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The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the
attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details
of the first-order phase transition between the coil state at large height H ≥ Htr and a bridge state at
H ≤ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the
chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate
adsorption regime at (H/Na)tr ≤ 0.27 where N is the number of monomer units of linear size a. An
analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions
is presented in this regime. The theory provides an excellent quantitative description of numerical
results at all heights, 10 ≤ H/a ≤ 320 and all chain lengths 40 < N < 2560 without free fitting
parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain
in the strong adsorption regime at (H/Na)tr ≥ 0.5 is presented. We discuss some unconventional
properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved
in the bridge state, and abnormal behavior in the microcanonical ensemble. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4876717]

I. INTRODUCTION

Investigations of the properties of a single polymer chain
adsorbed on a solid surface have received a new impetus after
manipulations with individual macromolecules became feasi-
ble in experiments with atomic force microscopes (AFM),1–5

optical tweezers,6, 7 magnetic traps,8, 9 etc. The force needed
to detach a chain from an adsorbing surface was measured for
different types of substrates and polymers. Ranges of force are
about 50–80 pN.10 In AFM experiments, one end of a poly-
mer molecule is customary anchored onto the AFM cantilever
(as a rule, the surface of the cantilever is inert to the poly-
mer). The polymer molecule is adsorbed onto the substrate
while the cantilever recedes from the substrate. In an AFM ex-
periment, the average force is measured whereas the distance
between the tip and the surface is varied.

These experiments (for review of early work see
Refs. 11 and 12) have stimulated a number of theoretical stud-
ies which provided a better insight into the equilibrium be-
havior and the mechanism of polymer detachment from an
adsorbing surface, see Refs. 13 and 14 for review. We will dis-
cuss below only the case of a flexible homopolymer chain. An
exact analytical theory for a continuum Gaussian chain with
one end fixed near a solid adsorbed surface was constructed
in Ref. 15 and near a liquid-liquid interface in Ref. 16. Com-
puter simulation using the Wang-Landau method with an

a)Electronic mail: astarling@yandex.ru

off-lattice model chain with excluded volume interactions was
performed in Ref. 17.

In this paper, we present Monte Carlo (MC) simulations
of the coil-bridge transition for a self-avoiding lattice chain by
using the pruned-enriched Rosenbluth method (PERM). We
construct an analytical theory and demonstrate an excellent
quantitative agreement between this theory and simulation re-
sults for any chain length down to short chains with several
dozen monomer units.

II. ANALYTICAL THEORY OF THE COIL-BRIDGE
TRANSITION

A. General approach

Consider a polymer chain having one end free and the
other end pinned at the distance H from an adsorbing surface.
We assume good solvent conditions throughout. The partition
function of the chain can be written in the very general form
as Q = Qbridge + Qcoil, which means that all the conformations
the chain acquires can be divided into two groups: coil-like,
that have no contacts with the surface, and bridging, with at
least one monomer contacting with the surface, see Fig. 1.
The bridge conformation is composed of a strongly stretched
strand and an adsorbed “pancake,” so its free energy is Fbridge

= Fstrand + Fads. Here and below, all energetic quantities are
expressed in kBT units, and the monomer unit length, a, is
taken as a unit length. The partition function of the coil has a
general form Qcoil ≈ e−Nμcoil , where the monomer chemical

0021-9606/2014/140(20)/204908/11/$30.00 © 2014 AIP Publishing LLC140, 204908-1
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FIG. 1. Snapshots of the simulated system: single self-avoiding chains on
the simple cubic lattice having one end free and the other end pinned at the
distance H from an adsorbing surface. (a) Coil (desorbed state); (b) bridge
(adsorbed state). Monomers in bridge state having contacts with surface are
shown in blue.

potential μcoil = −ln q3 and q3 is the effective coordination
number (connectivity constant) in three dimensions. We will
take the coil as a reference state so that all the free energies are
counted from that of the coil, i.e., with this choice, Qcoil = 1
and μcoil = 0. When a calculation involves absolute entropies
(as in Sec. V), the term μcoil = −ln q3 must be subtracted (the
corresponding chemical potentials will be marked with tilde
sign).

If the strand comprises n monomer units and the rest
N − n units belong to the adsorbed pancake the (non-
equilibrium) bridge free energy can be written as follows:

�bridge(N,H, ε, n) = (N − n)μads(ε) + Fstrand (n,H ),

(1)

where μads(ε) is the chemical potential of a monomer unit
in the adsorbed pancake, ε is the strength of the monomer-
surface attraction. Strictly speaking, this expression is an ap-
proximation because it neglects interactions between loops of
the adsorbed part of the bridge and the strand. However, for
a self-avoiding walk (SAW) chain the corresponding contri-
bution is negligibly small while for the ideal chain models
Eq. (1) is even exact.

The distribution of monomers between the adsorbed and
the stretched part is determined via minimization of the free
energy �bridge with respect to n

∂�bridge

∂n

∣∣∣∣
n=n∗

= 0 . (2)

The solution of Eq. (2) gives the equilibrium value of the num-
ber of monomer units in the strand, n∗ = n∗(N, H, ε) and hence
the equilibrium bridge free energy

Fbridge(N, H, ε) = �bridge(N, H, ε, n∗). (3)

This approach yields the partition function in the following
form:

Q(N,H, ε) ≈ e−Nμcoil + e−Fbridge(N,H, ε). (4)

Here, we write the approximate equality because in the par-
tition function of the coil state (the first term in the rhs of
Eq. (4)) only linear in N term is taken into account and, in
addition, the influence of the surface is neglected (μcoil refers
to the coil in a bulk, i.e., in an infinite space). Note that we
use the convention that the product of Boltzmann’s constant

and absolute temperature is unity throughout. All the equilib-
rium average characteristics of the coil-bridge transition are
generated by the partition function. In particular, the transi-
tion point is defined by the condition

Fbridge(N, H, ε) = Nμcoil . (5)

Equation (5) (which should be solved together with Eq. (2))
provides the binodal (coexistence) line in the (H/N, ε) plane.
If the distance to the adsorbing surface, H, is larger than the
transition point value, the bridge state is metastable. With the
increase in H, the fraction of segments belonging to the ad-
sorbed pancake decreases until the spinodal condition

n∗(H, ε) = N (6)

is reached. In other words, the spinodal state in the considered
system is the “pure strand” state bridging the pinning point H
to the adsorbing surface with a vanishing number of contacts
with the latter.

The above equations are quite general. However, even
for the simple case of lattice models the strand free energy
Fstrand(n, H) typically does not have a closed-form exact solu-
tion. Instead, it can be defined parametrically by introducing
a force f applied to the fixed end of the chain and representing
Fstrand via a Legendre transform

Fstrand = nμstrand (f ) + Hf, (7)

where μstrand(f) is the chemical potential of a monomer unit in
the chain subjected to force f. This approach has an advantage
since exact expressions are available for μstrand(f) for several
ideal chain models. The height H is related to the force f via

ξ = H

n
= −∂μstrand (f )

∂f
, (8)

where ξ is the deformation of the strand. The non-equilibrium
bridge free energy is given by

�bridge = (N − n)μads + nμstrand + Hf . (9)

The condition

μstrand (f ) = μads(ε) (10)

expresses the equilibrium with respect to monomer exchange
between the strand and the adsorbed pancake and defines the
relation f(ε). Thus, the equilibrium free energy of the bridge
has the form of

Fbridge(N,H, ε) = Nμads(ε) + Hf (ε) . (11)

Along the binodal line Fbridge = Fcoil = 0. As a final result,
the binodal and spinodal lines are given by(

H

N

)
binodal

= −μads(ε)

f (ε)
, (12)

(
H

N

)
spinodal

= −dμstrand (f )

df
, (13)

where the derivative is evaluated at f(ε) as defined by Eq. (10).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

91.151.190.50 On: Tue, 27 May 2014 15:07:54



204908-3 Klushin et al. J. Chem. Phys. 140, 204908 (2014)

B. Scaling description of the moderate
adsorption regime

The general theory contains three chemical potentials,
μcoil, μads(ε), and μstrand(ξ ) as basic ingredients. In our MC
simulations, the adsorption energy is fixed while the ratio H/N
serves as the control parameter. In the case of moderate ad-
sorption strength, the strand is also moderately stretched and
finite extensibility effects are not important. Then the defor-
mation of a self-avoiding strand can be described on the basis
of a scaling approach.

1. Strand free energy

The expression for the strand elastic free energy follows
from the free end probability distribution function of the chain
tethered to an impenetrable plane PN(z) where N is the chain
length and z is the free end distance from the plane. In our
work, we use the form of PN(z) suggested by Fisher18 and
presented in Refs. 19–21,

PN (z) = B

RN

(
z

zav

)ζ

exp

[
−C

(
z

zav

)δ
]

, (14)

where zav =
√

〈z2〉 ∼ Nν is the root mean square (rms)
z-component of the end-to-end vector of the grafted chain,
the exponents are ζ ≈ 0.8, δ = 1/(1 − ν), the Flory exponent
ν ≈ 0.588. Constants B and C are determined via normal-
ization conditions

∫
PN(z)dz = 1 and

∫
z2PN (z)dz = z2

av:
in particular, C = [	( ζ+3

δ
)]δ/2[	( ζ+1

δ
)]−δ/2 ≈ 0.671. As

PN(H) ∝ exp (−F(H)) can be interpreted in terms of con-
formational free energy, and the long distance behavior is
dominated mainly by the exponential function in Eq. (14),
the free energy of the strand consisting of n monomers
with the end-to-end distance H may be simplified to
Fstrand = C(H/zav(n))δ (here possible logarithmic correc-
tions to Fstrand have been ignored). The rms z-component of
the end-to-end vector of the grafted chain is related to the
chain length via z2

av(n) = kn2ν . According to Grassberger,22

who has performed extensive calculations for the tethered
chain on a cubic lattice using the PERM algorithm, in the
infinite chain limit the value of k tends (from below) to 0.75.
However, for shorter chains this ratio is less than 0.75; for
the chain lengths 70 ≤ N ≤ 320, the coefficient k falls into
range 0.58 < k < 0.68 (lower k correspond to shorter chains)
Hence, we can finally express the strand elastic free energy

Fstrand = A

(
H

nν

)δ

(15)

with A = C/k1/2(1 − ν), where for 70 ≤ N ≤ 320 we have 1.07
< C < 1.30. In the present work, we choose the value of
A = 1.2.

To obtain the equilibrium distribution of monomers be-
tween the strand and the adsorbed part, the free energy – Eq.
(1) – should be minimized with respect to n. The minimum is
achieved at

n∗ =
(

− Aν

μads(ε)(1 − ν)

)1−ν

H, (16)

which yields the bridge free energy as

Fbridge(N, H, ε)

= Nμads(ε) + H (−μads(ε))ν
1

ν

(
Aν

1 − ν

)1−ν

. (17)

The full partition function of the system including both bridge
and coil conformations reads

Q = 1 + exp(−Fbridge) . (18)

Remind that the coil was taken as the reference state and,
hence, Q = 1 if no bridge is present. With PERM chains are
grown continuously, N being the running variable. Thus, the
set of independent arguments of the partition function is nat-
urally taken as (H, t, ε) where t = N/H together with ε are
the intensive variables defining the phase diagram while H is
extensive and describes the finite-size effects. The partition
function expressed in these terms reads as

Q(H, t, ε) = 1 + exp

[
H

(
−tμads(ε)

−1

ν
(−μads(ε))ν

(
Aν

1 − ν

)1−ν
)]

. (19)

We note that the expressions presented in this section are sim-
ilar to scaling arguments developed by Chen.17 The main dif-
ference consists in exactness of the present approach: the co-
efficient A in the strand free energy is known and quantita-
tively accurate estimate for the chemical potential of μads(ε),
which is valid far above the adsorption transition point, is
given below in Sec. II B 4.

2. Landau function

As is well known, in the Landau theory of the phase tran-
sitions the non-equilibrium free energy of the system �(s) is
considered as a function of a suitable order parameter s. It
was suggested23, 24 that the chain stretching can be used as the
order parameter in the transitions of the coil-bridge type. For
the coil states, this parameter refers to the chain as a whole, s
= (H − zN)/N, where zN is the position of the untethered chain
end with respect to the adsorbing plane. The maximum value
of the order parameter in the coil state is achieved when the
free end is touching the surface, at z = 0. For the bridge states,
only the strand is stretched, and the order parameter is defined
as s = H/n where n is the number segments in the strand. The
following simple analytical expressions for the two branches
of the Landau free energy follow from Eqs. (1) and (15):

�

(
s, ε,

H

N

)

=

⎧⎪⎨
⎪⎩

Asδ, s ≤ H

N

μads(ε) + H

N

(
Asδ−1 − μads(ε)

s

)
, s ≥ H

N

. (20)

Here A is a numerical constant with the value of A = 1.2, as
discussed above. The two branches of the Landau function
match each other at s = H

N
.
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3. Calculation of observables

By using Eq. (18) for the complete partition function it
is not difficult to find various characteristics of the system
we study. For example, the fraction of monomer units in the
strand is calculated as follows:

〈n〉 = neqQbridge

1 + Qbridge

=
(

− cν

μ(1 − ν)

)1−ν

H
Qbridge

1 + Qbridge

.

(21)

The average order parameter is calculated as 〈s〉 = H/〈n〉
(here, we make no difference between 1/〈n〉 and 〈1/n〉). The
average number of adsorbed monomer units 〈m〉 is calculated
by differentiating the partition function with respect to the ad-
sorption energy

〈m〉 = −∂ log Q

∂ε

= 1

Q
e−Fbridge

[
N − H (−μads)

ν−1

(
cν

1 − ν

)1−ν
]

∂μads

∂ε
.

(22)

Evaluation of the derivative ∂μads

∂ε
is discussed in

Subsection II B 4.

4. Chemical potential of a monomer unit in adsorbed
chains with excluded volume interactions

Our theory depends on several parameters that enter the
free energy expression, Eq. (1). Those related to the strand
are universal exponents or lattice-model dependent parame-
ters which do not depend on the monomer-surface interaction
energy. On the contrary, the adsorbed part contribution is de-
termined by the chemical potential μads(ε) and contains all

the information on the interaction with the surface. No ana-
lytical expression for μads(ε) is available for SAW models.
However, for an ideal lattice chain on a cubic lattice with no
step reversal (5-choice lattice) an analytical solution for the
thermodynamic limit is known.25, 26

It turns out that the ideal 5-choice model is remark-
ably successful in describing the adsorption of self-avoiding
chains. We compare the adsorbed fraction θ and the monomer
chemical potential μads (counted from the respective coil
state) for the two models (SAW and ideal 5-choice walks)
taking chains in the range 64 ≤ N ≤ 2048. If θ and μads

are plotted vs. the difference ε − εc, where εc is the respec-
tive critical adsorption energy (in the infinite chain limit), the
curves calculated for the same chain length N almost coin-
cide, see Fig. 2. This agreement seems quite surprising in
view of the fact that the two models belong to different uni-
versality classes with respect to their critical exponents of
the adsorption transition.27 The excellent agreement becomes
more understandable if we note that the crossover critical
index φ responsible for the thermodynamics of adsorption,
θ ∼ (ε − εc)1/φ − 1, has very close values for the ideal chains,
φ = 1/2, and for SAWs, φ = 0.482.22 Moreover, for chains
with N in the range explored the apparent value of φ is even
closer to14 1/2.

We conclude that the analytical solution for the ideal
chain model will provide a good quantitative description for
the SAW adsorption in the infinite chain limit once the differ-
ence �c = εSAW

c − εid
c in the critical values between the two

models is accounted for

μSAW
ads (ε) ≈ μid

ads(ε − �c). (23)

The critical adsorption energy εc for SAW has been deter-
mined with high accuracy,22, 28 εSAW

c ≈ 0.284, while for the
ideal 5-choice walk it is known exactly, εid

c = ln(5/4).
The function μid

ads(ε) is expressed in the inverse form25

ε = ln
2

3x
− ln

[
1 +

√
1 + 2

(3x)2
(1 − 3x − x2 − 5x3 −

√
(1 − 3x − x2 − 5x3)2 − 64x4)

]
, (24)

where x = 1
5 exp(μid

ads) is the inverse partition function per
step. This equation describes the adsorption regime with
x ≤ 1/5 and ε ≥ ln (5/4).

III. SIMULATION METHOD

Polymer chains are modeled as SAWs on the simple
cubic lattice where excluded volume effects are taken into
account. For our simulations, we apply the force-biased
PERM29 to study the coil-bridge transition. The advantages
of choosing this algorithm are that the partition sum can be
estimated directly, and the configuration space including ho-
mogeneous and inhomogeneous states can be sampled more

efficiently. We are also interested in extending the applica-
tion of our previous proposed force biased PERM although
there exist other algorithms in the literature,17, 19, 30, 31 which
might be efficient for studying the coil-bridge problem. The
strategy for generating sufficient samplings of the bridging
configurations in the phase space is proposed as follows: we
first apply an external constant force fext to pull the free end
of a coil toward to the surface, and release the chain once one
monomer is located at the surface. By varying the strength of
the force, we obtain configurations in the bridge state that a
part of monomer segments is adsorbed onto the surface and
the other part of monomer segments is stretched with various
stretching degree – Fig. 1. The contributions for the bridge
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(a) (b)

FIG. 2. Fraction of adsorbed units (a) and chemical potential difference of a monomer unit (b) for SAW (points) and 5-choice cubic lattice models (lines) as
functions of adsorption energy counted from the respective critical value. The critical values are εc = 0.284 (SAW), and εc = ln (5/4) = 0.223 (ideal 5-choice
walk).

states are given by properly reweighting these configurations
to the case without applying an external force. A biased SAW
describing such a partially stretched polymer in a good sol-
vent under geometrical constraints and surface contact inter-
action is simulated. The partition sum of N steps containing
m monomers on the surface is given by

Zb(N,H ) =
∑
walks

qmb−�z, (25)

with

b =
{

1, (n ≤ N ) : zn = 0
>1, otherwise

, (26)

where �z = zN − H is the displacement of the end-to-end
vector onto the z-direction, b = exp (fext) is the stretching
factor, and q = exp (ε) is the Boltzmann factor. Several dif-
ferent choices of the stretching factor b were used, which
were distinguished by an index k, and properly averaged. The
estimate of the partition sum of the stretching factor bk is,
therefore,

Zbk
(N,H ) = 1

Mbk

∑
config.∈Cbk

Wbk
(N,H ), (27)

where Cbk
denotes all possible configurations, Mbk

is the to-
tal number of trial configurations, and the index k labels runs
with different values of b. By properly re-weighting to com-
pensate introducing extra bias, each generated configuration
contributes a weight W (k)(N,H )

W (k)(N,H ) =
{

Wbk
(N,H )/bH

k , (n ≤ N ) : zn = 0

Wbk
(N,H )/b−�z

k , otherwise
.

(28)

Combining data from runs with different values of b the
estimate of any observable A is given by

〈A〉 =
∑

k

∑
config.∈Cbk

A(Cbk
)W (k)(N,H )∑

k

∑
config.∈Cbk

W (k)(N,H )
(29)

and the estimate of the partition sum becomes

Z(N,H ) = 1

M

∑
k

∑
config. ∈Cbk

W (k)(N,H ), (30)

where M is the total number of trial configurations.

IV. COMPARISON OF SIMULATION AND THEORY
IN THE MODERATE ADSORPTION REGIME

One of the main goals of the present study is to com-
pare quantitatively the results of MC simulations and the the-
ory developed for the coil-to-bridge transition in the weak ad-
sorption regime in Sec. II B. For comparison, we have chosen
several characteristics, such as the statistical weight of coil
conformation Qcoil/Q, the average strand length n/N, adsorbed
fraction θ and its variance, and the average strand extension
(the order parameter s = H/n).

Since PERM is a chain growth algorithm, in simulations,
the chain length N is used as a variable parameter at fixed end
height H; therefore, all the above mentioned characteristics
are presented as functions of N/H rather than more conven-
tional functions of H/N (for the theory both representations
are equally suitable).

These dependences are presented in Figs. 3–9. In order
to avoid “crowding” of theoretical and simulation curves, we
have decided to present them on separate panels in each case.
Panels (a) show the results of the analytical theory presented
in Sec. II and incorporating the excluded volume effects in
model chains on a simple cubic lattice, while panels (b) show
the Monte Carlo results for self-avoiding chains. The whole
set of parallel panels demonstrate not only qualitative but also
an excellent quantitative agreement between theoretical pre-
dictions and simulations. All the results except one were ob-
tained for fixed adsorption energy ε = 0.5; comparison of
Qcoil/Q dependence for ε = 0.5 and 0.75 shows the shift of
the transition point toward smaller N/H and increasing transi-
tion sharpness as the adsorption energy grows.

Directly the theoretical and the simulation curves were
superimposed specifically for a very sensitive characteristic
such as the fluctuations in the number of contacts (Fig. 8).
There is quantitative accordance between theory and simula-
tions for all chain lengths till several dozens.
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(a) (b)

FIG. 3. Relative statistical weight of coil conformation as a function of the inverse reduced distance N/H at ε = 0.5 and various heights H as indicated. Panel
(a) in this figure and in the following figures in Sect. IV shows the results of the analytical theory presented in Sec. II, while panel (b) shows the Monte Carlo
results for self-avoiding chains.

We also note that all the dependences presented in
Figs. 3–8 are qualitatively identical to those obtained for
Gaussian chains in Ref. 15, therefore, we do not discuss them
in detail but make an accent on quantitative agreement be-
tween theoretical and simulation curves.

The algorithm PERM allows a direct calculation of the
Landau function which contains the information not only on
the equilibrium properties but also on metastable states as
well. We compare MC calculations with the analytical predic-
tions of Eq. (20), as displayed in Fig. 9. We see that the curves
of the non-equilibrium free energy �(s) have two minima cor-
responding to the coil (at s = 0) and the bridge (at s > 0.2)
states separated by a barrier. Unlike the double-well Landau
function resulting for simple phase transitions in condensed
matter (e.g., mean field theory of the Ising ferromagnet be-
low the Curie temperature in a magnetic field where the Lan-
dau function is gotten by expanding the free energy in powers
of the order parameter), the Landau function here contains
two distinct functions. These pieces meet at a point where the
derivative of the Landau function with respect to the order pa-
rameter s is discontinuous. This property results because the
two competing phases are of a qualitatively distinct charac-
ter. Variation of the ratio N/H changes the depth of the latter
minimum but not its position in accordance to the theory. At
the transition (binodal) point (N/H ≈ 6), both minima have

the same depth, while at N/H ≈ 4 the bridge minimum dis-
appears which corresponds to the spinodal point. These two
characteristic values of H/N are in accordance with the phase
diagram, see Fig. 10.

The comparison presented above clearly shows that the
analytical theory provides an excellent quantitative descrip-
tion of the simulation data for self-avoiding chains without
using any free fitting parameters. We have specially included
a large number of curves for comparison to demonstrate that
the theory successfully incorporates the correct structure of
the partition function, and hence the free energy and its first
and second derivatives. According to Eq. (19) the partition
function contains one intensive variable, ε, and one ratio of
extensive variables, t = N/H, which define the phase diagram,
as well as one extensive variable, H, controlling the finite-
size effects. Most of the simulations are done at fixed value
ε = 0.5 and the transition is traced by changing t. All the sim-
ulation data as functions of t (together with finite size effects)
are covered by the theory. The theory is equally successful in
describing the non-equilibrium Landau free energy as a func-
tion of the order parameter. Since the theory is based on the
scaling expressions for the elastic free energy and does not
incorporate finite chain extensibility, it is limited to weak or
moderate adsorption, ε � 1. A simple version of the theory
applicable in the opposite limit of a very strong adsorption

(a) (b)

FIG. 4. Relative statistical weight of coil conformation as a function of the inverse reduced distance N/H calculated at ε = 0.75 and various height H as
indicated: (a) theory, (b) MC simulations.
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(a) (b)

FIG. 5. Average fraction of monomer units in the strand as a function of the inverse reduced distance N/H calculated at ε = 0.5 and various height H as
indicated: (a) theory, (b) MC simulations.

is presented in Sec. V. Simulation data in this limit are not
available for comparison.

V. PHASE DIAGRAM FOR A LATTICE SELF-AVOIDING
CHAIN

A. Ideal 5-choice lattice chains

For the ideal chain with no step reversal, the function
μads(ε) is given by Eq. (24). The exact chemical potential of
the stretched chain, μstrand(f) for this model is derived from25

2 cosh f = 5e−μstrand − 4 + eμstrand . (31)

Combining these equations with Eqs. (10), (12), (13) one ob-
tains the phase diagram shown in Fig. 10 in blue.

B. Self-avoiding chains: Moderate adsorption

In the transition point, the bridge and the coil have equal
free energies, Fbridge = Fcoil. The binodal line equation fol-
lows from condition Fbridge = 0, and Eq. (17). From this con-
dition, the threshold value of the height H can be found,(

H

N

)
binodal

= (−μads(ε))1−ν

(
Aν

1 − ν

)ν−1

ν . (32)

It is easy to see that in the transition point the strand comprises
n∗ = νN monomer units.

With an increase in H above the transition point the
bridge state becomes metastable, the minimum of the Lan-
dau free energy shifts toward larger values of n and reaches
the boundary n = N at the spinodal line(

H

N

)
spinodal

=
(

H

N

)
binodal

ν−1. (33)

However, we warn the reader to associate too much physical
significance to these metastable states and their stability limit.
A glance at the Landau free energy, Fig. 9 shows that the free
energy barrier separating the metastable minimum from the
domain of attraction of the stable minimum is of the order of
�� ≈ 10−2 or less. Only for very long chains (when N��

� 1) will “lifetime” of the metastable states be large
enough to be physically significant. As always, a discussion
of metastability requires to consider the kinetics of phase
changes. This, however, is beyond the scope of the present
paper.

The phase diagram for a self-avoiding chain is pre-
sented in Fig. 10(a) in red. The main effect of excluded vol-
ume interactions is a change in the critical adsorption point
from εid

c = log(5/4) ≈ 0.223 to εSAW
c ≈ 0.284. The ratio of

Hspinodal/Hbinodal = 1/ν ≈ 1.7 for self-avoiding chains, while
for ideal chains it is equal to 2 near the critical adsorption
point and slightly decreases with an increase in ε. It is clear
from Fig. 10(a) that excluded volume effects on the shape of

(a) (b)

FIG. 6. Adsorbed fraction as a function of the inverse reduced distance N/H calculated at ε = 0.5 and various height H as indicated: (a) theory, (b) MC
simulations.
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(a) (b)

FIG. 7. Average order parameter (average strand extension) as a function of the inverse reduced distance N/H calculated at ε = 0.5 and various height H as
indicated: (a) theory, (b) MC simulations.

the phase diagram are limited to the weak adsorption regime.
Even at moderate adsorption strength ε ≈ 0.5 the binodal lines
almost coincide for ideal and self-avoiding chains. For even
stronger adsorption, excluded volume effects on the phase di-
agram are practically negligible.

C. Self-avoiding chains: Strong adsorption

In this section, we count the free energies from the
state with zero entropy (the completely stretched chain). In
order to avoid confusion between different reference states
for ideal and self-avoiding chains, the corresponding chem-
ical potentials are denoted with the tilde sign. In the strong
adsorption regime, the pancake is almost completely ad-
sorbed and is effectively two-dimensional, hence, μ̃ads(ε)
≈ −ε − ln q2 where q2 is the two-dimensional effective co-
ordination number, or connectivity constant (recall that the
chemical potential is counted from the completely stretched
state). At the same time, the strand is strongly stretched and
μ̃strand ≈ −f − 4e−f . In contrast to the moderate adsorption
regime discussed before, the strand free energy does not fol-
low the Pincus scaling,32 Eq. (15), since all excluded volume
effects can be safely neglected at strong stretching. The equi-
librium condition (10) gives

f ≈ −μ̃ads − 4eμ̃ads (34)

)

FIG. 8. Fluctuations of the adsorbed fraction as a function of the inverse
reduced distance N/H calculated at ε = 0.5 and various height H as indi-
cated: MC simulation results (symbols) superimposed over theoretical curves
(lines).

and the bridge free energy follows from Eq. (11)

Fbridge = Nμ̃ads − H (μ̃ads + 4eμ̃ads ). (35)

The full partition function in the strong adsorption limit reads

Q = qN
3 + exp

[
N

((
1 − H

N

)
(ε + log q2) + 4

q2
e−ε

)]
,

(36)

where q3 is the effective coordination number in three dimen-
sions. The binodal line equation has the asymptotic form(

H

Na

)
binodal

≈ 1 − log q3

ε + log q2
. (37)

For the self-avoiding chain on a cubic lattice qSAW
3 =

4.684, qSAW
2 = 2.638.33 For the ideal five-choice lattice chain

qid
3 = 5, qid

2 = 3. At strong adsorption where asymptotic de-
scription is justified the difference in binodal lines between
the SAW chain and the ideal chain with no step reversal is
less than 0.5% and not discernible by eye on a graph as dis-
played in Fig. 10(b) where the exact binodal line calculated
in Subsection V A for the ideal chain with no step reversal
is compared to Eq. (37) with two sets of values (q3, q2). It
is clear that the simple asymptotic theory is very accurate for
ε � 2 .

FIG. 9. Landau free energy as a function of the stretching order parameter
calculated at ε = 0.5; H = 40, and several values of the ratio N/H as indicated:
MC simulations (symbols) superimposed over theoretical curves (lines) cal-
culated by Eq. (20).
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FIG. 10. (a) Phase diagram of the coil-bridge transition in the moderate adsorption regime: lattice chain with (red) or without (blue) excluded volume interac-
tions: binodal line (H/N)binodal vs ε is shown by solid lines and spinodal (H/N)spinodal vs ε by dashed lines. (b) Phase diagram in the broad range of adsorption
energies: exact solution for ideal 5-choice lattice chains (solid and dashed blue lines), and asymptotic strong adsorption curves (dotted lines) for ideal (blue)
and self-avoiding (red) chains according to Eqs. (37) and (38).

The spinodal line condition, Eq. (13), requires the strain
ξ (f(ε)). Since excluded volume effects are negligible at very
strong stretching (the corresponding corrections to the chem-
ical potential are exponentially small), the strain is given
by ξ (f (ε)) = − ∂μstrand

∂f
≈ (1 + 4e−f )−1 ≈ 1 − 4e−f . Equa-

tion (13) combined with f ≈ −μstrand; μstrand = μads yields
an asymptotic expression for the spinodal line in the strong
stretching regime(

H

Na

)
spinodal

≈ 1 − 4

q2
e−ε . (38)

The corresponding curves with qid
2 = 3 and qSAW

2 = 2.638
are shown in Fig. 10(b) by the upper pair of blue and red dot-
ted lines, respectively. Fig. 10(b) demonstrates that at strong
adsorption, behavior of chains with excluded volume inter-
actions is very close to that of ideal lattice chains. We also
conclude that the strong adsorption regime corresponds to ε

� (1.5÷2).
Since the fraction of monomers belonging to the strand

is given by n∗
N

= H
ξN

, where ξ is the strain imposed by the
coexistence with the adsorbed part, it follows from Eq. (13)

FIG. 11. The fraction of monomers in the strand, n∗
N

, at the coil-bridge tran-
sition point as a function of the reduced distance, H/N, calculated for the ideal
5-choice walk on a cubic lattice. The value of n∗/N = 1/2 is characteristic for
a Gaussian chain.

that the stem fraction at the equilibrium transition point can
be expressed as ( n∗

N
)binodal = (H

N
)binodal(H

N
)−1
spinodal . The mi-

crophase decomposition of a chain at the binodal line is pre-
sented in Fig. 11 for an ideal lattice chain with no step re-
versal. At weak adsorption (small H/N ratios), the chain is
equally divided into the strand and the adsorbed pancake, and
n∗/N = 1/2 which is characteristic of a Gaussian chain.15 With
the increase in the adsorption strength, the strand fraction in-
creases which is due to deviations from a purely linear strain-
force relation. Eventually, the curve in Fig. 11 becomes ap-
proximately linear with a slope of 1. Visually, one can iden-
tify a crossover from moderate to strong adsorption at H/N
≈ 0.5 which corresponds to ε ≈ 2 confirming earlier estimate
of the onset of strong adsorption regime. From experimental
point of view tearing off a strongly adsorbed chain is a rather
common and important situation.2, 34, 35

VI. DISCUSSION AND CONCLUSION

A. Unconventional features of the coil-bridge
transition

The curves presented in Figs. 3–9 suggest a standard first-
order phase transition moderated by finite-size effects: steep
change in the first derivatives of the free energy developing
into jumps with the approach to the thermodynamic limit, and
the corresponding behavior of fluctuations. This impression,
however, does not reveal several very unorthodox features of
the coil-bridge transition.

1. Simultaneous phase coexistence is impossible

This peculiarity is due to the very nature of the coil
and the bridge states. At the binodal line, the chain as a
whole fluctuates between the two very distinct states. These
states are separated by the free energy barrier the height of
which is proportional to the number of monomer units (at
fixed intensive variables). Statistical averaging is achieved
by the dynamic evolution involving multiple barrier cross-
ing and may be therefore very slow for very large N. Typical
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mechanism of conventional first order phase transitions im-
plies that phase transformation happens simultaneously and
independently at many locations within the sample: hence the
importance of nucleation, interfacial effects, etc. In a single-
chain coil-bridge transition, these mechanisms do not apply.14

2. How many phases are involved in the transition?

The term “coil-bridge transition” together with the shape
of the phase diagram suggest that there are two phases: the
coil and the bridge. However, the theoretical description oper-
ates with three chemical potentials for the coil, the adsorbed
pancake, and the strand. It is clear that the bridge actually
consists of two microphases with very distinct properties. It
was shown that one can introduce a local adsorption order
parameter,26 which will have non-zero value in the pancake
and zero value in the strand. Another order parameter related
to local stretching will similarly differentiate between the two
microphases. Theoretical procedure of minimization of the
bridge free energy with respect to the number of monomers
in the strand leads to the condition μstrand(f) = μads(ε) ex-
pressing the idea of equilibrium coexistence between the two
microphases within the bridge. A special feature of this mi-
crophase coexistence within a single chain is that the interface
between the microphases consists of one monomer and does
not play any significant role. A closely related situation ap-
pears when the other end monomer (free in the present model)
is permanently attached at the adsorbing surface,19, 26 for re-
cent rigorous result for this system see Refs. 31 and 36. This
eliminates the possibility of the coil state, and bridging be-
comes obligatory. The chain behavior is then completely de-
termined by the interplay of the two microphases. The result-
ing phase transition was analyzed in analogy to the liquid-gas
transition in the (N,V, T ) ensemble.26 Note that the details of
intra-chain interactions seem to be irrelevant since the uncon-
ventional properties of the coil-bridge transition are present
even for ideal Gaussian chains.

3. Abnormal microcanonical thermodynamics

The role of the microcanonical thermodynamic potential
is played by the entropy considered as a function of energy,
number of monomers, and of the H/N ratio, S(N, H/N, E). In

the self-avoiding chain model, the energy is only due to the
contacts with the adsorbing surface, E = −εm, where m is the
number of contacts. The main qualitative feature of the S(E)
curve is that all non-zero (negative) values of E correspond to
the bridge state, and the relevant entropy is a smooth increas-
ing function. This part of the curve carries on until there is at
least one contact and satisfies the convexity condition of stan-
dard thermodynamics. In contrast to that, the value of E = 0
corresponds to the state with no surface contacts, i.e., to the
coil state the entropy of which is considerably larger. Thus,
the S(E) curve is discontinuous at E = 0 which is certainly ab-
normal for the entropy as a thermodynamic potential, in con-
trast to the canonical ensemble where the entropy is the first
derivative of the potential and naturally experiences a jump at
first-order transitions. The jump discussed here is due to the
entropy gap between the coil and the bridge states, its magni-
tude increases with the ratio H

N
. The extra point on the curve at

E = 0 brings about a violation of the global convexity condi-
tion which indicates non-equivalence of the canonical and mi-
crocanonical ensembles. Another example of a polymer sys-
tem with non-conventional phase transition is an end-grafted
chain compressed between two pistons and undergoing the
so-called escape transition.24, 37

B. Metastable states

First-order phase transitions are usually associated with
metastable states. In this respect, analysis of the Landau free
energy as a function of the order parameter is particularly il-
luminating, see Fig. 9. It is clear that with the decrease in
the N

H
ratio beyond the equal depth (binodal) point N

H
� 6 the

bridge minimum becomes metastable until it disappears com-
pletely at the spinodal point N

H
� 4. On the other hand, upon

approaching the grafting surface (increasing the N
H

ratio) the
coil minimum is metastable and disappears when the grafting
distance becomes of order of the coil size, H ∼ Nν . In this
paper, we have concentrated on the bridge spinodal line and
did not show the coil spinodal on the phase diagram since in
the thermodynamic limit it coincides with the abscissa.

Fig. 12(a) presents schematically the change in the av-
erage number of contacts with the reduced grafting distance
H
N

. Part of the curve corresponding to the metastable region
is shown by dashed line, and the chain structure is indicated

FIG. 12. Schematic plots for the average number of contacts with the surface vs. H
N

ratio for two closely related systems: a chain with one free end and another
end fixed at height H (a); a chain with one end fixed at the surface and another end fixed at height H.
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by cartoons. Panel (b) describes a matching situation where
the free end of the chain is permanently attached at the ad-
sorbing surface which was studied in Refs. 19, 26, 31, and
36. The states that were metastable in panel (a) become stable
upon fixing the free end since the possibility of the transi-
tion to the coil state is eliminated. From the point of view of
the microphase structure, the metastable states in panel (a)
and the corresponding stable states in panel (b) are identi-
cal. The transition point in panel (b) whereby one of the mi-
crophases disappears and the curve has a slope discontinuity
coincides with the spinodal point in panel (a). The only dif-
ference between the two situations is in the lifetime of the
bridge with a small adsorbed fraction. It is clear then that with
long strongly adsorbing chains the equilibrium solid curve of
panel (a) will be never actually observed in a realistic experi-
mental setting. Simple estimates show that for adsorption en-
ergy ε ≈ (1 − 2)kT and experimental timescale on the order
of minutes metastability will persist until the adsorbed part
decreases down to (15–30) monomer units. If the total chain
length is N ∼ 103 or more, the chain is torn off only at the very
end of the dashed part of the m(H) line in panel (a), when the
adsorbed part becomes negligibly small.
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