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We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately
stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density
fluctuations, we test a pre-packing process for the preparation of the initial configurations of the
polymer melts, before the excluded volume interaction is switched on completely. This process leads
to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful
for simulating very large systems, where the statistical properties of the model with a marginally
incomplete elimination of excluded volume violations are the same as those of the model with strictly
excluded volume. We find that the internal mean square end-to-end distance for moderately stiff
chains in a melt can be very well described by a freely rotating chain model with a precise estimate
of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The
plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness
also shows that the data collapse is excellent and described very well by the Gaussian distribution
for ideal chains. However, while our results confirm the systematic deviations between Gaussian
statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al.
[EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain
length these deviations are no longer visible, when the chain stiffness is included. The mean square
bond length and the compressibility estimated from collective structure factors depend slightly on
the stiffness of the chains. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903506]

I. INTRODUCTION

In the theoretical study of polymer physics,1, 2 computer
simulations provide a powerful method to mimic the behav-
ior of polymers covering the range from atomic to coarse-
grained scales depending on the problems one is interested
in.3–5 The generic scaling properties of single linear and
branched polymers in the bulk under various solvent condi-
tions and polymer solutions at different temperatures have
been described quite well by simple coarse-grained lattice
models, e.g., self-avoiding walks on the simple cubic lat-
tice, and off-lattice models, e.g., bead-spring model, etc. A
wide variety of computational strategies has been employed
to simulate and analyze these models, including conventional
(Metropolis) Monte Carlo (MC) schemes with various types
of moves, chain growth algorithms, parallel tempering, and
molecular dynamics.3 On the one hand, however, as the size
and complexity of a system increases, detailed information at
the atomic scale may be lost when employing low resolution
coarse-graining representations. On the other hand, the cost
of computing time may be too high if the system is described
at high resolution. Therefore, more scientific effort has been
devoted to developing an appropriate coarse-grained model
where the connection to the details on the atomic scale is not
lost, but rather atomistic details are suitably mapped on ef-
fective potentials on the coarser scale. Such models then can
reproduce the global thermodynamic properties and the local
mechanical and chemical properties such as the intermolec-
ular forces between polymer chains.6–13 Improving such ap-
proach further is still an active area of research.

In this work we deal with linear polymer chains in a melt
on the simple cubic lattice. Although coarse-grained lattice
models neglect the chemical detail of a specific polymer chain
and only keep chain connectivity (topology) and excluded
volume, the universal behavior of polymers still remains
the same in the thermodynamic limit (as the chain length
N → ∞).2 We consider for our simulations the bond fluc-
tuation model (BFM)3, 14–17 where linear chains are located
on the simple cubic lattice with bond constraints. The BFM
has the advantages that the computational efficiency of lat-
tice models is kept and the behavior of polymers in a contin-
uum space can be described approximately. The model thus
introduces some local conformational flexibility while retain-
ing the computational efficiency of lattice models for imple-
menting excluded volume interactions by enforcing a single
occupation of each lattice vertex. Although much work using
this model exists already, only the fully flexible limit of the
model has been used exclusively. This limit does not suffice
when one considers a possible mapping of atomistic details
to this model, which requires to include some description of
chain stiffness as well.

A review of recent BFM studies is given in Ref. 18.
When the concentration of polymer solutions is above the
overlap concentration denoted by c∗, the excluded volume in-
teractions are screened.2, 19 The average interaction between
monomers finally should cancel in a polymer melt since ev-
ery monomer is isotropically surrounded by other monomers
belonging to the same chain or not according to Flory’s ar-
gument. Therefore, the polymer chains in a melt behave as
ideal chains, where the excluded volume effect is no longer
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important. However, a careful investigation of an individual
polymer chain in a polymer melt based on the BFM and the
bead-spring model (BSM) shows that there are noticeable de-
viations from an ideal chain behavior.18, 20 The deviations are
due to the incompressibility constraint of the melt. Therefore,
small scale-free corrections to the asymptotic behavior for
ideal chains exist and they are irrespective of the stiffness of
the chains. In Refs. 18 and 20, the authors have shown that
the corrections must decay as the dimensionless (Ginzburg)
parameter ρ∗/ρ ∼ 1/(ρb3

e s
1/2) for 1 � s � N with the in-

crease of the segments s and the effective bond length be of the
chain. Here ρ is the overall monomer density and ρ∗ ∼ s/R(s)3

the segmental overlap density related to the internal distance
R(s) ≈ bes1/2. It is still unclear whether the predicted power-
law deviations from unperturbed Gaussian behavior can be
observed for the internal segment lengths of semiflexible
chains in the range 1 � g(εb) � s � N by varying the stiff-
ness of chains, i.e., tuning the bending energy εb.

A very important practical problem for the simulation of
melts of very long polymer chains is the construction of a
suitable initial configuration. A naive approach for creating
initial configurations of melts with long polymers, would be
to switch off initially the excluded volume interactions be-
tween monomers (so that the polymers resemble Gaussian
chains), arrange these chains randomly in a simulation box,
and switch on gradually the excluded volume interactions at
the final step. It has been demonstrated by simulations using
the BSM in the continuum that this strategy is not feasible
since it leads to chain deformations on short length scales.21

With increasing chain length this effect becomes more pro-
nounced due to the fact that self-screening and correlation
hole effects, inherent to flexible high polymer melts, are not
properly accounted for by this procedure. This problem was
overcome by reducing the density fluctuations of Gaussian
chains via a “pre-packing” strategy, and then switching on
the excluded volume interactions in a quasi-static way (slow
push-off).21, 22 We test a similar strategy of simulating poly-
mer melts based on the lattice model BFM in this work to
check whether it helps to generate nearly equilibrated initial
configurations through such a procedure.

The outline of the paper is as follows: Sec. II describes
the model and the simulation technique discussing how to
generate initial configurations of polymer chains in a melt to
equilibrate the system. Section III presents the simulation re-
sults at different stages from the initial state to the equilibrium
state of fully flexible and moderately stiff polymer chains in a
melt. Finally, our conclusions are summarized in Sec. IV.

II. MODEL AND SIMULATION TECHNIQUES

In the standard BFM3, 14–17 a flexible polymer chain with
excluded volume interactions is described by a self-avoiding
walk (SAW) chain of effective monomers on a simple cubic
lattice (the lattice spacing is the unit of length). Each effec-
tive monomer of such a SAW chain blocks all eight corners
of an elementary cube of the simple cubic lattice from fur-
ther occupation. Two successive monomers along a chain are
connected by a bond vector �b which is taken from the set
{(±2, 0, 0), (±2, ±1, 0), (±2, ±1, ±1), (±2, ±2, ±1), (±3,

0, 0), (±3, ±1, 0)} including also all permutations. The bond
length | �b | is therefore in a range between 2 and

√
10. There

are in total 108 bond vectors and 87 different bond angles
between two sequential bonds along a chain serving as candi-
dates for building the conformational structure of polymers.

As the stiffness of the chains is considered, semiflexible
chains of N monomers in a melt thus are described by SAW
chains on the simple cubic lattice, with a bending potential

Ub

kBT
= εb

kBT

N−1∑
i=1

(1 − cos θi,i+1)

= εb

kBT

N−1∑
i=1

(
1 −

�bi · �bi+1

|�bi ||�bi+1|

)
, (1)

where εb is the bending energy (εb = 0 for ordinary SAWs),
and θ i, i + 1 is the bond angle between the ith bond vector and
the (i + 1)th bond vector along a chain. kBT is of order unity
throughout the whole paper. A systematical study of single
semiflexible chains based on the BFM23 shows that due to
bond vector fluctuations and lattice artifacts the initial decay
of the bond-bond orientational correlation function deviates
from the simple exponential decay for εb > 10. Therefore,
one should be careful of using the BFM for studying rather
stiff chains as has already been pointed out also in Ref. 24.

It is well understood that linear polymers in a melt can be
described by SAW chains based on the BFM at a volume frac-
tion φ = 0.5.3, 16, 17 Since in the BFM, each effective monomer
occupies one unit cell, containing 8 lattice sites, the monomer
density is therefore defined as ρ = φ/8. A detailed descrip-
tion of how we prepare the initial configurations is given as
follows: The initial configuration of polymer melts contain-
ing nc chains of N monomers in a box of size V = L3 with
periodic boundary conditions in all three directions are gener-
ated in the following way:

� The linear dimension of a simple cubic lattice is set up
as L = (8ncN/φ)1/3 with volume fraction φ = 0.5.

� At the 0th step the first nc monomers of the chains are
randomly put on the lattice sites without double over-
lapping. It can be easily done by dividing the box into
nc blocks and putting a single monomer in each block
at a randomly chosen position inside the block.

� Polymer chains are built like non-reversal random
walks (NRRWs) by adding one monomer at each step
until all nc chains reaching the required chain length
N − 1. (We define here the chain length as the num-
ber of bonds along the contour of a chain. The con-
tour length of the chain then is L = (N − 1)�b where
�b = 〈|�b2|〉1/2 is the root-mean-square bond length).
Based on the BFM there are 108 possibilities to place
the next monomer for each chain at the 1st step, but
at the following steps only one of 107 directions can
be selected since an immediately reverse step is not
allowed. At this stage, the excluded volume effect is
switched off completely and nc NRRWs of (N − 1)-
steps in the simulation box are generated.

If the stiffness of the chains is considered,
the probability of placing the (i + 1)th monomer
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connected to the ith monomer is proportional to
exp (−εb(1 − cos θ i, i+1)).

� Finally, the excluded volume interactions between
monomers are considered by applying the Local 26
and slithering-snake moves to relax the polymer chains
and push off those monomers blocking the same lattice
site until all chains satisfy self- and mutual-avoidance.
This “steepest descent” approach only works for lat-
tice chains since excluded volume constraints can be
checked very efficiently, but would not work for con-
tinuum chains.

Due to the large local density fluctuations of randomly
overlapping NRRW chains in a melt, a pre-packing procedure
to reduce the chain deformations is also tested before the ex-
cluded volume interactions are switched on. This pre-packing
procedure has been successfully performed in the simula-
tions of equilibrating very long polymer chains in melts up to
nc = 1000 and N = 1000 based on the bead-spring model
in the continuum.22 In this procedure all NRRW chains still
keep their own structures as rigid bodies, but are rearranged
by MC trial moves. The cost function which describes the av-
erage fluctuations of the particle number n(σ ) within a sphere
of radius σ with its center located at any monomer i is defined
by

U (σ ) = 〈n(σ )2〉 − 〈n(σ )〉2

= 1

Ntot

Ntot∑
i=1

n2
i (σ ) −

⎛
⎝ 1

Ntot

Ntot∑
i=1

ni(σ )

⎞
⎠

2

(2)

with

ni(σ ) =
Ntot∑

j=1 ,j �=i

H (σ − rij ), H (x) =
{

0, for x < 0

1, for x ≥ 0
,

(3)
where Ntot = Nnc is the total number of monomers in a melt,
ni(σ ) is the number of monomers inside the ith sphere of ra-
dius σ , rij = |�ri − �rj | is the distance between monomers i and
j irrespective of the chain connectivity, and H(x) is the Heavi-
side step function. A trial move is accepted if the cost function
becomes smaller, namely, the local density fluctuation is min-
imized in this process. Two types of MC moves, translation
and pivot-like moves, applied to the center of mass of an in-
dividual chain are considered as follows: (a) In the translation
move, an individual chain (or its center of mass) is randomly
translated by a vector chosen from the set {(±1, 0, 0), (±1,
±1, 0), (±1, ±1, ±1)} including all permutations. (b) In the
pivot-like move, a whole individual chain is transformed by
randomly choosing one of the 47 symmetric operators includ-
ing rotations by 90◦ or 180◦ around a random axis and reflec-
tions through its center of mass, and inversion at its center of
mass. The center of mass serves as a pivot point here. Note
that all monomers are only allowed to sit on the lattice sites,
so a chain would need to be shifted slightly after the pivot-like
move. However, the deviation of its center of mass is less than
1 lattice spacing.

For equilibrating the system and measuring interesting
physical quantities in the equilibrium runs three types of MC

moves, local 26 moves,25 slithering-snake moves, and pivot
moves, are used in our simulations and briefly described as
follows:

� Local 26 (“L26”) move: a monomer is chosen ran-
domly to move to one of the 26 nearest and next near-
est neighbor sites surrounding it, i.e., randomly trans-
lated by a vector chosen from the set {(±1, 0, 0), (±1,
±1, 0), (±1, ±1, ±1)} including all permutations. The
bond crossing is allowed during the move. This is dif-
ferent from the traditional local 6 (“L6”) move where a
monomer of the chain is chosen at random and moved
to the nearest neighbor sites in the six lattice directions
randomly.

� Slithering-snake move: an end monomer is removed
randomly and connected to the other end of the same
linear chain by a bond vector randomly chosen from
the set of 108 allowed bond vectors.

� Pivot move: a monomer is chosen randomly from a lin-
ear chain as a pivot point, and the short part of the lin-
ear chain is transformed by randomly selecting one of
the 48 symmetry operations (no change; rotations by
90◦ and 180◦; reflections and inversions).

Of course, any attempted Monte Carlo move is accepted
only if it does not violate constraints of our physical systems,
such as excluded volume and bond length constraints.

III. SIMULATION RESULTS

We first wish to test whether applying the pre-packing
process to rearrange the NRRW chains based on the BFM be-
fore the excluded volume interaction is switched on helps to
prepare the nearly equilibrated initial configurations or not.
We restrict the size of the lattice to be L3 = 1283 in our simu-
lations. The total number of effective monomers based on the
BFM is therefore Ntot = ncN = 131 072. Varying nc and N but
keeping Ntot fixed the conformational properties of polymer
melts including fully flexible chains (εb = 0.0) and moder-
ately stiff chains (εb = 1.0, 2.0, and 3.0) are studied. Results
of simulating polymer melts from preparing the initial con-
figuration to the analysis of equilibrated chain structures in a
melt are discussed in Subsection III A.

A. Local density fluctuations

In Fig. 1 we show the typical time series of the local den-
sity fluctuation (〈n(σ )2〉 − 〈n(σ )〉2)/〈n(σ )〉 with σ = 12 for nc
= 256 NRRW chains of N = 512 monomers in a box of size
L3 = 1283, and for the bending energies εb = 0 (fully flexi-
ble), 1.0, 2.0, and 3.0. In the pre-packing process, the radius
σ is first set to 12 ≈ 4�b in the unit of lattice spacings until all
curves describing the local density fluctuation reach a plateau,
and then reduced to 6 ≈ 2�b until all curves reach another
plateau again. The estimates of the collective structure factor
S(q) for q = 2π /L and the local density fluctuation (〈n(σ )2〉
− 〈n(σ )〉2)/〈n(σ )〉 for σ = 12 are of the same order of mag-
nitude (see Sec. III D) from the final configurations generated
by this two-step pre-packing process. Each Monte Carlo step
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FIG. 1. Time series of local density fluctuation (〈n(σ )2〉 − 〈n(σ )〉2)/〈n(σ )〉
for σ = 12. Data are for nc = 256 NRRW chains of N = 512 monomers in a
box of size L3 = 1283. Several bending energies εb are chosen, as indicated.

contains nc translation moves and nc pivot-like moves such
that the locations of all chains in the box are rearranged by
the trial moves. Each curve shown in Fig. 1 represents the re-
sults averaged over 32 independent realizations. We see that
the local density fluctuation can be reduced by about an order
of magnitude after about 1000 Monte Carlo steps.

It is interesting to know what we have gained by introduc-
ing the pre-packing procedure before equilibrating the sys-
tem. Therefore, we check the process of pushing away the
monomers occupying the same unit cells (eight lattice sites
are occupied by one effective monomer in BFM) by observing
the time series of the number of overlapping monomers, Nover,
as the excluded volume effect is switched on. For simplicity,

if a lattice site is occupied by s effective monomers, it con-
tributes s − 1 overlapping monomers to Nover. The transition
process from nc = 256 NRRW chains of N = 512 monomers
to SAW chains is observed according to the decrease of Nover
shown in Fig. 2 for εb = 0.0, 1.0, 2.0, and 3.0. Two sets of
data (8 samples for each) representing the push-off process
before (dashed curve in green) and after (solid curves in red)
the pre-packing process is applied. Here one MC step is a se-
quence of Ntot L26 moves, and Nnc slithering-snake moves.
In the slithering-snake moves, an end-monomer of each chain
is selected and attempted to move once until all chains have
been chosen, and then the same procedure is repeated N times.
A trial move is accepted if 	Nover = N

(new)
over − N

(old)
over < 0

and exp (−	Ub)/kBT > r where r is a random number and
r ∈ [0, 1). The latter condition is the Metropolis criterion pre-
serving the stiffness of the chains. If only L26 moves are ap-
plied in this push-off process, at the beginning it is very effi-
cient to push off overlapping monomers, but then some chains
are trapped in a state containing knots, or a state blocked
by other chains. The slithering-snake moves therefore indeed
play an important role at the intermediate stages for the chains
escaping from a trapped state. From our observations in
Fig. 2 it seems that applying an additional pre-packing pro-
cess does not speed up the push-off process. However, it is
still necessary to investigate the conformation of chains in a
melt carefully.

In addition, it is interesting to note that pre-packing leads
to a significantly faster decrease of Nover with time during
intermediate stages of the process. This feature may be of
interest in cases where one does not require that strictly Nover
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FIG. 2. Time series of the total number of overlapping monomers Nover for polymer melts consisting of nc = 256 chains of N = 512 monomers, and for
εb = 0.0 (a), 1.0 (b), 2.0 (c), and 3.0 (d). Two sets of data for the simulations with (solid curves in red) and without (dashed curves in green) the pre-packing
process, as indicated.
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TABLE I. Values of local density fluctuation (〈n2〉 − 〈n〉2)/〈n〉 for σ = 12.
Data are for N = 512, and for εb = 0.0, 1.0, 2.0, 3.0, averaged over 32 con-
figurations at different stages.

εb 0.0 1.0 2.0 3.0

NRRWs 51.06 30.96 20.89 14.57
Pre-packing, NRRWs 2.92 1.56 1.04 0.86
Pre-packing+EV, SAWs 0.28 0.28 0.28 0.28
EV, SAWs 0.27 0.27 0.28 0.27
Equilibrium, SAWs 0.28 0.28 0.27 0.27

= 0 in the initial stage of the averaging. Consider, e.g., a vari-
ant of the model where monomers overlap is not strictly for-
bidden (which corresponds to an infinitely high repulsive en-
ergy) but only leads to a large but finite energy penalty, e.g.,
Eover = 20kBT. The probability to accept a move which in-
creases the overlap then is of order 10−9, i.e., essentially neg-
ligible, and for long chains the statistical properties of the
model are essentially the same as for the model with strict
excluded volume. For such a model the overlap energy per
monomer reduces after about 104 Monte Carlo steps from an
initial value (of the order of 20kBT) by three orders of mag-
nitude, i.e., 0.02kBT, and this small number is reached 3 to 4
times faster with pre-packing than without it. For very large
systems (and complicated models, leading to slow simulation
algorithms) it may hence be an acceptable compromise to al-
low a small fraction (10−3 or less) of overlap in the system.

In Table I we compare the average values of local den-
sity fluctuation (〈n(σ )2〉 − 〈n(σ )〉2)/〈n(σ )〉 [Eq. (3)] for σ

= 12 (since qmin = 2π/L ≈ V
−1/3

sub ) over 32 configures at dif-
ferent stages from the preparation of the initial configura-
tions to the final configurations at the equilibrium state. Two
ways of preparing the initial configurations (Sec. II) are com-
pared as follows: (1) Randomly generating weakly-interactive
NRRWs (NRRWs), applying the pre-packing process (Pre-
packing, NRRWs), and switching on the excluded volume
effect (Pre-packing+EV, SAWs). (2) Randomly generating
weakly-interactive NRRWs (NRRWs) and switching on the
excluded volume effect (EV, SAWs). We see that for weakly-
interactive NRRWs the local density fluctuation decreases as
the bending energy εb increases. Since the bond angles tend to
become smaller, the distance between non-bonded monomers
apart from each other along the chain becomes longer. After
the pre-packing process the fluctuation reduces by about 95%.
Once the excluded volume interactions between monomers
are switched on, the fluctuation remains almost the same for
all cases.

B. Mean square internal end-to-end distance
and bond-bond orientational correlation function

For understanding the connectivity and correlation be-
tween monomers the conformations of linear chains of con-
tour length L = (N − 1)�b in a melt are normally described by
the average mean square internal end-to-end distance, 〈R2(s)〉,

〈R2(s)〉 =
〈

1

nc

n
c∑

n=1

⎡
⎣ 1

N − s

N−s∑
j=1

(�rn,j − �rn,j+s)
2

⎤
⎦〉

, (4)

where s is the chemical distance between the jth monomer and
the (j + s)th monomer along the identical chain. The theoreti-
cal prediction of the internal mean square end-to-end distance
for polymer melts consisting of semiflexible chains in the ab-
sence of excluded volume effect described by a freely rotating
chain model is1

〈R2(s)〉 = s�2
b

[
1 + 〈cos θ〉
1 − 〈cos θ〉 − 2〈cos θ〉(1 − (〈cos θ〉)s

s(1 − 〈cos θ〉)2

]
,

(5)
with

�2
b = 〈�b2〉 and 〈cos θ〉 = 〈�bi · �bi+1〉/�2

b, (6)

where �b is the root-mean-square bond length. In the limit
N → ∞, the bond-bond orientational correlation function in
the absence of excluded volume effects therefore decays ex-
ponentially as a function of chemical distance s between any
two bonds along a linear chain,26, 27

〈�bi · �bi+s〉 = �2
b〈cos θ (s)〉 = �2

b〈cos θ〉s = �2
b exp(−s�b/�p) ,

(7)
where �p is the so-called persistence length which can be ex-
tracted from the initial decay of 〈cos θ (s)〉. Equivalently, one
can calculate the persistence length from

�p,θ /�b = −1/ ln(〈cos θ〉) (8)

here instead of �p we use �p,θ to distinguish between these two
measurements. Replacing s by N − 1 in Eq. (5) it gives the
asymptotic behavior of the mean square end-to-end distance
of a FRC equivalent to the behavior of a freely jointed chain,

〈
R2

e

〉 = C∞(N − 1)�2
b with C∞ = 1 + 〈cos θ〉

1 − 〈cos θ〉 , (9)

= nK�2
K = 2�pL, (10)

where C∞ is called Flory’s characteristic ratio,1 �K = 2�p is
the Kuhn length, and nK is the number of Kuhn segments.

We compare the estimates of 〈R2(s)〉 obtained from the
initial configurations of SAW chains generated by pushing off
monomers occupying the same unit cell before and after the
pre-packing process to that from those configurations in equi-
librium as shown in Fig. 3. The two ways of preparing the

1

2

3

4

5

6

1  10  100  1000

<
 R

2 (s
) 

>
 / 

(s
l b2 )

s

εb

3.0

2.0

1.0

0.0

Pre-packing+EV
EV

Equilibrium

FIG. 3. Rescaled internal mean square end-to-end distance, 〈R2(s)〉/(s�2
b),

plotted as a function of s for polymer melts containing nc = 256 chains of N
= 512 monomers, and for εb = 0.0, 1.0, 2.0, and 3.0. Data are for the esti-
mates obtained from the initial configurations of SAWs generated by the two
methods, “Pre-packing+EV,” and “EV,” and from the equilibrated configu-
rations.
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FIG. 4. (a) 〈R2(s)〉/s plotted versus s for polymer melts consisting of ncN = 131 072 monomers, and for εb = 0.0. (b) 〈R2(s)〉/(s�2
b) plotted versus s for polymer

melts of N = 128, 256, and 512 monomers, and for various values of bending energy εb, as indicated. The theoretical predictions, Eq. (11) with be = 3.244 and
cs = 0.412 in (a), and Eq. (5) in (b), are shown by curves for comparison.

initial configurations with and without the pre-packing pro-
cess are denoted by “EV” and “Pre-packing+EV,” respec-
tively, in the figure. Results are obtained by taking the average
over 32 initial configurations of SAW chains for each case. We
see that there is only a slight discrepancy in the estimates of
〈R2(s)〉 obtained from the initial configurations and from the
equilibrated configurations. The discrepancy becomes more
prominent for εb = 3.0. We see that there is no significant ad-
vantage of preparing the initial configurations of lattice chains
in a melt through the pre-packing process as that was observed
for the continuum chains.

In the equilibration process, each Monte Carlo step con-
tains ncN L26 moves where each monomer is selected once
to move, nc slithering-snake moves where each chain is se-
lected once to move, and nc pivot moves where each chain
is also selected once to move. There are about 106 inde-
pendent configurations for each measurement in equilibrium.
Figure 4 represents the well-equilibrated data for polymer
melts in a box of size L3 = 1283. Results for fully flexible
chains of chain sizes N = 32, 64, 128, and 512 shown in
Fig. 4(a) are in perfect agreement with the theoretical pre-
diction given in Refs. 18 and 25,

R2(s) = b2
e s(1 − cs/

√
s) for 1 � s � N, (11)

where be = lims→∞(R2(s)/s)1/2 is the “effective bond length”
(which is different from the root-mean-square bond length �b

between monomers along a chain), and cs ≡
√

24/π3/(ρb3
e ).

Results for polymer melts of N = 128, 256, and 512
monomers are shown in Fig. 4(b) for εb = 0.0, 1.0, 2.0,
and 3.0. The theoretical prediction for a freely rotating chain
(FRC), Eq. (5), is also included for comparison. For εb = 0.0
we see a strong deviation from the theoretical prediction since
chains tend to swell due to the excluded volume effect that
causes the 1/

√
s correction in Eq. (11). This is different from

the results21, 22 obtained using the bead-spring model in the
continuum, where on short and intermediate length scales, Eq.
(5), for a FRC overestimates the internal distances for fully
flexible chains, while on a large length scale it gives the ac-
curate prediction. As the bending energy εb increases, we see
in Fig. 4(b) that the deviation from the prediction for a FRC
reduces.

We also estimate the root-mean-square bond length �b

= 〈�b2〉1/2, end-to-end distance 〈R2
e 〉, and radius of gyration

〈R2
g〉. Results for various values of εb and N are listed in

Tables II and III. We see that 〈R2
e 〉/〈R2

g〉 ≈ 6 which is pre-
dicted for ideal chains. Our results of 〈R2

e 〉, 〈R2
g〉, and �b for

εb = 0.0 and for various values of N are in perfect agreement
with the results given in Ref. 25 although the total number
of monomers of polymer chains in a melt and the lattice size
which we have chosen for our simulations both are eight times
smaller. The persistence lengths for polymer melts consisting
of semiflexible chains determined by fitting the exponential
decay, Eq. (7), and the correlation between two neighboring
bonds, Eq. (8), are shown in Fig. 5(a) and also listed in Ta-
ble III including Flory’s characteristic ratio C∞ using Eq. (9).
Note that the asymptotic decay of 〈cos θ (s)〉 with s is not ex-
ponential as predicted by Eq. (7), but rather a power law de-
cay, 〈cos θ (s)〉 ∝ s−3/2 for s∗ < s � N, is expected, due to
excluded volume effects.25, 28

Therefore, only the initial decay of 〈cos θ (s)〉 with s
(s � s∗) is meaningful for the estimation of the persistence
length. In Fig. 5(b) we plot 〈cos θ (s)〉 versus s on a log-log
scale. The power law s−3/2 is also shown for comparison. We
see that the range over which the power law behavior holds
(s > s∗) shrinks with increasing chain stiffness, and the data
deviate from the straight line showing that the finite-size ef-
fect sets in. Results for various values of εb and for chain sizes
N = 128 and N = 512 are listed in Table III. The relation-
ship �p/�b ≈ �p, θ /�b ≈ C∞/2 holds for semiflexible chains
(εb > 0) as predicted in Eqs. (9) and (10). The root-mean-
square bond length �b ≈ 2.63 for polymer melts, shown in

TABLE II. Estimates of root-mean-square end-to-end distance 〈R2
e 〉1/2, gy-

ration radius 〈R2
g〉1/2, and bond length �

b
= 〈�b2〉1/2 for polymer melts con-

taining nc fully flexible chains of N monomers (εb = 0).

N nc 〈R2
e 〉1/2

√
6〈R2

g〉1/2 �b

32 4096 17.07 17.13 2.63
64 2048 24.74 24.75 2.63
128 1024 35.54 35.51 2.63
256 512 50.76 50.73 2.63
512 256 72.17 72.20 2.63
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TABLE III. Estimates of root-mean-square end-to-end distance 〈R2
e 〉1/2, gyration radius 〈R2

g〉1/2, bond length

�
b

= 〈�b2〉1/2, persistence lengths, �p/�b and �p, θ
/�b, using Eqs. (7) and (8), respectively, Flory’s characteristic

ratio from Eq. (9), and the dimensionless compressibility Cg = ρkBTκT from Eq. (27) for semiflexible chains in
a melt for various values of bending energy εb, and for N = 512 and N = 128.

N 512 128
εb 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

〈R2
e 〉1/2 72.17 87.25 108.95 132.82 35.54 42.96 53.59 65.38√
6〈R2

g〉1/2 72.20 87.12 108.69 132.48 35.51 42.84 53.20 64.41
�b 2.63 2.62 2.62 2.61 2.63 2.62 2.62 2.61
�p/�b . . . 0.96 1.64 2.53 . . . 0.96 1.64 2.53

�p, θ
/�b 0.45 0.95 1.64 2.53 0.45 0.95 1.64 2.53

C∞ 1.24 2.06 3.38 5.12 1.24 2.06 3.38 5.12
Cg 0.25 0.24 0.23 0.23 0.25 0.24 0.23 0.23

Table II, is smaller than �b ≈ 2.72 for linear flexible chains
in dilute solution based on the BFM. The reason is that the
crowded environment of polymer chains prevents the bond
vector between two effective monomers going through sev-
eral unit cells, i.e., occupying large volume. We also see that
�b depends only weakly on the stiffness of the chains as shown
in Table III.

C. Probability distributions of Re and Rg

The conformational behavior of polymer chains of size N
in a melt can also be described by the probability distributions
of end-to-end distance �Re and gyration radius Rg, PN ( �Re),

and PN(Rg), respectively. The probability distribution of �Re

for ideal chains is simply a Gaussian distribution,

PN ( �Re) =
(

3

2πN�2
b

)3/2

exp

(
− 3R2

e

2N�2
b

)
. (12)

There exists exact theoretical prediction of the probability dis-
tribution of Rg for ideal chains,29–31 but they are complicated
to evaluate. However, it has been checked11, 23, 32 that the same
formula suggested by Lhuillier33 for polymer chains under
good solvent conditions in d-dimensions is still a good ap-

proximation for ideal chains, i.e.,

PN (Rg) ∼ exp

⎡
⎣−a1

(
Nν

Rg

)αd

− a2

(
Rg

Nν

)δ

⎤
⎦ , (13)

where a1 and a2 are (non-universal) constants, and the expo-
nents α and δ are linked to the space dimension d and the
Flory exponent ν by α = (νd − 1)−1 and δ = (1 − ν)−1.
Here (1 + α) is the des Cloizeaux exponent34 for the os-
motic pressure of a semidilute polymer solution, and δ is the
Fisher exponent35 characterizing the end-to-end distance dis-
tribution.

Numerically, the probability distribution of x is obtained
by accumulating the histogram HN(x) of x over all configura-
tions and all chains of size N, given by

HN (x) =
∑

config.

δx,x ′ (14)

here x stands for Re or Rg. Note that an angular average over
all directions has been included in the accumulating process
of the histogram due to spherical symmetry. Thus, the nor-
malized histogram of x is given by

hN (x) = HN (x)

/ ∑
x ′

HN (x ′) = 4πCNx2PN (x), (15)
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FIG. 5. (a) Semi-log plot of the bond-bond orientational correlation function 〈cos θ (s)〉 vs. s. (b) Same data as shown in (a), but on a log-log scale. Data are
for polymer melts consisting of semiflexible chains of size N = 512, and for εb = 0.0, 1.0, 2.0, and 3.0, as indicated. In (a) the straight lines indicate the fits of
the initial decay, 〈cos θ (s)〉 ∝ exp ( − s�b/�p) (Eq. (7)), for εb > 0. For εb = 0 the straight line is described by exp (−s�b/�p, θ

). Values of �p/�b and �p, θ
/�b are

listed in Table III. (b) The straight line indicates the power law, 〈cos θ (s)〉 ∝ s−3/2.
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FIG. 6. Normalized probability distributions of r
e

= (R2
e /〈R2

e 〉)1/2, hN(re), plotted versus re for polymer chains in a melt. (a) Data are for ε = 0.0, and for
various values of N, as indicated. (b) Data are for N = 512, and for various values of εb, as indicated. The theoretical prediction G(re), [Eq. (17)], (solid curve)
is also shown for comparison.

where CN is the normalization factor such that

CN

∫ ∞

0
4πx2PN (x) = 1 . (16)

In order to compare the probability distributions of Re
and Rg between various different chain sizes N and bending
energies εb, instead of Re and Rg we use the reduced end-to-
end distance re = (R2

e /〈R2
e 〉)1/2 and the reduced gyration ra-

dius rg = (R2
g/〈Rg〉)1/2. Results of the normalized histogram

hN(re) compared to the theoretical prediction

G(re) = 4πr2
e CN

(
3

2π

)3/2

exp

(
−3r2

e

2

)
(17)

using 〈R2
e 〉 ∼ N and Eq. (12) are shown in Fig. 6. Here the

normalization factor CN = 1 for all cases. We see the nice data
collapse for chain sizes N ≥ 64 and all bending energies εb in
Figs. 6(a) and 6(b) and the data are described by a universal
scaling function G(re) for ideal chains. For N = 32 the data
deviates from the master curve due to the finite-size effect.
Results of the normalized histogram hN(rg) compared to the
theoretical prediction

F (rg) = 4πr2
gCN exp

(−b1r
−αd
g − b2r

δ
g

)
(18)

using 〈R2
g〉 = k2

gN where kg is a constant and Eq. (13) are
shown in Fig. 7. Here the normalization factor CN, parame-
ters b1 = a1k

−αd
g and b2 = a2k

δ
g are determined numerically
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FIG. 7. (a) and (b) Normalized probability distributions of r
g

= (R2
g/〈R2

g〉)1/2, hN(rg), plotted versus rg for polymer chains in a melt. (c) and (d) Logarithm of
the rescaled probability distribution of gyration radius, ln (P(Rg, m)/P(Rg)) as a function of Rg/Rg, m. In (a)(c) data are for εb = 0.0, and for various values of N,
as indicated. The theoretical prediction F(rg), Eq. (18), (solid curve) is also shown for comparison. (b) and (d) Data are for N = 512, and for various values of
εb, as indicated. The theoretical prediction F(rg), Eq. (19), with A = 0.99 (solid curve) is also shown for comparison.
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depending on the simulation data, and they depend slightly
on the chain size N. As N → ∞ they will tend to asymptotic
values (not shown). Near the peak (rg ≈ 0.85), we see the
finite-size effect is stronger for the distribution of rg. The fit-
ting curve F(rg) with parameters b1 = 0.09, b2 = 2.29, and
CN = 1.31 determined by the least-square fit for N = 512
and εb = 0.0 and b1 = 0.075, b2 = 2.20, and CN
= 1.13 for N = 512 and εb = 3.0 are shown in
Figs. 7(a) and 7(b), respectively, for comparison. The
distribution P (Rg) ∝ HN/R2

g has its maximum value,
i.e., P(Rg = Rg, m) = max P(Rg), and the correspond-
ing gyration radius Rg, m ∝ Rg ∝ Nν . Therefore, using
Eq. (13), the logarithm of the rescaled probability distribution
as a function of (Rg/Rg, m) is given by

f

(
Rg,m

Rg

)
= ln

P (Rg,m)

P (Rg)
= A

⎡
⎣ 1

α

(
Rg,m

Rg

)αd

+d

δ

(
Rg

Rg,m

)δ

+ 1 − d

⎤
⎦ (19)

with

a1 = A

α

(
Rg,m

�bN
ν

)αd

and a2 = Ad

δ

(
�bN

ν

Rg,m

)δ

, (20)

where one fitting parameter A is left. Results of
ln {P(Rg, m)/P(Rg)} plotted versus Rg/Rg, m are presented
in Figs. 7(c) and 7(d). We see that due to the finite-size effect,
data for fully flexible chains in a melt shown in Figs. 7(c)
and 7(d) only start to converge for N > 128. As N increases,
the systematical errors need to be taken into account. Using
the least square fit, it gives A = 0.99(3). It is obvious that
the distribution can only be well described by Eq. (19) for
Rg > Rg, m, similar as that was found for Gaussian chains in
Ref. 23. For polymer melts of a fixed chain length N = 512,
we see that for Rg < Rg, m the distribution remains the same
for different stiffnesses, while for Rg > Rg, m the data for εb
= 0 are slightly deviated from the data for εb > 0. We plot
the same distribution, Eq. (19) with A = 0.99 for comparison.

D. Structure factor and compressibility

The collective static structure factor S(q) of polymer
melts is defined by the total scattering from the center of
all monomers inside the box, regardless of whether they are
linked along a polymer chain or not,

S(q) = 1

Ntot

〈 Ntot∑
i=1

Ntot∑
j=1

exp[i �q · (�ri − �rj )]

〉
. (21)

Here Ntot = Nnc are the total number of monomers and 〈···〉
represents the average over all independent configurations,
and over all vectors �q of the same size q = |�q|. Note that
since a simple cubic lattice of size L3 with periodic bound-
ary condition is considered for our simulations, only the

following �q are allowed

�q = 2π

L
(n1, n2, n3), (22)

where ni = 0, ±1, ±2, . . . for i = 1, 2, and 3, and q ≥ 2π /L.
S(q) characterizes a competition between the intramolecular
fluctuations (Sintra) and the intermolecular correlations (Sinter),
thus one can write

S(q) = Sintra(q) + Sinter(q) (23)

with

Sintra = 1

nc

〈 n
c∑

n=1

1

N

N∑
i,j=1

exp
[
i �q · (�rn

i − �rn
j

)]〉 = Sc(q)

(24)
and

Sinter = 1

Ntot

N∑
i,j=1

〈 n
c∑

n=1,n�=n′

n
c∑

n′=1

exp
[
i �q · (�rn

i − �rn′
j

)]〉
,

(25)
where the contributions from the intramolecular fluctuations
are simply equivalent to the average of the standard static
structure factor of single polymer chains in a melt, Sc(q).

The collective structure factors S(q) which represent the
conformations of the whole polymer system at different stages
from weakly-interactive NRRW chains to equilibrated SAW
chains in a melt for N = 512 and for εb = 0.0, 1.0, 2.0, and
3.0 are shown in Fig. 8. Results include the initial NRRW
chains (NRRWs), rearranged NRRW chains through the pre-
packing process (Pre-packing), initial SAW chains obtained
from the initial NRRW chains by switching on the excluded
volume effect before (EV) and after (Pre-packing+EV) ap-
plying the pre-packing procedure, and the equilibrated SAW
chains in a melt (Equilibrium). Each curve shows the result
averaged over 32 independent configurations at the intermedi-
ate states, while 1500 independent configurations are consid-
ered for the measurement in equilibrium. The average static
structure factor of single NRRW chains generated initially,
Sc(q), is also included for comparison. In Fig. 8 we see that in
all cases there is no interactions between NRRWs generated
in the box at the beginning, so the structure factor shows the
same scaling behavior for single NRRWs in dilute solution,
i.e., S(q) = Sc(q). The scaling predictions S(q) ∼ q−1/ν

id with
ν id = 1/2 for ideal chains and S(q) ∼ q−1 for rigid rods are
verified for fully flexible and moderately stiff chains. After
the pre-packing process where NRRW chains are rearranged,
the collective structure factor decreases in the low-q regime.
Once all overlapping monomers are pushed off there is no dif-
ference between the configurations generated by the push-off
process with and without the pre-packing in the intermediate
and large q, but for very small q a small discrepancy exists
between those data sets. It is consistent with our previous ob-
servation of 〈R2(s)〉 in Fig. 3 that the discrepancy becomes
more prominent at larger scales.

In the following we only focus on polymer melts con-
sisting of nc = 256 chains of N = 512 monomers in equi-
librium. Figure 9 shows the results for the scattering from
polymer melts in equilibrium. Four different choices of the
stiffness characterized by the bending energy εb are in-
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FIG. 8. Structure factor S(q) from the scattering of polymer melts plotted vs. q on log-log scales for εb = 0.0 (a), 1.0 (b), 2.0 (c), and 3.0 (d). Results are
for the conformations of polymer melts at different stages, initial NRRWs (NRRWs), rearranged NRRWs after applying pre-packing process (Pre-packing),
SAWs obtained from NRRWs by the push-off process before applying the pre-packing procedure (EV), and after (Pre-packing+EV), and equilibrated SAWs
after polymer melts reaching equilibrium (Equilibrium). The structure factor Sc(q) for single NRRWs chains generated initially and the Scaling predictions for
Gaussian coils, S(q) ∼ q−2, and for rigid rods, S(q) ∼ q−1, are also shown for comparison.

cluded. At small q there is a systematic dependence on
εb, reflecting the (rather weak) dependence of the com-
pressibility on εb. It is remarkable that the structure fac-
tor of large values of q is completely independent of the
chain stiffness. As q increases, the first peak, the so-called
amorphous halo for non-crystalline materials, appears at
q ≈ π measuring the mean inter-particle distance (∼2 lattice
spacings) in a polymer melt. The second peak, the so-called
Bragg peak, appears at q ≈ 2π probing the structure on the
scale of the monomers (∼1 lattice spacing). The scattering

 0.25

1

6

0 1 2 π 4 5 2π 7 8

S
(q

)

q

nc=256, N=512
εb=0.0
εb=1.0
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FIG. 9. Structure factors S(q) of polymer melts, plotted vs. q on semi-log
scales Data are for polymer melts consisting of nc = 256 chains of lengths
N = 512, and for various values of εb, as indicated. (a) The peak appears at
q ≈ π measuring the mean inter-particle distance in the polymer melts, and
the second peak at q ≈ 2π is the so-called Bragg peak.

from single chains in a melt in equilibrium is shown in Fig. 10.
In Fig. 10 one sees that Sc(q) ≈ N exp(−q2〈R2

g〉/3) ≈ N (1 −
q2〈R2

g〉/3) for small q in the Guinier regime, then a cross-
over occurs to the power law of Gaussian coils (ideal chains),
S(q) ∼ q−1/νid with ν id = 1/2. For moderately stiff chains one
observes also a rigid-rod regime S(q) ∼ q−1. The two peaks
at q ≈ π and q ≈ 2π show up in a similar way as that for
the collective structure S(q) in Fig. 9 and are due to the under-
lying lattice model. In order to clarify whether single chains
in a melt behave as ideal chains we show the structure factors
Sc(q) in a Kratky-plot in Fig. 10(b). The Debye function2, 36–38

describing the scattering from Gaussian chains,

SDebye(q) = 2
η − 1 + exp(−η)

η2
with η = q2

〈
R2

g

〉
,

(26)
is also presented in Fig. 10(b) for comparison. For fully
flexible chains (εb = 0.0) in a melt we see the discrepancy
between our simulation results and the Debye function at
the intermediate values of q, which agrees with the previous
finding20 that polymer chains in a melt are not random walks.
While for εb = 0.0 the deviation from ideality is clearly rec-
ognized due to the minimum in the Kratky-plot near q = 1, for
εb ≥ 1.0 there occurs no minimum any longer (for N = 512).
While the deviations from Gaussian statistics are still obvious
from 〈cos θ (s)〉, Fig. 5, they are not easy to extract from Sc(q).
For εb = 1.0 we see the Kratky plateau over all intermediate
regimes, while the regime decreases as εb increases since the
rigid-rod behavior takes over.
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FIG. 10. (a) Structure factors of single chains in a melt, Sc(q), plotted vs. q on log-log scales. (b) Same data as in (a) but in a Kratky-Plot. Data are for polymer
melts consisting of nc = 256 chains of N = 512 monomers, and for various values of εb, as indicated. In (a) the theoretical predictions S

c
(q) = N (1 − q2〈R2

g〉/3)
at the Guinier regime for small q, Sc(q) ∼ q−2 for a Gaussian coil, and Sc(q) ∼ q−1 for a rigid rod are shown by solid curves for comparison. In (b) the Debye
function, Eq. (26), is also shown for comparison.

The isothermal compressibility of κT characterizing the
degree of density fluctuations on large scale is a measure for
the response of a systems volume to an increase in the system
pressure,18, 40 κT ≡ −(1/V )(∂V/∂p)T , and is related to the
structure factor S(q) as q → 0,

lim
q→0

S(q) = ρkBT κT = Cg, (27)

where Cg is defined as the “dimensionless compressibility.”
In Fig. 9 we see that as q → 0 the estimates of the collec-
tive structure factor for polymer chains of size N = 512 in
a melt reach a plateau value limq → 0S(q) ≈ 0.25. Due to the
finite-size effect and lattice artifact (qmin = 2π /L), we take
the same data but plot 1/S(q) versus q2 in Fig. 11. We see
the fluctuations of data near q2 → 0. However, the best fit of
the straight line going through our data gives the estimate of
Cg = [limq2→0 1/S(q)]−1. Results are listed in Table III. We
see that Cg ∈ [0.23, 0.25] and depends only weakly on the
stiffness of the chains.

In the thermodynamic limit by taking the limit N → ∞
(but keeping the density ρ = N/V fixed), then taking the
limit q → 0, the local density fluctuations in subvolumina

Vsub � V 39, 40

〈n(σ )2〉 − 〈n(σ )〉2

〈n(σ )〉 = kBTρκT = Cg, (28)

where Vsub = 4πσ 3/3. Choosing σ = 12 such that qmin

≈ V
−1/3

sub , i.e., in the limit q → qmin = 2π /L, the local den-
sity fluctuations estimated from the configurations of poly-
mer melts in equilibrium are listed in Table I. The estimates
of Cg ∈ [0.27, 0.28] are a little bit higher than the estimates
from the collective structure factor, but they are compatible.
We also check the finite-size effect on the estimate of the local
density fluctuations. Fig. 12 shows the local density fluctua-
tions [〈n(σ )2〉 − 〈n(σ )〉2]/〈n(σ )〉 as a function of σ . The arrow
and dashed lines shown in Fig. 12 indicate the estimate of the
compressibility cg(L, εb) at σ = σ min ≈ (4π /3)−1/3(2π /L)−1.
We see that the local density fluctuations at certain values
of σ (σ < 30) do not depend on the chain lengths N for
chains of different stiffnesses, while the discrepancy between
the data sets decreases as the stiffness of chains increases (see
Fig. 12(a)). For σ < σ min the local density fluctuations tend to
diverge. As the size of polymer melts increases (L increases,
but ρ = N/L3 is fixed) the curves toward to a flat curve for σ

> σ min (see Fig. 12(b)). According to the finite-size scaling
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as indicated. The asymptotic behavior of 1/S(q) as q2 ≈ 0 is described by straight lines. Values of the dimensionless compressibility C

g
= [lim

q2→0 1/S(q)]−1

are listed in Table III.
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FIG. 12. Local density fluctuations [〈n(σ )2〉 − 〈n(σ )〉2]/〈n(σ )〉 plotted as a function of σ for polymer chains of different stiffnesses in a melt (a) and for fully
flexible chains of fixed chain length N = 128 in a melt (b). Three values of chain length N and four values of bending energy εb are chosen, as indicated in (a).
Three different sizes of lattice box are chosen, as indicated in (b). The locations of σ = σmin = (4π /3)−1/3(2π /L)−1 for various values of L are indicated by an
arrow in (a) and dashed lines in (b).

the estimate of cg can be obtained by extrapolating the data of
cg(L, εb) to L−1 → 0.

IV. CONCLUSIONS

We have studied the conformations of polymer chains
consisting of fully flexible and semiflexible chains in a melt
based on the bond fluctuation model at volume fraction
φ = 0.5. The initial configurations of polymer melts are pre-
pared through several procedures. We first generate NRRWs
in a box with periodic boundary conditions in all three direc-
tions, rearrange NRRWs by the pre-packing process to reduce
the local density fluctuations or remain NRRWs at the same
positions, and then push off overlapping monomers blocking
the same lattice sites. We compare the conformations of poly-
mer melts at the end of each process to the result obtained
from the equilibrated configurations. Applying the additional
pre-packing process seems to have no significant effect on
preparing initial configurations of polymer chains in a melt
based on the lattice model after the excluded volume inter-
actions are switched on completely. Namely, the estimates of
the mean square internal end-to-end distance 〈R2(s)〉 and the
collective structure factors S(q) from the configurations gen-
erated by the two methods (denoted by Pre-packing+EV, and
EV in Figs. 3 and 8) are almost the same, and very close to
estimates from the equilibrated configurations. There is also
no difference of the equilibrating time starting from the initial
configurations generated by these two methods. If, however,
one accepts a marginally incomplete elimination of excluded
volume violations (Nover ≈ 100 for a system of ncN = 131 072
monomers) one would have significant advantages. Another
possibility of testing this pre-packing process for the future
work would be to use it as a criterion of putting chains into
the box at the beginning.

In our simulations we combine the algorithms of the lo-
cal 26 moves, slithering-snake, and pivot moves (instead of
double-bridging moves18, 25) for equilibrating the system of
polymer melts. Although the total number of monomers Ntot
= 131 072 which is eight times smaller than Ntot = 1 048 576
in Ref. 25 based on the same model for εb = 0, the esti-

mates of the mean square end-to-end distance 〈R2
e 〉, the mean

square gyration radius 〈R2
g〉, the mean square bond lengths

〈�b2〉, and the dimensionless compressibility Cg are all in per-
fect agreement with those results given in Ref. 25 at fixed
chain size N. For fully flexible and moderately stiff chains the
ratio 〈R2

e 〉/〈R2
g〉 ≈ 6 as expected for ideal chains. For moder-

ately stiff chains in a melt the internal mean square end-to-end
distance 〈R2(s)〉 is well described by the freely rotating chain
model. Results of the probability distributions of reduced end-
to-end distance re = (R2

e /〈R2
e 〉)1/2 and reduced gyration ra-

dius rg = (R2
g/〈R2

g〉)1/2 for polymer chains in a melt for var-
ious values of N and εb show the nice data collapse, and are
described by universal functions, Eqs. (17) and (18), for ideal
chains. The collective structure factors S(q) for the whole
polymer melts and the standard structure factor Sc(q) for sin-
gle chains in a melt are also calculated and compared with the
theoretical predictions. A detailed investigation of Sc(q) in a
Kratky-plot for εb = 0.0, 1.0, 2.0, and 3.0 shows that for fully
flexible chains in a melt there is a significant deviation from
the Debye function for Gaussian chains at the intermediate
values of q as found by Wittmer et al.,20 while for εb = 1.0 it
is perfectly described by the Debye function. Since real poly-
mers (such as polystyrene) exhibit some local chain stiffness,
it is clear that the deviations from Gaussian statistics found for
fully flexible chains in melts in the Kratky-plot will be very
difficult to test experimentally. However, since only chains up
to N = 512 are considered in our simulations, such a devi-
ation may also occur as the chain length increases. Careful
investigation of the structure factor and the mean square inter-
nal end-to-end distance for much longer semiflexible polymer
chains in a melt will be required to clarify this matter. The di-
mensionless compressibility Cg determined by the estimates
of the collective structure factors S(q) for small q and the local
density fluctuations (〈n2〉 − 〈n〉2)/〈n〉 within a sphere of radius
σ are compatible from our simulations for all cases. We hope
that the present work will help to the further development of a
coarse-graining approach by using the BFM as an underlying
microscopic model and will be useful for the interpretation
of corresponding experiments searching for excluded volume
effect in the scattering function of polymers in melts.
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