monte Carlo simulations. Second, we have demonstrated
the distancez from a wall, divided by the functiog(¢;)=4.358€5(1  again the importance of using models with minimized cor-
), againstt,=(2+ 9)/(D+1+20) with 6=-0.02. rections to scaling. And last but not least we have again

shown that recursive sequential sampling methods with

resampling® (of which PERM is a particular implementa-

for SAWSs. With this new estimate of lim,qp ...Dp(2), and tion) can be very efficient.

using the nonuniversal amplitude determined earlier, we
obtain our final estimate for the universal amplitude r&jo

B=1.70-0.08. (23)

This is only 2 standard deviations away from #herediction
B=1.85 of Eisenrieglet,which we consider as good agree-
ment.

Finally, we do not show our data fdRy (D)/N”2 and
for the end monomer profile, since they are very similar to 1p. G. de Gennes§caling Concepts in Polymer Physi@ornell University
Figs. 8 and 9. But again the seemingly perfect agreement ofPress, lthaca, NY, 1979 S
the end point density profile is again as deceptive as it was E. Eisenriegler,Polymers Near Surface@Norld Scientific, Singapore,

for SAWs. This time our best estimate for the scaling of the s gisenriegler, Phys. Rev. 55, 3116(1997).
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