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By molecular dynamics simulation of a coarse-grained bead-spring-type model for a cylindrical
molecular brush with a backbone chain of Nb effective monomers to which with grafting density
σ side chains with N effective monomers are tethered, several characteristic length scales are stud-
ied for variable solvent quality. Side chain lengths are in the range 5 ≤ N ≤ 40, backbone chain
lengths are in the range 50 ≤ Nb ≤ 200, and we perform a comparison to results for the bond fluctua-
tion model on the simple cubic lattice (for which much longer chains are accessible, Nb ≤ 1027, and
which corresponds to an athermal, very good, solvent). We obtain linear dimensions of the side chains
and the backbone chain and discuss their N-dependence in terms of power laws and the associated
effective exponents. We show that even at the theta point the side chains are considerably stretched,
their linear dimension depending on the solvent quality only weakly. Effective persistence lengths
are extracted both from the orientational correlations and from the backbone end-to-end distance;
it is shown that different measures of the persistence length (which would all agree for Gaussian
chains) are not mutually consistent with each other and depend distinctly both on Nb and the solvent
quality. A brief discussion of pertinent experiments is given. © 2011 American Institute of Physics.
[doi:10.1063/1.3656072]

I. INTRODUCTION

Macromolecules which consist of a “backbone” polymer,
to which flexible or stiff side chains are grafted, the so-called
“bottle-brush polymers,” find very great interest recently (see
Refs. 1–6 for reviews). Varying the chemical nature of both
the backbone chain and the side chains, their chain lengths
(Nb, N) and the grafting density σ , the structure of these cylin-
drical molecular brushes can be widely varied. That is, their
local “thickness” as measured by the cross-sectional radius
Rc or linear dimensions of individual side chains can be var-
ied as well as their local “stiffness,” traditionally measured
by “the” persistence length lp,6–9 and their effective contour
length Lc. Here, we use quotation marks with respect to “the”
persistence length, because there is evidence, at least for the
case of very good solvent conditions, that a unique persis-
tence length measuring the “intrinsic” stiffness of a polymer
cannot be defined in the standard fashion.10, 11 Now an intrigu-
ing observation12 is the sensitivity of the large-scale struc-
ture of these bottle-brush polymers to solvent quality: one
finds a thermally induced collapse of single macromolecules

a)Electronic mail: panagiotis.theodorakis@univie.ac.at.
b)Electronic mail: hsu@uni-mainz.de.
c)Electronic mail: wolfgang.paul@physik.uni-halle.de.
d)Electronic mail: kurt.binder@uni-mainz.de.

from cylindrical brushes to spheres, in a very small tempera-
ture range, and it is speculated that these bottle-brushes could
be useful as building blocks of “soft nanomachines.”12 We
also note that biopolymers with comblike architecture are
ubiquitous in nature (such as proteoglycans13 or the aggre-
can molecules that play a role in the soft lubricating layers
in human joints.14), and probably in this context temperature
and/or solvent quality (or pH value) are relevant parameters
as well.

In view of these facts, a comprehensive clarification of
how the properties of bottle-brush polymers depend on sol-
vent quality clearly would be interesting. Although there
are occasional experimental reports, how particular linear di-
mensions of these polymers scale in various solvents (e.g.,
Refs. 15–18), we are not aware of a systematic study of this
problem. While work based on self-consistent field theory
(SCFT) predicted already very early in Ref. 19 that the side
chain gyration radius Rgs scales as Rgs ∝ N3/4 for good sol-
vents and Rgs ∝ N2/3 for theta solvents, there is now evidence
from experiment, simulation, and theory that these power
laws apply if at all only for side chain lengths N of the or-
der of 103, which are of no practical relevance: Experiments
have only studied the range N < 102, and the range acces-
sible in simulations3, 6, 10, 20–26 is similarly restricted. Numeri-
cal modeling applying the Scheutjens-Fleer version of SCFT
has given clear evidence27 that even within this mean-field
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approach N ≈ 103 is needed to reach the regime, where the
predicted power laws19, 28 apply. While the investigation of
the scaling (self-similar) properties of bottle-brushes with ex-
tremely long backbone chains and very long side chains may
be a challenging theoretical problem, it is of little relevance
for the experimentally accessible systems, and clearly not in
the focus of the present paper. Both the SCFT theories19, 27

and the scaling theories29 consider ideal chains aiming to
describe the behavior at the theta temperature, while previ-
ous simulations have almost exclusively considered the good
solvent case only. Notable exceptions are studies of globule
formation of bottle-brushes with very short side chains (N
= 4−12) under poor solvent conditions30 and the study of mi-
crophase separation of bottle-brushes with straight backbones
in poor solvent.31, 32

The present work intends to make a contribution to close
this gap, by presenting a simulation study of a coarse-grained
bead-spring (BS)-type model of bottle-brush polymers where
the solvent quality is varied from very good solvent condi-
tions to the theta point regime. In Sec. II, we shall describe the
model and simulation technique, while in Sec. III we present
our numerical results. In Sec. IV, a summary is given as well
as an outlook on pertinent experiments.

II. MODEL AND SIMULATION METHOD

Extending our previous work on the simulation of bottle-
brush polymers with rigid backbones,31, 32 we describe both
the backbone chain and the side chains by a bead-spring
model,33–36 where all beads interact with a truncated and
shifted Lennard-Jones (LJ) potential ULJ(r) and nearest neigh-
bors bonded together along a chain also experience the finitely
extensible nonlinear elastic potential UFENE(r), r being the
distance between the beads. Thus

ULJ(r) = 4εLJ

[(σLJ

r

)12
−

(σLJ

r

)6
]

+ C, r ≤ rc , (1)

while ULJ(r > rc) = 0, and where rc = 2.5σ LJ. The constant
C is defined such that ULJ(r = rc) is continuous at the cutoff.
Henceforth, units are chosen such that εLJ = 1, σ LJ = 1, the
Boltzmann constant kB = 1, and in addition also the mass
mLJ of beads is chosen to be unity. The potential Eq. (1) acts
between any pair of beads, irrespective of whether they are
bonded or not. For bonded beads additionally the potential
UFENE(r) acts,

UFENE(r) = −1

2
kr2

0 ln

[
1 −

(
r

r0

)2
]

, 0 < r ≤ r0 ,

(2)
while UFENE(r > r0) = ∞, and hence r0 is the maximal
distance that bonded beads can take. We use the standard
choice36 r0 = 1.5 and k = 30. Related models have been used
with great success to study the glassification of polymer melts
formed from short chains37 and to study the effects of sol-
vent quality of polymer brushes on flat planar substrates.38

For such models of brushes on a planar substrate, the implicit
solvent model (Eq. (1)) has been compared with models using
explicit solvent molecules, and it was found that the results
are very similar.

Note that in our model there is no difference in interac-
tions, irrespective of whether the considered beads are effec-
tive monomers of the backbone or of the side chains, implying
that the polymer forming the backbone is either chemically
identical to the polymers that are tethered as side chains to
the backbone, or at least on coarse-grained length scales as
considered here the backbone and side chain polymers are no
longer distinct. There is also no difference between the bond
linking the first monomer of a side chain to a monomer of
the backbone and bonds between any other pairs of bonded
monomers. Of course, our study does not address any effects
due to a particular chemistry relating to the synthesis of these
bottle-brush polymers, but as usually done36, 39, 40 we address
universal features of the conformational properties of these
macromolecules.

There is one important distinction relating to our previous
work31, 32 on bottle-brush polymers with rigid backbones: fol-
lowing Grest and Murat,35 there the backbone was taken as an
infinitely thin straight line in continuous space, thus allowing
arbitrary values of the distances between neighboring grafting
sites, and hence the grafting density σ could be continuously
varied. For the present model, where we disregard any possi-
ble quenched disorder resulting from the grafting process, of
course, the grafting density σ is quantized: we denote here by
σ = 1 the case that every backbone monomer carries a side
chain, σ = 0.5 means that every second backbone monomer
has a side chain, etc. Chain lengths of side chains were chosen
as N = 5, 10, 20, and 40, while backbone chain lengths were
chosen as Nb = 50, 100, and 200, respectively.

It is obvious, of course, that for such short side chain
lengths any interpretation of characteristic lengths in terms of
power laws, such as Rc ∝ Nνeff , is a delicate matter, νeff being
an “effective exponent” and characterizes only the specified
range of rather small values of N and not the limit N → ∞
considered by most theories.2, 19, 27–29 Thus, the actual value of
νeff is of limited interest, it only gives an indication to which
part of an extended crossover region the data belong. How-
ever, we emphasize that (i) our range of N nicely corresponds
to the range available in experiments.1, 4, 15–18, 26, 41–43 (ii) The
analysis in terms of power laws with effective exponents is
a standard practice of experimentalists in this context (e.g.,
Refs. 1 and 17).

We recall that for linear chains, the theta temperature
for the present (implicit solvent) model has been roughly
estimated44 as Tθ ≈ 3.0 (note, however, that there is still
some uncertainty about the precise value of Tθ : for a similar
model45 the correct value of Tθ , Tθ ≈ 3.18 in this case, could
only be established for chain lengths exceeding N = 200).
Thus, in the present work we have thoroughly studied the
temperature range 3.0 ≤ T ≤ 4.0. From previous work46 on
rather long chains in polymer brushes on flat surfaces, using
the same model ( Eqs. (1) and (2)) to describe the interactions,
it is known that for T = 4.0 one finds a behavior characteristic
for (moderately) good solvents. Very good solvent conditions
could be obtained from a slightly different model that has
extensively been studied for standard polymer brushes,36, 47

where in Eq. (1) the cutoff is chosen to coincide with the
minimum of the potential, rc = 21/6σ LJ (and then also T
= 1 can be chosen for this essentially athermal model). Rather
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than carrying out simulations for bottle-brushes using this
model, we found it more appropriate to compare to the ather-
mal version of the bond fluctuation model on the simple cu-
bic lattice, which describes very good solvent conditions48, 49

and has been used in our earlier work.6, 10, 26 The use of this
model has several advantages: (i) due to the fact that ex-
cluded volume constraints can be monitored via the occu-
pancy of lattice sites, a very efficient implementation of the
pivot algorithm in this Monte Carlo approach has become
possible.50 Therefore, very large bottle-brush polymers can
be equilibrated, up to Nb = 1027, a task that is very difficult
to achieve by molecular dynamics (MD) methods. (ii) The ex-
tent to which the bond fluctuation model and MD results agree
(for comparable choices of parameters) yields some insight to
what extent the pre-asymptotic regime that we study is model
dependent. Of course, a truly universal behavior (apart from
amplitude prefactors) can only be expected for the asymptotic
regime where the side chain length N → ∞, that is not acces-
sible in simulations or experiments. One could ask why we
do not use versions of the bond fluctuation model where an
effective attraction between monomers is included51 to study
the effect of variable solvent quality in the framework of this
model. The reason is that for temperatures slightly below the
theta temperature already practically frozen configurations of
monomers occur, with several monomers next to each other
blocking any possibility to move. Thus the convergence to-
wards equilibrium then is extremely slow.

However, since the application of the athermal version of
the bond fluctuation model (BFM) to the simulation of bottle-
brush polymers is well documented (Hsu and Paul50 have
given a careful discussion on the effort needed for the BFM to
sample equilibrium properties) in the recent literature,10, 26, 50

we do not give any details here.
In the MD simulation, the positions �ri(t) of the effec-

tive monomers with label i evolve in time t according to
Newton’s equation of motion, amended by the Langevin
thermostat33–36, 39, 40

mLJ
d2�ri(t)

dt2
= −∇Ui({�rj (t)}) − γ

d�ri

dt
+ ��i(t) , (3)

where Ui({�rj (t)}) is the total potential acting on the ith bead
due to its interactions with the other beads at sites {�rj (t)}, γ

is the friction coefficient, and ��i(t) is the associated random
force. The latter is related to γ by the fluctuation-dissipation
relation

〈��i(t) · ��j (t)〉 = 6kBT
γ

mLJ
δij δ(t − t ′) . (4)

Following previous work31–36 we choose γ = 0.5, the MD
time unit

τLJ =
(

mLJσ
2
LJ

εLJ

)1/2

, (5)

being also unity, for our choice of units. Equation (3) was
integrated using the leap frog algorithm,52 with a time step δt
= 0.006 τLJ, and utilizing the GROMACS package.53 For the
calculation of properties of the bottle-brushes, typically 500
statistically independent configurations are averaged over.

Of course, for bottle-brushes with large Nb equilibration
of the polymer conformations is a difficult problem. Since we
expect that end-to-end distance Re and gyration radius Rg of
the whole molecule belong to the slowest relaxing quantities,
we studied the autocorrelation function of R2

g to test for equi-
libration,

φ(t) =
〈(
R2

g(t ′ + t) − R2
g

)(
R2

g(t ′) − R2
g

)〉
〈(
R2

g(t ′) − R2
g

)2〉 . (6)

Note that R2
g means an average of R2

g(t ′) over the time t′ in
the MD trajectory (and the average 〈· · ·〉 is computed by aver-
aging over 500 statistically independent runs). Despite a sub-
stantial investment of computer time, φ(t) still exhibits signif-
icant fluctuations (remember that quantities such as Re and
Rg are known to exhibit a “lack of self-averaging,”54, 55 ir-
respective of how large Nb is). Figure 1 gives some exam-
ples for φ(t). If the number of samples would be infinite and
δt → 0, we should expect a monotonous decay of φ(t) to-
wards zero as t becomes large. Due to the fact that the num-
ber of samples is not extremely large, and δt is not extremely
small, Fig. 1 gives clear evidence for noise that is still corre-
lated. We see that for small N the noise amplitude starts out
at ±0.1, and the time scale on which the fluctuations of φ(t)
change sign is at t ≈ 1500τLJ in (a), t ≈ 10000τLJ in (b), and t
≈ 20000τLJ in (c). While in cases (a) and (b), the (statistically
meaningful) initial decay of φ(t) occurs so fast that it can only
be seen on a magnified abscissa scale (inserts), we see that in
(c) the initial decay is also much slower, and the associated
time scale is of the same order as the time over which fluctua-
tions are correlated. We have carefully considered φ(t) for all
cases studied, and we have concluded that for our largest sys-
tem studied (shown in Fig. 1(c), with a total number of 8000
effective monomers) the statistical effort is not yet sufficient
to allow meaningful conclusions on the overall linear dimen-
sions of the bottle-brush, while in all other cases the effort
was judged to be sufficient. The damped oscillatory charac-
ter of the relaxation seen particularly in Fig. 1(c) could be a
matter of concern; we attribute this relaxation behavior to par-
ticular slow collective motions (breathing-type modes) of the
chain.

Figure 2 shows a small selection of snapshot pictures of
equilibrated bottle-brush polymers. From these snapshot pic-
tures, it is already clear that the side chains cause a signifi-
cant stiffening of the backbone, at least on a coarse-grained
scale, and that bottle-brushes where Nb is not very much
larger than N look like wormlike chains. This conclusion
corroborates pictures generated experimentally (by atomic
force microscopy or electron microscopy techniques, e.g.,
Refs. 1, 4, and 56), but this observation should not mislead
one to claim that the Kratky-Porod wormlike chain model57

often employed to analyze such micrographs provides an ac-
curate description of bottle-brush polymers as we shall see.

Of course, both the bead-spring model and the BFM are
idealizations of realistic comb-branched polymers, where also
bond-angle potentials and torsional potentials are present and
contribute to the local chain stiffness. Thus it is gratifying
to note that nevertheless measured structure factors of real
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FIG. 1. Plot of φ(t) (see Eq. (6)) versus the time t in units of τLJ. Several
cases are shown: σ = 0.5, Nb = 100, N = 10, T = 3.0 (a); σ = 1.0, Nb

= 100, N = 20, T = 3.0 (b); and σ = 1.0, Nb = 200, N = 40, T = 3.0 (c). The
fluctuations of φ(t) change sign initially at t ≈ 1500τLJ (a), t ≈ 10000τLJ,
and t ≈ 20000τLJ (c) as shown in the inserts.

bottle-brush polymers42 can be mapped almost quantitatively
to their simulated BFM counterparts,26 if the lattice spacing
is fixed at a length of a few angstroms, and about three chem-
ical monomers are mapped onto two effective monomers of
the BFM. Residual minor discrepancies may, to some extent,
be due to solvent quality effects.26

III. SIDE-CHAIN AND BACKBONE LINEAR
DIMENSIONS AND ATTEMPTS TO EXTRACT “THE”
PERSISTENCE LENGTH OF BOTTLE-BRUSH
POLYMERS

Figure 3 presents log-log plots of the normalized mean
square gyration radius of the side chains 〈R2

gs〉/(l2
bN ) as a

(a)

(c)

(b)

(d)

FIG. 2. Selected snapshot pictures of equilibrated configurations of bottle-
brush polymers. Backbone monomers (when visible) are displayed in ma-
genta (darker grey) color, side chain monomers in green (lighter grey). Cases
shown refer to σ = 0.5, Nb = 100, N = 10, T = 3.0 (a) and T = 4.0 (b), as
well as σ = 1.0, Nb = 100, N = 20, T = 3.0 (c) and T = 4.0 (d).
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FIG. 3. Log-log plot of mean square radius of gyration of the side chains
normalized by their chain length and by the square bond length l2

b between
successive monomers, 〈R2

gs〉/(l2
bN ), versus side chain length N, for σ = 0.5

(a) and σ = 1.0 (b). Data for the bead-spring model at two temperatures (T
= 3.0 and T = 4.0), as indicated in the figure are included, as well as three
backbone chain lengths (Nb = 50, 100, and 200, respectively). For compari-
son, also data for the athermal bond fluctuation model for comparable back-
bone chain length are included. Straight lines indicate effective exponents
νeff ≈ 0.60 (T = 3.0) or νeff ≈ 0.63 (T = 4.0) in case (a), and νeff ≈ 0.60 (T
= 3.0) or νeff ≈ 0.64 (T = 4.0) in case (b). For the bond fluctuation model
under very good solvent conditions the slightly larger effective exponent (νeff
≈ 0.65 for σ = 0.5, and νeff ≈ 0.66 for σ = 1.0) than for the off-lattice model
with T = 4.0 results.
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FIG. 4. Temperature dependence of the normalized mean square radius of
gyration 〈R2

gs〉/(l2
bN ) for four chain lengths (N = 5, 10, 20, and 40), and

three backbone lengths (Nb = 50, 100, and 200), respectively. All data are
for the bead-spring model and σ = 1. Data for bottle-brush polymers with
flexible backbone are connected by curves to guide the reader’s eyes. Data
are only shown for T = 3.0 and 4.0 for the rigid backbone case.

function of side chain length N (lb is the bond length between
successive monomers), comparing data for grafting densities
σ = 0.5 and σ = 1.0, and two temperatures (T = 3.0 and
T = 4.0, respectively). Three different backbone lengths (Nb

= 50, 100, and 200) are included, but the dependence of the
data on backbone length is not visible on the scale of the
graph. Such a dependence on Nb would be expected due to
effects near the chain ends of the backbone: in Ref. 26, it
was shown that there is less stretching of the side chains in
the direction perpendicular to the backbone near the chain
ends of the backbone than in the central part of the back-
bone. However, this effect is almost completely compensated
by the fact that side chains near the backbone chain ends are
more strongly stretched in the direction of the backbone (side
chains then are oriented away from the backbone chain ends).
This fact has already been seen for bottle-brushes with rigid
backbone but free ends.58

We have also checked that for the bead-spring model av-
erage side chain linear dimensions for bottle-brushes with
rigid and flexible backbones are identical for the bond fluc-
tuation model, at least in the accessible parameter regime. For
the bond fluctuation model a similar equivalence has been
found also for the radial density profile of the monomers.59

Figure 4 shows then the temperature dependence of 〈R2
gs〉 for

the different choices of N, demonstrating that the side chain
extension is independent of Nb and agrees well between rigid
and flexible backbones. The small deviations observable be-
tween the rigid and the flexible backbone cases for large N
are due to residual systematic errors of the simulations for the
flexible backbone. The present work, therefore, suggests that
the equivalence between bottle-brushes with rigid and flexible
backbones carries over to chains in variable solvent quality,
down to the theta point (but we caution the reader that this
equivalence will break down for poor solvents, in the regime
of intermediate grafting densities where for rigid backbones
pearl-necklace structures occur31, 32).

The straight lines on the log-log plots in Fig. 3 illustrate
the empirical power law

〈
R2

gs

〉 ∝ N2νeff , (7)

consistent with corresponding experiments (see Refs. 1 and 4
and references quoted therein) and we find that νeff decreases
with decreasing solvent quality and with decreasing grafting
density. In the good solvent regime, νeff > ν = 0.588,60 the
established value of the exponent describing the swelling of
linear polymers under good solvent conditions, Rg(N) ∝ Nν

for N → ∞.8, 9 As expected, νeff is still distinctly smaller than
the value predicted from scaling,3 νeff = 2ν/(1 + ν) ≈ 0.74
or SCFT,19 3/4. But the slight enhancement of νeff with re-
spect to its value for free chains (ν = 1/2 at the theta point, T
= 3.0; ν = 0.588 for good solvents) is evidence that the side
chains interact with each other, which is a prerequisite for the
expected induced stiffening of the backbone chain.

We now turn to the backbone linear dimensions. Here,
we first caution the reader that in good solvent conditions
we clearly also expect that the mean square end-to-end dis-
tance of a bottle-brush polymer satisfies the standard scaling
relation〈

R2
eb

〉 ∝ N2ν
b , ν = 0.588, Nb → ∞ , (8)

but the longer the side chain length the larger Nb must be cho-
sen such that Eq. (8) can be verified. We start the discussion
with data from the bond fluctuation model, where (for N ≤ 24)
data up to Nb = 1027 are available.10 Figure 5 hence shows a
log-log plot of 〈R2

eb〉/(2l2
bN

2ν
b ) versus N. The factor of 2 in the

denominator is arbitrarily chosen, since for Gaussian chains
(ν = 1/2 ) the result would simply be the persistence length
lp in units of the bond length.10 Thus, it was suggested10 that
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Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



164903-6 Theodorakis et al. J. Chem. Phys. 135, 164903 (2011)

 0.3

 0.4

 0.5

 0.6

 0.7

 0

 (a)

 (b)

 250  500  750  1000

ζ

Nb

σ = 0.5

 0.4

 0.5

 0.6

 0.7

 0.8

 0  250  500  750  1000

ζ

Nb

σ = 1.0

FIG. 6. Plot of the effective exponent ζ , extracted from the slope of the
straight lines in Fig. 5, versus the backbone chain length Nb for σ = 0.5
(a) and σ = 1.0. All data are for the athermal bond fluctuation model.

in the excluded volume case one could introduce an effective
persistence length lp, R(N) via the definition

lp,R(N ) = 〈
R2

eb

〉/(
2lbN

2ν
b

)
, Nb → ∞ . (9)

Then Fig. 5 can be interpreted as a plot of lp, R(N)/lb versus
N in the region where it is basically independent of Nb. The
quantity lp, R(N) defined in this way is compatible with an ef-
fective power law,

lp,R(N ) ∝ Nζ , (10)

but the effective exponent ζ clearly depends on Nb, if Nb is not
chosen large enough (Fig. 6). Thus, Fig. 5 clearly shows that
lp, R(N) is not a quantity characterizing the intrinsic stiffness
of a bottle-brush polymer. For large Nb, the exponent ζ seems
to saturate at a value close to 0.65 and 0.74 for σ = 0.5 and σ

= 1.0, respectively, but for chain lengths Nb in the range from
Nb = 67 to Nb = 131 it is only in the range from ζ = 0.41 to
ζ = 0.55 and from ζ = 0.48 to ζ = 0.67 for σ = 0.5 and σ

= 1.0, respectively.
Thus, it is no surprise that for the bead-spring model

choosing Nb = 50, 100, or 200 values of this effective
exponent ζ in a similar range are found (Fig. 7). Of
course, one must be aware that there is no strict one-to-one
correspondence61 between the meaning of chain lengths Nb

and N in different models: actually there may be the need for
conversion factors N

(BFM)
b /N

(BS)
b and N(BFM)/N(BS) between

the BS model and the BFM. The same fact is true when we
compare simulations to experiments; e.g., the data of Rathge-
ber et al.42 could be mapped to the BFM (Ref. 26) implying
an equivalence between N

(exp)
b = 400 and N

(BFM)
b = 259 and
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FIG. 7. Log-log plot of 〈R2
eb〉/(2l2

bN2ν
b ) = �p,R/�b versus N. All data are for

the bead-spring model with σ = 1.0 at both T = 4.0 (a) and T = 3.0 (b). Three
backbone lengths are shown as indicated.

between N(exp) = 62 and N(BFM) = 48, for instance. We also
note that with decreasing temperature 〈R2

eb〉 decreases, irre-
spective of N (and also ζ decreases). Again we remind the
reader that this parameterization of our data in terms of effec-
tive exponents (also used in related experimental work17, 42)
only can serve to indicate the place in an extended crossover
region to which the data belong.

When we analyze the gyration radius of the backbone as
a function of backbone chain length for the BS model (Fig. 8)
we find that over a restricted range of Nb one can fit the data by
effective exponents again, 〈R2

gb〉1/2 ∝ N
νeff
b , with 0.55 ≤ νeff

≤ 0.95, and it is seen that νeff increases systematically with
side chain length N, and νeff for T = 4.0 is larger than for T
= 3.0, for the same choice of N. Of course, this variation of the
effective exponent is just a reflection of a gradual crossover
from the rodlike regime (〈R2

g〉1/2 ∝ Nb) to the self-avoiding
walk (SAW)-like behavior of swollen coils (〈R2

g〉1/2 ∝ Nν
b ,

with ν ≈ 0.588) in the good solvent regime (T = 4.0) or
Gaussian-like coils (〈R2

g〉1/2 ∝ N
1/2
b ) for the theta point (T

= 3.0), respectively. Similar plots as in Fig. 8 but for the BFM
are shown in Figs. 9(a) and 9(b). Due to the availability of
equilibrated data for much longer backbone chain lengths Nb

for the BFM, the plot of 〈R2
gb〉/(2l2

bN
2ν
b ) versus Nb (Fig. 9(c))

indeed shows that the data settle down to a horizontal plateau
implying that the asymptotic region, where Eq. (9) can be ap-
plied indeed is reached. Instead of R2

eb in Eq. (9), we use R2
gb

such that the estimate of the N-dependent effective persistence
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(d), for the bead-spring model. Several side chain lengths N are included as indicated. Straight lines indicate a fit with effective exponents νeff.

length lp, Rg is given by the horizontal line in Fig. 9(c). Actu-
ally, for fixed side chain length N the different choices of Nb

can be collapsed on a master curve, when Nb is rescaled by
sblob,6 which can be interpreted as an estimate for the number
of segments per persistence length. In our previous work,6, 11

we have shown that bottle-brushes under very good solvent
conditions can be described as self-avoiding walks of effec-
tive “blobs,” having a diameter that is just twice the cross-
sectional radius of the bottle-brush, and containing a number
sblob of backbone monomers. Note that hence sblob is not a fit
parameter, but has been determined independently. This data
collapse on a master curve is demonstrated for the BFM for
the case σ = 1, N = 6, 12, 18, and 24 (Fig. 9(d)).

Since “the” persistence length of polymers in the stan-
dard textbooks7–9 is traditionally defined from the decay of
bond orientational correlations along the chains, we next fo-
cus on this quantity. Defining the bond vectors �ai in terms
of the monomer positions �ri as �ai = �ri+1 − �ri , i = 1, . . . , Nb

−1, this bond orientational correlation is defined as

〈cos θ (s)〉 = l−2
b

1

Nb − 1 − s

Nb−1−s∑
i=1

〈�ai · �ai+s〉. (11)

Note that 〈�a2
i 〉 = l2

b and hence 〈cos θ (0)〉 = 1, of course.
Considering the limit Nb → ∞, and assuming Gaussian
chain statistics, one obtains an exponential decay, since then
〈cos θ (s)〉 = 〈cos θ (1)〉s = exp [sln 〈cos θ (1)〉], and thus

〈cos θ (s)〉 = exp[−s�b/ lp] , l−1
p = − ln〈cos θ (1)〉/�b .

(12)

However, it has been shown by scaling and renormalization
group arguments62 and verified by simulations10, 11 that in the
good solvent case there actually occurs a power law decay

〈cos θ (s)〉 ∝ s−β , β = 2(1 − ν) ≈ 0.824 , s → ∞,

(13)
while for chains at the theta point63 or in melts,64 one has

〈cos θ (s)〉 ∝ s−3/2, s → ∞ . (14)

As far as bond orientational correlations are concerned,
Gaussian chain statistics hence is misleading for polymers,
under all circumstances. However, Shirvanyants et al.63 sug-
gested that for semiflexible polymers (at the theta point),
one can use still Eq. (12) but only for 1 ≤ s ≤ s*, where
s* ∝ lp/lb controls the crossover from the simple exponen-
tial decay, Eq. (12), to the power law, Eq. (14). Indeed, for a
simple SAW model on the simple cubic lattice, where chain
stiffness was controlled by an energy cost εb when the chain
makes a 90◦ kink on the lattice,11 it was shown that this
suggestion63 works qualitatively, also in the good solvent
case, with lp ∝ exp (εb/kBT) for εb/kBT 
 1, although the
crossover between Eqs. (12) and (13) is not sharp but rather
spread out over a decade in the variable s.

Motivated by this finding,11 Figs. 10 and 11 hence present
a few examples where 〈cos θ (s)〉 is plotted vs. s on a semi-
log plot, to test for a possible applicability of Eq. (12) for
not too large s. However, we find that in fact Eq. (12) does
NEVER hold for small s (s = 1, 2, 3), unlike the semiflex-
ible SAW model of Ref. 11, rather there occurs a very fast
decay of 〈cos θ (s)〉 following a strongly bent curve (only two
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FIG. 9. Log-log plot of 〈R2
gb〉1/2/�b for the bond fluctuation model versus backbone chain length Nb, for 67 ≤ Nb ≤ 259, and several side chain lengths N, for

σ = 0.5 (a) and σ = 1.0 (b). Part (c) shows the plot of rescaled radius of gyration 〈R2
gb〉/(2l2

bN2ν
b ) of the bottle-brush polymers versus Nb for σ = 1.0. The

persistence length lp, Rg is determined by the values of plateau. Part (d) shows a crossover scaling plot, collapsing for N = 6, 12, 18, and 24, σ = 1.0, and all
data for 67 ≤ Nb ≤ 1027 on a master curve, that describes the crossover from rods (〈R2

gb〉1/2 ∝ Nb) to swollen coils (〈R2
gb〉1/2 ∝ Nν

b , ν ≈ 0.588). For this
purpose, Nb is rescaled with the blob diameter sblob, which has been determined to be sblob = 6, 10, 12, and 14 for N = 6, 12, 18, and 24, respectively.6, 11

successive values of s can always be fit to a straight line, of
course, but there is never an extended regime where a straight
line through the origin, 〈cos θ (s = 0)〉 = 1, would be com-
patible with the data). It is also remarkable that this initial
behavior is almost independent of σ and N; an obvious inter-
pretation is that the stiffening of the backbone caused by the
presence of long side chains is effective only on mesoscopic
length scales along the backbone, but not on the scale of a few
subsequent backbone bonds, which maintain a high local flex-
ibility. Only for s ≥ 4, the data are compatible with a relation

〈cos θ (s)〉 = a exp(−bs), 4 ≤ s ≤ smax , (15)

where a and b are phenomenological constants, and smax de-
pends on both N, σ , and T distinctly (but cannot be accurately
obtained from our simulations, because for 〈cos θ (s)〉 ≤ 0.03
the statistical accuracy of the data deteriorates.) Obviously,
the relation (Eq. (12)) l−1

p = − ln〈cos θ (1)〉/�b fails, but it
seems tempting to identify an effective persistence length leff

p

as leff
p /�b = b−1. However, when we would define the persis-

tence length in this way, we obtain the result that leff
p depends

on both Nb and on T, not only on the side chain length N and
grafting density σ (Fig. 12 and Table I). For the bead-spring

model, one often estimates that the length unit (σ LJ = 1) phys-
ically corresponds to about 0.5 nm. The data for �eff

p (T ) at σ

= 1 and good solvent conditions for Nb = 200 then would
span a range from about 5 to about 40 nm, i.e., a similar range
as proposed in recent experiments17. But already our previous
work on the athermal bond fluctuation model6, 10, 26 has given
some evidence, that defining a persistence length from a fit of
the data for 〈cos θ (s)〉 to Eq. (15) is not suitable to obtain a
measure of the local intrinsic stiffness, since leff

p depends on
Nb. The present data show that leff

p depends on T as well and,
hence, is not just controlled by the chemical architecture of
the bottle-brush (via the parameters, σ , N, and Nb), but de-
pends on solvent conditions as well.

Thus, we argue that the physical significance of a persis-
tence length leff

p extracted from bond orientational correlations
in this way is very doubtful, even at the theta point. We also
note that sometimes, due to curvature on the semi-log plot
(e.g., Fig. 11(d)) such fits are ill-defined.

Finally, we consider the possible validity of the Kratky-
Porod result for the end-to-end distance of the chains at the
theta temperature, where for Nb → ∞ we have (apart from
logarithmic corrections) 〈R2

e 〉 ∝ Nb, i.e., for this property a
formula analogous to Gaussian chains holds. The Kratky-
Porod result describes the crossover from rods to Gaussian
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chains, 〈
R2

e

〉
2lpL

= 1 − lp

L
[1 − exp(−L/lp)] . (16)

We can define an effective exponent νeff(L/lp) in terms of the
logarithmic derivative of this function, Figs. 13(a) and 13(b),

d ln
[〈
R2

e

〉
/(2lpL)

]
d ln(L/lp)

= 2νeff(L/lp) − 1 . (17)

Using the data for νeff at Nb = 100 from Figs. 8(a) and 8(c)
(and similar data not shown for 〈R2

eb〉 ) we hence obtain esti-
mates for the ratios L/lp for the various choices of N for both
σ = 0.5 and σ = 1. Note that the errors in our estimation of
νeff translate into rather large errors in our estimates for L/lp
(both these errors of our data are indicated in Figs. 13(a) and
13(b)). Since we expect that the actual variation of 〈R2

eb〉 with
Nb exhibits slight curvature (although this is hardly detected
in Figs. 8(a) and 8(c)), we use only this intermediate value of
Nb = 100 to estimate the relation between N and L/lp, and we
use neither Nb = 50 nor Nb = 200 for this purpose.

If the contour length L of the Kratky-Porod model,
Eq. (16), would simply be the “chemical” contour length Lch

= Nblb, where the bond length lb connecting two neighbor-
ing monomers along the backbone is lb ≈ 1, our results for
L/lp would readily yield explicit results for lp. However, using
then Eq. (16) to compute 〈R2

eb〉/L2 yields an overestimation
by about a factor of 5 for σ = 1. This discrepancy proves
that L is significantly smaller than Lch. Since Eq. (17) implies
that there is a unique correspondence between νeff and the
ratio �p/L, the factor of five discrepancy for 〈R2

e 〉 (which is
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TABLE I. Estimates of the effective persistence length leff
p = b−1�b shown

in Fig. 12 are listed for the BS model with the grafting densities σ = 0.5 and
1.0 at temperatures T = 3.0 and 4.0. Various values of the backbone length
Nb and the side chain length N are chosen here. All length quoted in this table
are given in units of �b (with �b ≈ 0.97σLJ). Note that �eff

p depends not only
on N and σ , but also on Nb and T, and hence does not seem as a characteristic
of intrinsic chain stiffness. Estimates of lp(N) shown in Fig. 13 are also listed
for comparison.

σ = 0.5 σ = 1.0

leff
p /�b leff

p /�b leff
p /�b leff

p /�b

Nb N (T = 3.0) (T = 4.0) (T = 3.0) (T = 4.0)

50 5 5.38 8.00 7.69 9.26
50 10 7.94 9.71 9.90 11.14
50 20 11.12 16.39 16.05 21.01
50 40 16.03 21.27 21.19 35.09

100 5 6.41 10.73 7.25 12.20
100 10 8.26 13.33 11.52 16.47
100 20 14.25 23.47 16.37 25.91
100 40 21.01 38.46 38.03 47.62

200 5 6.71 10.00 6.85 9.52
200 10 10.55 17.83 11.14 16.95
200 20 15.92 24.33 20.45 35.21
200 40 32.15 41.49 53.76 77.52

N lp/�b(T = 3.0) lp/�b(T = 3.0)
5 23.11 11.89

10 36.43 23.98
20 43.59 52.60
40 91.64 103.09

proportional to the product of �p and L) means that both �p

and L must be smaller by the same factor (at about
√

5). Thus
we define L = Nbl

eff
b , where leff

b (< 1) is interpreted as the av-
erage projection of a backbone bond on the direction of the
coarse-grained contour of the wormlike chain. Thus we also
can use the data shown in Figs. 13(a) and 13(b) to obtain
explicit estimates for lp(N), taking into account L = Nbl

eff
b

instead of L = Nblb. Interestingly, the mechanisms leading
to leff

b < 1 is also evident in the presence of the constant a
< 1 in the fits of 〈cos θ (s)〉 = a exp (− bs) in Figs. 10 and
11. Using then the estimates leff

b (σ = 0.5) ≈ 0.33 and leff
b (σ

= 1) ≈ 0.45, the data for 〈R2
eb〉/(2lp(N )L) at T = 3.0 are

roughly compatible with Eq. (16), when we use L/lp(N) from
Figs. 13(a) and 13(b) and take L = leff

b Nb as is shown in
Figs. 13(c) and 13(d). In this way, we have defined a correc-
tion factor ar = (leff

b )−2 in Fig. 13, which was assumed to de-
pend neither on N nor on Nb. Note that while only Nb = 100
was used in Figs. 13(a) and 13(b), data for Nb = 50, and 200
are included in Figs. 13(c) and 13(d). The resulting values
of lp(N) which hence by construction do not depend on Nb

(Table I) are considered to be the most reliable estimates for
the considered model. However, we emphasize that Eq. (16)
for bottle-brushes is useful only if the solution is at theta con-
ditions, but not in the good solvent regime. Using the data
for νeff at Nb = 100 from Figs. 8(a) to 8(c) (and similar data
not shown for 〈R2

eb〉) we hence obtain estimates for the ra-
tios L/lp for the various choices of N for both σ = 0.5 and
σ = 1.
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FIG. 13. Plot of the function νeff(L/lp) versus L/lp as predicted from the Kratky-Porod model, Eqs. (16) and (17) (full curves). The numbers for L/lp extracted
for σ = 0.5 (a) and σ = 1.0 (b) are quoted in the figure for various N at the abscissa. The average of the exponents νeff from Figs. 8(a) and 8(c) and from R2

eb

(not shown) are quoted on the ordinate. Log-log plot of ar 〈R2
eb〉/(2lp(N )L) vs. L/lp(N) for σ = 0.5 (c) and σ = 1.0 (d). Several choices of N are shown as

indicated. Data plotted by the same symbol correspond to Nb = 50, 100, and 200 from left to right. The prediction for the Kratky-Porod model (Eq. (16)) is also
shown for comparison. Approximate data collapse are obtained by introducing a factor of ar (ar = 9.2 ± 1.4. and 4.9 ± 0.2 for σ = 0.5 and 1.0, respectively),
cf. text. Values of lp(N) are also listed in Table I.

IV. CONCLUSIONS

In the present paper, a coarse-grained bead-spring model
for bottle-brush polymers was studied by molecular dynam-
ics methods, varying both the chain length Nb of the back-
bone and of the side chains (N), for two values of the grafting
density, under variable solvent conditions. The main emphasis
of the present work was a study of the various characteristic
lengths describing the conformation of the macromolecule,
contrasting the behavior under theta conditions with the be-
havior in the good solvent regime. Also a comparison with
corresponding results for the bond fluctuation model has been
performed; this athermal model represents very good solvent
conditions, and while for corresponding parameters it yields
results that are rather similar to the results for the bead-spring
model in the good solvent regime, it has the advantage that
much larger values of Nb can be studied.

Among the quantities that have been studied are the end-
to-end distances of side chains and of the backbone, as well as
the respective gyration radii, but also mesoscopic lengths that
are particularly popular when a description in terms of the
Kratky-Porod wormlike chain model is attempted, namely,
“the” persistence length and “the” contour length of the
wormlike chain. We have shown that for the range of rather
short side chain lengths N that is only accessible, either in
simulation or experiment, one often finds that a description
in terms of power laws with effective exponents is adequate.

Specifically, the side chain radii vary as 〈R2
gs〉1/2 ∝ Nνeff , and

νeff ≈ 0.60 (at the theta temperature T = Tθ ) or νeff ≈ 0.63 to
0.66 (in the good solvent regime), see Fig. 3. These effective
exponents (for the present models with flexible backbones)
are the same as for otherwise equivalent models with stiff
backbones and also are practically independent of the back-
bone chain length. While the resulting effective exponents are
systematically smaller than the asymptotic values predicted
theoretically for the limit N → ∞, ν ≈ 0.74 (good solvents)
or ν = 2/3 (theta solvents), respectively, they are compara-
ble to the results of pertinent experiments: Zhang and co-
workers1, 65 report νeff ≈ 0.67 for a bottle-brush, where the
chemical nature of the main chain and the side chains is iden-
tical. For other systems exponents in the range 0.56 ≤ νeff

≤ 0.67 are reported,17 again values comparable to our
findings. Some experimental studies also report that some-
what different results occur when different solvents are
used,1, 4, 12, 17, 18 but a systematic variation of solvent quality
to our knowledge has not yet been performed. Our results
have shown that for T ≥ Tθ , the side chain radii vary only
very weakly with temperature (which in our model causes the
change in solvent quality), see Fig. 4.

Also the backbone end-to-end distance shows a power
law variation with the side chain length, 〈R2

eb〉 ∝ Nζ (Figs. 5–
7), reflecting thus the systematic backbone stiffening with
increasing side chain length. In this case, however, the
effective exponent depends on the backbone chain length Nb,
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for Nb ≤ 300, before a saturation at ζ ≈ 0.65 (σ = 0.5) or 0.75
(σ = 1) occurs, in the case of the bond fluctuation model.
Even somewhat larger exponents are observed for the bead-
spring model (up to ζ ≈ 0.88, Fig. 7).

A further effective exponent describes the variation of the
backbone end-to-end distance and gyration radius with back-
bone chain length (Figs. 8 and 9). We have interpreted this
variation as a crossover from rodlike behavior at small Nb to
self-avoiding walk like behavior (under good solvent condi-
tions) or random walk like behavior ( under theta conditions)
with increasing Nb.

Finally, “the” persistence length has been estimated in
various ways, and demonstrating that the different estimates
are not mutually consistent with each other, it was argued
that a unique persistence length does not exist. While a
regime of exponential decay of the bond autocorrelation func-
tion often can be observed over some intermediate range of
contour distances (Figs. 10 and 11), the resulting estimates
for a persistence length do not only depend on side chain
length N and grafting density σ , but also on backbone chain
length Nb and on temperature T (Fig. 12). However, when
one studies the variation of the end-to-end distance of the
backbone for T = Tθ , an analysis in terms of the Kratky-
Porod wormlike chain model (Eq. (16)) becomes feasible
(Fig. 13). But one must not identify the contour length L
implied by this model with the “chemical” contour length
Lch = Nblb, where lb is the actual bond length, but rather
one has L = Nbl

eff
b with leff

b distinctly smaller than lb. This
effect results from the flexibility of the backbone on small
scales; only on the scale of several backbone bonds does
the stiffening due to the mutual side chain repulsions come
into play. Thus, at the theta point both an effective contour
length L and a persistence length �p(N) are well-defined quan-
tities, in terms of a fit of the data to the Kratky-Porod model,
while under good solvent conditions such an analysis is not
appropriate.

We hope that the present work stimulates some more sys-
tematic experimental work on these issues. Of course, for real
bottle-brushes where the chemical nature of the backbone of-
ten differs from the side chains, the interesting possibility
arises that the backbone and the side chains have rather dif-
ferent theta temperatures. Another subtle issue concerns the
precise location of theta conditions. While we expect that for
the limit Nb → ∞ at fixed ratio N/Nb, the theta conditions
coincide with the theta conditions for simple linear polymers
(Nb → ∞, N = 0), it is not clear whether the location of the
theta point for the limit Nb → ∞ at fixed (small) N depends
significantly on N. Thus, also more theoretical work clearly is
needed.
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