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Stretching semiflexible polymer chains: Evidence for the importance
of excluded volume effects from Monte Carlo simulation
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Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany

(Received 6 October 2011; accepted 12 December 2011; published online 9 January 2012)

Semiflexible macromolecules in dilute solution under very good solvent conditions are modeled
by self-avoiding walks on the simple cubic lattice (d = 3 dimensions) and square lattice (d = 2
dimensions), varying chain stiffness by an energy penalty εb for chain bending. In the absence of
excluded volume interactions, the persistence length �p of the polymers would then simply be �p

= �b(2d − 2)−1q−1
b with qb = exp (−εb/kBT), the bond length �b being the lattice spacing, and kBT is

the thermal energy. Using Monte Carlo simulations applying the pruned-enriched Rosenbluth method
(PERM), both qb and the chain length N are varied over a wide range (0.005 ≤ qb ≤ 1, N ≤ 50 000),
and also a stretching force f is applied to one chain end (fixing the other end at the origin). In the
absence of this force, in d = 2 a single crossover from rod-like behavior (for contour lengths less than
�p) to swollen coils occurs, invalidating the Kratky-Porod model, while in d = 3 a double crossover
occurs, from rods to Gaussian coils (as implied by the Kratky-Porod model) and then to coils that are
swollen due to the excluded volume interaction. If the stretching force is applied, excluded volume
interactions matter for the force versus extension relation irrespective of chain stiffness in d = 2,
while theories based on the Kratky-Porod model are found to work in d = 3 for stiff chains in
an intermediate regime of chain extensions. While for qb � 1 in this model a persistence length
can be estimated from the initial decay of bond-orientational correlations, it is argued that this is
not possible for more complex wormlike chains (e.g., bottle-brush polymers). Consequences for the
proper interpretation of experiments are briefly discussed. © 2012 American Institute of Physics.
[doi:10.1063/1.3674303]

I. INTRODUCTION

The response of macromolecules with linear chemical
architecture to mechanical forces pulling at their ends has
been a longstanding problem in the statistical mechanics of
polymers.1–29 Particular interest in this problem is due to ad-
vances in experimental techniques of single molecule mea-
surements, probing the tension-induced stretching of biolog-
ical macromolecules such as DNA,30 RNA,31 proteins,32 and
polysaccharides.33 But also insight into the structure-property
relationships of synthetic polymers, e.g., bottle brushes,34 has
been gained by such experiments. However, despite exten-
sive work on these problems, important aspects are still not
well understood, even for the relatively simple case of macro-
molecules in dilute solutions of good solvent quality, disre-
garding the interesting interplay of chain stretching and col-
lapse that occurs in poor solvents,26, 35–38 and also the inter-
play of chain stretching and adsorption on substrates.39–42

An important aspect of these problems is local chain stiff-
ness. Traditionally, chain stiffness is characterized by “the”
persistence length1, 9 but evidence has been presented43–45 that
the traditional definitions are not useful under good solvent
conditions, where excluded volume interactions create long
range correlations with respect to the conformational prop-
erties of a macromolecule.6, 46 For stretched flexible poly-
mers under a force f the standard theory uses the concept of
“Pincus blobs,”5 of size ξP = kBT/f, kBT being the thermal

a)Electronic mail: hsu@uni-mainz.de.

energy, predicting a crossover from a Hookean regime, where
the extension 〈X〉 for a force (applied in x-direction) scales as
〈X〉 = 〈R2〉(f /dkBT) in d dimensions, to a nonlinear power law
〈X〉∝f 1/ν − 1 (ν being the Flory exponent, ν ≈ 3/5 in d = 3
dimensions). In contrast, for stretched semiflexible polymers
excluded volume is widely neglected in the literature12, 13, 18–20

and using the Kratky-Porod model (K-P model)47, 48 simple
analytic relations between force f and relative extension 〈X〉/L,
L being the contour length of the polymer, are derived.12, 24

We recall that L = Nb�b where Nb is the number of effective
bonds of length �b connecting the effective monomeric units
of the macromolecule, and if excluded volume interactions
were absent, we would have, for Nb → ∞ in the absence of
the force f, the end-to-end distance of the polymer chains as
(the index “0” refers to f = 0)

〈R2〉0 = �kL = 2�pL = �2
kn, (1)

�k = 2�p being the length of a Kuhn segment, n = Nb�b/�k

being the number of such Kuhn segments forming the equiva-
lent freely jointed chain.1, 6 However, neither �k nor �p can be
defined straightforwardly in the presence of excluded volume
forces.43–46, 49

With recent large scale computer simulations, we have
studied the combined effects of local “intrinsic” chain stiff-
ness and excluded volume interactions on the conformational
properties of polymers in the absence of stretching forces,
both for d = 343, 44 and d = 245 dimensions. The present study
extends this work, giving a detailed study of force-extension
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relations for both d = 2 and d = 3, complementing our results
also by investigating fluctuations 〈X2〉 − 〈X〉2, 〈R2

⊥〉 of the
chain linear dimensions in the direction of the force and per-
pendicular to it. Whenever possible, a comparison with the-
oretical predictions will be given. Since our study is based
on modelling polymers as self-avoiding walks on square and
simple cubic lattices, the main focus of our work is on the
regime of low and intermediate forces (for very high forces,
a more realistic description of the local structure and energet-
ics of a polymer chains, such as bond length, bond angle, and
torsional potentials, becomes important23).

The outline of our paper is as follows: in Sec. II, we sum-
marize the state of the art, discussing in particular the the-
oretical results we want to compare to. Section III briefly
describes our model and the simulation technique, while
Sec. IV reviews the properties of chains in the absence of
stretching forces. Section V describes the effects of stretch-
ing forces on conformational properties in d = 2 and Sec.
VI in d = 3 dimensions. Finally Sec. VII, gives a summary
and an outlook on experimental work, as well as on the re-
lated but more complicated problem of the “electrostatic per-
sistence length” in polyelectrolytes (see Ref. 50 for a review
and further references).

II. THEORETICAL BACKGROUND

A. Force-extension curves for flexible chains

Suppose we fix one end of an isolated polymer chain at
the origin and apply a force �f = (f, 0, 0) acting along the x-
axis to the other chain end. This means, we add to the Hamil-
tonian of the chain a potential

U = −f X, (2)

where X is the x-component of the end-to-end vector �R of the
chain. Noting that �R = ∑Nb

i=1 �ai , where �ai = �ri+1 − �ri is the
bond vector connecting monomers, at sites �ri and �ri+1, with
|�ai | = �b the bond length which we assume as a constant, X
can be rewritten as

X = �b

Nb∑
i=1

cos ϑi, (3)

where ϑ i is the angle between �ai and the x-axis. For a model
of freely jointed chains (FJC), a straightforward calculation
of the partition function of the chain yields the force versus
extension curve in terms of the Langevin function3, 4, 9, 51 (in
d = 3 dimensions),

〈X〉 = �bNbL(f �b/kBT ) (FJC), (4)

L(ζ ) = coth(ζ ) − 1/ζ, ζ ≡ f �b/kBT . (5)

Note that L(ζ � 1) ≈ ζ/3 and hence one finds for small
forces that

〈X〉 ≈ 1

3
�2

bNbf/kBT = 〈R2〉0f/(3kBT ),

〈X〉/L ≈ f �b/(3kBT ) (FJC), (6)

where 〈R2〉0 = �2
bNb for a freely joined chain. Equation (6)

would apply for Gaussian chains in the continuum for ar-
bitrary large extensions, while for the freely jointed chain
Eqs. (4) and (5) describe a saturation behavior for large f,
when 〈X〉 approaches the contour length L = Nb�b, as

〈X〉/L ≈ 1 − kBT /f �b (FJC). (7)

Of course, excluded volume interactions significantly modify
the behavior described by Eqs. (4)–(6). Already in the absence
of the force, Eq. (1) is replaced by

〈R2〉0 = C�2
bN

2ν
b , Nb → ∞ (SAW), (8)

where C is a (non-universal, i.e., model- or system-dependent)
constant of order unity, and the exponent ν ≈ 0.588 in d
= 3 dimensions52, 53 while ν = 3/4 in d = 2 dimensions6, 9, 53

{polymer chains behave like self-avoiding walks (SAWs)}.
Treating the potential, Eq. (2), as a small perturbation in lin-
ear response one can generally show that

〈X〉 = 〈R2〉0f/(dkBT ), for small f, (9)

and hence the relative extension becomes in this regime

〈X〉/L = C(L/�b)2ν−1(f �b)/(dkBT ) (SAW). (10)

Comparing to Eq. (6) we note that the relative extension is en-
hanced by a factor C(L/�b)2ν − 1 in comparison with the result
for the freely jointed chain.

While for the freely jointed chain the linear behavior,
Eq. (6), smoothly crosses over to the saturation behavior 〈X〉/L
→ 1, Eq. (7), for the swollen coil there occurs an intermedi-
ate regime with a nonlinear relation between extension and
force. This regime was first discussed by Pincus5 in terms of
the scaling ansatz

〈X〉 = 〈R2〉1/2
0 F

(〈R2〉1/2
0 /ξp

)
(SAW), (11)

where ξP is the radius of a “tensile blob” (also called now
“Pincus blob”),

ξP = kBT /f, (12)

and F is a scaling function. Of course, this description makes
only sense if

�b � ξP � 〈R2〉1/2
0 , (13)

since the scaling law for a blob (ξP ≈ �bgν with g monomers
per blob) breaks down when g is no longer very large; then
a gradual crossover to the behavior of a strongly stretched
freely jointed chain must occur (excluded volume then be-
comes irrelevant). For ξP of order 〈R2〉1/2

0 , F(η) behaves as
(η ≡ 〈R2〉1/2

0 /ξP ),

F (η) = η/d, (14)

so that Eq. (11) reduces to the linear response results, Eq. (9).
In the regime where Eq. (13) holds, the conformation of the
chain is a stretched string of Nb/g blobs, i.e., in order to obtain
〈X〉∝L one must require that F(η)∝η1/ν − 1 and hence

〈X〉 ∝ ξP Nb/g ∝ (kBT /f �b)1−1/νL (SAW), (15)



024901-3 Stretching semiflexible polymer chains J. Chem. Phys. 136, 024901 (2012)

and hence one finds that in this regime the relative extension
varies as

〈X〉/L ∝ (f �b/kBT )1/ν−1 (SAW). (16)

In a biopolymer context, this old result due to Pincus5 was re-
cently “rediscovered” by Lam.54 This scaling behavior can be
made somewhat more explicit using the scaling description of
the distribution PNb

(X) in which (in the absence of a stretch-
ing force f ) a displacement X between two end monomers
occurs10

〈X〉 = kBT ∂ ln Z(f )/∂f (SAW), (17)

where the partition function Z(f ) is (Z0 is a normalization con-
stant out of interest here)

Z(f ) = Z0

∫
dd �RPNb

(X) exp(f X/kBT ). (18)

Using the ansatz53

PNb
(X) ∝ h(y) ∝ yφ exp[−Dy1/(1−ν)], (19)

where y ≡ X/〈R2〉1/2
0 , φ = (1 − γ + νd − d/2)/(1 − ν),

γ is a standard critical exponent6 and D is a constant,
Eqs. (17) and (18) can be worked out numerically.

Wittkop et al.10 derived Eq. (16) without explicit re-
course to a blob picture. Wittkop et al.10 tried also to provide
Monte Carlo evidence for Eq. (16), both in d = 2 and d = 3,
but they had to restrict their study to very short chains (20
≤ Nb ≤ 100). Morrison et al.25 argued that chain lengths
of at least Nb = 103 are necessary to provide clear simula-
tion evidence for the Pincus tensile blob regime (described by
Eqs. (13) and (16)). In fact, using Nb = 6000 Pierleoni et al.14

succeeded to obtain evidence in favor of the Pincus theory5

for the chain structure factor under stretch. However, we are
not aware of systematic tests of Eq. (16) for very large Nb, as
shall be presented here.

A very interesting issue are also the longitudinal and
transverse fluctuations, in the extensions of stretched chains.
For freely jointed chains Titantah et al.16 derived,

〈X2〉 − 〈X〉2 = Nb�
2
b[1 − 2L(ζ )/ζ − L2(ζ )] (FJC),

(20)
which for large ζ = f�b/kBT reduces to

〈X2〉 − 〈X〉2 ≈ Nb�
2
bζ

−2 = (kBT /f �b)2Nb�
2
b (FJC).

(21)
The transverse fluctuations becomes

〈R2
⊥〉 = 〈Y 2〉 + 〈Z2〉 = 2Nb�

2
bL(ζ )/ζ ≈ 2Nb�

2
b(kBT /f �b)

(FJC), (22)

where the last expression again refers to f → ∞. Of course,
Eq. (22) differs substantially from a continuum Gaussian
model of a chain (there the transverse linear dimensions are
not affected by the pulling force at all).

In the case where excluded volume is taken into account,
one obtains using again an approach based on Eqs. (17)–(19)
the approximate expressions16

(〈X2〉 − 〈X〉2)/〈R2〉0 = s3

s1
−

(
c2

s1

)2

+ ζ−2 (SAW),

(23)

〈R2
⊥〉/〈R2〉0 = ζ−2[ζc2/s1 − 1] (SAW), (24)

where the functions si(ζ ) and ci(ζ ) are defined as

si(ζ ) =
∫ ∞

0
dy sinh(ζy)yi+φ exp[−Dy1/(1−ν)], i = 1, 3,

(25)
and

ci(ζ ) =
∫ ∞

0
dy cosh(ζy)yi+φ exp[−Dy1/(1−ν)], i = 1, 2.

(26)
Alternative approximate expressions were derived by Morri-
son et al.25 using the self-consistent variational method due to
Edwards and Singh.55

B. Semiflexible chains in the absence of stretching
forces: Chain linear dimensions and bond vector
orientational correlations

Following Winkler20, 56 we first consider a chain with
fixed bond length �b but successive bonds are correlated with
respect to their relative orientations,

〈�a2
i 〉 = �2

b, 〈�ai · �ai+1〉 = �2
bt, t ≡ 〈cos θ〉, (27)

θ being the angle between the orientation of two successive
bond vectors. For this model, in the absence of excluded vol-
ume effects, the end-to-end distance is well-known,1, 56

〈R2〉0 = Nb�
2
b(

1 + t

1 − t
+ 2t

Nb

tNb − 1

(t − 1)2
). (28)

In the limit Nb → ∞ the correlation function of bond vec-
tors decays exponentially as a function of their chemical
distance s,

〈�ai · �ai+s〉 = �2
b〈cos θ (s)〉 = �2

b〈cos θ〉s = �2
b exp(−�bs/�p),

(29)
where we have introduced the notion of the persistence length
�p

9, 51 which becomes in this case

�b/�p = − ln(〈cos θ〉). (30)

In the case of semiflexible chains, one has 〈cos θ〉 ≈ 1
− 〈θ2〉/2, since 〈θ2〉 then is small, and hence one finds (for
Nb → ∞)51

�p ≈ 2�b/〈θ2〉, 〈R2〉0 ≈ 4Nb�
2
b/〈θ2〉 = 2�p�bNb,

(31)
so in this limit the Kuhn length �k {Eq. (1)} becomes �k

= 2�p, as was anticipated.
When one considers now the limit �b → 0, Nb → ∞,

keeping L = �bNb as well as �p finite, one obtains from
Eq. (28) (Ref. 56)

〈R2〉0 = 2�pL

{
1 − �p

L
[1 − exp(−L/�p)]

}
, (32)

which is nothing but the result that one could have de-
rived directly from the Kratky-Porod model47, 48 for wormlike
chains,

H = κ

2

∫ L

0

(
∂2�r
∂s2

)2

ds, (33)
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where the polymer chain is described by the contour �r(s) in
continuous space. The bending stiffness κ is related to the
persistence length �p as

κ = �pkBT , d = 3, or κ = �p

2
kBT , d = 2.

(34)
We note in this context the connection to the lattice models
that will be studied in the present work, where we study self-
avoiding walks on square (d = 2) and simple cubic (d = 3)
lattices, using a “penalty energy” εb if the chain makes a bend
(by a 90◦ angle). Relaxing the excluded volume constraint by
considering a “non-reversal random walk”,57 where only im-
mediate reversals of a simple random walk model would be
forbidden, we immediately conclude that

〈cos θ〉 = 1/[1 + (2d − 2))qb], qb = exp(−εb/kBT ),
(35)

and hence one would obtain for qb → 0 from Eq. (31) that

�p/�b = 1/(2qb) d = 2, or �p/�b = 1/(4qb) d = 3.

(36)

At this point, it is interesting to recall that the present
lattice model can be described by the Hamiltonian H
= εb

∑
i(1 − �ai · �ai+1/�

2
b) = ε

∑
i(1 − cos θi), plus excluded

volume interaction, i.e., it is a discretized version of the
Kratky-Porod model plus excluded volume, with angles θ i

restricted to θ i = 0 and θ i = ±90◦, respectively. For a
corresponding continuum model for large ε small angles
would dominate; however, putting 1 − cos θi ≈ θ2

i /2 the cor-
responding Hamiltonian would be H = (εb/2)

∑
i θ

2
i so one

would conclude that κ ( and hence �p) are simply proportional
to εb. Eqs. (35) and (36) rather imply �p∝exp (ε/kBT); this ef-
fect is due to the fact that only large nonzero angles ±90◦ are
permitted.

Equation (32) describes the crossover from the behavior
of a rigid rod for L < �p, where 〈R2〉0 = L2, to Gaussian chains
for L � �p, where Eq. (1) holds, 〈R2〉0 = 2�pL. However,
neither the exponential decay of the correlation function of
bond vectors {Eq. (29)} nor the Gaussian behavior implied
by Eq. (32) remain valid when excluded volume effects are
considered.

On a qualitative level, insight into the effects of ex-
cluded volume on semiflexible chains can be gotten by Flory-
type free energy minimization arguments.6, 9, 58, 59 Consider a
model where rods of length �k and diameter D are jointed to-
gether, such that the contour length L = Nb�b = n�k. Apart
from prefactors of order unity, the second virial coefficient
then can be estimated as (in d = 3 dimensions)

v2 = �2
kD. (37)

The free energy of a chain now contains two terms, the elastic
energy and the energy due to the excluded volume interac-
tions embodied in Eq. (37). The elastic energy is taken as that
of a free Gaussian chain, i.e., Fel ≈ R2/(�kL). The repulsive
interactions are treated in mean field approximation, i.e., pro-
portional to the square of the density n/R3 and the volume R3.
Thus,

�F/kBT ≈ R2/(�kL) + v2R
3[(L/�k)/R3]2 (38)

Minimizing �F with respect to R, we find for L → ∞ the
standard Flory result

R ≈ (v2/�k)1/5L3/5 = (�kD)1/5(Nb�b)3/5. (39)

However, for finite L (or finite Nb, respectively), Eq. (39) ap-
plies only when the chain length Nb exceeds the crossover
length N∗

b or when R exceeds the associate radius R∗,

Nb > N∗
b , N∗

b = �3
k/(�bD

2) , R∗ = �2
k/D . (40)

If Nb < N∗
b the contribution of the second term in Eq. (38)

would still be negligible for R2 ≈ �kL, where �F/kBT is of
order unity, and hence for Nb < N∗ the first term in Eq.
(38) dominates, and hence the chain behaves like a Gaussian
coil. However, this Gaussian regime only exists if N∗

b � N rod
b

= �k/�b, the number of monomers per Kuhn length. For Nb

< N rod
b , the chain resembles a rigid rod. Thus we predict (in d

= 3) two subsequent crossovers:

R ≈ L, Nb < N rod
b = �k/�b (rod − like chain), (41)

R ≈ (�kL)1/2, N rod
b < Nb < N∗

b (Gaussian coil), (42)

R ≈ (�kD)1/5L3/5 , Nb > N∗
b (R > R∗) (SAW). (43)

Of course, the intermediate Gaussian regime of Eq. (42) only
exists if N∗

b � N rod
b , or alternatively

�k � D. (44)

For example, in the case of bottle brush polymers with flexi-
ble backbone chains and flexible side chains under good sol-
vent conditions evidence has been presented for the fact that
the stiffness of these wormlike chains is only due to their
thickness,43, 44 and hence �k and �p are of the same order as D
(disregarding the difficulty to define either �k or �p in this case
properly) and thus the intermediate Gaussian regime does not
occur. On the other hand, for a large number of real semiflex-
ible macromolecules under good solvent conditions the dou-
ble crossover described by Eqs. (41)–(43) has been clearly
observed.60

On the other hand, the situation is completely different in
d = 2 dimensions, where Eq. (37) is replaced by

v2 = �2
k, (45)

since a rod of length �k blocks an area of order �2
k by occu-

pation from a (differently oriented) second rod. Eq. (38) in
d = 2 becomes45

�F/kBT ≈ R2/(�kL) + v2R
2[(L/�k)/R2]2. (46)

Minimizing again �F with respect to R yields now

R ≈ (v2/�k)1/4L3/4 ≈ �
1/4
k L3/4, d = 2 , (47)

where now the size L∗ = �bN
∗
b where Eq. (47) starts to hold

is

L∗ = �k, i.e., N∗
b = N rod

b . (48)

Thus we note that a direct crossover occurs from rods
to swollen coils (exhibiting statistical properties of two-
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dimensional self-avoiding walks), and no regime with inter-
mediate Gaussian behavior occurs.

An important consequence of the excluded volume inter-
action is that they cause a much slower asymptotic decay of
orientational correlations than described by Eq. (29) occurs.
For fully flexible chains one has a power law46

〈�ai · �ai+s〉 ∝ s−β, β = 2(1 − ν), 1 � s � Nb . (49)

Equation (49) has been verified by extensive Monte Carlo
simulations of self-avoiding walks on simple cubic (d
= 3)43, 44 and square (d = 2)45 lattices; we shall recall these
results and extend them in Sec. IV below.

For semiflexible chains we expect a crossover from expo-
nential decay {Eq. (29)} to the power law {Eq. (51)} to occur
near s = N∗

b , i.e., we make the speculative assumption that

〈�ai · �ai+s〉 ≈ �2
b exp(−s�b/�p), 1 � s � N∗

b , (50)

〈�ai · �ai+s〉 ≈ exp(−N∗
b �b/�p)�2

b

(
s�b

L∗

)−β

, N∗
b � s � Nb.

(51)
Note that the prefactor of the power law in Eq. (51) was cho-
sen such that for s = N∗

b (where s�b = L∗) a smooth crossover
to Eq. (50) is possible. In d = 2, where N∗

b = N rod
b , and hence

N∗
b �b = �k = 2�p, we note that the factor exp(−N∗

b �b/�p)
≈ 0.14 and using β = 1/2 in d = 2 one finds that

〈�ai · �ai+s〉/�2
b ≈ 0.14(2�p/�b)1/2s−1/2, N∗

b � s � Nb

(52)
and hence there occurs an increase of the amplitude of the
power law with �p. However, in d = 3, where N∗

b /N rod
b

= (2�p/D)2 the factor exp(−N∗
b �b/�p) = exp(−2N∗

b /N rod
b )

= exp[−8(�p/D)2] for large �p will dominate and hence lead
to a strong decrease of the amplitude of the power law in
Eq. (51). Of course, the crossover at N∗

b is not at all sharp
but rather spread out over several decades in s, and hence the
observability of Eqs. (50) and (51) is rather restricted. Note,
however, that 〈�ai · �ai+s〉 always exhibits a single crossover
only (for N∗

b → ∞), near s = N∗
b : while the radius exhibits

two crossovers in d = 3 (at Nb = N rod
b and at Nb = N∗

b ),
Eq. (50) does not exhibit any change in behavior when s

≈ N rod
b = 2�p/�b. Thus we predict that for very stiff and thin

chains (for which �p/D and hence N∗
b /N rod

b are large numbers)
one can follow the exponential decay exp (−s�b/�p) over sev-
eral decades. In d = 2, where N∗

b = N rod
b , this is predicted to

be impossible; rather one can follow the exponential decay
only from unity to about 1/e. We shall discuss in Sec. IV a
Monte Carlo test of these predictions.

C. Stretching of semiflexible chains

There exists a rich literature12, 13, 18–20, 24–26, 28 where a
force term, Eq. (2), is added to the Kratky-Porod Hamilto-
nian, Eq. (33), to obtain

H = κ

2

∫ L

0

(
∂2�r(s)

∂s2

)2

ds − f

∫ L

0

∂x(s)

∂s
ds. (53)

We shall not dwell here on the exact numerical methods
by which force versus extension curves can be derived

from Eq. (53), but simply quote approximate interpolation
formulas12, 24 (which are known to deviate from the numer-
ically exact solutions at most by a few percent),

f �p

kBT
= 〈X〉

L
+ 1

4(1 − 〈X〉/L)2
− 1

4
, d = 3

(K − P model), (54)

f �p

kBT
= 3

4

〈X〉
L

+ 1

8(1−〈X〉/L)2
− 1

8
, d = 2

(K−P model). (55)

At this point, we remind the reader that κ = �pkBT in d
= 3 while κ = �pkBT/2 in d = 2 {Eq. (34)}. For small f,
Eqs. (54) and (55) are compatible with the relations that one
can derive by treating f via linear response, 〈X〉 = f〈X2〉0/kBT
and hence (〈X2〉0 = 〈R2〉0/d = 2�pL/d)

f �p

kBT
= d

2

〈X〉
L

, d = 2, 3 (K − P model), (56)

while for large f we find

〈X〉/L ≈ 1 − 1/
√

4f �p/kBT , d = 3 (K − P model) ,

(57)
or

〈X〉/L ≈ 1 − 1/
√

8f �p/kBT , d = 2 (K − P model).
(58)

A further quantity of interest is the “deflection
length,”61, 62 i.e., the correlation length of fluctuations along
a semiflexible polymer. In the presence of a strong force it is
given by19

λ = (f/kBT �p)−1/2, or λ/�p = (f �p/kBT )−1/2.

(59)
When f�p exceeds kBT, λ hence becomes smaller than �p, and
in this limit one expects that excluded volume indeed becomes
negligible. However, when λ becomes of the order of the bond
length �b, it is clear that the continuum description in terms of
Eq. (53) breaks down, the discreteness of the chain molecule
becomes relevant,19, 22, 25 and a crossover to the behavior of
a freely jointed polymer occurs, as was described by Eq. (7).
Toan and Thirumalai28 have emphasized that all polymers un-
der sufficiently high stretching forces should show a crossover
from a force law of the type of the Kratky-Porod model,
1 − 〈X〉/L∝f−1/2 {Eqs. (57) and (58)}, to the law of the freely
jointed model, 1 − 〈X〉/L∝f−1 {Eq. (7)}, and they argued that
the crossover force between both descriptions is obtained by
putting λ = �b, providing evidence for this concept both by
an analysis of experimental data and by a study of various
models. However, here we are mostly interested in the regime
where 〈X〉/L is significantly smaller than unity, and excluded
volume effects are still relevant.

In particular, for weak forces we can combine Eq. (9)
with the proper relations for the linear dimensions of the semi-
flexible chains, as discussed in Eq. (39) for d = 3 and Eq. (47)
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for d = 2, respectively. Thus, Eq. (56) gets replaced by

〈X〉/L ∝ (f �p/kBT )(D/�p)2/5(L/�p)1/5, L > L∗ = �bN
∗
b

(60)
in d = 3, while in d = 2 we have

〈X〉/L ∝ (f �p/kBT )(L/�p)1/2, L > �p, (61)

where factors of order unity have been disregarded through-
out. We note that in this regime the relations 〈X〉/L versus
f�p/kBT vary much more steeply than predicted by Eq. (56)
if L/�p is very large. Furthermore we note from Eqs. (9)–(16)
that the nonlinear Pincus force-extension relation, Eq. (16),
sets in when the size of the Pincus blob is of the same order
as the coil size

√
〈R2〉0 ( Eq. (39) for d = 3, or Eq. (47) for

d = 2, in the absence of a force), defining a crossover length
ξP, c and associated force fc,

ξP,c = kBT

fc

= (�pD)1/5L3/5, d = 3, or

ξP,c = �1/4
p L3/4, d = 2, (62)

i.e., for a force for which the extension 〈X〉 is of the same or-
der as the coil size

√
〈R2〉o. As one expected for scaling the-

ories, the crossover between the various regimes occur when
all characteristic lengths

√
〈R2〉, 〈X〉, ξP, c are of the same or-

der. In the non-linear regime, according to the scaling ansatz,
Eq. (11), Eq. (15) gets replaced by (taking ν = 3

5 in d = 3)

〈X〉 ∝ (kBT /f �b)−2/3(�pD/�2
b)1/3L, d = 3 , (63)

or (recall ν = 3/4 in d = 2)

〈X〉 ∝ (kBT /f �b)−1/3(�p/�b)1/3L, d = 2. (64)

Thus we see that in the nonlinear regime the persistence of
the chains leads to an enhancement of the chain extension by
a factor �

1/3
p . Of course, the relation Eq. (64) can only hold

if a Pincus blob contains many Kuhn segments, i.e., now ξP

= kBT/f � �p is required. This condition is nothing but the
condition 〈X〉/L � 1, in the case d = 2, as expected. In d
= 3, however, we expect that the Pincus regime, as described
by Eq. (63), already ends when the size of a Pincus blob, ξP

= kBT/f, equals the crossover radius R∗, Eq. (40) (remember
that only for radii exceeding R∗ the excluded volume effects
dominate). For the crossover force

f ∗ = kBT /R∗ ∝ kBT D/�2
p (65)

we find from Eq. (63) that

〈X〉/L ∝ D/�p ∝ f ∗�p/kBT . (66)

Comparing Eq. (66) with Eqs. (54) and (56), we see that in-
deed for f ≈ f ∗ a smooth crossover from the Pincus behavior,
as described by Eq. (63), to the Kratky-Porod law for worm-
like chains for which excluded volume is negligible, can oc-
cur. We also note from Eq. (65) that in cases such as occur
for bottle brush polymers,43, 44 where chain stiffness is due to
chain thickness, �p ∝ D, we would have f ∗ = kBT/�p as in
the two-dimensional case, and then the Pincus regime (which
applies for kBT /

√
〈R2〉0 < f < f ∗) becomes much broader

and easier observable.

Finally, we consider again the fluctuations in the exten-
sions of stretched chains (which were considered for flexi-
ble chains in Eqs. (20)–(26) already). However, the results
known to us for semiflexible chains are somewhat scarce (al-
though the end-to-end distribution function of the Kratky-
Porod wormlike chain has been discussed20, 63–67). Marko and
Siggia12 obtained for the side-to-side excursions of the chain
over a contour length s the result

〈[�r⊥(s)−�r⊥(0)]2〉=2kBT

f

{
s�b−1 − exp[−s(f/κkBT )1/2]

(f/κkBT )1/2

}

(67)
where κ is the coupling constant of the Kratky-Porod model
{Eq. (34)}, of course. For s�b = L = Nb�b the result 〈R2

⊥〉
= Nb�b(2kBT /f ) is identical to the large force limit for the
flexible chains, Eq. (22). For small s Eq. (67) yields 〈[�r⊥(s)
− �r⊥(0)]2〉 = s2�2

b(kBT /κf )1/2.
Given the fact that in the Pincus regime the picture of

the chain conformation essentially is a stretched string of Pin-
cus blobs (inside a blob excluded volume statistics prevails),
we know that there occur of the order of n = Nb(�b/�p)/g such
blobs per string where g is the number of Kuhn steps (contain-
ing �p/�b monomers each) per blob. Remember that the Pin-
cus blob has the radius ξP, and built as a self-avoiding walk
of g steps of length �p so that ξP = �pgν , i.e., g = (ξP/�p)1/ν

= (kBT/f�p)1/ν (here we disregard the factor 2 between the
effective Kuhn step length �k and the persistence length �p.
Thus n = Nb(�b/�p)(f�p/kBT)1/ν .) If this string of blobs would
be completely stretched in a rod-like configuration, its lateral
width would be simply 〈R2

⊥〉 ≈ ξ 2
P = �2

p(kBT /f �p)2. How-
ever, this estimate neglects the random statistical fluctua-
tions that the string of blobs may exhibit in the transverse
directions. We may consider the problem as a directed ran-
dom walk where each step has a component ξP in the +x-
direction and a transverse component ±cξP, where c is a con-
stant (c � 1). If we have n such steps (n = Nb(g�p/�b)−1), we
hence predict 〈R2

⊥〉 = c2ξ 2
P n = c2�p(kBT /f �p)2−1/νNb�b. Of

course, this result can only apply if n is large enough so that
cn2 > 1, because 〈R2

⊥〉 cannot be smaller then ξ 2
P , of course.

Hence we would predict from these speculative scaling
arguments

〈R2
⊥〉 ∝ ξ 2

P n = �p�bNb(kBT /f �p)2−1/ν , n → ∞ (68)

〈R2
⊥〉 = ξ 2

P = �2
p(kBT /f �p)2, small n. (69)

In d = 2, this result should hold up to a force f = kBT/�p, where
ξP = �p. Then Eq. (68) predicts 〈R2

⊥〉 ∝ �p�bNb = �pL, i.e.,
there a smooth crossover to the result 〈R2

⊥〉 ∝ kBT L/f de-
rived from Eq. (67) occurs. In d = 3, however, Eq. (68) is
supposed to hold only for ξP > R∗ ∝ �2

p/D.
At the end of this section, we summarize our findings for

the force extension curves (Fig. 1). The key to identify the
various regimes is a comparison of length, namely the “ten-
sile length” ξP = kBT/f needs to be compared to the various
characteristic lengths of the unperturbed chain.

The simplest case actually occurs in d = 2 (upper part of
Fig. 1).

For ξP >
√

〈R2〉0 we are in the regime of linear response,
the extension 〈X〉 scales linearly with the force {Eq. (61)}. For
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FIG. 1. Schematic plot of the relative chain extension, (〈X〉/L), versus the scaled force, (f�p/kBT), in a log-log scale for d = 2 dimensions (a) and d = 3
dimensions (b). Broken vertical straight lines indicate various (smooth, not sharp!) crossovers in the response to the stretching force f. The first crossover occurs
at very small forces, when the tensile length ξp = kBT/f becomes equal to the chain size

√
〈R2〉0 in the absence of forces. In the first regime (to the left of this

crossover) the extension is proportional to the force, 〈X〉∝〈R2〉0f /kBT (linear response regime). To the right of this crossover, the extension versus force curve
follows the Pincus power law, 〈X〉 ∝ f 1/ν − 1 = f 1/3(d = 2) or ≈f 2/3(d = 3), respectively. In d = 2 this power law regime extends up to the crossover where the
tensile length equals the persistence length �p, while in d = 3 the power law ends already at an earlier crossover, ξP = R∗, R∗ being the crossover radius where
excluded volume statistics comes into play for semiflexible chains: then there exists a regime described by the Kratky-Porod model, 〈X〉/L∝f�p/kBT. For ξp

smaller than �p, the extension approaches saturation according to the Kratky-Porod relation, 1 − √
kBT /f �p , while for still larger forces (when the deflection

length becomes comparable to the bond length, a further crossover to the behavior expected for freely jointed chains (〈X〉/L ≈ 1 − kBT/f�b)) occurs.

ξP ≈
√

〈R2〉0 the extension 〈X〉 and
√

〈R2〉0 are of the same
order, linear response breaks down, and a (smooth!) crossover
to the nonlinear Pincus regime occurs, 〈X〉/L∝(f�p/kBT)1/3

{Eq. (64)}. The chain can be viewed as a stretched string of
“Pincus blobs” of diameter ξP (inside the blobs excluded vol-
ume statistics prevails). Near ξP = �p the extension 〈X〉 al-
ready is no longer much smaller than the contour length L
itself. Only the regime where the extension approaches its
saturation value, from ξP = �p down to ξP = �2

b/�p, when
the deflection length becomes equal to the bond length, the
Kratky-Porod model holds {Eq. (58)}, while for still larger
forces (where the deflection length would be less than a bond
length) the discreteness of the polymer chain causes a dif-
ferent relation between force and extension {Eq. (7)}, as in-
dicated in the figure. Of course, for flexible chains �p = �b

(actually �p is completely ill-defined then) and the Kratky-
Porod regime disappears altogether.

For d = 3 dimensions the situation is more complicated,
since for semiflexible chains without force another regime ap-
pears, for distances in between �p and R∗ = �2

p/D, where
Gaussian statistics prevails, and this regime finds its cor-
respondence in the force versus extension curve. Thus, for
very long semiflexible thin chains there are three regimes,
where the force-extension curve exhibits power laws: for
very weak forces (ξP >

√
〈R2〉0) the linear response regime

occurs with 〈X〉∝〈R2〉0 f /kBT {Eq. (60)}, then a nonlinear
regime with 〈X〉/L∝(f�p/kBT)2/3(�p/R∗)1/3 {Eq. (63)} follows
for

√
〈R2〉0 > ξp > R∗ ∝ �2

p/D, and then the linear regime as
described by the Kratky-Porod model follows, 〈X〉/L∝f�p/kBT
{Eq. (56)}, for R∗ > ξP > �p. For ξP < �p the approach of
〈X〉/L to its saturation value unity proceeds in a similar man-
ner as in d = 2 {Eqs. (7) and (57)}.

Of course, the description in Fig. 1 contains the force-
extension curves of fully flexible polymers as a limiting case:
there both R∗ and �p tend to �b, and the regime where the

Kratky-Porod model is applicable gradually disappears. The
same statement applies to semiflexible chains in d = 3 when
stiffness is due to chain thickness, so that R∗ tends towards
�p, and the nonlinear Pincus blob regime (〈X〉/L∝(f�p/kBT)2/3

takes over and holds down to ξ p ≈ �p. Conversely, if one con-
siders not very long chains, such that 〈R2〉0 ≤ R∗2, the regime
dominated by excluded volume effects disappears from the
picture, and the Kratky-Porod model description becomes
valid down to arbitrarily small forces.

We end this section with several caveats: (i) All
crossovers in Fig. 1 are smooth and we do not expect any
sharp kinks at the crossover values of ξP that are indicated by
the vertical broken lines; rather gradual changes will occur on
the log-log plot 〈X〉/L vs. f�p/kBT, spread out over (at least)
a decade in f�p/kBT. Consequently,

√
〈R2〉0 must exceed �p

by four (or more!) decades, in order to resolve the multiple
crossovers of Fig. 1 in d = 3. (ii) We have disregarded any
special structures of the polymer such as α-helices known
for proteins, double helix-portions of copolymers formed
from double-stranded DNA and other biopolymers, etc.68, 69

Any such special structures of biopolymers will lead to non-
universal special features of the force-extension curve, in par-
ticular in the regime of rather low forces, but these are outside
of consideration here. Rather only a generic description of the
universal behavior of very long flexible or semiflexible poly-
mers is within our focus. (iii) Very long polymers exhibiting
a (swollen) random coil configuration are expected to contain
knots (to precisely define them, one can transform the poly-
mer configuration into a closed loop by adding the end-to-end
vector as an extra special bond).70 Pulling such a chain at both
ends will have the effect that the knots tighten, and the knots
can only be made to disappear by moving them to the chain
ends. Effects due to knots71, 72 clearly are beyond the realm
of our scaling description (while in the computer simulations
presented in Secs. IV-VI knots are automatically included
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FIG. 2. Semi-log plot of 〈cos θ (s)〉 versus the contour length s, for qb in the range from qb = 0.1 to qb = 1.0 (a) (c), and for rather stiff chains, 0.005 ≤ qb

≤ 0.05, (b) (d). Data are taken for Nb = 25600 in d = 2 (a) (b) and for Nb = 50 000 in d = 3 (c) (d). The straight lines indicate fits of the initial decay to
Eq. (29), 〈cos θ (s)〉 ∝ e−s�b/�p ; for flexible chains (qb = 1.0 and qb = 0.4) meaningful fits are not possible. Estimates for �p/�b are listed in Table I and II. Note
the difference in ordinate scales between d = 2 and d = 3: in d = 2, deviations from Eq. (29) have set in when 〈cos θ (s)〉 has decayed to 1/e, in d = 3, however,
for very stiff chains one can follow the exponential decay for almost two decades.

implicitly in our models, though we do not make any explicit
attempt to study their effects). In view of all these caveats,
the extent to which the scaling theory sketched in Fig. 1 is
practically useful is a nontrivial matter.

III. MODEL AND SIMULATION TECHNIQUE

The model that we study in this paper is the classical
self-avoiding walk (SAW)6, 9, 57 on square and simple cubic
lattices, where bonds connect nearest neighbor sites on the
lattice, and the excluded volume interaction is realized by the
constraint that every lattice site can be taken only once by
an effective monomer occupying that site. We take the lattice
spacing as our unit of length, �b = 1. Variable chain stiffness
(or flexibility) then is introduced into the model by an en-
ergy εb that occurs for any kink (that is at a right angle and
costs εb).

No energy arises for θ = 0◦, of course, and hence in the
statistical weight of a SAW configuration on the lattice ev-
ery kink will contribute a factor qb = exp (−ε/kBT). In the
presence of a force f, the potential U written in Eq. (2) yields
another factor bX with b = exp (f /kBT) to the statistical weight
(as in Sec. II, the force f is assumed to act in the positive x-
direction, and X is the x-component of the end-to-end vector
�R of the chain). So the partition function of a SAW with Nb

bonds (Nb + 1 effective monomers) and Nbend local bends by

±90◦ is

ZNb,Nbend (qb, b) =
∑
config

C(Nb,Nbend, X)qNbend
b bX. (70)

We have carried out Monte Carlo simulations applying the
pruned-enriched Rosenbluth Method73–75 (PERM algorithm)
using chain lengths up to Nb = 50 000 in d = 3 and Nb

= 25600 in d = 2, varying also the chain stiffness over a wide
range (0.005 ≤ qb ≤ 1.0). As mentioned already in Sec. II
{Eq. (36)}, this means that the persistence length �p varies
over about two orders of magnitude (note, however, that in
the presence of excluded volume one has to be very careful
with the notion of a persistence length, particularly in d = 2
dimensions43–45).

IV. SEMIFLEXIBLE POLYMERS IN THE ABSENCE
OF STRETCHING FORCES

In this section, we summarize our Monte Carlo results
for bond orientational correlations and chain linear dimen-
sions obtained for the model described in Sec. III. While some
of these results have recently been described in our earlier
work,43–45 the information provided will be crucial for the
understanding of our results for the extension versus force
curves as well.

We start with the bond orientational correlation function
〈cos θ (s)〉, Figs. 2–4, since the decay of this function with
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FIG. 3. Log-log plot of 〈cos θ (s)〉 versus s, for qb = 0.1, 0.2, 0.4, and 1.0, including only data for Nb = 25 600 in d = 2 (a) and for Nb = 50 000 in d = 3
(b). The straight line indicates a fit of the power law, Eq. (49), to the data for qb = 1.0, including only data for s ≥ 10 in the fit, and requesting the theoretical
exponent, β = 2 − 2ν, with ν = 3/4 in d = 2 (a), and ν = 0.588 in d = 3 (b).

s is traditionally used to extract “the” persistence length �p,
using Eq. (29). As expected from Sec. II B, however, one
must not rely on Eq. (29) to describe the asymptotic decay
of 〈cos θ (s)〉 (in the limit where first Nb → ∞ has been taken,
so that one can study large s without being affected by the fi-
nite size of the chain) for large s, but rather one must consider
the initial decrease of 〈cos θ (s)〉 with s, cf. Eq. (50). Since s
= 0, 1, 2, 3, . . . is a discrete variable, such a fit becomes ill-
defined for flexible chains; then the only possible procedure
is to use Eq. (30) as a definition of the persistence length,
�p, θ = −�b/ln [〈cos θ (s = 1)〉]. Both estimates for �p (from
an extended fit over a range of s, and from the latter formula)
are collected in Table I, together with the prediction based
on Eq. (36), where excluded volume is neglected. One recog-
nizes that Eq. (36) becomes accurate for d = 3 as the chains
become very stiff, qb → 0 while in d = 2 Eq. (36) {predicting
�p/�b = 0.5q−1

b in this case} never becomes valid. As a con-
sequence, we emphasize that the rule (based on the Kratky-
Porod model) that for the same bending stiffness κ/kBT (the
continuum analog of our parameter qb) the persistence length
in d = 2 is twice as large as in d = 3 is not accurate
(since this rule fails only by about 24%, in experimental work
where it was tried to extract estimates of �p from adsorbed
semi-flexible chains on two-dimensional substrates this prob-
lem was not noticed, due to other uncertainties in the data
analysis).

Figure 3 plots our data for the bond orientational correla-
tions in a log-log form, to clearly demonstrate that the asymp-
totic decay is a power law {Eq. (49)} rather than exponential
{Eq. (29)}. Equations (50) and (52) in fact suggest to study
〈�ai · �ai+s〉 not simply as a function of s but as a function of
the rescaled variable s∗ = s�b/�p. In d = 2, one expects a data
collapse on a universal master curve and this is indeed found
(Fig. 4(a)). No such simple scaling is possible in d = 3, how-
ever, as expected from Eq. (51).

Another measure of a persistence length in our model is
the average number 〈nstr〉 of successive bonds along the chain
that have the same orientation without any kink. The distri-
bution P(nstr) of such straight sequences along the chain is
plotted in Fig. 5. We find that irrespective of dimensionality
and for all values of qb the distribution shows a simple expo-
nential decay

P (nstr) = ap exp(−nstr/np), (71)

and either the average 〈nstr〉 = ∑∞
nstr=1 P (nstr)nstr or the de-

cay constant np can be taken as a characteristic (similar but
not identical to the persistence length) of local intrinsic chain
stiffness. Clearly, fitting the data shown in Fig. 5 is less
ambiguous than fitting the data for the bond orientational
correlations. We also note that 〈nstr〉 has an obvious phys-
ical correspondence in real macromolecules: in alkane-type
chains, where the torsional potential has one deeper minimum
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FIG. 4. Semi-log plot of 〈cos θ (s)〉 versus the scaled distance s∗ = s�b/�p along the chain, for d = 2 (a) and d = 3 (b). Data for �p/�b extracted from Fig. 2, as
described above and listed in Table I and II, were used.
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TABLE I. Various possible estimates for persistence lengths, �p/�b from Eq. (29), �p, θ /�b from Eq. (30), np and 〈nstr〉
from Eq. (71) including the fitting parameter ap, and �p, R/�b from Fig. 6, for semiflexible chains in d = 2 with various
values of qb.

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0

�p/�b 123.78 62.20 31.36 21.55 13.41 7.53 4.16 2.67 . . .
�p, θ /�b 118.22 59.44 30.02 20.21 12.35 6.46 3.50 2.00 1.06
ap 0.009 0.017 0.034 0.051 0.085 0.168 0.331 0.646 1.539
np 116.34 58.81 29.78 20.07 12.28 6.44 3.50 2.01 1.08
〈nstr〉 118.06 59.78 30.48 20.69 12.85 6.97 4.02 2.54 1.64
�p, R/�b 3.34 2.37 1.70 1.39 1.09 0.81 0.61 0.48 0.39

(the “trans” state, torsional angle ϕ = 0◦) and two less deep
minima (gauche ±, ϕ = ±120◦) separated from the trans
state by high energy barriers, nstr simply is the number of
successive carbon-carbon bonds in an all-trans configuration.
Of course, in this case successive bonds in this state are not
oriented along the same direction, since the ground state con-
figuration of the alkanes is a zigzag-configuration, and so
Eqs. (29) and (50) need to be generalized (bond angles need
to be measured relative to their values in the “all-trans” con-
figuration). Similarly in biopolymers a sequence of nstr bonds
in an α-helix configuration can be the right object to charac-
terize stiffness. Such considerations will be needed when one
wants to adapt our findings to real polymer chains. Finding
an analogue of Eq. (71) that is generally valid for off-lattice
models is in interesting problem but beyond the scope of the
present study.

We now turn to the end-to-end distance of the chains
(Figs. 6 and 7). As predicted by the theoretical considerations
of Sec. II, we find in d = 2 and d = 3 dimensions very dif-
ferent behaviors. In d = 2 (Fig. 6) the data for small enough
Nb show the rod-like behavior, 〈R2

e 〉 ∝ N2
b , indicated by the

slope of the straight line in the left of Figs. 6(a) and 6(b), and
then 〈R2

e 〉 ∝ N2ν
b with ν = 3/4 reaches a broad maximum, and

thereafter decreases only a little bit and then settles down at
the limiting value expected for two-dimensional self-avoiding
walks. As the rescaled plot (Fig. 6(b)) shows, there is a sin-
gle crossover from rods to self-avoiding walks, and irrespec-
tive of stiffness there is never a regime where the Gaussian
plateau predicted by the Kratky-Porod model {Eq. (32)} de-
scribes part of the data approximately. Of course, the latter
can describe the initial rod-like behavior49 but this is of lit-
tle interest and clearly from this regime one cannot estimate
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rescaled mean square end-to-end distance 〈R2
e 〉/(2�p�bNb) versus rescaled chain length Nb/N

rod
b (b). These data include chain lengths Nb up to Nb = 25600,

and all values of the stiffness parameter qb, as indicated. Straight lines in (a) show the slope 2 − 2ν = 0.5 describing the rod-like regime (that occurs for
small Nb) and the slope 1 − 2ν = −0.5 that would occur if a Gaussian-like regime was present (which is not). Dotted horizontal plateaus for large Nb in
(a) show estimates for �p, R(qb)/�b (Table I). Part (b) shows that all data collapse to a single master curve which describes a crossover from a rod-like regime
to a self-avoiding walk regime. The Kratky-Porod function, Eq. (32), indicated by the dotted curve (WLC) is also shown for comparison. The chain length
N∗

b = N rod
b = �k/�b = 2�p/�b describing the number of bonds per effective Kuhn segment �k is extracted from the persistence length estimates (Table I).

�p reliably at all. Interestingly we find from the rescaled plot
(Fig. 6(b)) that the maximum which appear at Nb = Nmax

b in
Fig. 6(a) rather accurately coincides with the value Nb = N∗

b ,
the chain length corresponding to the effective Kuhn length
�k = 2�p. As an immediate consequence of this finding we
can suggest as a recipe for experimentalists who analyze end-
to-end-distances of two-dimensional adsorbed chains to plot
their data in analogy to Fig. 6(a)): if their chain lengths Nb are
long enough to reach the region where the maximum Nmax

b in
such a plot occurs, they can immediately estimate the persis-
tence length as

�p = �bN
max
b /2 . (72)

For this method to work, it is not necessary at all to have
chains long enough to see the asymptotic d = 2 SAW behav-
ior, 〈R2

e 〉 ∝ N
3/2
b . Since the Kratky-Porod model {Eq. (32)}

has so widely been used by experimentalists to fit their data
and by theorists to build more sophisticated extensions on it,
we emphasize again that Eq. (32) is accurate only in the rod-

like regime and in the initial part of the crossover towards the
self-avoiding walk regime as shown in Fig. 6(b). Note that
unlike experimental work, this comparison does not involve
any adjustable parameter whatsoever. We see that for small
Nb and small qb theory and simulation agree qualitatively,
but in this regime, where curves for small Nb collapse on
the straight line 〈R2

e 〉/�bNb = �bNb, and then gradually bend
over to a slower increase, the data are not very sensitive to
the actual value of �p. For Nb < 2N∗

b the Kratky-Porod result
slightly overestimates the actual data, while for Nb � 2N∗

b it
strongly underestimates them, since the increase proportional
to 〈R2

e 〉 ∝ N
3/2
b cannot be described. Clearly, the plateaus pre-

dicted by Eq. (32) for Nb > 2N∗
b , as displayed in Fig. 6(b), do

not have any correspondence to the actual data.
However, in the three-dimensional case the situation is

clearly different.43, 44 We shall not reproduce in full detail
the data published already elsewhere43, 44 but only show as
a summary of the scaling plots in the Kratky-Porod repre-
sentation for the three-dimensional cases (Fig. 7). Now there
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that data that fall below the Kratky-Porod plateau (horizontal straight line) for different stiffness parameters systematically splay out, there is no scaling over
the full parameter range.
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is clear evidence from the data (Fig. 7(a)) that with increas-
ing stiffness (decreasing qb) a Gaussian plateau in the plots
of 〈R2

e 〉/(2�bNb�p) versus Nb/N
rod
b (qb) develops, before the

regime ruled by excluded volume interactions sets in. Here
we rescale the chain length Nb such that data collapse oc-
curs in the rod-like regime, i.e., Nb is rescaled with N rod

b

= 2�p/�b. We see that with increasing �p the data gradually
approach the Kratky-Porod result {Eq. (32)} over an increas-
ing range of Nb/N

rod
b , while ultimately the data increase be-

yond the Kratky-Porod plateau values, to cross over to the
asymptotic relation 〈R2

e 〉/Nb ∝ N2ν−1
b as it should be {com-

pare Eqs. (39)–(43)}. Alternatively, we can estimate another
crossover chain length N∗

b (qb) such that the curves collapse in
the regime of large Nb, so that the asymptotic regime where
excluded volume interactions dominate, shows proper scal-
ing behavior (Fig. 7(b)). Obviously, while in d = 2 dimen-
sions N∗

b (qb) = N rod
b (qb), so there is no need to distinguish

these crossover chain lengths at all, (Fig. 6(b)), and there is
a single crossover from rods to self-avoiding walks described
by one universal crossover scaling function, this is not true
in d = 3 dimensions: there occur two successive crossovers,
from rods to Gaussian coils at Nb = N rod

b , and from Gaussian
coils to three-dimensional self-avoiding walks, at Nb = N∗

b .
Of course, these crossovers are rather gradual and not sharp:
therefore a well-defined Gaussian plateau comes into exis-
tence only for N∗

b � N rod
b , which requires extremely stiff

chains. These findings are in beautiful qualitative agreement

with the theoretical considerations of Sec. II B and with
available experiments in d = 3 that did show two succes-
sive crossovers.60 Surprisingly, some authors76 claim to have
observed two successive crossovers (with an intermediate
Gaussian regime) for two-dimensional adsorbed chains. We
suspect that the observations may be due to incomplete equi-
libration of the chains, and we feel that the theoretical inter-
pretation given there is inappropriate, however.

It remains to test to what extent the predictions given in
Sec. II B for the crossover chain lengths N rod

b , N∗
b are actually

compatible with our data. First of all, Fig. 8(a) illustrates that
both in d = 2 and d = 3 the region where �b follows the simple
asymptotic power law �b ∝ q−1

b is quickly reached, and we
have ample data where �p exceeds �b by at least an order of
magnitude.

Figure 8(b) also illustrates that in the case of a single
crossover Eq. (47) is quantitatively verified, since Eq. (47)
says R2 ∝ �

1/2
k L3/2 = �

3/2
b �

1/2
k N

3/2
b , and hence using 〈R2

e 〉
= 2�p,R�bNb we would conclude �p,R = (�p�b)1/2/

√
2, if

the proportionally constant in Eq. (47) is taken to be unity.
Of course, only the exponent in this relation and not the pref-
actor can be taken seriously. However, in d = 3 the theoret-
ical relations N∗

b ∝ �3
p and �p,R ∝ �

2/5
p {Eqs. (40) and (43)}

are not quantitatively verified: rather we found effective expo-
nents �p,R ∝ �0.56

p and N∗
b ∝ �2.5

p (Fig. 8(c)). We cannot rule
out that this result is due to a still somewhat slower crossover
to the asymptotic excluded volume dominated regime than



024901-13 Stretching semiflexible polymer chains J. Chem. Phys. 136, 024901 (2012)

(a)

10-3

10-2

10-1

1

10-3 10-2 10-1 1 10

<
X

>
 / 

L

flp / kBT

L

slope=-1
qb = 0.4

Langevin

slope=-1/3

function

d = 2

25600
12800
  6400
  1600
    400
    200
    100

(b)

10-2

10-1

1

10-2 10-1 1 10

<
X

>
 / 

L

flp / kBT

L

K-P model

qb = 0.03

d = 2

25600
12800
  6400
  1600
    400
    200
    100

(c)

10-2

10-1

1

10-2 10-1 1 10

<
X

>
 / 

L

flp / kBT

qb

K-P model

L = 100

d = 2

0.4
0.2
0.1
0.05
0.03
0.02
0.01
0.005

(d)

10-2

10-1

1

10-2 10-1 1 10
<

X
>

 / 
L

flp / kBT

qb

K-P model

L = 400

d = 2

0.4
0.2
0.1
0.05
0.03
0.02
0.01
0.005

FIG. 9. Relative extension 〈X〉/L plotted versus scaled force f�p/kBT for rather flexible chains (qb = 0.4, case (a)) and for rather stiff chains (qb = 0.03, case
(b)) in d = 2, including several different contour lengths L = Nb�b, as indicated. In (a), the prediction Eq. (4), 〈X〉/L ∝ L((f �p/kBT )(�b/�p)), for the freely
jointed chain and Eq. (63) for the Pincus blob prediction are included for comparison, while in (b) the result Eq. (55) for the Kratky-Porod model is included.
Note that in (a) the result �p = 2.67�b (Table I) was used to convert the scale from f�p/kBT to f�b/kBT. Case (c) plots 〈X〉/L versus f�p/kBT and variable qb (and
hence variable �p, cf. Table I) for L = 100 and case (d) for L = 400, respectively. Equation (55) is again included for comparison.

assumed in our fit in Fig. 7; still much longer chains than Nb

= 50 000 would be needed to check this, but this is a very
tough task even for the PERM algorithm. On the other hand,
we note that Eqs. (38)–(43) clearly are not exact, the Flory
argument invariably implies that ν = 3/5 = 0.60 instead of
ν = 0.58852 and it is unclear to us to what extent these ex-
ponents describing the variation of �p, R and N∗

b with �p are
modified. This problem could possibly be addressed with the
renormalization group approach.

V. STRETCHING SEMIFLEXIBLE POLYMERS
IN d = 2 DIMENSIONS

Figure 9 presents now a selection of our results for ex-
tension versus force curves for the two-dimensional SAW’s
of variable stiffness on a square lattice. As expected, nei-
ther the simple result for freely jointed chains {Eq. (4)} nor
the Kratky-Porod result {Eq. (55)} are compatible with the
data. For very short chains (Nb = 100) and intermediate
values of the stiffness (qb = 0.05 which corresponds to �p

≈ 13�b, cf. Table I), we note that 〈X〉/L roughly agrees with
Eq. (55); however, this agreement probably is not accidental,
since also in the absence of a force for such short chains and
this choice of qb the Kratky-Porod prediction for the mean
square end-to-end distance (Fig. 6(b)) still is rather close to
the actual result for 〈R2

e 〉/2�pL. Similar agreement was also

noted in our earlier work45 for somewhat longer and stiffer
chains (Nb = 200 and qb = 0.03 and 0.02, respectively) for
exactly the same reason: as long as 〈R2

e 〉 in the absence of
forces is still more or less correctly predicted, and this can
be judged from the data presented in Sec. IV, the general
linear response relation, Eq. (9), which holds not only for
flexible SAW’s but also for stiff chains, implies that the K-
P model still provides an accurate description of the initial
linear part of the extension versus force curve. Since in such
a case where L is larger then �p by only a small factor, be-
yond the linear response regime there is no regime of Pincus
blobs possible, since

√
〈R2〉0 in Fig. 1(a) and �p then are of

the same order (each Pincus blob needs to be formed from
many subunits of size �p, in order that the power law regime
〈X〉/L∝(f�p/kBT)1/3 can develop!) Thus, we arrive at the gen-
eral conclusion that in d = 2 the K-P result Eq. (55), is ap-
plicable only for such short chains that L is larger than �p by
only a small factor (L ≤ 10�p, say), so that in Fig. 1(a) the Pin-
cus blob regime is essentially absent, and the K-P model also
achieves an approximate description of the linear response
regime.

Of course, it is of great interest to clarify what happens
when L � �p. Figure 10 hence presents a log-log plot of
the data for the extension versus force curves including long
chains and rescaling the data such that a scaling description
for the crossover from the linear response to the regime of
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FIG. 10. Plot of y = (〈X〉/L)Cy versus x = (f�b/kBT)Cx for flexible SAW’s in d = 2 (qb = 1) where the scaling factors Cx, Cy for abscissa and ordinate have

been chosen Cx = N
3/4
b , Cy = N

1/4
b , so that the coordinates (xcr, ycr) of the crossover point from the linear response regime to the Pincus blob regime in the

(x,y) plane are of order unity. Several choices of L are included, as indicated. Part (b) is similar as (a), but for semiflexible chains with several choices of qb and
L, as indicated. Now x = (f�p/kBT)Cx and the scaling factors are chosen as Cx = (L/�p)3/4, Cy = (L/�p)1/4. Straight lines in both parts indicate the theoretical
power law 〈X〉∝f (linear response regime) and 〈X〉∝f 1/3 (Pincus blobs regime), respectively. Part (c) is the same as (b), but choosing Cx = Cy = 1 including
only data for L = 25600, 12800, and 6400, to show the crossover from the Pincus blob regime to a Kratky-Porod (K-P) like regime.

Pincus blobs is obtained. One sees that both for flexible chains
(Fig. 10(a)) and for rather stiff chains (Fig. 10(b)) a reasonable
data collapse on a master curve is obtained, consistent with
the predicted exponents. As expected, the crossover between
both power laws is gradual and not sharp. If one includes data
for too large forces, one can see that the data fall systemati-
cally below the Pincus power law. Similarly, when one puts
the focus on the crossover from the Pincus blob regime to
the saturation behavior, Fig. 10(c), one finds that the data fall
systematically below the Pincus power law for small forces
(due to the crossover towards the linear response regime).
As expected from the theoretical considerations of Sec. II,
there cannot exist a scaling representation which brings both
crossovers of Fig. 1(a) to a data collapse on a master curve to-
gether. Note also that for the long chains the K-P model does
not fit our data at large relative extensions 〈X〉/L either, since
our simulations are based on a discrete chain model. Since our
choices of qb do not yield extremely large persistence lengths,
the crossover from the saturation behavior predicted by the
K-P model {Eq. (58)} to that of the FJC model {Eq. (7)} is
not clearly resolved either. Actually, for very large forces one
must consider that our model is a lattice model, not a model of
rigid bonds in the continuum where arbitrary bond angles oc-
curs such as the FJC model: hence we expect that for f → ∞
the saturation behavior is 1 − 〈X〉/L ∝ exp (−f�b/kBT) rather
than kBT/f�b.

As a last point of this section, we consider both longitu-
dinal (Figs. 11(a) and 11(b)) and transverse (Figs. 11(c) and
11(d)) fluctuations of the chain dimensions. These fluctua-
tions have been normalized such that they are of order unity
(and independent both L and �p) in the linear response regime,
while in the Pincus blob regime (0 � f�p/kBT < 1) a crossover
to a simple power law proportional to (f�p/kBT)1/ν − 2 occurs.
Using the same scaling factors Cx = (L/�p)3/4 (Fig. 10(b)) for
abscissa, a nice data collapse on the master curve is seen in
Fig. 12 for both longitudinal and transverse fluctuations. Note
that our scaling description for the crossover from the lin-
ear response regime to the Pincus blob regime, exemplified
in Figs. 10 and 12, does not invoke any adjustable param-
eters whatsoever (unlike the case of experiments, where of-
ten both L and �p are fit parameters). However, the behavior
at larger forces (beyond Pincus blob regime) is more subtle.
While in the Kratky-Porod regime a power law proportional
to (f�p/kBT)−2 is expected for large enough f, where a behav-
ior similar as that has been found for freely jointed chains
{Eq. (21)} can be expected, when one considers the longi-
tudinal fluctuation {(〈X2〉 − 〈X〉2)/〈X2〉0}, for the transverse
fluctuation 〈R2

⊥〉/〈R2
⊥〉0 all theories predict a slower decay

(proportional to [(f�p/kBT)−1] for large f {Eqs. (22)–(24), and
(67), respectively}, and this slower decay in fact is not seen.
The reason for this discrepancy, however, probably is the fact
that in our model only kinks by ±90◦ are possible, and no
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FIG. 11. Log-log plot of [〈X2〉 − 〈X〉2]/〈X2〉0 vs. f�p/kBT for L = 100 (a), and L = 25600 (b), including several choices for qb as indicated. Log-log plot of
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⊥〉0 vs. f�p/kBT for L = 100 (c) and L = 25600 (d), including several choices for qb as indicated. A straight line with slope 1/ν − 2 (ν = 3/4) is shown

for comparison. Data are for semiflexible chains in d = 2.
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FIG. 14. Log-log plot of 〈X〉/L versus f�p/kBT for several choices of qb as indicated, for contour length L = 200 (a), L = 400 (b), L = 6400 (c), and L = 25600
(d). Full curve always refers to the K-P model prediction, Eq. (54). Broken curve in (a) is the Langevin function, Eq. (4), using �p/�b = 0.71 for qb = 0.4
(Table II). Data are for semiflexible chains in d = 3.

small deflections are possible as in the K-P and FJC models.
We defer a more detailed analysis of these fluctuations to a
forthcoming publication. Here we rather focus on the behav-
ior of the local angular fluctuation 〈φ2〉 (Fig. 13). For small
forces all angles φ between a bond and the +x-direction are
equally probable (at the lattice we have in d = 2 two possibil-
ities for φ = π /2 or φ = −π /2, and two possibilities for φ =
0 or π , respectively). Hence for f → 0 we must find 〈φ2〉 =
(π2 + π2/2)/4 = 3π2/8 ≈ 3.7, and this is compatible with the
observation. For f�p/kBT > 1 we observe a smooth crossover
towards

〈φ2〉 ∝ kBT /(f �p) , f �p � kBT , (73)

and the crossover from 〈φ2〉 ≈ 3.7 to this decay seems to be
practically independent of �p (as shown by the superposition

of data for different choices of qb and hence �p in Fig. 13)
and L (compare Fig. 13(a) for L = 100 with Fig. 13(b) for
L = 25600). Although the local quantity 〈φ2〉 thus has a re-
markably simple behavior, unlike the global quantities 〈X〉/L,
(〈X2〉 − 〈X〉2)/〈X2〉0 and 〈R2

⊥〉/〈R2
⊥〉0, we are not aware of any

theoretical prediction relating to it.

VI. STRETCHING SEMIFLEXIBLE POLYMERS
IN d = 3 DIMENSIONS

We start by showing extension versus force curves for
various choices of the contour length L in Fig. 14, to provide
a three-dimensional counterpart to the data in Fig. 9 for two
dimensions. It is immediately obvious that the simple Kratky-
Porod prediction {Eq. (54)} does a much better job than its

TABLE II. Various possible estimates for persistence lengths, �p/�b from Eq. (29), �p, θ /�b from Eq. (30), np and 〈nstr〉
from Eq. (71) including the fitting parameter ap, and �p, R/�b from Ref. 44, for semiflexible chains in d = 3 with various
values of qb.

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0

�p/�b 52.61 26.87 13.93 9.54 5.96 3.35 2.05 . . . . . .
�p, θ /�b 51.52 26.08 13.35 9.10 5.70 3.12 1.18 1.12 0.67
ap 0.02 0.04 0.08 0.12 0.19 0.38 0.73 1.42 3.37
np 51.17 25.95 13.30 9.07 5.68 3.12 1.82 1.13 0.68
〈nstr〉 51.72 26.50 13.83 9.60 6.20 3.65 2.36 1.70 1.29
�p, R/�b 5.35 3.49 2.39 1.94 1.54 1.12 0.87 0.71 0.61



024901-17 Stretching semiflexible polymer chains J. Chem. Phys. 136, 024901 (2012)

(a)

10-2

10-1

1

10

102

10-1 1 10 102

<
X

>
 / 

(l p
l b

L3 )1/
5

f/fc = fL3/5(lp lb)1/5/kBT

L
25600
12800
  6400
  1600
    400
    200
    100

10-2

10-1

1

10

102

10-1 1 10 102

<
X

>
 / 

(l p
l b

L3 )1/
5

f/fc = fL3/5(lp lb)1/5/kBT

qb

L

linear
response

Pincus blobs

d = 3

1.0
0.4
0.2

(b)

1

10

102

1 10 102

<
X

>
 / 

(l p
l b

L3 )1/
5

f/fc = fL3/5(lp lb)1/5/kBT

L
25600
128001

10

102

1 10 102

<
X

>
 / 

(l p
l b

L3 )1/
5

f/fc = fL3/5(lp lb)1/5/kBT

qb
L

linear
response

Pincus blobsd = 3

0.1
0.05
0.03

(c)

10-1

1

10

10-1 1 10

(<
X

>
 / 

L)
 (

l p
 / 

l b
)

(flp / kBT) (lp / lb)

L
25600
12800

10-1

1

10

10-1 1 10

(<
X

>
 / 

L)
 (

l p
 / 

l b
)

(flp / kBT) (lp / lb)

qb

L

K-P model

Pincus blobs

d = 3

0.05
0.1
0.2

(d)

10-2

10-1

1

10-1 1
<

X
>

 / 
L

flp / kBT

L
25600
12800

10-2

10-1

1

10-1 1
<

X
>

 / 
L

flp / kBT

qb

L

K-P model

d = 3

0.02
0.01
0.005

FIG. 15. (a) Log-log plot of 〈X〉/(�p�bL3)1/5 vs f /fc = fL3/5(�p�b)1/5/kBT, where fc is the crossover force defined in Eq. (60), remembering D = �b in our model,
for the choices qb = 1.0, 0.4, and 0.2 and many choices of L (a) and for qb = 0.1, 0.05, 0.03 but only L = 25600 and L = 12800 (b). Case (c) shows a plot of
(〈X〉/L)(�p/�b) versus (f�p/kBT)(�p/�b) for the choices qb = 0.05, 0.1, and 0.2, again for L = 25600 and L = 12800 only, to test for indications of a crossover
from Pincus blobs to the Kratky-Porod model, showing only the vicinity of the region when this crossover should occur. Case (d) is a blow up the region 0.05
≤ 〈X〉/L < 0.5, for qb = 0.02, 0.01, 0.05, L = 25600 and L = 12800, to show the full K-P region for rather long and rather stiff chains. Data are for semiflexible
chains in d = 3.
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semiflexible chains in d = 3.
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two-dimensional counterpart {Eq. (55)}. Again, we empha-
size that there are no adjustable parameters whatsoever in our
comparison, L = Nb�b is trivially known, and �p comes from
Fig. 2(d). In fact, for L = 200 and L = 400 most of the data
for 0.01 < 〈X〉 < 0.3 follow the K-P prediction, for a wide
range of choices for qb and hence �p {Table II}, only data for
rather flexible chains (such as qb = 0.4, for which �p = 1.2)
deviate strongly from the K-P model, as expected. The simple
Langevin function {Eq. (4)} does not describe the behavior
of these lattice chains with discrete bond angles. Note that
these chains are too short to show a well-developed Pincus
blob regime yet. For 〈X〉/L > 0.3 systematic deviations from
the K-P prediction occur, which we attribute to effects due to
the discreteness of bonds and bond angles in our model. Only
for very long chains (such as N = 6400 and 25600) do we find
more pronounced deviations from the K-P prediction also for
small relative extensions, 〈X〉/L ≤ 0.1.

For long chains, however, we do expect to see excluded
volume effects (manifested in Pincus blobs), as discussed in
Sec. II. Thus, Fig. 15 presents our data in suitably scaled form,
considering the crossover from the linear response regime
to the Pincus blob regime, both for flexible chains (a) and
semiflexible ones (b), as well as the crossover from Pincus
blobs to Kratky-Porod behavior (c), and we show a close-up
of the Kratky-Porod regime for very long and at the same time
rather stiff chains (d). Of course, even with chain lengths up
to 25600 it is not yet possible to clearly resolve all the dif-
ferent power laws shown in Fig. 1(b): in order to be able to
distinguish the various crossovers clearly from each other, we
would need very stiff chains (�p should then be in the range
102 < �p/�b < 104), and then one would need to have chain
lengths of many millions in order to have a well-developed
Pincus-blob regime. Thus, we can verify the Pincus blob
regime only for rather flexible chains (Fig. 15(a)), for which
then a well-developed Kratky-Porod regime is absent. For the
stiff chains, we can see some tendency of the data to devi-
ate from the K-P regime in the direction towards the Pincus
blob regime (Figs. 15(b) and 15(c)), but the latter is not fully
reached because the crossover to the linear response takes
over (Fig. 15(b)). And when we study very stiff chains, we
find deviations from the K-P model for rather small 〈X〉/L al-
ready, due to the discrete character of our chains.

Figure 16 shows again data for the normalized fluctua-
tions of the chain linear-dimensions, and Fig. 17 presents a

counterpart to Fig. 13, showing a log-log plot of the local
fluctuation 〈φ2〉 versus f�p/kBT. While the latter (for large L)
show again a simple crossover from the constant π2/3 describ-
ing 〈φ2〉 for small forces to a power law kBT/f�p for f�p/kBT
> 1, as in d = 2 dimensions, the behavior of the fluctuations
in the chain linear dimensions clearly is rather complicated.
Of course, there is a need to extend the scaling analysis, that
was presented for 〈X〉 as a function of f�p/kBT in Fig. 1(b) to
the fluctuations 〈X2〉 − 〈X〉2 and 〈R2

⊥〉 in greater detail than we
have done so far. We expect that analyzing these fluctuations
should yield additional and valuable information on the struc-
ture of stretched semiflexible chains, and allow to pin down
the parameters needed to relate experimental data to theoret-
ical models more precisely. We plan to tackle this task in a
forthcoming study.

VII. CONCLUSION

In this paper, we have studied self-avoiding walks on
square and simple cubic lattices, where an energy penalty εb

associated with chain bending to model semiflexibility of the
polymer chains, by extensive Monte Carlo simulations, us-
ing the PERM algorithm. We have obtained both force ver-
sus extension curves and chain linear dimensions in the ab-
sence of forces for a wide range of chain lengths Nb (typi-
cally Nb up to 25600) and chain stiffness (characterized by qb

= exp (−εb/kBT)). In Sec. II, we have attempted to present
a coherent phenomenological theoretical description, com-
bining results from scaling concepts with other results de-
rived from the Kratky-Porod model, to explain the vari-
ous crossovers that can occur in the force versus extension
curves for various circumstances (Fig. 1). We have empha-
sized that the case of d = 2 dimensions is rather differ-
ent from the case d = 3: only in the latter case one can
identify a linear regime in the force versus extension curve
that is compatible with the Kratky-Porod model; the linear
response regime both in d = 2 and d = 3 dimensions is
strongly affected by the presence of excluded volume ef-
fects, and for long enough chains is followed by a non-
linear (“Pincus blob”) regime for stronger forces both in
d = 2 and d = 3 dimensions. However, for very stiff and
not too long chains in d = 3 the chains in the absence of a
force show Gaussian behavior, and in this case the stretched
chains do not exhibit the nonlinear Pincus blob regime, and
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the Kratky-Porod model holds throughout (apart from very
strong forces, where the discrete character of polymer chains
matter).

The Monte Carlo data that we have generated do pro-
vide evidence for these concepts, particularly in the relatively
simple case of d = 2 dimensions. While in d = 2 all ex-
pected regimes of the force vs. extension curves are con-
firmed and the expected scaling behavior is verified, prob-
lems remain concerning the precise understanding of longi-
tudinal and transverse fluctuations of chain linear dimensions
of the chains. More work on these aspects (from theory, sim-
ulation, and experiment) clearly is desirable. We recall that
imaging techniques can provide rather detailed information
on chain configurations of semiflexible polymers adsorbed on
substrates; we expect that our work should be useful to inter-
pret such experiments.

In the case of d = 3 dimensions, our numerical evidence
is much more limited: chain lengths Nb = 25600 clearly do
not suffice to fully resolve three distinct power laws (sep-
arated by smooth crossovers) in the force versus extension
curves. However, simulations for chains that are one or two
orders of magnitude larger clearly are not feasible at present.
We do obtain evidence, however, that for rather stiff thin short
chains excluded volume effects indeed are negligible, as ex-
pected, and hence the Kratky-Porod model holds. However,
when chain stiffness is due to thickness (persistence length �p

being proportional to local chain diameter D), the regime of
Gaussian statistics disappears and rather excluded volume ef-
fects dominate throughout, resulting in a rather broad regime
where the force versus extension curve is nonlinear already
for small 〈X〉/L. Also for rather flexible chains, clear evidence
for the Pincus blob regime is obtained (Fig. 15(a)).

In our modelling, we have approximated the interactions
between monomers of the chain as a strictly local excluded
volume interaction. Of course, in many cases of interest the
interactions are of longer range, e.g., because of electrostatic
interactions between charged groups. Particularly for poly-
electrolytes the resulting problem of an “electrostatic per-
sistence length” has received longstanding attention in the
literature.56, 77–79 Molecules such as DNA and RNA do pos-
sess a substantial linear charge density, and the properties
of such polyelectrolytes, in fact, will depend on the electro-
static screening due to ions in the solution, and thus the ef-
fective persistence length will depend on ionic strength. In
this context, the concept of an “effective thickness” of poly-
electrolytes, that are described in terms of a “thick chain
model,”79 has been used to model experimental extension ver-
sus force curves. It will be an interesting task for the future,
beyond the scope of the present paper, to clarify the extent
to which such approaches are equivalent to the scaling con-
cepts applied here. In any case, it is very reassuring that very
recently, after our study was completed, single-molecule elas-
ticity measurements of the onset of excluded volume effects
of stretched poly(ethylene glycol) were published.80 In this
work, the Pincus blob scaling behavior (L ∝ f 2/3 in d = 3
dimensions) could be seen under several circumstances, fol-
lowed by a crossover to the linear behavior (L ∝ f ) and sub-
sequent saturation, compatible with the behavior predicted by
the K-P model. The interpretation given in Ref. 80 for these

experiments is fully consistent with the description given in
the present paper. Some earlier evidence for the Pincus be-
havior was also found for DNA.81, 82

In our simulations, we have not considered the effects of
varying the diameter D of our chains (we have chosen D = �b

= 1, the lattice spacing, throughout). For biopolymers D is a
parameter of great interest as well,82 of course. In our studies
of bottlebrush polymers,43, 44 however, we studied conditions
for which D ∝ �p, and then the K-P model was not useful even
in d = 3 dimensions.

Thus we hope that the present work will contribute to the
better understanding of both existing and future experiments.
A very interesting aspect, completely beyond the scope of the
present work, are dynamic properties of stretched semiflexible
polymers in solution, see e.g., Ref. 83. Our study should yield
useful inputs for such problems, too.
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