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Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte
Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ∼ O(104).
Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond
fluctuation model (BFM) with bond lengths in a range between 2 and

√
10, we investigate the con-

formations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by
random walks and non-reversible random walks in the absence of excluded volume interactions. In
addition to flexible chains, we also extend our study to semiflexible chains for different stiffness
controlled by a bending potential. The persistence lengths of chains extracted from the orientational
correlations are estimated for all cases. We show that chains based on the BFM are more flexible
than those based on the SCLM for a fixed bending energy. The microscopic differences between
these two lattice models are discussed and the theoretical predictions of scaling laws given in the
literature are checked and verified. Our simulations clarify that a different mapping ratio between the
coarse-grained models and the atomistically realistic description of polymers is required in a coarse-
graining approach due to the different crossovers to the asymptotic behavior. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4899258]

I. INTRODUCTION

In the theoretical study of polymer physics,1, 2 com-
puter simulations provide a powerful method to mimic the
behavior of polymers covering the range from atomic to
coarse-grained scales depending on the problems one is in-
terested in.3, 4 The generic scaling properties of single lin-
ear and branched polymers in the bulk or confinement un-
der various solvent conditions have been described quite well
by simple coarse-grained lattice models (i.e., random walks
(RWs), non-reversible random walks (NRRWs), self-avoiding
random walks (SAWs), or interacting self-avoiding random
walks (ISAWs) on a regular lattice, regarding the interactions
between non-bonded monomers). As an alternative one can
use coarse-grained models in the continuum, such as a bead-
spring model (BSM) (where all beads interact with a truncated
and shifted Lennard-Jones (LJ) potential while the bonded in-
teractions are captured by a finitely extensible nonlinear elas-
tic (FENE) potential) using Monte Carlo and molecular dy-
namics simulations.3 On the one hand, however, as the size
and complexity of a system increases, detailed information at
the atomic scale may be lost when employing low resolution
coarse-graining representations. On the other hand, the cost
of computing time may be too high if the system is described
at high resolution. Therefore, more scientific effort has been
devoted to developing an appropriate coarse-grained model
which can reproduce the global thermodynamic properties
and the local mechanical and chemical properties such as
the intermolecular forces between polymer chains.5–11 While
these models are already known since a long time, the present
work is the first study presenting precise data on conforma-
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tional properties of these model, when a bond angle potential
is included.

In this paper, we deal with linear polymer chains in dilute
solutions under good solvent conditions, and describe them by
lattice models on the simple cubic lattice. Although coarse-
grained lattice models neglect the chemical detail of a specific
polymer chain and only keep chain connectivity (topology)
and excluded volume, the universal behavior of polymers still
remains the same in the thermodynamic limit (as the chain
length N → ∞),2 Two coarse-grained lattice models, the stan-
dard simple cubic lattice model (SCLM) and the bond fluctu-
ation model (BFM),3, 12–15 are considered for our simulations.
The SCLM is often used for the test of new simulation algo-
rithms, and the verification of theoretically predicted scaling
laws due to its simplicity and computational efficiency. The
BFM has the advantages that the computational efficiency of
lattice models is kept and the behavior of polymers in a con-
tinuum space can be described approximately. The model thus
introduces some local conformational flexibility while retain-
ing the computational efficiency of lattice models for imple-
menting excluded volume interactions by enforcing a single
occupation of each lattice vertex.

The excluded volume effect plays an essential role in any
real polymer chain, while in a dilute solution under a theta
solvent condition, or in concentrated polymer solutions such
as melts, and glasses, the real polymer chain behaves like
an ideal chain. The excluded volume constraint can easily
be incorporated in the lattice models by simply forbidding
any two effective monomers occupying the same lattice site
(cell). Tries et al. have successfully mapped linear polyethy-
lene in the melt onto the BFM and their results are in good
agreement with experimental viscosimetric results quantita-
tively without adjusting any extra parameters.15, 16 Varying
the backbone length and side chain length of the bottle-brush

0021-9606/2014/141(16)/164903/14/$30.00 © 2014 AIP Publishing LLC141, 164903-1
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polymer based on the BFM, a direct comparison of the struc-
ture factors between the experimental data for the synthetic
bottle-brush polymer consisting of hydroxyethyl methacrylate
(PMMA) as the backbone polymer and flexible poly(n-butyl
acrylate) (PnBA) as side chains in a good solvent (toluene)
and the Monte Carlo results is given.17 Furthermore, the lat-
tice models have also been used widely to investigate the
conformational properties of protein-folding18 and DNA in
chromosomes19–21 in biopolymers. For alkane-like chains, the
angles between subsequent effective bonds are not continu-
ously distributed, but only discrete angles are allowed. There-
fore, the lattice model such as the SCLM where only the dis-
crete angles 0◦ and 90◦ are allowed is an ideal model for
studying alkane-like chains of different stiffnesses.

A direct comparison of simulation results between the
lattice models and the off-lattice BSM is also possible, e.g.,
linear polymers22 and ring polymers23 in a melt, adsorption
of multi-block and random copolymers,24 semiflexible chains
under a good solvent condition,25 the crossover from semi-
flexible polymer brushes towards semiflexible mushrooms
as the grafting density decreases.26 Results from these two
coarse-grained models are qualitatively the same. Namely,
they both show the same scaling behavior, but the amplitudes
and the critical or the crossover points can vary depending
on the underlying models. However, our main motivation was
to understand the microscopic differences between the two
lattice models, SCLM and BFM, for describing the confor-
mations of polymers and to provide this information for the
further development of a multi-scale approach for studying
polymers of complex topology and polymer solutions at high
concentration based on the lattice models. Therefore, we only
focus on the two coarse-grained lattice models, SCLM and
BFM, here. In the mapping between atomistic and coarse-
grained models, it turns out that a bond angle potential also
needs to be included in the coarse-grained models, as is done
here.

The outline of the paper is as follows: Sec. II describes
the models and the simulation technique. Sections III and
IV review the properties of flexible chains and semiflexible
chains, respectively. Polymer chains described by SAWs, and
by RWs and NRRWs in the absence of excluded volume ef-
fects are studied and compared with theoretical predictions.
Finally, our conclusions are summarized in Sec. V.

II. MODELS AND SIMULATION METHODS

The basic characteristics of linear polymer chains depend
on the solvent conditions. Under good solvent conditions the
repulsive interactions (the excluded volume effect) and en-
tropic effects dominate the conformation, and the polymer
chain tends to swell to a random coil. In the thermodynamic
limit, namely, the chain length N → ∞, the partition function
scales as

ZN ∼ μ−N∞ Nγ
d
−1 ∼ qN

effN
γ

d
−1, (1)

where μ∞ is the critical fugacity per monomer, qeff is the
effective coordination number, and γ is the entropic expo-
nent related to the topology. In two dimensions2 γ = 43/32,
while the best estimate27 for d = 3 is γ = 1.1573(2). For the

standard self-avoiding walks on the simple cubic lattice28 in
d = 3, one has μ∞ = 0.21349098(5) and the corresponding
effective coordination number qeff = 1/μ∞ = 4.6840386(11).
The conformations of polymer chains characterized by the
mean square end-to-end distance, 〈R2

e 〉, and the mean square
gyration radius, 〈R2

g〉, scale as29, 30

〈R2
e 〉/�2

b = AeN
2ν[1 + O(N−�)] (2)

and

〈R2
g〉/�2

b = AgN
2ν[1 + O(N−�)], (3)

where ν is the Flory exponent, � is the leading correction to
the scaling exponent, Ae and Ag are non-universal constants,
and �2

b is the mean square bond length. The quantities ν, �,
and the ratio Ae/Ag are universal,31 while the quantities, Ae,
Ag, �b, and qeff, depend on the microscopic realization. In
d = 2, one has ν2 = 3/4, while in d = 3 the most accurate
estimate of the Flory exponent32 ν = 0.587597(7). We use ν

= 0.5876 for our data analysis in this paper.
Two models are used for simulating linear polymers in

the bulk under good solvent conditions. One is the standard
SAW on the simple cubic lattice, effective monomers be-
ing described by occupied lattice sites, connected by bonds
of fixed length | 	b |= �b = 1. Each site can be visited only
once, and thus the excluded volume interaction is realized.
The other is the standard BFM. On the simple cubic lattice
each effective monomer of a SAW chain blocks all eight cor-
ners of an elementary cube of the lattice from further occupa-
tion. Two successive monomers along a chain are connected
by a bond vector 	b which is taken from the set {(± 2, 0, 0),
(± 2, ±1, 0), (± 2, ±1, ±1), (± 2, ±2, ±1), (± 3, 0, 0),
(± 3, ±1, 0)} including also all permutations. The bond
length �b is therefore in a range between 2 and

√
10. There

are in total 108 bond vectors and 87 different bond angles
between two sequential bonds along a chain serving as can-
didates for building the conformational structure of polymers.
The partition sum of a SAW of N steps is

ZN =
∑

config.

1 (4)

which is simply the total number of possible configurations
consisting of (N + 1) monomers.

In the literature, there are still no estimates of the fugacity
μ∞(= 1/qeff) and the entropic exponent γ for SAWs on the
BFM. According to the scaling law of the partition sum ZN,
Eq. (1), the effective entropic exponent γ

(1)
eff obtained from

triple ratios33

γ
(1)
eff (N ) = 1 + 7 ln ZN − 6 ln ZN/3 − ln Z5N

ln(36/5)
(5)

is shown in Fig. 1(a). It gives γ = limN→∞ γ
(1)
eff (N )

= 1.1578(6). The fugacity μ∞ is therefore determined by
adjusting the value a such that the curve of ln ZN + Nln a
− (γ − 1)ln N with γ = 1.1578 becomes horizontal for
very large N (see Fig. 1(b)). We obtain the fugacity μ∞
= 0.0117241395(75) and the corresponding effective coor-
dination number qeff = 85.294106(55) listed in Table I. In
Fig. 1(a), we also show the asymptotic behavior of the
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FIG. 1. (a) Effective exponents γ
(1)
eff and γ

(2)
eff [computed from Eqs. (5) and (6)] plotted versus N on a semi-log scale. γ = lim

N→∞ γ
(1)
eff (N ) =

lim
N→∞ γ

(2)
eff (N ) = 1.1578(6). (b) ln ZN + N ln a − (γ − 1)ln N with γ = 1.1578 determined from (a) plotted versus N on a semi-log scale. The best es-

timate of fugacity μ = a = 0.0117241395(75) is determined by the horizontal curve.

effective entropic exponent γ
(2)
eff defined by

γ
(2)
eff (N ) = 1 + ln

[
μ3N/2Z(2N )/Z(N/2)

]
ln 4

(6)

with our estimate of μ∞ for comparison.
If the excluded volume effect is ignored completely, a

polymer chain behaves as an ideal chain. It is well described
by a RW, a walk that can cross itself or may trace back the
same path, or by a NRRW where immediate back tracing is
not allowed. The partition sums of RW and NRRW are given
by

ZN = qN (RW) , ZN = q(q − 1)N−1 (NRRW),
(7)

where q is the coordination number. q = 6 for the standard
RW on the simple cubic lattice, and q = 108 for the BFM.34

The Flory exponent is ν = 1/2 for an ideal chain and its mean
square gyration radius 〈R2

g〉 = 〈R2
e 〉/6.

For the simulations of single RW, NRRW, and SAW
chains, we use the pruned-enriched Rosenbluth method
(PERM).35 It is a biased chain growth algorithm with resam-
pling and population control. In this algorithm, a polymer
chain is built like a random walk by adding one monomer
at each step with a bias depending on the problem at hand,
and each configuration carries its own weight. The population
control at each step is made such that the “bad” configurations
are pruned with a certain probability, and the “good” configu-
rations are enriched by properly reweighting, until a chain has

either grown to the maximum length of steps, N, or has been
killed due to attrition. A detailed description of the algorithm
PERM and its applications is given in a review paper.36 The
algorithm has the advantage that the partition sum can be es-
timated very precisely and directly. It is also very efficient for
simulating linear polymer chains up to very long chain lengths
in dilute solution at and above the �-point. Therefore, we ap-
ply the algorithm on the two lattice models, SCLM and BFM,
in order to check for major differences between these two mi-
croscopic models. The longest chain length is N = 10 000
in our simulations here (except that for fully flexible SAWs
N = 50 000). The results shown in the paper are the average
of 106 ∼ 107 independent configurations.

III. CONFORMATIONS OF SINGLE LINEAR POLYMER
CHAINS: RWS, NRRWS, AND SAWS

We employ the PERM for the simulations of long sin-
gle linear polymer chains of chain lengths (segments) up to
N ∼ O(104), modeled by RWs, NRRWs, and SAWs depend-
ing on the interactions between monomers. Figure 2(a) with
ν = 1/2 and Fig. 2(b) with ν = 0.5876 show that the scaling
laws, Eqs. (2) and (3), are verified as one should expect. The
mean square end-to-end distance simply is

〈R2
e 〉 = 〈(	rN − 	r0)2〉 =

〈⎛⎝ N∑
j=1

	bj

⎞
⎠

2〉
. (8)

TABLE I. The estimates of fugacity μ∞, the effective coordination number qeff in Eq. (1), the amplitudes Ae
and Ag in Eqs. (2) and (3) determined from the simulation data of 〈R2

e 〉 and 〈R2
g〉 for RWs, NRRWs, and SAWs

based on the two lattice models, SCLM and BFM.

SCLM BFM

Model RW NRRW SAW RW NRRW SAW

μ∞ 1/6 1/5 0.21349098(5)28 1/108 1/107 0.01172414395(75)
qeff 6 5 4.6840386(11) 108 107 85.294106(55)
Ae 1.0000(2) 1.4988(4) 1.220(3) 0.9986(2) 1.0714(2) 1.247(5)
Ag 0.16666(0) 0.24985(7) 0.1952(4) 0.16645(4) 0.16959(3) 0.1993(6)
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FIG. 2. Mean square end-to-end distance 〈R2
e 〉 and gyration radius 〈R2

g〉 scaled by (Nν�2
b) with the Flory exponent ν = 1/2 for RWs and NRRWs (a), and

ν = 0.5876 for SAWs,32 plotted against N. Here, the bond length �
b

= 〈	b2〉1/2: �b = 1 (SCLM) and �b = 2.72 (BFM).

The mean square gyration radius is given by

〈R2
g〉 = 1

N + 1

〈
N∑

j=0

(	rj − 	rCM )2

〉

= 1

(N + 1)2

〈
N∑

j=0

N∑
k=0

(	rj − 	rk)2

〉
, (9)

where 	rCM = ∑N
j=0 	rj /(N + 1) is the center of mass position

of the polymer. The amplitudes Ae and Ag for RWs, NRRWs,
SAWs based on the two lattice models, SCLM and BFM, are
listed in Table I. Results of 〈R2

e 〉/(N�2
b) and 〈R2

g〉/(N�2
b) for

RWs from both models follow the same curves although the
bond vectors in the BFM are not all along the lattice direc-
tions and do not have the same bond length. Here, �b is the
root-mean square bond length, �b = 1 for the SCLM and
�b = 2.72 for the BFM. In Fig. 2(a), values of 〈R2

e 〉/(N�2
b)

and 〈R2
g〉/(N�2

b) for NRRWs, obtained from SCLM for all
lengths N are significant larger than that obtained from the
BFM, since at each step the walker can only go straight or
make a 90◦ L-turn in the SCLM. In Fig. 2(b), the two curves
showing the results of 〈R2

e 〉/(Nν�2
b) [〈R2

g〉/(Nν�2
b)] with

ν = 0.5876 as functions of N obtained from the two mod-
els intersect at N ≈ 180, and finally the amplitude for BFM is
larger in the asymptotic regime. The slight deviation from the

plateau value is due to the finite size effects. The correction
exponent � [Eqs. (2) and (3)] for these two models is deter-
mined by plotting 〈R2

e 〉/N2ν and 〈R2
g〉/N2ν versus x ≡ N−δ

(not shown). One should expect straight lines near x = 0 if
and only if δ = �. We obtain � = 0.48(5) for both mod-
els, which is in agreement with the previous simulation in
Refs. 29, 32, and 33 within error bars. The ratio be-
tween the mean square end-to-end distance and the mean
square gyration radius, is indeed 〈R2

e 〉/〈R2
g〉 ≈ 6.000(3) for

RWs and NRRWs (Fig. 3(a)). For SAWs, our results
give 〈R2

e 〉/〈R2
g〉 = 6.25(2) (Fig. 3(b)). For SAWs on the

simple cubic lattice, the most accurate estimates of Ae
= 1.22035(25), Ag = 0.19514(4), and Ae/Ag = 6.2537(26)
are given in Ref. 32. Our results are also in perfect agree-
ment with them. However, much longer chain lengths will
be needed for a more precise estimate of the plateau
value of the ratio in the asymptotic scaling regime. Note
that for 10 < N < 100 the behavior is clearly model-
dependent.

We include here the RW and NRRW versions of both
models not just for the sake of an exercise: often the mapping
from an atomistic to a coarse-grained model is to be done un-
der melt conditions, where excluded volume interactions are
screened.

The shapes of polymer chains can also be described by
the probability distributions of end-to-end distance and gyra-
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FIG. 3. Ratio between the mean square end-to-end distance and the mean square gyration radius, 〈R2
e 〉/〈R2

g〉, plotted against the chain segments N, for RWs
and NRRWs (a), and for SAWs (b). As N � 0, 〈R2

e 〉/〈R2
g〉 ∼ 6.00 in (a) and 〈R2

e 〉/〈R2
g〉 ∼ 6.25 in (b).
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FIG. 4. (a) and (c) Normalized probability distributions of end-to-end distance, h
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b
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(c), but for gyration radius Rg. Data are for RWs (a) and (b) and SAWs (c) and (d). Several values of chain lengths N are chosen, as indicated.

tion radius, P(Re/�b) and P(Rg/�b), respectively. Numerically,
they are obtained by accumulating the histogram HN(x) of x
over all configurations of length N, given by

HN (x) =
∑

configs.

WN (x ′)δx,x ′ , (10)

here each configuration carries its own weight WN (x ′). The
normalized histogram is therefore,

hN (x) = HN (x)
/∑

x ′
HN (x ′) . (11)

Results of hN(Re/�b) and hN(Rg/�b) for RWs and SAWs ob-
tained from the two models for various values of chain lengths
N are shown in Fig. 4. We see that both models give for
N > 100 the same distributions of Re/�b and Rg/�b although
the mean values of Re/�b and Rg/�b are slightly different be-
tween these two lattice models (Fig. 2(b)) for SAWs. Note
that an angular average over all directions has been included
in the accumulating process of the histogram due to spherical
symmetry. Thus, the normalized histograms of Re/�b,

hN (Re/�b)=PN (Re/�b)=4πCe,N (Re/�b)2PN ( 	Re/�b),

(12)

with ∫ ∞

0
PN (Re/�b)d(Re/�b) = 1 , (13)

and the normalized histograms of Rg/�b,

hN (Rg/�b)=PN (Rg/�b)=4πCg,N (Rg/�b)2PN (Rg/�b),

(14)

with ∫ ∞

0
PN (Rg/�b)d(Rg/�b) = 1 , (15)

where Ce, N and Cg, N are the normalization factors.
The probability distribution of end-to-end distance for

ideal chains is simply a Gaussian distribution,

P ( 	Re/�b) = 1

(2πN/3)3/2
exp(−3(Re/�b)2

2N
) . (16)

Our numerical data for RWs obtained from BFM and SCLM
shown in Fig. 4 are in perfect agreement with the Gaussian
distribution (see Fig. 5). From Eqs. (12), (13), and (16), we
obtain the normalization factor Ce, N = 1.
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FIG. 5. Same as in Fig. 4(a), but data are only for BFM. The predicted distri-
bution 4π (Re/�b)2P(Re/�b) for various values of N are shown by solid curves.
Here, the distribution function P(Re/�b) is given by Eq. (16).
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FIG. 6. Root mean square radius of gyration, 〈R2
g〉1/2, and the gyration radius

Rg, m where P(Rg) has its maximum value, plotted against chain length N for
RWs and SAWs. Data are for BFM.

The theoretical prediction of the gyration radius proba-
bility distribution of polymer chains under good solvent con-
ditions in d-dimensions suggested by Lhuillier37 is as follows:

P (Rg/�b) ∼ exp

⎡
⎣−a1

(
�bN

ν

Rg

)αd

− a2

(
Rg

�bN
ν

)δ

⎤
⎦ ,

(17)
where a1 and a2 are (non-universal) constants, and the expo-
nents α and δ are linked to the space dimension d and the
Flory exponent ν by

α = (νd − 1)−1 and δ = (1 − ν)−1 . (18)

Here, (1 + α) is the des Cloizeaux exponent38 for the os-
motic pressure of a semidilute polymer solution, and δ is the
Fisher exponent39 characterizing the end-to-end distance dis-
tribution.

This scaling form has been verified in the previous Monte
Carlo simulation studies of the standard self-avoiding walks
on square (d = 2) and cubic (d = 3) lattices up to O(102) steps
using the slithering-snake and pivot algorithms.40, 41 The two
fitting parameters a1 and a2 are actually not independent since
at the position where the distribution P(Rg) has its maximum
value, i.e., P(Rg = Rg, m) = max P(Rg), the corresponding gy-
ration radius Rg, m ∝ Rg ∝ Nν (see Fig. 6). Using Eq. (17), the

logarithm of the rescaled probability is written as

f

(
Rg,m

Rg

)
= ln

P (Rg,m/�b)

P (Rg/�b)

= A

⎡
⎣ 1

α

(
Rg,m

Rg

)αd

+ d

δ

(
Rg

Rg,m

)δ

+ 1 − d

⎤
⎦
(19)

with

a1 = A

α

(
Rg,m

�bN
ν

)αd

and a2 = Ad

δ

(
�bN

ν

Rg,m

)δ

.

(20)
From Eq. (15), we obtain

ln
P (Rg,m/�b)

P (Rg/�b)
= ln

hN (Rg,m/�b)

hN (Rg/�b)
+ 2 ln

Rg

Rg,m

. (21)

Our estimate of ln (P(Rg, m/�b)/P(Rg/�b)) for SAWs based
on the two lattice models, SCLM and BFM, are shown in
Fig. 7. As chain lengths N > 1000, we see the nice data col-
lapse, and the logarithm of the scaled probability of Rg is
described by Eq. (19) with A = 1.18 very well. Due to the
finite-size effect it is clearly seen that the previous estimate
A = 1.34 is an overestimate.41

For an ideal chain, the distribution of Rg is no longer a
simple Gaussian distribution as shown in Eq. (16), and the
exact expression is quite complicated. Vettorel et al.10 found
out the formula given by Lhuillier37 is a good approxima-
tion for describing the distribution P(Rg) for an ideal chain
based on the BSM. Therefore, we also use the same for-
mula for the investigation of the distribution P(Rg) obtained
from the two coarse-grained lattice models. Two methods are
discussed here. Method (1): We use the formula [Eq. (19)]
which contains only one fitting parameter A since Rg, m
∼ Rg ∼ N for RWs as shown in Fig. 6. From our simu-
lations of RWs, we still see the nice data collapse for N
> 200 in the plot of the logarithm of the rescaled distribution
of Rg (Fig. 8), but the distribution can only be described by
Eq. (19) well for Rg > Rg, m. Using the least square fit, it gives
A = 0.97. Method (2): We assume that the two parameters
a1 and a2 in Eq. (17) are independent. Using Eqs. (14), (15),
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FIG. 7. Logarithm of the rescaled probability distribution of gyration radius, ln (P(Rg, m)/P(Rg)) as a function of Rg/Rg, m for SAWs obtained from the models
(a) SCLM and (b) BFM. The best fit of Eq. (19) with A = 1.18 to our data is shown by the solid curve. The dashed curve with A = 1.34 given in Ref. 41 is also
shown for the comparison. Several values of chain lengths N are chosen, as indicated.
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FIG. 8. (a) and (b) Similar as in Fig. 7, but for RWs. The best fitting of our data gives A = 0.97 for both models.

and (17), values of a1, a2, and the normalization factor Cg, N
are determined by the best fit of the normalized histograms
hN(Rg/�b) obtained from our Monte Carlo simulations. Note
that it is not possible to determine a1 and a2 using the sec-
ond method for N < 50 since the normalization condition,
Eq. (15), is not satisfied. In Fig. 9, we compare our results
of hN (Rg/�b) ∝ P(Rg/�b) ∝ (Rg/�b)2P (Rg/�b) for BFM to
the fitting function 4πCg, N(Rg/�b)2P(Rg/�b) [Eqs. (14), (15),
and (17)] with parameters determined by these two different
methods. Values of a1 and a2 plotted versus N are shown in
Fig. 10 and listed in Table II. Our results show that a1 and a2
are almost constants for large N, which are comparable with
the results obtained for the BSM.10

IV. SEMIFLEXIBLE CHAINS

We extend our simulations in this section from flexible
chains to semiflexible chains. Extensive Monte Carlo simu-
lations of semiflexible polymer chains described by standard
SAWs on the simple cubic lattice, with a bending potential Ub
= εb(1 − cos θ ), have been recently carried out.42–44 Recall
that atomistic models of real chains may exhibit considerable
chain stiffness due to the combined action of torsional and
bond angle potentials. When a mapping to a coarse-grained
model is performed, this stiffness is lumped into an effective
bond angle potential of the coarse-grained model. In this stan-
dard model, the angle between two subsequent bond vectors
along the chain is either 0◦ or ±90◦, and hence in the statis-

tical weight of a SAW configuration on the lattice every 90◦

bend will contribute a Boltzmann factor qb = exp (− εb/kBT)
(qb = 1 for ordinary SAWs). kBT is of order unity through-
out the whole paper. The partition function of such a standard
SAW with N bonds (N + 1 effective monomers) and Nbend
bends is therefore,

ZN (qb) =
∑

config.

CN (Nbend)q
Nbend
b , (22)

where CN(Nbend) is the total number of all configurations of a
polymer chain of length N containing Nbend bends.

We are also interested in understanding the microscopic
difference between the standard SAWs and the BFM as the
stiffness of chains is taken into account. Since there are 87
bond angles possibly occurring in the chain conformations,
the partition function cannot be simplified for the BFM, writ-
ten as

Z
(BFM)
N (εb) =

∑
config.

CN ({θ}) exp

[
− εb

kBT

N−1∑
i=1

(1 − cos θi,i+1)

]
,

(23)
where θ i, i + 1 is the bond angle between the ith bond vector
and the (i + 1)th bond vector along a chain, and CN({θ})
is the number of configurations having the same set {θ} but
fluctuating bond lengths. In the absence of excluded volume
effect, the formulas of the partition function, Eqs. (22) and
(23), remain the same while semiflexible chains are described
by RWs and NRRWs.
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FIG. 9. Normalized probability distributions of Rg/�b, h(R
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b
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b
), plotted versus Rg/�b for various values of N, and for BFM. The fitting functions

4πCg, N(Rg/�b)2P(Rg/�b) [Eqs. (14), (15), and (17)] with parameters a1, a2, and Cg, N determined by method (1) and method (2) are shown by curves for
comparison in (a) and (b), respectively.
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a2, ∞ are taken from Table II for N = 10 000.

A. Theoretical predictions

There exist several theoretical models describing the be-
havior of semiflexible chains in the absence of excluded vol-
ume effects. We first consider a discrete worm-like chain
model45 that a chain consisting of N bonds with fixed bond
length �b, but successive bonds are correlated with respect to
their relative orientations,

〈	bi · 	bi+1〉 = �2
b〈cos θ〉 and 〈	b2

i 〉 = �2
b , (24)

where θ is the angle between the successive bond vectors. The
mean square end-to-end distance is therefore,

〈R2
e 〉 = N�2

b

[
1 + 〈cos θ〉
1 − 〈cos θ〉 − 2〈cos θ〉(1 − (〈cos θ〉)N

N (1 − 〈cos θ〉)2

]
.

(25)
This formula agrees with the prediction for a freely rotating
chain (FRC). In the limit N → ∞, the bond-bond orienta-
tional correlation function decays exponentially as a function
of their chemical distance s,

〈	bi · 	bi+s〉 = �2
b〈cos θ (s)〉 = �2

b〈cos θ〉s = �2
b exp(−s�b/�p),

(26)

where �p is the so-called persistence length which can be ex-
tracted from the initial decay of 〈cos θ (s)〉. Equivalently, one
can calculate the persistence length from

�p,θ /�b = −1/ ln(〈cos θ〉) (27)

here instead of �p we use �p, θ to distinguish between these
two measurements.

For rather stiff (�p � �b) and long chains (N → ∞), we
expect that the bond angles θ between successive bonds along
chains are very small (〈cos θ〉 ≈ 1 − 〈θ2〉/2), then Eqs. (25)

and (27) become

〈R2
e 〉 = N�2

b

1 + 〈cos θ〉
1 − 〈cos θ〉 ≈ N�2

b

4

〈θ2〉 (28)

and

�p/�b = 2/〈θ2〉. (29)

Equation (28) is equivalent to the mean square end-to-end dis-
tance of a freely jointed chain that nk Kuhn segments of length
�K are jointed together,

〈R2
e 〉 = nk�

2
k = 2�pL . (30)

L = N�b = nk�k being the contour length and �K = 2�p in this
limit.

In the continuum limit �b → 0, N → 0, but keeping L
and �p finite, we obtain from Eq. (25) the prediction for a
continuous worm-like chain,

〈R2
e 〉 = 2�pL

{
1 − �p

L
[1 − exp(−L/�p)]

}
. (31)

It gives the same result as that derived directly from
the Kratky-Porod model46, 47 for worm-like chains
in d = 3,

H = �pkBT

2

∫ L

0

(
∂2	r(s)

∂s2

)2

ds , (32)

where the polymer chain is described by the contour 	r(s) in
continuous space. Equation (31) describes the crossover be-
havior from a rigid-rod for L < �p, where 〈R2

e 〉 = L2, to a
Gaussian coil for L � �p, where 〈R2

e 〉 = 2�pL as shown in
Eq. (30).

For semiflexible Gaussian chains, the contour length L =
N�b can also be written as L = np�p and the mean square end-
to-end distance and gyration radius described in terms of np
and �p are46, 48

〈R2
e 〉

2�pL
= 1 − 1

np

[1 − exp(−np)] , (33)

6〈R2
g〉

2�pL
= 1 − 3

np

+ 6

n2
p

− 6

n3
p

[1 − exp(−np)] . (34)

One can clearly recognize that Gaussian behavior of the radii
is only seen, if the number np of the persistence length that fits
to a given contour length is large, np � 1, while a crossover
to rigid-rod behavior occurs for np of order unity.

In recent works in Refs. 22, 42, and 43, authors have
shown that the exponential decay of the bond-bond orienta-
tional correlation function, Eq. (26), and the Gaussian coil be-
havior, Eq. (31) for L � �p, predicted by the worm-like chain

TABLE II. Parameters a1 and a2 of the probability distribution P(Rg/�b), Eq. (17), determined by two different methods (1) and (2) mentioned in the text for
various values of chain length N.

N 10 20 50 100 200 400 800 1000 2000 4000 8000 10 000

(1) a1 × 104 7.12 5.27 4.94 4.52 4.70 4.70 4.82 4.34 4.88 4.74 4.37 4.68
(1) a2 12.80 14.15 14.46 14.90 14.70 14.73 14.58 15.10 14.42 14.66 15.07 14.73
(2) a1 × 104 . . . . . . 4.14 3.83 3.69 3.60 3.57 3.56 3.58 3.54 3.53 3.53
(2) a2 . . . . . . 13.25 13.27 13.29 13.29 13.30 13.29 13.35 13.29 13.29 13.28
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FIG. 11. Ratio between mean square end-to-end distance and mean square gyration radius, 〈R2
e 〉/〈R2

g〉, plotted against chain lengths (segments) N = L/�b for
SCLM (a) and for BFM (b). Data for semiflexible chains described by NRRWs and RWs are shown by symbols and lines, respectively. Here, �b = 1 for SCLM,
and �b = 2.72 for BFM.

model only hold for s and N up to some values s* and N*, re-
spectively, when excluded volume effects are considered. The
predictions of a theory based on the Flory-type free energy
minimization arguments2, 49–51 proposed as an alternative to
semiflexible chains with excluded volume interactions have
been verified. In this treatment, one considers a model where
rods of length �k and diameter D are jointed together, such
that the contour length L = N�b = nk�k. Apart from prefactors
of order unity, the second virial coefficient in d = 3 then can
be estimated as

v2 = �2
kD . (35)

The free energy of a chain now contains two terms, the elastic
energy taken as that of a free Gaussian, i.e., Fel ≈ R2

e /(�kL),
and the repulsive energy due to interactions treated in mean
field approximation, i.e., proportional to the square of the den-
sity n/R3 and the volume R3. Hence,

�F/kBT ≈ R2
e /(�KL) + v2R

3
e

[
(L/�K )/R3

e

]2
. (36)

Minimizing �F with respect to Re, we obtain for L → ∞ the
standard Flory result

Re ≈ (v2/�k)1/5L3/5 = (�kD)1/5(N�b)3/5 . (37)

Equation (37) also holds for finite L and N > N∗

= �3
k/(�bD

2) since the contribution of the second term in
Eq. (36) is still important. For N < N*, the first term in Eq.
(36) dominates, and the chain behaves as a Gaussian coil, R2

e

= �kL = �k�bN , while for even smaller N, N < Nrod = �k/�b,
the chain behaves as a rigid-rod. Thus, the double crossover
behavior of the mean square end-to-end distance is summa-
rized as follows:

〈R2
e 〉 ≈ L2 , N < N rod = �k/�b (rod − like chain) ,

(38)

〈R2
e 〉 ≈ �kL , N rod < N < N∗ (Gaussian coil) ,

(39)

〈R2
e 〉 ≈ (�kD)2/5L6/5 , N > N∗ (SAW). (40)

B. Simulation results

In order to investigate the scaling behavior of the ratio
〈R2

e 〉/〈R2
g〉 for semiflexible RWs and NRRWs, we plot our

data 〈R2
e 〉/〈R2

g〉 versus N = L/�b for several choices of the
stiffness parameter (Fig. 11). As N increases, the data increase
towards a maximum and then decrease towards a plateau
where the prediction limN→∞〈R2

e 〉/〈R2
g〉 ≈ 6 for ideal chains

holds. At the location of the maximum of 〈R2
e 〉/〈R2

g〉, N = Nh,
the corresponding maximum values is h = max 〈R2

e 〉/〈R2
g〉.

The maximum move monotonously to larger values as chains
become stiffer. The deviation between the data for RWs and
NRRWs based on the SCLM decreases as the bending energy
εb increases (Fig. 11(a)), while it is negligible for the simula-
tion data obtained based on the BFM (Fig. 11(b)) in all cases.

Figure 12 shows the bond-bond orientational correlation
function 〈cos θ (s)〉 plotted versus the chemical distance s�b
covering the range from flexible chains to stiff chains char-
acterized by εb for the models SCLM and BFM. We com-
pare the data obtained for SAWs, NRRWs, and RWs for vari-
ous values of εb. The intrinsic stiffness remains the same for
SAWs, NRRWs, and RWs as εb is fixed. Results obtained
from both models verify that the asymptotic exponential de-
cay of 〈cos θ (s)〉 is valid only if the excluded volume effect is
neglected, i.e., for RWs and NRRWs. For semiflexible SAWs
〈cos θ (s)〉 ∼ exp (− s�b/�p) cannot be correct for N → ∞,22, 42

we rather have

〈	bi · 	bi+s〉 ≈ s−β , β = 2 − 2ν ≈ 0.824 , s∗ � s � N .

(41)
As we have seen in Fig. 12, the exponential decay is ill-
defined for rather flexible SAWs. Using Eq. (27) as a defi-
nition of the persistence length we can still give the estimate
of the persistence length �p, θ = −�b/ln [〈cos θ (s = 1)〉] which
is approximately the same as the estimate of the decay length
�p for moderately stiff chains and stiff chains. The estimates
of �p/�b and �p, θ /�b depending on εb using Eqs. (26) and (27)
are listed in Tables III and IV. RWs are more flexible than
NRRWs, and NRRWs are more flexible than SAWs from the
estimates of the persistence lengths �p/�b and �p, θ /�b based on
the SCLM. Using the BFM the persistence lengths are almost
the same in all cases of εb for RWs and NRRWs, and they are
smaller compared with the estimates for SAWs. Note that in
Fig. 12(b) data deviate slightly from the fitting straight lines
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are for semiflexible chains described by SAWs, NRRWs, and RWs and for εb = 5.30, 4.61, 3.91, 3.51, 3.00, 2.30 from top to bottom in (a), and for εb = 10, 7,
5, 3, and 1 from top to bottom in (b). The straight lines indicate fits of the initial decay, 〈cos θ (s)〉∝exp (− s�b/�p) [Eq. (26)], for RWs.

describing the initial exponential decay for RWs and NRRWs
as the bending energy εb increases, i.e., the stiffness of chains
increases. For εb > 10 the problem is more severe. Therefore,
one should be careful using the BFM for studying rather stiff
chains. An alternative way to the determination of the persis-
tence length would be given by the best fit of the mean square
end-to-end distance 〈R2

e 〉 of RWs or NRRWs to Eq. (31). A
simple exponential decay is always found for the probabil-
ity distribution of connected straight segments for semiflex-
ible chains based on the SCLM,43 while large fluctuations
are observed for semiflexible chains based on the BFM due
to bond vector fluctuations and lattice artifacts.52 This is the
main reason why the different scenarios of the bond-bond ori-
entational correlation functions between the SCLM and the
BFM for stiff chains are seen in Fig. 12. Figure 13 shows the
locations Nh and the heights h of the maximum of 〈R2

e 〉/〈R2
g〉

(Fig. 11) plotted versus the persistence length �p/�b for semi-
flexible RWs based on the SCLM and BFM. Note that Nh,
h, and �p/�b all depend on εb which controls the stiffness of
chains. We see that the dependence between h and �p/�b are
the same for both models, while Nh for the BFM is slightly
larger than that for the SCLM for a fixed value of �p/�b since
chains based on the BFM are more flexible.

The scaling plots for testing the applicability of the
worm-like chain prediction, Eqs. (31) and (34) to our data
of 〈R2

e 〉 and 〈R2
g〉 are shown in Fig. 14. The persistence length

�p/�b in Eq. (31) for various values of εb are extracted from the
exponential fit of Eq. (26) for NRRWs (see Tables III and IV).

TABLE III. Two estimates for the persistence length �p/�b from Eq. (26)
and �p, θ

/�b from Eq. (27) for semiflexible RWs, NRRWs, and SAWs with
various values of qb(= exp (−εb/kBT)) based on the SCLM (�b = 1). Here,
in our simulations values of qb are chosen for convenience.

qb 1.0 0.4 0.2 0.1 0.05 0.03 0.02 0.01 0.005
εb 0.0 0.91 1.61 2.30 3.00 3.51 3.91 4.61 5.30

�p/�b RW . . . 0.84 1.54 2.83 5.37 8.73 12.95 25.67 51.38

NRRW . . . 1.05 1.70 2.97 5.50 8.87 13.09 25.80 51.53
SAW . . . . . . 2.04 3.35 5.96 9.54 13.93 26.87 52.61

�p, θ
/�b RW . . . 0.84 1.54 2.83 5.36 8.73 12.95 25.66 51.37

NRRW 0.62 1.05 1.70 2.98 5.50 8.87 13.08 25.79 51.53
SAW 0.67 1.12 1.81 3.12 5.70 9.10 13.35 26.28 51.52

Since the worm-like chain model is formulated in the contin-
uum, care has to be taken to correctly take into account the
lattice structure of the present model, particularly in the rod
limit. Assuming that a rigid rod consisting of N monomers is
located at x1 = �b, x2 = 2�b, . . . , xN = N�b along the x-axis
on the simple cubic lattice, the mean square gyration radius is

〈R2
e 〉rod = 1

N

N∑
k=1

(k�b)2 −
(

1

N

N∑
k=1

k�b

)2

= (N + 1)(2N + 1)�2
b

6
− (N + 1)2�2

b

4

= (N + 1)(N − 1)�2
b

12
= L(L + 2�b)

12
. (42)

Therefore, due to the lattice structure, the mean square gy-
ration radius is rescaled by (L + 2�b) instead of L in order
to compare with the theoretical predictions in Figs. 14(c) and
14(d). For semiflexible RWs and NRRWs, the data are indeed
very well described by the worm-like chain model. As N in-
creases, we observe the crossover behavior from a rigid-rod
regime to a Gaussian coil regime. The plateau value in the
Gaussian regime corresponds to the persistence length �p/�b
in Figs. 14(a) and 14(b) and (1/6)�p/�b in Figs. 14(c) and
14(d). For SAWs, the deviation from the prediction becomes
more prominent as chains are more flexible since the excluded
volume effects are more important.

Note that one should not consider the correction fac-
tor (L + 2�b)/L relative to the Kratky-Porod model in
Eq. (42) as a “lattice artefact”: in a real stiff polymer (e.g.,

TABLE IV. Two estimates for the persistence length �p/�b from Eq. (26)
and �p, θ

/�b from Eq. (27) for semiflexible RWs, NRRWs, and SAWs with
various values of εb based on the BFM (�b = 2.72).

εb 0.0 1.0 2.0 3.0 5.0 7.0 10.0 15

�p/�b RW . . . 0.87 1.62 2.54 4.69 7.18 12.09 27.65

NRRW . . . 0.87 1.62 2.54 4.69 7.18 12.09 27.65
SAW . . . . . . 1.91 2.78 4.94 7.39 12.37 27.93

�p, θ
/�b RW . . . 0.87 1.62 2.54 4.63 6.87 10.50 17.73

NRRW 0.21 0.87 1.62 2.54 4.63 6.87 10.50 17.73
SAW 0.61 1.11 1.80 2.65 4.68 6.90 10.52 17.75
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FIG. 13. Location Nh and height h of the maximum of 〈R2
e 〉/〈R2

g〉 (see
Fig. 11) plotted versus the persistence length �p/�b for RWs based on the
SCLM and BFM.

an alkane-type chain) one also has a sequence of discrete in-
dividual monomers (separated by almost rigid covalent bonds
along the backbone of the chain) lined up linearly (like in a
rigid rod-like molecule) over about the distance of a persis-
tence length. Furthermore, we compare simulation results of
the ratio 〈R2

e 〉/〈R2
g〉 multiplied by [(L + 2�b)/L] as a func-

tion of np = L/�p to the theoretical prediction, the ratio be-
tween Eqs. (33) and (34), in Fig. 15. We see the nice data
collapse for RWs and NRRWs in the Gaussian regime (np
� 1) and the increase of deviations from the master curve as
the stiffness of chains decreases in Figs. 15(a) and 15(b). The
ratio [(L + 2�b)/L]〈R2

e 〉/〈R2
g〉 ≈ 12 as np → 0 for a rigid-

rod, while [(L + 2�b)/L]〈R2
e 〉/〈R2

g〉 ≈ 6 as np → ∞ for a
Gaussian coil. For SAWs, we still see the nice data collapse

in Figs. 15(c) and 15(d), but in both rigid-rod and Gaussian
coil regimes the deviations from the master curve become
more prominent as chains are more flexible. For np > 1, the
deviation is due to the excluded volume effects, and finally
[(L + 2�b)/L]〈R2

e 〉/〈R2
g〉 ≈ 6.25 as np → ∞ for SAWs. Note

that in both models the ratio of the mean square end-to-end
and gyration radii exceed its asymptotic value still signifi-
cantly even if np is as large as np = 10.

Recently, Huang et al.53, 54 performed Brownian dynam-
ics simulations on two-dimensional (2D) semiflexible chains
described by a BSM including the excluded volume interac-
tions. Varying the chain stiffness and chain length their re-
sults confirmed the absence of a Gaussian regime in agree-
ment with the results from semiflexible SAWs based on the
SCLM,44 and with observations from experiments of circu-
lar single stranded DNA adsorbed on a modified graphite
surface.55 The rescaled mean square end-to-end distance,
〈R2

e 〉/(2L�p), in terms of L/�p for both models on the lattice
and in the continuum turns out to be universal from the rigid-
rod regime up to the crossover regime (L/�p ∼ 1) irrespec-
tive of the models chosen for the simulations. In the 2D SAW
regime, different amplitude factors result from the different
models.25

In d = 3, we indeed see the nice data collapse for semi-
flexible RWs, NRRWs, and SAWs in the plot of 〈R2

e 〉/(2L�p)
versus L/2�p (cf. Figs. 14(a) and 14(b)) from rod-like regime
crossover to the Gaussian regime for N < N* (not shown),
and the data obtained from the two lattice models are well
described by the Kratky-Porod scaling function, Eq. (31).
For the BSM in the continuum, we should expect the same
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FIG. 14. Log-log plots of rescaled mean square end-to-end distance 〈R2
e 〉/(2�

b
L) (a) and (b) and rescaled mean square gyration radius 〈R2
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b
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))

(c) and (d) versus N = L/�b for semiflexible chains described by SAWs, NRRWs, and RWs based on the SCLM with �b = 1 (a) and (c) and BFM with �b =
2.72 (b) and (d). Data for various values of εb are shown, as indicated. Solid curves refer to the theoretical prediction, Eq. (31), for WLC. The values of the
persistence length �p/�b for NRRW are taken from Tables III and IV.
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FIG. 15. Semi-log plots of [(L + 2�
b
)/L]〈R2

e 〉/〈R2
g〉 versus np = L/�p for semiflexible chains described by RWs and NRRWs (a) and (b) and SAWs (c) and

(d). Data for various values of εb are shown, as indicated. Solid curves refer to the theoretical prediction, the ratio between Eqs. (33) and (34), for WLC. The
values of the persistence length �p/�b for RWs, NRRWs, and SAWs are taken from Tables III and IV, respectively.

universal behavior. Although for semiflexible SAWs the sec-
ond crossover from the Gaussian regime to the SAW regime
for N > N* is rather gradual and not sharp, the relationship56

between the crossover chain length N* and the persistence
length �p/�b, N*∝(�p/�b)2.5, holds for these two models here.
It would be interesting to check whether such a scaling law
would also hold for the BSM.

The structure factor S(q) is an experimentally accessible
quantity measured by neutron scattering. We therefore also
estimate S(q) by

S(q) = 1

(N + 1)2

〈
N∑

i=0

N∑
j=0

exp(i 	q · [	ri − 	rj ])

〉
, (43)

where {	ri} denote the positions of the (N + 1) monomers
in a chain, and the structure factor is normalized such that
S(q → 0) = 1. In order to compare the results of S(q) ob-
tained for fully flexible RWs, NRRWs, and SAWs based on
the SCLM and BFM, we plot S(q) versus q�b (�b = 1 for
SCLM, and �b = 2.72 for BFM) in Fig. 16(a). We see that

S(q) ≈ 1 − q2〈R2
g〉/3 for q → 0, while for q �

√
〈R2

g〉 the

power law S(q) ∼ q−1/ν (ν = 0.588 for SAWs, and ν = 0.5
for RWs and NRRWs) holds. The lattice artifact sets in at q�b
≈ π . Due to the local packing the first peak appears at q�b
≈ 2π for the SCLM, while at q�b ≈ 2.4π for the BFM as q
increases. In Fig. 16(b), we show the results for semiflexible
SAWs of different stiffnesses based on the BFM. The Gaus-
sian regime where S(q) ∼ q−2 for large values of εb and then
crosses gradually over to S(q) ∼ q−1 as expected for rigid
rods.57

Finally, we analyze the structure factor S(q) in the form
of Kratky-plots, qLS(q) plotted versus q�p, shown in Fig.
16(c) for semiflexible SAWs. Data are only for q < π .
The well-known theoretical predictions of the scattering from
rigid-rods,57 qLS(q) → π , and Gaussian chains, the Debye
function,2, 58–60

SDebye(q) = 2

q2〈R2
g〉

{
1 − 1

q2〈R2
g〉

[
1 − exp

( − q2
〈
R2

g

〉)]}
,

(44)
and the interpolation formula which describes the two lim-
iting cases of Gaussian coils and rigid rods exactly by
Kholodenko,61

S(q) = 2

x

[
I1(x) − 1

x
I2(x)

]
, x = 3L/2�p, (45)

where In(x) = ∫ x

0 dzzn−1f (z), and the function f(z) is given
by

f (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

E

sinh(Ez)

sinh z
, q ≤ 3

2�p

,

1

Ê

sin(Êz)

sinh z
, q >

3

2�p

,

(46)

with

E =
[

1 −
(

2q�p

3

)2
]1/2

, Ê =
[(

2q�p

3

)2

− 1

]1/2

,

(47)
are also shown for comparison.62 Near the peak the discrep-
ancy of our data from the theoretically predicted formulas
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FIG. 16. (a) and (b) Log-log plot of structure factor S(q) versus q�b. Data
are for fully flexible chains based on the SCLM and BFM in (a), and for
semiflexible chains based on the BFM including 6 choices of the stiffness
in (b). (c) Rescaled structure factor qLS(q) plotted versus qlp. Data are for
semiflexible chains based on the SCLM and BFM including 4 choices of the
stiffness each. In (a) and (b), the straight lines indicate the rod-like behavior
at large q (slope =−1) the SAW behavior for flexible chains (slope =−1/ν,
with ν = 0.588), and the Gaussian behavior (slope =−2). In (c), the formulas
proposed by Kholodenko61 {Eqs. (45)–(47)}, the Debye function {Eq. (44)}
for Gaussian chains, and qLS(q) → π for a rigid-rod57 are also shown for
comparison.

increases as the bending energy εb decreases showing that
the excluded volume effect sets in. For semiflexible polymer
chains of almost the same persistence length based on the two
different lattice models, the structure factors are on top of each
other.

V. CONCLUSIONS

In this paper, we have studied single polymer chains cov-
ering the range from fully flexible chains to stiff chains un-
der very good solvent conditions by extensive Monte Carlo
simulations based on two coarse-grained lattice models: the
standard simple cubic lattice model and the bond fluctuation
model. With the pruned-enriched Rosenbluth method the con-

formations of polymer chains mimicked by random walks,
non-reversal random walks, and self-avoiding walks depend-
ing on the effective interactions between monomers have been
analyzed in detail. We give the precise estimate of the fugacity
μ∞ and the entropic exponent γ for self-avoiding walks based
on the bond fluctuation model. The universal scaling predic-
tions of mean square end-to-end distance, 〈R2

e 〉 [Eq. (2)], and
mean square gyration radius, 〈R2

g〉 [Eq. (3)], for fully flexible
chains are verified as one should expect, and the correspond-
ing amplitudes Ae and Ag depending on the models are deter-
mined. We have also checked the probability distributions of
Re and Rg, P(Re) and P(Rg), respectively. Especially, we point
out that the previous estimate of the parameter A in Eqs. (19)
for SAWs is an overestimate due to the finite-size effect. Our
results also agree with the results based on the BSM,10 that the
formula (17) predicted by Lhuillier37 is a good approximate
formula for RWs.

For semiflexible chains, the additional regime of rod-like
behavior causes slow transients in many quantities, before the
asymptotic behavior of flexible chains is reached (see, e.g.,
Fig. 11). In the absence of the excluded volume effect, a sin-
gle crossover occurs, from rigid-rods to Gaussian coils as im-
plied by the Kratky-Porod model, while a double crossover
occurs from rigid-rods to Gaussian coils and then to swelling
coils due to the excluded volume interaction as predicted by
the Flory-like arguments. We have verified the Kratky-Porod
crossover scaling behavior for semiflexible RWs, semiflexi-
ble NRRWs, and for semiflexible SAWs when the excluded
volume effect is not yet important, otherwise the Flory pre-
diction takes over for semiflexible SAWs. The flexibility of
chains in our model is controlled by the bending potential
Ub = εb(1 − cos θ ). Our results of bond-bond orientational
correlation functions 〈cos θ (s)〉 (Fig. 12) show that the persis-
tence lengths of semiflexible RWs, NRRWs, and SAWs are
the same for a given bending energy εb based on the same lat-
tice model. But, with a caveat: there is a problem of fitting the
exponential decay to the data of 〈cos θ (s)〉 for not only semi-
flexible SAWs but also semiflexible RWs and NRRWs based
on the BFM for εb > 10 (rather stiff chains) due to the fluctu-
ations of bonds and the lattice artifacts as it was mentioned in
Ref. 52. The structure factor describing the scattering from
semiflexible linear polymer chain based on the SCLM pro-
vides an almost perfect match to the result based on the BFM
when we adjust the bending energy εb such that the same per-
sistence length �p/�b results for both models.

From our simulations, the different crossovers to the
asymptotic behavior of single chains based on the SCLM and
BFM are observed and investigated. Similar effects have to
be expected for real chemical systems as well. Thus, coarse
graining will require different mapping ratios for different
coarse-grained models. However, the equilibration time may
rise dramatically for simulating large and complex realistic
polymer systems. A proper mapping onto a coarse-grained
model where the number of degrees of freedom is reduced
should help to speed up the simulations. Based on the BFM,
the bond angles and bond lengths of polymers can be treated
as dynamic degrees of freedom depending on temperature.
Thus, the static structure of a polymer model on the coarse
grained level could be tuned, when one introduces bond
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length and bond angle potentials, to mimic the structure of
a chemically realistic model of a polymer which contains
covalent chemical bonds, whose orientation is controlled by
both bond angle and torsional potentials. In this paper, we
did not discuss the details of this mapping procedure yet,
but we hope that our work will be a useful input for this
problem. However, it will also be interesting and important
to understand the distributions of bond lengths and torsional
angles.

We hope that the present work will contribute to a better
understanding of using the lattice models for studying com-
plex polymer systems and for the development of a multi-
scale coarse-graining approach based on the lattice models.
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