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Using the pruned-enriched Rosenbluth Monte Carlo algorithm, the scattering functions of semi-
flexible macromolecules in dilute solution under good solvent conditions are estimated both in d
= 2 and d = 3 dimensions, considering also the effect of stretching forces. Using self-avoiding
walks of up to N = 25 600 steps on the square and simple cubic lattices, variable chain stiffness is
modeled by introducing an energy penalty εb for chain bending; varying qb = exp (−εb/kBT) from
qb = 1 (completely flexible chains) to qb = 0.005, the persistence length can be varied over two
orders of magnitude. For unstretched semiflexible chains, we test the applicability of the Kratky-
Porod worm-like chain model to describe the scattering function and discuss methods for extract-
ing persistence length estimates from scattering. While in d = 2 the direct crossover from rod-like
chains to self-avoiding walks invalidates the Kratky-Porod description, it holds in d = 3 for stiff
chains if the number of Kuhn segments nK does not exceed a limiting value n∗

K (which depends on
the persistence length). For stretched chains, the Pincus blob size enters as a further characteristic
length scale. The anisotropy of the scattering is well described by the modified Debye function, if
the actual observed chain extension 〈X〉 (end-to-end distance in the direction of the force) as well
as the corresponding longitudinal and transverse linear dimensions 〈X2〉 − 〈X〉2, 〈R2

g,⊥〉 are used.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764300]

I. INTRODUCTION

Small angle (neutron) scattering from polymers in dilute
solution is the method of choice to obtain a complete picture
of the conformations of long flexible or semiflexible macro-
molecules, from the length scale of the monomeric units to
the gyration radius of the chain molecules.1–4 Classical exper-
iments have shown that the gyration radius Rg of long flexible
chains in dense melts (and also in dilute solution under Theta
conditions) scales with chain length N according to the classi-
cal random walk picture,5–7 Rg ∝ N1/2, while in dilute solution
under good solvent conditions flexible polymers form swollen
coils,1–4, 8 Rg ∝ Nν , with9 ν ≈ 0.588 (in d = 3 dimensions)
or ν = 3/4 (d = 2). It was also shown that on intermediate
length scales, the dependence of the scattering intensity S(q)
on wave number q reflects the self-similar fractal structure of
the polymer,8 S(q) ∝ q−1/ν (under good solvent conditions) or
S(q) ∝ q−2 (Theta conditions or melts, respectively). Also the
crossovers between these regimes when either the temperature
distance from the Theta point or the concentration of the solu-
tion are varied have been investigated,4 and the length scales
ruling these crossovers (i.e., diameter of “thermal blobs” or
“concentration blobs,” respectively) have been identified.1–4

The behavior gets more complicated, however, when
chain stiffness plays a prominent role: only when chain stiff-
ness is essentially due to chain thickness, i.e., when the ef-
fective persistence length �p scales proportional to the lo-

a)Electronic mail: hsu@uni-mainz.de.

cal chain diameter D the problem can still be reduced to
a rescaled self-avoiding walk problem.10, 11 However, when
�p � D, one finds (in d = 3) a double crossover, since
then short chains behave like rigid rods (i.e., Rg ∝ N as
long as Rg < �p), and then a crossover to Gaussian random-
walk like coils occurs, while for Rg ≈ R0 (R0 will be dis-
cussed below) a second crossover to swollen coils (Rg ∝ Nν)
starts. Also this behavior has been established in beautiful
classical experiments,12 as well as in recent simulations.11, 13

The standard model for semiflexible worm-like chains, the
Kratky-Porod model,14 can only describe the first crossover
(from rods to Gaussian coils) but fails to account for the
second crossover to swollen coils, due to its complete ne-
glect of excluded volume effects. It turns out that this second
crossover still is incompletely understood: while in the early
experiments12 it was suggested that this crossover occurs for
nK = n∗

K with n∗
K = 50 Kuhn segments, independent of the

persistence length, a Flory-type argument15, 16 suggests that
the crossover occurs for a polymer radius R0 ∝ �2

p/D (cor-
responding to n∗

K ∝ (�p/D)2), while the simulations rather
find13 n∗

K ∝ �1.5
p . Remember that a worm-like chain can be de-

scribed as an equivalent freely jointed chain of nk Kuhn seg-
ments of length 2�p each.5, 6 In view of an apparent conflict
of the estimate12 n∗

K = 50 with the Yamakawa-Stockmayer-
Shimata theory16–19 for worm-like chains, the result n∗

K = 50
was considered as a very fundamental problem.20, 21 How-
ever, Tsuboi et al.21 confirmed this estimate for another stiff
polymer and concluded that the result n∗

K = 50 is compatible
with the theory. We also note that in d = 2, there occurs a
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single crossover from rods to self-avoiding walks, any regime
of Gaussian-like behavior is completely absent.13, 22 We em-
phasize however, that the results of Refs. 11, 13, 15, and 16
imply that a universal number n∗

K (independent of �p) up to
which the Kratky-Porod model holds in d = 3 does not exist.

It is then interesting to ask how chain stiffness shows
up on intermediate length scales that can be probed via the
scattering function S(q). If one disregards excluded volume1

and bases the treatment on the Kratky-Porod model, one can
show23 that the rod-like behavior at large q leads to a scatter-
ing law proportional to q−1, i.e. (in d = 3 dimensions),

N�bqS(q) = π + 2

3
(q�p)−1, N → ∞ , (1)

where we have assumed that the chain has a contour length
L = N�b, where �b is the bond length, while the persistence
length6 is �p = (N/nK)�b/2. While for Gaussian “phantom
chains” (i.e., excluded volume interactions are completely ne-
glected) the structure factor S(q) is readily found1–6 in terms
of the Debye function, and the only length that enters is
the gyration radius 〈R2

g〉1/2, choosing a normalization where
S(q = 0) = 1,

S(q) = 2[exp(−ζ ) − 1 + ζ ]/ζ 2, ζ = q2
〈
R2

g

〉 = q2N�2
b/6,

(2)

for semiflexible polymers the calculation of S(q) for chains
with N finite is a formidable problem,24–39 even in the absence
of excluded volume effects. However, including excluded
volume effects in the description of scattering of semiflexi-
ble chains is even more an unsolved problem: existing phe-
nomenological approaches require the adjustment of many
empirical parameters.37 It will be one of the tasks that will be
addressed in the present paper, to investigate S(q) for semi-
flexible chains numerically in the presence of excluded vol-
ume interactions between the effective monomers, varying �p

over a wide range.
In recent years also the behavior of macromolecules un-

der the influence of stretching forces has found enormous in-
terest (e.g., Refs. 40–56), in particular, for the study of bio-
macromolecules. Experimentally, this can be realized, e.g., by
pulling at one end of a chain, that is anchored at a substrate
with the other chain end, by optical or by magnetic tweezers
or by the tip of an atomic force microscope42, 46, 48, 49, 52, 55, 56

but it is also conceivable to stretch polymers by the forces
occurring when a polymer solution is exposed to strong shear
flow57–59 or elongational flow.60 It is difficult to carry out scat-
tering experiments on such stretched chains and measure the
structure factor (which then is anisotropic and has two rele-
vant parts S||(q||), S⊥(q⊥) since the direction of the scattering
vector �q relative to the stretch direction, either parallel, q||, or
perpendicular, q⊥, matters). But nevertheless a theoretical in-
vestigation of S||(q||), S⊥(q⊥) is worthwhile, it gives detailed
insight into the local structure of stretched chains, includ-
ing also chains under cylindrical confinement;61–63 this may
help to understand problems such as transport of semiflexible
polymers through porous materials, or channels in nanoflu-
idic devices,61 etc. Thus, we shall also investigate the struc-
ture factor of stretched semiflexible chains, extending previ-
ous work on flexible chains.40, 44

The outline of our paper is as follows: in Sec. II, we give
a summary of the theoretical background, and in Sec. III we
define our model and briefly recall the simulation methodol-
ogy. In Sec. IV, we present our results for the structure fac-
tor S(q) of semiflexible chains, for both d = 2 and d = 3
dimensions, in the absence of stretching forces. Section V
describes the modifications of the structure factor due to
stretching, while Sec. VI summarizes our conclusions. The
calculation of the scattering function of random walk chains
under constant pulling forces can be carried out analytically
and is presented in the Appendix.

II. THEORETICAL BACKGROUND

A. Definitions

We consider here the scattering from a single polymer
chain, describing the chain by a sequence of N + 1 (effec-
tive) monomers at positions �rj , j = 1, 2, . . . , N + 1, with
N bond vectors �aj = �rj+1 − �rj . In the absence of stretching
forces, the structure factor S(�q) does not depend on the direc-
tion of the scattering vector �q, and can be defined as S(q)
= 〈∑N+1

j=1

∑N+1
k=1 exp[i �q · (�rj − �rk)]〉/(N + 1)2, choosing a

normalization for which S(q → 0) = 1. When a stretch-
ing force is applied to one chain end in the +x-direction,
the structure factor becomes anisotropic. In d = 3 dimen-
sions, the conformations of chains still have axis-symmetric
geometries, and we must distinguish between S||(q||), where
�q is oriented in the x-direction parallel to the force, and
S⊥(�q⊥), where �q is oriented perpendicular to it. So we define
�rj = (xj , yj , zj ) = (xj , �ρj ) to obtain

S‖(q‖) = 1

(N + 1)2

{〈[
N+1∑
j=1

sin(q‖xj )

]2〉

+
〈[

N+1∑
j=1

cos(q‖xj )

]2〉}
, (3)

S⊥(q⊥) = 1

(N + 1)2

{〈[
N+1∑
j=1

sin(�q⊥ · �ρj )

]2〉

+
〈[

N+1∑
j=1

cos(�q⊥ · �ρj )

]2〉}
. (4)

In d = 2 dimensions, we have �rj = (xj , yj ) and then �q⊥ · �ρj

in Eq. (4) needs to be replaced simply by q⊥yj.
In this paper, we are not at all concerned with effects due

to the local structure of (effective) monomers, such as chem-
ical side groups, which show up at large q in the scattering
from real chains.29 We next define our notation for charac-
teristic lengths of the chain. Assuming a rigidly fixed bond
length �b between neighboring monomers along the chain,
the contour length L is L = N�b. The mean square end-
to-end distance (in the absence of stretching forces) simply
is 〈R2〉 = 〈(∑N

j=1 �aj )2〉. The mean square gyration radius is
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given by

〈
R2

g

〉 = 1

N + 1

〈
N+1∑
j=1

(�rj − �rCM )2

〉

= 1

(N + 1)2

〈
N+1∑
j=1

N+1∑
k=j+1

(�rj − �rk)2

〉
, (5)

where �rCM = ∑N+1
j=1 �rj /(N + 1) is the center of mass position

of the polymer.
In the presence of stretching forces, the chain takes a

mean extension 〈X〉 and mean square extensions also become
anisotropic,

〈X〉 =
〈

N∑
j=1

ajx

〉
, 〈X2〉 =

〈(
N∑

j=1

ajx

)2〉
, (6)

〈R2
⊥〉 =

〈(
N∑

j=1

ajy

)2〉
+

〈(
N∑

j=1

ajz

)2〉
. (7)

Equation (7) refers to the three-dimensional case, for d = 2
the second term in the right-hand side needs to be omitted.
A related anisotropy applies to the gyration radius square,
namely,

〈
R2

g,‖
〉 = 1

(N + 1)2

〈
N+1∑
j=1

N+1∑
k=j+1

(xj − xk)2

〉
, (8)

〈
R2

g,⊥
〉 = 1

(N + 1)2

〈
N+1∑
j=1

N+1∑
k=j+1

[(yj − yk)2 + (zj − zk)2]

〉
,

(9)

for d = 3, again the term (zj − zk)2 simply is omitted in the
case d = 2.

The gyration radii describe the scattering at small �q. In
the absence of stretching forces

S(q) = 1 − q2
〈
R2

g

〉/
d, q → 0, (10)

while if stretching forces are present, one finds instead

S‖(q‖) = 1 − q2
‖
〈
R2

g,‖
〉
, q → 0, (11)

S⊥(q⊥) = 1 − q2
⊥
〈
R2

g,⊥
〉/

(d − 1), q → 0. (12)

In addition to the limit q → 0, also the limiting behavior of
S(q → ∞) is trivially known: then all interference terms in
S(q) average to zero, and only the terms j = k contribute to
the double sum. Hence, we obtain S(q → ∞) = 1/(N + 1),
S||(q|| → ∞) = S⊥(q⊥ → ∞) = 1/(N + 1), irrespective of
the value of the persistence length �p, the value of an applied
force f, etc.

We emphasize, however, that there is no general defi-
nition for the persistence length �p that would be both uni-
versally valid and practically useful.10, 11, 13 The definition of
textbooks6, 64 via the asymptotic decay of the bond vector ori-

entational correlation (for N → ∞),

〈cos θ (s)〉 ≡ 〈�aj · �aj+s〉/〈�aj · �aj 〉 ∝ exp(−s�b/�p),

s → ∞ (13)

makes sense only for Gaussian PHANTOM chains. It is not
applicable to real polymers under ANY CIRCUMSTANCES,
since the asymptotic decay of 〈cos θ (s)〉 with the “chemical
distance” s�b along the chain always is a power-law decay. In
fact, for �p � s�b � L one has10, 11, 13, 65–68

〈cos θ (s)〉 ∝ s−β, (14)

where β = 3/2 both in melts65, 66 and for chains in dilute solu-
tion under Theta conditions.10, 67 For good solvent conditions,
one finds the scaling law10, 68

β = 2(1 − ν), (15)

which yields β = 0.825 (d = 3) and β = 1/2 (d = 2), respec-
tively. In simple cases, such as the semiflexible self-avoiding
walk model studied in Ref. 13 and further investigated here,
one can rather use an analog of Eq. (13) but for short chemical
distances,

〈cos θ (s)〉 = exp(−s�b/�p), 0 ≤ s ≤ �p/�b. (16)

Equation (16) is useful for the simple model that will be stud-
ied here, namely, the self-avoiding walk (SAW) on square
and simple cubic lattices with an energy penalty εb for “bond
bending” (i.e., kinks of the SAW by 90◦), serving as a con-
venient parameter to control the persistence length. Since for
εb/kBT < 2 the power law, Eq. (14), already starts to set in
even for small s of order unity, we use in practice an alterna-
tive definition,

�p/�b = −1/ ln(〈cos θ (1)〉), (17)

which is equivalent to Eq. (16), if Eq. (16) holds over a more
extended range of s. Unfortunately, Eq. (17) is not straight-
forwardly applicable for chemically realistic models (such as
alkane chains when �b means a bond between two succes-
sive carbon atoms, but the all-trans state corresponds to a zig-
zag configuration with a nonzero bond angle θ (1)). It is also
not useful for coarse-grained models of polymers with com-
plex architecture, such as bottle-brush polymers.10, 11 Thus,
we emphasize that for our model Eq. (17) is a practically use-
ful definition, while for real polymers studied experimentally
the estimation of �p is a delicate problem. The same caveat
applies for the Kuhn length �K, which is �K = 2�p for worm-
like chains, but the latter does not apply in solutions, as stated
above. In dense melts, �K/�b = 6〈R2

g〉/(�2
bN ) is supposed to

hold, but due to local interactions with neighboring monomers
in a dense environment it is not obvious that �K for a melt is a
relevant parameter for a chain under good solvent conditions.

Thus, it is a clear advantage of our model calculations
that via Eqs. (16) and (17) accurate direct estimates of �p

are possible, unlike in experiment. These estimates for �p are
given in Table I.
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TABLE I. Values of persistence lengths �p/�b for semiflexible chains in d
= 2 and d = 3, estimated by Eq. (17), and the crossover length N* between
the intermediate Gaussian regime and the SAW regime in d = 3, estimated
empirically from Fig. 7(b) of Ref. 13 (N* = Nrod = 2�p/�b in d = 2) for
various values of qb.

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0

�p/�b (d = 2) 118.22 59.44 30.02 20.21 12.35 6.46 3.50 2.00 1.06
�p/�b (d = 3) 51.52 26.08 13.35 9.10 5.70 3.12 1.18 1.12 0.67
N* (d = 3) 36000 9000 1850 700 180 41 11 ... ...

B. Theoretical predictions for the scattering function
of single polymers in good solvents in the absence of
stretching forces

The classical result for the scattering from Gaussian
chains is the Debye function1–4

SDebye(q) = 2

q2
〈
R2

g

〉
{

1 − 1

q2
〈
R2

g

〉 [1 − exp
(−q2

〈
R2

g

〉)]}
.

(18)

For large q this reduces to SDebye(q) ≈ 2/(q2〈R2
g〉), reflect-

ing the random-walk like fractal structure of a Gaussian coil,
SDebye(q) ∝ q−1/νMF with νMF = 1/2. Equation (18) does not
tell how large q can be in order for this power law to be
still observable. For semiflexible Gaussian chains, the con-
tour length L = N�b can be written as L = np�p and the mean
square end-to-end distance and gyration radius are14, 69

〈R2〉
2�pL

= 1 − 1

np

[1 − exp(−np)], (19)

6
〈
R2

g

〉
2�pL

= 1 − 3

np

+ 6

n2
p

− 6

n3
p

[1 − exp(−np)]. (20)

From Eqs. (19) and (20), one can clearly recognize that
Gaussian behavior of the radii is only seen if the number np

of persistence lengths that fit to a given contour length of the
chain is large, np � 1 (for np of order unity, a crossover to
rod-like behavior occurs). Since q−1 is also a length scale,
one concludes that the Gaussian coil behavior reflected in
Eq. (18) also implies that a scale q−1 requires that a subchain
with this gyration radius contains many persistence lengths as
well, i.e., Eq. (18) can only hold for

q�p � 1. (21)

In the regime

�−1
p � q � �−1

b , (22)

the scattering function resembles the scattering function of a
rigid rod of length Lrod,70

Srod(q) = 2

qLrod

[∫ qLrod

0
dx

sin x

x
− 1 − cos(qLrod)

qLrod

]
,

(23)
which for large q varies like

Srod(q → ∞) = π/(qLrod). (24)

Equations (23) and (24) refer to a rigid rod on which the scat-
tering centers are uniformly and continuously distributed. In

the lattice model studied here, the scattering centers are the
subsequent lattice sites along the rod. For a rod of length Lrod,
there are Lrod + 1 such centers,71

Srod(q) = 1

Lrod +1

[
−1+ 2

Lrod +1

Lrod∑
k=0

(Lrod +1−k)
sin qk

qk

]
,

q < π. (25)

Both Eqs. (23) and (25) have a smooth crossover from
Srod(q) = 1 − q2〈R2

g〉rod/3 with 〈R2
g〉rod = L2

rod/12 to the 1/q
power law (Eq. (24)). Of course, on the lattice consideration
of q > π does not make sense, distances of a lattice spacing
and less are not meaningful.

While for a Gaussian coil no direction of �q is singled out,
for a rod it makes sense to consider also the special case where
the wave vector �q is oriented along the rod. Then one rather
obtains, q|| being the component of �q parallel to the axis of
the rod57

Srod(q‖) = 2

(q‖Lrod)2
[1 − cos(q‖Lrod)]. (26)

Equation (26) leads to an oscillatory decay since cos (q||Lrod)
= 1 for q

(k)
‖ = k(2π/Lrod), k = 0, 1, 2, . . . , Lrod, and Srod(q||)

hence has zeros for all q
(k)
‖ , k = 1, 2, . . . , Lrod.

When we consider the scattering from semiflexible Gaus-
sian chains, we expect a smooth crossover between the
Debye function, SDebye(q) and the rod scattering, Eq. (23),
similar to the smooth crossovers from rods to Gaussian coils,
as for the radii (Eqs. (19) and (20)). It turns out that this is
a formidable problem, and no simple explicit formula ex-
ists, despite the fact that excluded volume effects still are
neglected.17–21, 23–33, 35, 37–39 Kholodenko32 derived an inter-
polation formula which describes the two limiting cases of
Gaussian coils and rigid rods exactly, and which is expected
to show only small deviations from the exact result in the in-
termediate crossover regime. His result has the form

S(q) = 2

x

[
I1(x) − 1

x
I2(x)

]
, x = 3L/2�p, (27)

where In(x) = ∫ x

0 dzzn−1f (z), and the function f(z) is given
by

f (z) =

⎧⎪⎪⎨
⎪⎪⎩

1

E

sinh(Ez)

sinh z
q ≤ 3

2�p

,

1

Ê

sin(Êz)

sinh z
q >

3

2�p

(28)

with

E =
[

1 −
(

2q�p

3

)2
]1/2

, Ê =
[(

2q�p

3

)2

− 1

]1/2

.

(29)

In addition, Stepanow35 has developed a systematic ex-
pansion of the scattering function in terms of the solution for
the quantum rigid rotator problem, which converges fast if
L/�p is not too large. Note that the opposite limit, L/�p → ∞,
has already been considered by des Cloizeaux23 (Eq. (1)).
This expansion (as well as equivalent representations written
as continued fractions33) can only be evaluated numerically.72
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However, a few qualitative statements can be made on
the structure factor S(q) in the representation of a Kratky
plot, qLS(q) plotted vs. Lq. Equations (23)–(25) imply a
monotonous increase from the straight line qLS (q ≈ 0)
= qL towards the plateau value qLS (q � 2π /L) = π for
simple rigid rods, while for semiflexible polymers this Kratky
plot exhibits a maximum. We may crudely approximate S(q)
by its leading terms

qLS(q) ≈ qL − 1

3
(qL)3

〈
R2

g

〉
L2

, (30)

qmax = 1/

√〈
R2

g

〉
, qmaxLS(qmax) = 2

3
L/

√〈
R2

g

〉
, (31)

i.e., from Eqs. (20) and (30) we immediately find, for np � 1,

qmax = √
3/(�pL) , qmaxLS(qmax) = 2√

3

√
L/�p.

(32)

Using the full Debye function one finds a different prefactor,
qmax ≈ √

6.4/(�pL), but the general scaling behavior is still
given by Eq. (32). Thus, when L is known (as in simulations)
for semiflexible Gaussian chains finding the coordinates of
the maximum in the Kratky plot allows a straightforward es-
timation of the persistence length �p.

Considering now excluded volume effects, we emphasize
that Eq. (31) still is valid, while Eq. (32) no longer holds. In
particular, in Ref. 13 it was shown that in d = 2 the Kratky-
Porod model14 of semiflexible chains, on which Eqs. (19),
(20) and (27)–(29) are based, has no validity whatsoever:
rather around np = 1 a smooth crossover from the rigid rod be-
havior to the behavior of two-dimensional self-avoiding walks
occurs. Thus, we expect similarly instead of Eq. (20) that (re-
call np = L/�p)〈

R2
g

〉
�pL

= f (np), with f (np < 1) = np, (33)

as in Eq. (20), but

f (np � 1) = Cs
gn

2ν2−1
p , ν2 = 3/4, (34)

Cs
g being (for �p/�b � 1) a non-universal constant. Equations

(33) and (34) hence imply in d = 2,〈
R2

g

〉 = Cs
g�

1/2
p L3/2, L → ∞, (35)

in full analogy to the result for fully flexible chains,〈
R2

g

〉 = Cf
g �

1/2
b L3/2, L → ∞ (36)

with C
f
g another non-universal constant. Similar relations

hold13 for 〈R2〉 ,

〈R2〉 = Cf
e �

1/2
b L3/2 (flexible),

(37)
〈R2〉 = Cs

e�
1/2
p L3/2 (semiflexible)

with C
f
e and Cs

e other (non-universal) constants for flexi-
ble and semiflexible chains, respectively. The ratios C

f
e /C

f
g

and Cs
e/Cs

g are expected to be universal, however (for Gaus-
sian chains 〈R2〉/〈R2

g〉 = 6), for both flexible and semiflexible
chains.

In d = 3 dimensions, however, the end-to-end distance
〈R2〉 of semiflexible chains with excluded volume is consid-
erably more involved.13 Two successive crossovers occur: for
np ≈ 1 from rods to Gaussian coils, while excluded volume
effects become prominent for

np > n∗
p, n∗

p ∝ (�p/D)ζ , (38)

where we have introduced the chain diameter D as another
characteristic length that may be needed in general (while
in our model D = �b, however), and ζ is an exponent that
is not yet known precisely. Arguments based on Flory the-
ory yield13, 15, 16 ζ = 2, while Monte Carlo results rather
suggested13 ζ ≈ 1.5. We recall that in d = 3 Flory arguments
are not1 exact, implying3, 9 ν = 3/5 instead of ν = 0.588. A
similar double crossover from rods to first Gaussian coils and
then to d = 3 self-avoiding walks is expected to be visible in
〈R2

g〉, too. If we could rely on Flory theory, we would predict
from these considerations that〈

R2
g

〉
/(�pL) = Cs

g(np/n∗
p)2ν−1, np > n∗

p (39)

and hence (using the Flory value ν = 3/5),〈
R2

g

〉 = Cs
gL

6/5(�pD)2/5 . (40)

From qmax = (
√

Cs
gL

3/5(�pD)1/5)−1 the persistence length �p

can be inferred, provided Cs
g has been determined. However,

if �p � �b and D = �b, in the regime 1 < np < n∗
p Gaussian

statistics for the gyration radius is still applicable, and hence
Eq. (32) applies.

C. The structure factor in the presence of stretching
forces

For Gaussian chains under stretch, where a force f is
applied at a chain at one end in the +x-direction, the other
end being fixed at the coordinate origin, the structure fac-
tor S(�q) has been derived by Benoit et al.40 as follows

{�q = (qx, qy, qz) with q|| = qx and q⊥ =
√

q2
y + q2

z },

S‖(q‖) = 2Re

{
exp(−X‖) − 1 + X‖

X2
‖

}
, (41)

S⊥(q⊥) = 2
exp(−X⊥) − 1 + X⊥

X2
⊥

, (42)

where X⊥ = q2
⊥(〈R2〉0/6λ−2

⊥ ), with 〈R2〉0 the mean-square
end-to-end distance of the chain in the absence of any force
(f = 0), and λ⊥ describes the modification of the Gaussian
distribution in the transverse directions (y and z-direction, for
d = 3). The quantity X|| is complex (therefore, the real part of
Eq. (41) is taken) and is given by

X‖ = q2
‖ 〈R2〉0

6λ−2
‖

+ i〈X〉q‖, (43)

where λ|| describes the modification of the Gaussian distribu-
tion in the x-direction (parallel to the force). Benoit et al.40

explicitly state that their result is restricted to deformations
of small amplitudes and do not specify how λ⊥, λ|| are re-
lated to the applied force. However, considering the small q
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expansion of Eqs. (41) and (42) one can relate these param-
eters to the mean square gyration radius components of the
chain, since for X⊥ � 1,

S(q⊥) = 1 − q2
⊥

〈R2〉0

18λ−2
⊥

= 1 − q2
⊥
〈
R2

g,⊥
〉
/2, (44)

where in the last step Eq. (12) was used. Hence, we conclude
(note that 〈R2

g〉0 = 〈R2〉0/6 for Gaussian chains) that λ2
⊥

= (3/2)〈R2
g,⊥〉/〈R2

g〉0 = (〈R2
gy〉 + 〈R2

gz〉)/(〈R2
gy〉0 + 〈R2

gz〉0),
as expected. Similarly, Eq. (41) yields for q|| → 0, also using
Eq. (11),

S(q‖) = 1 − q2
‖

(
〈R2〉0

18λ−2
‖

+ 〈X〉2

12

)
= 1 − q2

‖
〈
R2

g,‖
〉
, (45)

and hence we see that λ|| in X|| can be expressed in terms of
the gyration radius component 〈R2

g,‖〉 of the stretched chain
and the extension 〈X〉. However, since from the work of
Benoit et al.40 it is not clear that Eqs. (41) and (42) are appli-
cable for conditions where 〈X〉/L is not very small, we hence
rederived Eqs. (41) and (42) by an independent method, which
is more transparent with respect to the basic assumptions that
are made. This derivation is presented in the Appendix, and it
shows that S(q||) can be cast into the form

S(q‖) = 1

(N + 1)2

∑
i,j

exp

[
−1

2
q2

‖ (〈X2〉 − 〈X〉2)
|i − j |

N

]

× cos

(
q‖

|i − j |〈X〉
N

)
, (46)

which is equivalent to Eq. (41) but with a somewhat different
expression for X||, namely,

X‖ = 1

2
q2

‖ (〈X2〉 − 〈X〉2) + iq‖〈X〉 . (47)

It is interesting to note that Eqs. (41) and (46) can be given
a very simple physical interpretation: with respect to the
correlation in stretching direction, the stretched polymers is
equivalent to a harmonic one-dimensional “crystal” (which
at nonzero temperature lacks long range order, of course) of
length Na = 〈X〉, a being the “lattice spacing” of the crystal.

Writing the Hamiltonian of the one-dimensional chain
as73, 74

H = 1

2

∑
�

[
π2

�

m
+ mc2 (x�+1 − x� − a)2

a2

]
, (48)

where point particles of mass m have positions x� and con-
jugate momenta π�. The spring potential coupling neigh-
boring particles is expressed by the sound velocity c. At
T = 0, particles are localized at positions x(0)

n = x
(0)
0 + na, n

= 0, 1, . . . , N. So it makes sense to consider displacements rel-
ative to the ground state, un = xn − x(0)

n = xn − na, putting
x

(0)
0 at the origin. Due to the harmonic character of this “crys-

tal,” one can calculate the mean square displacements easily
to find (for periodic boundary conditions) that 〈(un − u0)2〉
= na2kBT/(mc2) = nδ2, where δ characterizes the local
displacement for two neighboring particles. Applying the for-
mula also for the end-to-end distance of a chain without peri-
odic boundary conditions, 〈(uN − u0)2〉 = Nδ2, one immedi-

ately finds that S(q||) for the harmonic chain yields the above
expressions of S(q||), since X = xN − x0 = Na + uN − u0, 〈X〉
= Na, and 〈X2〉 = N2a2 + Nδ2 = 〈X〉2 + Nδ2. This consider-
ation also emphasizes that a condition 〈X〉 � L = N�b in fact
is not required for the validity of Eqs. (41)–(47).

For the unstretched case (〈X〉 = 0) Eqs. (41)–(47) reduce
to Eq. (18), as it should be. We recall that according to the
Kratky-Porod model simple approximations for the extension
〈X〉 of a chain as a function of the force can be derived (see
Ref. 13 for a review), namely,

f �p

kBT
= 3

4

〈X〉
L

+ 1

8(1 − 〈X〉/L)2
− 1

8
, d = 2 (49)

and

f �p

kBT
= 3

4

〈X〉
L

+ 1

4(1 − 〈X〉/L)2
− 1

4
, d = 3. (50)

Equations (49) and (50) imply in the linear response regime,
where 〈X〉 ∝ f, that

f �p

kBT
= d

2

〈X〉
L

. (51)

However, from linear response one can show generally that

〈X〉 = f 〈X2〉0/(kBT ) = f 〈R2〉0/(dkBT ), (52)

where 〈R2〉0 is the mean square end-to-end distance in the ab-
sence of forces. Equations (51) and (52) are compatible with
each other for Gaussian semiflexible chains, for which 〈R2〉0

= 2�pL (Eq. (19)), but are incompatible in the presence of ex-
cluded volume forces. In this case, one observes a crossover
from the linear response regime, as described by Eq. (52)
together with Eq. (37) for d = 2 and a result analogous to
Eq. (50), namely,

〈R2〉 = Cs
eL

6/5(�pD)2/5, d = 3 (using ν ≈ 3/5), (53)

to the “Pincus blob”41 regime, a power law for the extension
versus force relation

〈X〉/L ∝ (f �p/kBT )1/ν−1 . (54)

While in d = 2, Eq. (52) holds up to 〈X〉/L of order unity,
where saturation (〈X〉/L → 1 for large enough f) sets in, in d
= 3 the validity of Eq. (52) is much more restricted, namely,13

ξp ≡ kBT /f > R0 ∝ �2
p/D. (55)

For stronger forces (corresponding to ξ p < R0) the
Kratky-Porod results, Eqs. (49) and (50), are expected to be-
come valid. In the Pincus blob regime, also nontrivial power
laws for the fluctuations 〈X2〉 − 〈X〉2 and the transverse linear
dimensions are predicted54

〈X2〉 − 〈X〉2 ∝ 〈R2
⊥〉 ∝ (f �p/kBT )1/ν−2 . (56)

Since we are not aware of any treatment of the structure fac-
tor of the Kratky-Porod model under stretch, we shall use
Eqs. (41) and (42) also for semiflexible chains (but using
the numerical results for 〈X〉 and 〈X2〉 − 〈X〉2, 〈R2

g,⊥〉, rather
than theoretical predictions).
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III. MODEL AND SIMULATION TECHNIQUE

Our model is the standard SAW on the square and simple
cubic lattices, effective monomers being described by occu-
pied lattice sites, connected by bonds. Each site can be taken
only once, and thus we realize the excluded volume inter-
action. The lattice spacing henceforth is our unit of length,
�b = 1. We introduce an energy εb for any kink the walk takes
(by an angle of ±90◦). Any such kink introduces hence a fac-
tor qb = exp (−εb/kBT) to the statistical weight of the walk.

In the presence of a force f coupling to the extension X
of the chain in x-direction, the statistical weight gets another
factor bX, with b = exp (f/kBT). Then the partition function of
a SAW with N bonds (i.e., N + 1 effective monomers) and
Nbend local kinks becomes

ZN,Nbend (qb, b) =
∑

config.

C(N,Nbend, X)qNbend
b bX. (57)

By the pruned-enriched Rosenbluth method, it is possible to
obtain estimates of the partition function and quantities de-
rived from it (e.g., 〈X〉, 〈X2〉) and additional averages such as
S(q), using chain lengths up to N = 25 600. Both the chain
stiffness and the force f have been varied over a wide range;
for qb = 1, one has fully flexible self-avoiding random walks,
while for qb = 0.005 the persistence length (computed from
Eq. (17)) is of the order of 120 in d = 2 and 52 in d = 3
(Table I lists our corresponding estimates). For technical de-
tails on the implementation of the algorithm, we refer to the
literature.13

IV. THE SCATTERING FUNCTION OF UNSTRETCHED
CHAINS

We start with our data for the mean square gyration ra-
dius 〈R2

g〉, normalized by the square of the Kuhn length �K

= 2�p, plotted vs. the number of Kuhn segments nK = L/�K

= N�b/(2�p), Fig. 1(a) since this was the representation cho-
sen for the experimental data of Norisuye and Fujita,12 re-
produced in Fig. 1(b). Both diagrams show the same range
of abscissa (30 ≤ nK ≤ 3000) and ordinate (5 < 〈R2

g〉/(2�p)2

< 1000). The similarity between simulation and experiment
is striking. Since only the regime of rather large nK is shown,

 10
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 30  100
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 1000

<
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( 
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l p
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2

nk = N lb / (2 lp)

qb
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0.005

Sim.

Kratky−Porod 
worm−like chain

volume
excluded

effect

Kratky−Porod 
worm−like chain

Exp.

volume
effect
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FIG. 1. (a) Log-log plot of normalized gyration radius square 〈R2
g〉/(2�p)2

versus the number of Kuhn segments, for the range 30 ≤ nK ≤ 3000, for
chains of widely varying stiffness, and comparison to corresponding experi-
mental data (b), taken from Norisuye and Fujita.12 The full straight line is the
Kratky-Porod model, Eq. (20).

the crossover from rods to Gaussian chains is not included
(the full straight line represents the Gaussian chain behavior,
as described by Eq. (20) for nK = (1/2)np � 1). Equation
(20) works for very stiff chains and not too large nK, while for
large nK systematic deviations occur, which can be attributed
to excluded volume effects. Both the simulation and the ex-
periment include data for widely varying persistence lengths
(in the experiment, this could only be achieved by combining
data for chemically different polymers in this plot). From their
results (see Fig. 1(b)), the experimentalists concluded that the
excluded volume effects set in for nK > 50, irrespective of the
precise value of the persistence length.

However, this latter conclusion needs to be questioned: in
fact, for large nK the data do not superimpose in this represen-
tation for different choices of �p, indicating that the behavior
is more complicated. To elucidate this, we take out the leading
power law in the Gaussian coil regime, plotting 〈R2

g〉/(�pL)
versus nK over the full range (Fig. 2(a)). Nice scaling behav-
ior occurs with respect to the crossover from rigid rods to
Gaussian coils; in this regime, Eq. (20) works in d = 3. How-
ever, now one can see rather clearly that the crossover from
Gaussian coils to SAWs does not scale in this representation:
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FIG. 2. (a) Log-log plot of 〈R2
g〉/(2�pL) versus nK for d = 3, and including data for widely varying persistence lengths. Note that the worm-like chain result,

WLC (Eq. (20)), describes correctly the crossover from rods to coils, but not the onset of excluded volume effects. (b) Same as (a), but choosing N/N*(qb) as
an abscissa variable (N*(qb) was already estimated for a similar scaling plot for the mean square end-to-end distance (cf. Fig. 7(b) of Ref. 13). Here L = N�b.
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FIG. 3. Log-log plot of 〈R2
g〉/(2�pL) versus nK for d = 2, including data for

widely varying persistence lengths. Note that in d = 2 there occurs a direct
crossover from rods to SAWs, an intermediate Gaussian regime in absent.

rather for large nK the curves “splay out,” the larger �p the
longer the data follow Eq. (20), before an onset of excluded
volume effects occur. This behavior has already been studied
in Ref. 13 with respect to the end-to-end distance. Empiri-
cally, it was found that scaling N with N*, where N∗ ∝ �2.5

p

rather than N* = �p, Figure 2(b) shows that a master curve
results as an envelope of the curves for individual �p. We also
recall, that Flory arguments predict N∗ ∝ �3

p, cf. Eq. (38) and
the subsequent discussion. The data in Fig. 2 are fully anal-
ogous to our data on the end-to-end distance that were dis-
cussed recently in Ref. 13. In d = 2, however, the behavior is
clearly simpler (Fig. 3): there occurs a single crossover from
rods to d = 2 SAWs, and a regime where the Kratky-Porod
worm-like chain model presents a faithful description of the
data is absent. These results for 〈R2

g〉 confirm our earlier anal-
ogous findings13 for 〈R2〉.

Figure 4 shows some of our raw data for the struc-
ture factor S(q). For small q, one recognizes the Guinier
regime, S(q) ≈ exp(−q2〈R2

g〉/3) ≈ 1 − q2〈R2
g〉/3, and then a

crossover occurs to the power law of SAWs or of Gaussian
chains (the latter is seen clearly only for d = 3 and very stiff
chains). At large q and stiff chains, the expected q−1 behavior
is in fact compatible with the data.

It turns out that an analysis of S(q) in the form of Kratky
plots (Eq. (30)) is more illuminating, cf. Fig. 5: The location

of the maximum in the Kratky plot, as discussed in Eqs. (31)
and (32), is easily identified, and it shows the expected scaling
with L/�p both in d = 3 and in d = 2 (Fig. 6). In d = 3, with in-
creasing L/�p a crossover from Gaussian behavior to SAW be-
havior occurs. Our data also confirm that for rather stiff chains
in d = 3 both the Kholodenko and the Stepanow theories de-
scribe S(q) very accurately. Note that Fig. 5(b) refers to rather
short chains, for which strong effects due to excluded volume
interactions are not yet expected, and hence the good agree-
ment with the theories is not surprising.

Another issue of interest is the behavior qLS(q) in the
rigid rod limit, where one clearly notes the approach to π

(Fig. 5). Can we then use S(q) in this region, applying the des
Cloizeaux formula (Eq. (1)) to extract quantitatively reliable
estimates for the persistence length �p from a plot of qLS(q)
versus 1/q? Figure 7 suggests that although a regime occurs
where the variation is linear in (q�p)−1, the coefficient of this
linear variation is inconsistent with the des Cloizeaux result.
We have no final answer to offer to explain this discrepancy;
we suspect that in the regime where q−1 and �p are of the
same order, the discreteness of our lattice model (opposed to
the Kratky-Porod continuum model) might matter.

V. RESULTS FOR THE SCATTERING FROM
STRETCHED CHAINS

While for unstretched chains it is only 〈R2
g〉 as a measure

of the linear dimension of the whole chain matters (Figs. 1–
3), for chains under the action of stretching forces anisotropy
of the chain conformation comes into play. However, from the
small q expansion of Eqs. (3) and (4) one can show straight-
forwardly that S||(q||) yields information on 〈R2

g,‖〉 and S⊥(q⊥)
on 〈R2

g,⊥〉 cf. Eqs. (11) and (12). Since for larger q|| where also
the extension 〈X〉 of the chain along the direction of the force
enters the description of the scattering, we begin by describ-
ing these linear dimensions and their variation as a function of
the force f (for a more detailed discussion and related results,
we refer the reader to Ref. 13).

Figure 8 shows typical data of 〈R2
g,⊥〉 versus f�p/kBT, both

for rather flexible chains (qb = 0.4) and for rather stiff chains
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FIG. 4. Structure factor S(q) plotted q, on log-log- scales, for d = 2 (a) and d = 3 (b); only data for L = 25 600 are shown, but many different choices of the
stiffness parameter qb are included. The straight lines indicate the rod-like behavior at large q (slope = −1) and the SAW behavior for flexible chains (slope
= −1/ν). Also the slope expected in the Gaussian regime is included (slope = −2). Only data up to q = π have been included (larger q cannot be studied due
to the lattice character of our model).
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FIG. 5. (a) Rescaled structure factor qLS(q) plotted against Lq for d = 3 and L = 25 600, including 5 choices of the stiffness. The result for Gaussian chains
(Debye function) and for continuous rigid rods (for which qLS(q) → π for large q. cf. Eq. (24)) are included for comparison. Also predictions obtained from
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(qb = 0.01 in d = 2, qb = 0.05 in d = 3, respectively). We rec-
ognize three regimes: for very small forces 〈R2

g,⊥〉 ≈ 〈R2
g,⊥〉0,

the unperturbed value in the absence of forces. In this linear
response regime, the force orients the coil without deforming
it. Then a regime occurs where 〈R2

g,⊥〉 decreases according
to a power law, namely, Eq. (56). This power law holds in
the regime where the radius of the Pincus blob, ξ p = kBT/f,
is smaller than the unperturbed radius, but much larger than
the persistence length �p itself. Thus, this is the analog of

the “Pincus blob” law that yields another power law for the
extension vs. force curve, Eq. (54). The physical picture in-
voked here for the chain is an elastic string of Pincus blobs,
〈R2

g,⊥〉 describing the transverse mean square displacement
of this string. As one can see from Fig. 8, the data indeed
are compatible with the predicted power law in d = 2, and in
d = 3 at least for the flexible chains. For stiff chains in d
= 3, the regime where Eq. (56) holds is more restricted,
since the Kratky-Porod regime has a more extended regime of
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validity, effects due to Pincus blobs can only be detected in a
regime 〈R2

g,⊥〉1/2
0 > ξp > R∗ ∝ �2

p/D, cf. Eq. (55).13 There-
fore, we have not included very stiff chains in Fig. 8(b)
(for qb = 0.005, leading to �p ≈ 52�b, excluded volume ef-
fects, which also lead to the existence of Pincus blobs, could
even for chains as long as N = 25 600 hardly be detected
in the chain linear dimensions in the absence of a force, cf.
Figs. 1–3). So this failure to detect Pincus blobs for very stiff
long chains in d = 3 dimensions is hardly surprising (although
Eq. (56) ultimately will become valid as N → ∞, irrespective
how large �p is).

It is also interesting to analyze the behavior for large
forces, for f�p/kBT > 1. At first sight, one might expect an-
other power law with a large exponent. However, a closer look
reveals a slight but systematic curvature, and a plot versus
f�p/kBT on a linear rather than a logarithmic scale reveals that
this apparent power law is nothing but the onset of an expo-
nential decay (Figs. 8(c) and 8(d)): indeed, already from the
partition function, Eq. (57) we recognize that for large forces
the chains will be stretched out almost completely like rigid
rods, and the few remaining kinks are suppressed exponen-
tially when f�p/kBT � 1.
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For completeness, we show the corresponding simulation
data for the relative extension 〈X〉/L vs. f�p/kBT in Figs. 9 and
10 present the corresponding data for the longitudinal com-
ponent 〈R2

g,‖〉/L2 of the gyration radius in the direction of
the force. While for very small forces, one expects a nonzero
plateau (unlike 〈X〉/L, which vanishes as f → 0), correspond-
ing to the gyration radius square component of an unstretched
chain, for large f another plateau means that the chain has been
stretched out fully to a rod of length L. In between these two
plateaus, the Pincus blob behavior is seen rather clearly, for
the flexible chains.

Figure 11 shows typical data for S⊥(q⊥) vs. q⊥ and
Fig. 12 the corresponding data for S||(q||) vs. q||, focus-
ing again on those selected values of qb that were used in
Figs. 8–10. As expected from Eq. (42), the perpendicular
structure factor is similar to the case without stretching force;
the plateau at small q, where S⊥(q⊥) deviates only very lit-
tle from unity, gets more extended with increasing f, reflect-
ing the decrease of 〈R2

g,⊥〉 with f (Fig. 8). This decrease is
more pronounced for stiff chains than for flexible chains at the
same value of f, since the proper control variable is not f/kBT
but rather f�p/kBT. While the power law-like decay of S⊥(q⊥)
with q⊥ for flexible chains can be observed until S⊥(q⊥) has
decayed up to S⊥(q⊥) ≈ 10−4 as b < 1.5, for stiff chains it ex-
tends only to S⊥(q⊥) ≈ 10−3 in d = 3 and S⊥(q⊥) ≈ 10−2 in

d = 2, respectively. As expected, the theory of Benoit et al.40

can only be applied if q⊥�p � 1, and when 〈R2
g,⊥〉 exceeds

�2
p only by few orders of magnitudes, the applicability of

Eq. (42) is correspondingly restricted. In fact, noting that,
for qb = 0.05, �p/�b ≈ 5.9, we conclude that b = 1.5
means f�p/kBT ≈ 2.4, and Fig. 8 shows that in this case in-
deed 〈R2

g,⊥〉 is about an order of magnitude smaller than
for f = 0. Approximating a stiff chain as a sequence of
rods of length �p such that np�p = N�b, and stating that
at large q⊥ interference effects of different rods can be
neglected, one would expect that for q⊥�p ≈ 1 one ob-
tains a scattering of the order of S⊥(q⊥) ≈ n−1

p , indepen-
dent of q⊥. This (admittedly rough) argument would qual-
itatively explain the systematic increase of the plateau S(q)
in Fig. 5 and S⊥(q⊥) in Fig. 11 with increasing chain
stiffness.

Even more interesting is the behavior of S||(q||),
Fig. 12. The rapid increase of 〈R2

g,‖〉 with increasing stretch-
ing force has the consequence that S||(q||) deviates from unity
for smaller and smaller q||. While for small f just a shoulder
develops, before (at large q||) the behavior is similar to that of
S⊥(q⊥), for large f pronounced oscillations develop. As found
by Pierleoni et al.44 for fully flexible chains under stretch,
this behavior can be attributed to the fact that the chain be-
haves as an elastically stretched string. We shall discuss this

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10

(a) (b)

-1 1 10 102

<
R

g|
|

2   >
 / 

L2

flp / kBT

L = 25600

qb

d = 2

slope = 2(1/ν-1)

12
1

0.01
0.4  

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1 1 10

<
R

g|
|

2   >
 / 

L2

flp / kBT

qb

12
1

slope = 2(1/ν-1)

d = 3

L = 25600

0.05
0.4  

FIG. 10. Log-log plot of the parallel component 〈R2
g,‖〉/L2 versus f�p/kBT, for the same parameters as in Figs. 8 and 9. Straight lines indicate the Pincus blob

regime. Part (a) refers to d = 2, part (b) to d = 3.

Downloaded 06 Nov 2012 to 134.93.131.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



174902-12 Hsu, Paul, and Binder J. Chem. Phys. 137, 174902 (2012)

10-4

10-3

10-2

10-1

1

10-4 10-3 10

(a) (b)

(c) (d)

-2 10-1 1 π

S
⊥
(q

⊥
)

q⊥

b

qb = 0.4

d = 3

L = 25600

30.000
1.500
1.150
1.070
1.015
1.000

10-4

10-3

10-2

10-1

1

10-4 10-3 10-2 10-1 1 π

S
⊥
(q

⊥
)

q⊥

b

qb = 0.05

d = 3

L = 25600

1.250
1.150
1.070
1.025
1.005
1.000

10-4

10-3

10-2

10-1

1

10-4 10-3 10-2 10-1 1 π

S
⊥
(q

⊥
)

q⊥

b

qb = 0.4

d = 2

L = 25600

1.000
1.005
1.015
1.070
5.000

30.000

10-2

10-1

1

10-4 10-3 10-2 10-1 1 π
S

⊥
(q

⊥
)

q⊥

b

qb = 0.01

d = 2

L = 25600

1.100
1.070
1.040
1.015
1.005
1.000

FIG. 11. Log-log plot of the structure factor S⊥(q⊥) versus q⊥ for d = 3 and two choices of the stiffness parameter qb, qb = 0.4 (a) and qb = 0.05 (b), and also
for d = 2 and two choices of qb, namely, qb = 0.4 (c) and qb = 0.01 (d). In each case several choices of b = exp (f/kBT) are included, as indicated. Chain length
is L = 25 600 throughout.

10-6

10-5

10-4

10-3

10-2

10-1

1

10-5 10-4 10

(a) (b)

(c) (d)

-3 10-2 10-1 1 π

S
||(

q |
|)

q||

b

qb = 0.4d = 3

L = 25600

1.000
1.015
1.070
1.150
1.500

30.000
10-4

10-3

10-2

10-1

1

10-5 10-4 10-3 10-2 10-1 1 π

S
||(

q |
|)

q||

b

qb = 0.05d = 3

L = 25600

1.000
1.005
1.025
1.070
1.150
1.250

10-6

10-5

10-4

10-3

10-2

10-1

1

10-5 10-4 10-3 10-2 10-1 1 π

S
||(

q |
|)

q||

b

qb = 0.4d = 2

L = 25600

1.000
1.005
1.015
1.070
5.000

30.000
10-5

10-4

10-3

10-2

10-1

1

10-5 10-4 10-3 10-2 10-1 1 π

S
||(

q |
|)

q||

b

qb = 0.01
d = 2

L = 25600

1.000
1.005
1.015
1.040
1.070
1.100

FIG. 12. Log-log plot of the structure factor S||(q||) versus q|| for d = 3 and two choices of the stiffness parameter qb, qb = 0.4 (a) and qb = 0.05 (b), and also
for d = 2 and two choices of qb, namely, qb = 0.4 (c) and qb = 0.01 (d). In each case several choices of b = exp (f/kBT) are included. Chain length is L = 25 600
throughout.

Downloaded 06 Nov 2012 to 134.93.131.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



174902-13 Hsu, Paul, and Binder J. Chem. Phys. 137, 174902 (2012)

10-6

10-4

10-2

10-3 10-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

30.000
1.500
1.150
1.003
1.001

10-6

10-4

10-2

10-3 10

(a) (b)

(c) (d)

-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

b qb = 0.4

d = 3
L = 25600

slope = 2-1/ν

Debye function
10-6

10-4

10-2

10-3 10-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

2.250
1.250
1.100
1.015
1.003

10-6

10-4

10-2

10-3 10-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

b qb = 0.05

d = 3

L = 25600
slope = 2-1/ν

Debye function

10-8

10-6

10-4

10-2

10-4 10-3 10-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

30.000
1.070
1.015

1.0006
1.0004

10-8

10-6

10-4

10-2

10-4 10-3 10-2 10-1 1 π

q ⊥2  S
⊥
(q

⊥
)

q⊥

b qb = 0.4

d = 2

L = 25600

slope = 2-1/ν

Debye function 10-8

10-6

10-4

10-2

10-4 10-3 10-2 10-1 1 π
q ⊥2  S

⊥
(q

⊥
)

q⊥

1.300
1.100
1.005

1.0001
1.00003

10-8

10-6

10-4

10-2

10-4 10-3 10-2 10-1 1 π
q ⊥2  S

⊥
(q

⊥
)

q⊥

b qb = 0.01

d = 2

L = 25600
slope = 2-1/ν

Debye function
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⊥S⊥(q⊥) versus q⊥ for d = 3 and two choices of the stiffness parameter qb, qb = 0.4 (a) and qb = 0.05 (b), and also for d = 2 and

two choices of qb, namely, qb = 0.4 (c) and qb = 0.01 (d). The curves are the Debye function, Eq. (42) with X⊥ = 3
2 q2

⊥〈R2
g,⊥〉 in d = 3, and X⊥ = 3q2

⊥〈R2
g,⊥〉

in d = 2. In each case several choices of b = exp (f/kBT) are included. Chain length is L = 25 600 throughout.

behavior in more detail below. Here, we only note that the
maxima of these oscillations decay according to a power law,
similar to the power law of S⊥(q⊥) in the intermediate range
of q⊥. The minima of S||(q||), as well as S||(q||) itself at larger
values of q|| where the oscillations of q|| have decayed, show
a slow further decrease with q||. While for very large q|| = q⊥
but not very strong stretching (b < 1.5) we have S||(q||)
= S⊥(q⊥), if the chains are flexible (qb = 1, qb = 0.4), this
is not the case for stiff chains: S||(q||) � S⊥(q⊥) for q|| = q⊥
then.

In order to understand these results more quantitatively,
we first report S⊥(q⊥) in form q2

⊥S⊥(q⊥) versus q⊥ and com-
pare to the Debye function, Eq. (42), but using 〈R2

g,⊥〉 from
the simulation (rather than any theoretical prediction for it).
Figure 13 shows that the Debye function works surprisingly
well: for d = 3 the slope 2 − 1/ν indicating non-Gaussian
behavior is seen for qb = 0.4 only for weak stretching (b
= 1.001 and 1.003), while for larger stretching forces a
horizontal part in the plot q2

⊥S⊥(q) has developed. Also in
d = 2 the excluded volume regime, where the slope 2 − 1/ν is
compatible with the data, is pronounced only for rather flex-
ible chains (qb = 0.4, Fig. 13(c)), while for stiff chains in d
= 2 (qb = 0.01) excluded volume effects show up in S⊥(q⊥)
only for extremely weak stretching (such as b = 1.0001, i.e.,
f/kBT = 10−4). For stronger stretched semiflexible chains in d
= 2, the Debye function describes the data for small q⊥ (q⊥
≤ 10−2), but then a crossover to S⊥(q⊥) ≈ const and hence
q2

⊥S⊥(q⊥) ∝ q2
⊥ sets in.

The behavior of S||(q||) when plotted in the form q2
‖S‖(q)

vs. q|| is particularly striking (Fig. 14). Again excluded vol-

ume effects (described by a slope 2 − 1/ν again) are pro-
nounced only for very small forces. For somewhat larger
forces (e.g., for b ≥ 1.070 for qb = 0.4 and for b ≥ 1.015 for qb

= 0.05 in d = 3, and in d = 2 for b ≥ 1.015 for qb = 0.4, and
for b ≥ 1.005 for qb = 0.01), the oscillatory behavior of the
structure factor, described by the Debye function with com-
plex X|| (Eq. (41)), sets in. To interpret this behavior in more
detail, we write X|| = a + ic, where a = q2

‖ (〈X2〉 − 〈X〉2)/2
and c = q||〈X〉, to rewrite Eq. (42) as follows:

S‖(q‖)

= 2
exp(−a)[(a2−c2) cos c−2ac sin c]+a3+ac2+c2−a2

(a2+c2)2
.

(58)

There are two distinct parts, an exponentially damped oscil-
latory part and a “background part” which survives when the
oscillatory part has died out. For a � 1, this background part
can be written as (for large stretching there is a regime where
a2 � c2)

S‖(q‖) ≈ 2a

c2
= 〈X2〉

〈X〉2
− 1. (59)

When the oscillations have died out, there is a flat part of
S||(q||), independent of q||, S||(q||) hence measures the relative
fluctuation in the length of the strongly stretched polymer.

We now consider the oscillatory part of Eq. (58). Since
we are in a regime where a2 � c2, the maxima are reached
when cos c = −1 and when a � 1 and hence exp (−a) ≈ 1
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FIG. 14. Log-log plot of q2
‖S‖(q‖) versus q|| for d = 3 and two choices of the stiffness parameter qb, namely, qb = 0.4 (a) and qB = 0.05 (b), and also for

d = 2 and two choices of qb = 0.4 (c) and qb = 0.01 (d). The curves are the Debye function, Eq. (58) with complex X‖ = q2
‖ (〈X2〉 − 〈X〉2)/2 + iq‖〈X〉,

and the straight line shows the excluded volume power law (slope =2 − 1/ν). In each case several choices of b = exp (f/kBT) are included. Chain length is
L = 25 600 throughout.
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FIG. 15. Log-log plot of q2
⊥S⊥(q⊥) versus q⊥ in d = 3 dimensions for qb = 0.2 (a), 0.1 (b), 0.03 (c), and 0.01 (d), for several choices of the force parameter b

= exp (f/kBT), as indicated. The curves are the Debye function, Eq. (42) with X⊥ = 3
2 q2

⊥〈R2
g,⊥〉. When the data settle down at a horizontal plateau, it yields an

estimate of 4/(3〈R2
g,⊥〉).
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FIG. 16. Log-log plot of q2
⊥S⊥(q⊥) versus q⊥ in d = 2 dimensions for qb = 0.2 (a), 0.1 (b), 0.05 (c), and 0.03 (d), for several choices of the force parameter

b = exp (f/kBT), as indicated. The curves are the Debye function, Eq. (42) with X⊥ = 3q2
⊥〈R2

g,⊥〉, and the straight line shows the excluded volume power law

(slope = 2 − 1/ν). From the Debye plateau 2/(3〈R2
g,⊥〉) can be extracted.

we have

Smax
‖ (q‖) ≈ 4

c2
= 4

q2
‖ 〈X〉2

, q‖〈X〉 = (2m + 1)π,

m = 0, 1, . . . , (60)

and q2
‖S

max
‖ ≈ const , as observed from Eq. (58), and the sim-

ulation.
When we compare these results to the scattering from

rigid rods, however, Eq. (26) predicts maxima that are un-
damped and minima that are zero, so for increasing q|| the os-
cillations continue forever. However, this is a result for a rod
of strictly fixed length Lrod. The polymer under strong stretch
(with 1 − 〈X〉/L � 1) is only similar to a rod of fluctuat-
ing length, and this fact is borne out by S||(q||) at large q||
(Eq. (59)).

The success of the Debye function, Eqs. (41) and (58)
for the description of the scattering from strongly stretched
chains in both d = 2 and d = 3 dimensions is very remark-
able, since it is derived from Gaussian chain statistics,40 and
we have seen that in d = 2 in the absence of stretching
forces Gaussian statistics does not work, irrespective of chain
stiffness.

At the end of this section, we emphasize that the exam-
ples given for the success of the Debye function for stretched
chains, as derived by Benoit et al.,40 are not accidental, but
typical for a wide range of chain stiffnesses. As an example,
we show further data for S⊥(q⊥) in both d = 2 and d = 3
and various other choices of qb in Figs. 15 and 16. Whenever
the plots indicate a well-defined plateau, one can extract an

estimate of 〈R2
g,⊥〉 from it (the actual values of 〈R2

g,⊥〉 that
were independently estimated were used to predict the Debye
functions as shown in Figs. 15 and 16). As has been shown
already in Fig. 8, the radii 〈R2

g,⊥〉 do have a broad regime of
forces f/kBT where excluded volume effects (“Pincus blob” –
behavior) prevail, so the success of the Debye function must
not be over-emphasized, it does not mean that the chain con-
formation follow Gaussian statistics.

VI. CONCLUSIONS

In this paper, we have presented a comparative simula-
tion study of the single-chain structure factor S(q) for vari-
able stiffness of the macromolecules in both d = 2 and d
= 3 dimensions, both for coils in equilibrium in dilute so-
lution under good solvent conditions, and for polymers under
the influence of a stretching force. Characteristic linear di-
mensions of the macromolecules that are needed in the theo-
retical interpretation of S(q), have in our Monte Carlo simula-
tion always been estimated directly and hence independently,
such as the mean square gyration radius 〈R2

g〉 and the per-
sistence length �p. In the presence of stretching forces, the
extension 〈X〉 in the direction of the force (as well as fluc-
tuations 〈X2〉 − 〈X〉2, and components of the gyration radius
〈R2

g⊥〉 and 〈R2
g‖〉 have been obtained as well. The simulations

are performed for the strictly monodisperse case, the num-
ber of bonds N and hence also the contour length L = N�b of
the chain molecules are known input parameters of the sim-
ulation. In this respect, a more definite interpretation of the
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outcome of the simulations can be expected, than for corre-
sponding experiments (where polydispersity is a problem, and
often the average contour length is not a priori known but is
obtained from fitting suitable experimental data). However,
the drawback of our Monte Carlo simulations on a lattice
is the highly idealized character of our coarse-grained model,
the self-avoiding walk with additional energy penalty for
kinks. Nevertheless, the comparison between our simulation
results for the mean square gyration radius versus the num-
ber of “Kuhn segments” nK with corresponding experimental
data (Fig. 1) is very encouraging: one notes a striking simi-
larity between simulation and experiment, and also the same
range of dimensionless variables (nK and 〈R2

g〉/(2�p)2) is ob-
tained. The simulation has the bonus that directly single-chain
properties are obtained (no extrapolation as a function of the
concentration c of the solution towards c → 0 is required and
the stiffness is easily controlled by changing the energy pa-
rameter εb/kBT that describes the cost of making a kink). In
experiment, stiffness can only be widely varied by combining
data for polymers with different chemical structure.

From our data, we have confirmed the conclusion that in
d = 2 a direct crossover occurs from rod-like behavior to self-
avoiding walks, with a scaling 〈R2

g〉 ∝ �
1/2
p L3/2, without the

existence of any intermediate regime with Gaussian behavior
(Fig. 3). In d = 3, however, such an intermediate regime has
been found, Fig. 2, for 1 � nK � n∗

K ∝ (�p/D)ζ , where D is
the local chain diameter and the exponent ζ is in the range 1.5
≤ ζ ≤ 2. Thus, there is no universal value n∗

K where excluded
volume effects set in, but rather n∗

K → ∞ for �p/D → ∞.
In the equilibrium structure factor S(q), in the absence of

stretching forces, correspondingly several regimes can be dis-
tinguished. For small enough q, the standard Guinier behav-
ior always occurs, which contains the information on 〈R2

g〉, of
course. For d = 2, one then always has the excluded volume
regime (for long enough chains), S(q) ∝ q−4/3, and possibly
(for rather stiff chains) a crossover to rod-like behavior (S(q)
∝ q−1) sets in gradually. A Gaussian behavior S(q) ∝ q−2 is
never seen, unlike the case d = 3, where this behavior does
become visible for very stiff chains (before for still larger
q the rod-like behavior starts). The excluded volume power
law, S(q) ∝ q−1/ν with ν ≈ 0.588, is only visible for not very
stiff chains (if chain lengths L ≤ 25 600 are analyzed, as done
here: if L → ∞, this power law would emerge for any finite
value of the persistence length). This pattern of behavior (Fig.
4) could have been a priori expected, but we also show via
Kratky plots (qLS(q) vs. qL) that for semiflexible chains in d
= 3 the expressions derived by Kholodenko and by Stepanow
provide a quantitatively accurate description. For large q this
quantity qLS(q) settles down at π , unlike the behavior pre-
dicted for flexible chains (the Debye function predicts qLS(q)
∝ q−1 for large q). However, the onset of the plateau occurs
gradually in the decade 1 < q�p < 10; thus the onset of the
plateau allows an estimation of �p only somewhat roughly.
The peak position of the Kratky plot (Figs. 5 and 6) reflects
the theoretically expected scaling of the gyration radius with
L and �p, even though in the Kratky plot (Fig. 5) direct evi-
dence for excluded volume effects seem to be minor.

Des Cloizeaux23 derived LqS(q) = π + const(q�p)−1

from the Kratky-Porod model for L → ∞ with the constant

being 2/3 (Eq. (1)). Unfortunately, this result is at variance
with our numerical results (Fig. 7). The reason for this prob-
lem is still not clear.

Turning to the behavior of chains under the influence of
stretching forces, we have shown that for weak forces, where
linear response holds, excluded volume effects invalidate the
Kratky-Porod model completely in d = 2 dimensions, and one
typically observes a broad range of forces where the exten-
sion versus force relation is a power law, and also 〈R2

g⊥〉, 〈X2〉
− 〈X〉2 scale like (f�p/kBT)1/ν − 2 in this “Pincus blob” regime.
In d = 3, dimensions, however, a Pincus blob regime also
exists, but its observability is restricted. For large kBT/f, how-
ever, the (continuum) Kratky-Porod descriptions is not valid
for our discrete lattice model either: then 〈R2

g⊥〉 and 〈X2〉
− 〈X〉2 decrease like exp (−f/kBT) for f/kBT � 1.

Although the excluded volume effects show up clearly in
the chain extensions and gyration radii components, Benoit’s
extension of the Debye formula to stretched chains40 is sur-
prisingly accurate for both the transverse (S⊥(q⊥)) and paral-
lel parts (S||(q||)) of the structure factor. The oscillatory be-
havior of S||(q||) for strongly stretched chains shows that their
conformations resemble a string of elastically coupled par-
ticles. Thus, if measurable, the structure factor of stretched
chains would add valuable information on their conforma-
tions.

As we have emphasized in our paper, the statistical me-
chanics of semiflexible polymers has been a longstanding and
controversial problem of polymer science. The subject is of
great relevance for biopolymers, but also of broad interest in
material science. We expect that the present study will be use-
ful both for the interpretation of experiments and stimulate
further theoretical studies, such as of the interplay between
solvent quality and chain stiffness.
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APPENDIX: SCATTERING FUNCTION OF RANDOM
WALK CHAINS UNDER CONSTANT PULLING FORCE

The paper by Benoit et al.40 uses the distribution func-
tion of the end-to-end vector of a Gaussian chain of |i − j|
repeat units for the calculation of the single chain scattering
function. The result is the well-known Debye function.

Following an idea from Doi’s book,75 one can derive the
diffusion equation yielding the end-to-end vector distribution
in the following way. Assume a stepwise Markov growth of
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the chain

P ( �R,N) =
∑

i

P ( �R − �li , N − 1)p(�li) . (A1)

The sum over “i” goes over an isotropic bond vector set, i.e.,
both �li and −�li are members of the set.

Expanding the right side to first order in N and to second
order in �R yields

P ( �R − �li , N − 1) = P ( �R,N) − ∂P

∂N
−

3∑
α=1

∂P

∂Rα

li,α

+ 1

2

3∑
α=1

3∑
β=1

∂2P

∂Rα∂Rβ

li,αli,β + . . . .

(A2)

Averaging the derivatives with respect to Rα with a symmet-
ric bond probability p(�li) (in the simplest case this is just one
over the number of bonds) gives zero for the first derivative
and δαβ l2/3 for the second term, resulting in the diffusion
equation ∂P/∂N = l2∇2P/6. Solving this for a bulk chain gives
the well-known result for the end-to-end vector distribution

P ( �R,N) = (2πNl2/3)−3/2 exp

(
− 3R2

2Nl2

)
. (A3)

The Debye function is derived by averaging with this
probability.40

The derivation above is useful as a starting point for cal-
culating the scattering function for a pulled chain. Then the
bond probabilities are not symmetric. For our model

p0 = b

b2 + 4b + 1
, (A4)

p+ = b2

b2 + 4b + 1
,

(A5)

p− = 1

b2 + 4b + 1

for moves perpendicular to the pulling direction, in +X direc-
tion and in −X direction, respectively, where b = exp (fl/kBT)
with l = 1 is used as in the main text. When we now expand
Eq. (A2) and perform the average over the bond probabilities,
we obtain

∂P

∂N
= −(p+ − p−)l

∂P

∂X
+ p0l

2

(
∂2P

∂Y 2
+ ∂2P

∂Z2

)

+ p+ + p−
2

l2 ∂2P

∂X2
. (A6)

For p+ = p− = p0, this reduces to the normal diffusion equa-
tion. This equation has to be solved with the boundary condi-
tions

P ( �R, 0) = δ( �R),
(A7)

P ( �R,N) → 0 for R → ∞.

Let us define D⊥ = 2p0l2, D|| = (p+ + p−)l2, and v = (p+
− p−)l, so we have

∂P

∂N
= −v

∂P

∂X
+ 1

2
D⊥

(
∂2P

∂Y 2
+ ∂2P

∂Z2

)
+ 1

2
D‖

∂2P

∂X2
.

(A8)

These are three diffusion processes in the three Cartesian di-
rections, X is parallel to the force, Y and Z are perpendicular.
The solutions for the perpendicular directions are the same as
for the force-free case. For the parallel direction, we have an
altered diffusion coefficient and a drift part to the process, i.e.,
a Gaussian diffusion around a deterministic drift. The com-
plete solution to Eq. (A8) is, therefore, given by

P (X, Y,Z,N) = 1

2πND⊥

1√
2πND‖

e
− Y2+Z2

2ND⊥ e
− (x−vN)2

2ND‖ .

(A9)

For p0 = p+ = p− = 1/6, we obtain back the force free solu-
tion. To calculate the scattering function, we follow the pro-
cedure employed in the calculation of the Debye function in
the force free case.

S(�q) = 1
N2

∑
i,j 〈ei �q·�rij 〉 can be calculated assuming a

continuous chain model (i.e., only look at distances much
larger than � = 1) so that the distribution for the �rij is given
by the above Gaussian distribution

S(�q) = 1

N2

∑
i,j

∫
d3�rijP (�rij , |i − j |)ei �q·�rij , (A10)

where we have P (�rij , |i − j |) = PY (Y, |i − j |)PZ(Z,

|i − j |)PX(X, |i − j |) and PY and PZ have the same func-
tional form and all Pi are normalized to one individually.

1. Scattering in the perpendicular direction

S(�q⊥) = 1

N2

∑
i,j

∫
dY

∫
dZPY (Y, |i − j |)

×PZ(Z, |i − j |)ei �q⊥· �ρij , (A11)

where ρij = Y êY + ZêZ . So we have to evaluate

S(qY , qZ) = 1

N2

∑
i,j

∫
dY

1√
2π |i − j |D⊥

e
− Y2

2|i−j |D⊥ eiqY Y

∫
dZ

1√
2π |i − j |D⊥

e
− Z2

2|i−j |D⊥ eiqZZ (A12)

resulting in

S(q⊥) = 1

N2

∑
i,j

e− q2⊥D⊥|i−j |
2 . (A13)
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This is evaluated by a continuum approximation for the two
sums,

∑
i → ∫ N

0 du and
∑

j → ∫ N

0 dv which finally yields

S(q⊥) = 4

Nq2
⊥D⊥

+ 8

N2q4
⊥D2

⊥
(e− q2⊥D⊥N

2 − 1). (A14)

2. Scattering in the parallel direction

S(q‖) = 1

N2

∑
i,j

∫
dX

1√
2π |i − j |D‖

e
− (x−v|i−j |)2

2|i−j |D‖ eiq‖X,

(A15)
which now results in

S(q‖) = 1

N2

∑
i,j

e− q‖D‖|i−j |
2 cos(q‖v|i − j |) . (A16)

Performing the final calculation again in the continuum ap-
proximation gives

S(q‖) = 4

N

D‖q2
‖

q4
‖D

2
‖ + 4v2q2

‖

+ 8

N2

q4
‖D

2
‖ − 4v2q2

‖
(q4

‖D
2
‖ + 4v2q2

‖ )2
(e− q2‖ D‖N

2 cos(Nvq‖) − 1)

− 32

N2

q3
‖D‖v

(q4
‖D

2
‖ + 4v2q2

‖ )2
e− q2‖ D‖N

2 sin(Nvq‖). (A17)

This result determines our scattering functions with parame-
ters depending on the applied force f, so these equations con-
tain no free parameters. Both functions reduce to the Debye
function for the force free isotropic case (v = 0, D⊥ = D||
= l2/3) as it should be, because the scattering function does
then not depend on the direction of the scattering vector.

For fitting purposes, it might yield better results to re-
place some of the quantities by average values determined in
the simulation. For the Y and the Z components simple Gaus-
sian statistics holds, 〈Y〉 = 〈Z〉 = 0,

〈Y 2〉 = 〈Z2〉 = ND⊥, (A18)

〈
R2

g,Y

〉 = 〈R2
g,Z〉 = ND⊥

6
(A19)

but in the force direction we get from Eq. (A9) the moments
of the end-to-end distance

〈X〉 = Nv, 〈X2〉 = N2v2 + ND‖, (A20)

〈�X2〉 = ND‖, 〈R2
g,X〉 = ND‖

6
+ D‖N2v2

12
. (A21)

Rewriting the scattering functions in terms of 〈R2
g,⊥〉 yields

S(q⊥) = 4

3q2
⊥
〈
R2

g,⊥
〉 + 8[

3q2
⊥
〈
R2

g,⊥
〉]2 (e− 3q2⊥〈R2

g,⊥〉
2 − 1).

(A22)

This is the Debye function with the appropriate prefactors,
because for 〈R2

g,⊥〉 = 2/3〈R2
g〉 it reduces to Eq. (18). For the

scattering parallel to the pulling direction

S(q‖) = 4
q‖〈�X2〉

q4
‖ 〈�X2〉2 + 4q2

‖ 〈X〉2

+ 8
q4

‖ 〈�X2〉2 − 4q2
‖ 〈X〉2

(q4
‖ 〈�X2〉2 + 4q2

‖ 〈X〉2)2
(e− q2‖ 〈�X2〉

2 cos(q‖〈X〉)−1)

− 32
q3

‖ 〈�X2〉〈X〉(
q4

‖ 〈�X2〉2 + 4q2
‖ 〈X〉2

)2 e− q2‖ 〈�X2〉
2 sin(q‖〈X〉).

(A23)

This gives the same formula as Eq. (58) when X|| in Eq. (41)
is written by X|| = a + ic with a = q2

‖ 〈�X2〉/2, and
c = q||〈X〉. For 〈X〉 = 0 and 〈�X2〉 = 〈X2〉 = 6〈R2

g,X〉
= 2〈R2

g〉 this again reduces to the Debye function, Eq. (18).

3. Scattering in d = 2

Both scattering functions as calculated in Eqs. (A14) and
(A17) remain formally unchanged. However, the probabilities
for the single steps change to

p0 = b

b2 + 2b + 1

p+ = b2

b2 + 2b + 1
(A24)

p− = 1

b2 + 2b + 1
.

The parallel and perpendicular diffusion coefficients as well
as the drift velocity still have the same functional dependence
on these probabilities. However, introducing the chain exten-
sions into Eqs. (A14) and (A17) for d = 2 changes the predic-
tion Eq. (A22) for the perpendicular scattering to

S(q⊥) = 2

3q2
⊥
〈
R2

g,⊥
〉 + 2

(3q2
⊥
〈
R2

g,⊥
〉
)2

(e−3q2
⊥〈R2

g,⊥〉 − 1),

(A25)

whereas it leaves Eq. (A23) unchanged. Taking X⊥
= 3q2

⊥〈R2
g,⊥〉, the expression of Eq. (A25) has the same form

as Eq. (42).
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