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We present a detailed study of the static and dynamic behaviors of long semiflexible polymer chains
in a melt. Starting from previously obtained fully equilibrated high molecular weight polymer melts
[G. Zhang et al., ACS Macro Lett. 3, 198 (2014)], we investigate their static and dynamic scaling
behaviors as predicted by theory. We find that for semiflexible chains in a melt, results of the
mean square internal distance, the probability distributions of the end-to-end distance, and the chain
structure factor are well described by theoretical predictions for ideal chains. We examine the motion
of monomers and chains by molecular dynamics simulations using the ESPResSo++ package. The
scaling predictions of the mean squared displacement of inner monomers, center of mass, and rela-
tions between them based on the Rouse and the reptation theory are verified, and related characteristic
relaxation times are determined. Finally, we give evidence that the entanglement length Ne,PPA

as determined by a primitive path analysis (PPA) predicts a plateau modulus, G0
N =

4
5 (ρkBT/Ne),

consistent with stresses obtained from the Green-Kubo relation. These comprehensively characterized
equilibrium structures, which offer a good compromise between flexibility, small Ne, computational
efficiency, and small deviations from ideality, provide ideal starting states for future non-equilibrium
studies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4946033]

I. INTRODUCTION

A fundamental property of polymer melts containing long
linear chains is that they are entangled. As the stiffness of
chains increases, the entanglement effect becomes stronger,
i.e., the entanglement length is shorter. Complex topological
constraints in polymer melts play an essential role for dynamic
and rheological properties. For studying such properties and
phenomena in an out-of-equilibrium state, it is important to
begin with a well characterized equilibrium “sample” of very
long polymer chains in a melt. It is the purpose of this study
to provide this.

According to Flory’s argument, the excluded volume
interactions become screened1,2 when the concentration of
polymer solutions exceeds the chain overlap concentration.
Therefore polymer chains in a melt eventually behave
statistically as ideal chains, as if excluded volume effect
would no longer be important. However, Wittmer and his co-
workers3,4 have pointed out that there are noticeable deviations
from an ideal chain behavior due to the incompressibility
constraint of the melt. For fully flexible polymer chains
in a melt based on lattice and continuum models, bond
fluctuation model (BFM) and bead-spring model, respectively,
such deviations are indeed seen. This finding is confirmed by
a recent Monte Carlo study of polymer melts using BFM
in Ref. 5, while the deviations are less visible as the chain
stiffness starts to play a role for polymers. Therefore, we
provide a detailed study of the conformational properties
of long bead-spring polymer chains in a melt as the chain

a)Electronic mail: hsu@mpip-mainz.mpg.de
b)Electronic mail: kremer@mpip-mainz.mpg.de

stiffness is taken into account, where we especially study to
what extent polymer chains behave as ideal chains.

It is well known that for short unentangled chains in a
melt, the motion of monomers can be approximately described
by the Rouse model.1,6 If the polymer chains become long
enough such that the effects of entanglements start to become
important, movements of chains at the intermediate time
and length scales are confined to a tube-like region, created
by surrounding chains and depending on the corresponding
entanglement length Ne. The dynamic behavior within this
time frame is well described by the tube model of de Gennes,
Doi, and Edwards.1,6,7 Each polymer chain is assumed to move
back and forth (reptation) along the contour of an imaginary
tube around the so-called primitive path (pp). Although ample
evidence of reptation scaling predictions is given by previous
Monte Carlo and molecular dynamics (MD) simulations,8–13

a complete picture still is lacking. This is mostly due to the
limitations of available equilibrated systems of huge chain
length and the long relaxation times covering several orders
of magnitude.

Recently, the authors of Ref. 14 developed a novel and
very efficient methodology for equilibrating high molecular
weight polymer melts through a sequential backmapping of
a soft-sphere coarse-grained model15,16 from low resolution
to high resolution and finally the application of MD
simulations of the underlying bead-spring model (see the
Appendix). Therefore, a further investigation of the static
and dynamic scaling behaviors predicted by theories1,2,6 for
huge systems in the highly entangled regime has become
easily accessible. Therefore, the aim of this paper is to give
a deeper understanding of static and dynamic behaviors of
large semiflexible polymer chains in a melt and compare
our numerical results whenever it is possible to theoretical

0021-9606/2016/144(15)/154907/11/$30.00 144, 154907-1 Published by AIP Publishing.
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predictions in the literature. We mainly focus on polymer melt
system containing nc = 1000 semiflexible polymer chains of
sizes N = 500, 1000, and 2000 with the Flory characteristic
ratio C∞ ∼ 2.88. The chains are modelled as standard bead-
spring chains with a bond bending interactions parameter
kθ = 1.5. For details of the model, we refer to the Appendix.
All results quoted refer to chains with a bending constant of
kθ = 1.5 unless otherwise noted. Having such big polymer
melt systems at hand, we have the possibility to analyze
the linear viscoelasticity as characterized by the stress
relaxation modulus and estimate the entanglement length
Ne from the standard expression of the plateau modulus
G0

N = (4/5)(ρkBT/Ne). It is also interesting to check whether
Ne is equivalent to the estimate of Ne,PPA through the primitive
path analysis (PPA).17

The outline of the paper is as follows: Sec. II describes
the static conformational structures of polymer chains in a
melt and compares them to those for ideal chains. Sec. III
describes the motions of polymer chains in a melt at
different characteristic time scales and verifies the scaling
laws predicted by the Rouse model and the reptation theory.1,6,7

The detailed structure investigation of the primitive path of
chains is given in Sec. IV. Studies of linear viscoelasticity of
polymer melts are given in Sec. V. Finally, our conclusions
are summarized in Sec. VI.

II. STATIC PROPERTIES OF EQUILIBRATED
POLYMER MELTS

Let us first look at the estimates of the mean square
end-to-end distance and the mean square radius of gyration
given by

⟨R2
e⟩ = 1

nc

nc
i=1

⟨(r⃗i,N − r⃗i,1)2⟩, (1)

and

⟨R2
g⟩ = 1

ncN

nc
i=1

⟨ N
j=1

(r⃗i, j − r⃗i,c.m.)2⟩, with

r⃗i,c.m. =
1
N

N
j=1

r⃗i, j, (2)

where r⃗i, j is the position of monomer j of chain number i,
while r⃗i,c.m. is the center of mass (c.m.) of the ith polymer
chain in a melt, and the average ⟨. . .⟩ includes an averaging
over all independent equilibrated configurations. Results of
⟨R2

e⟩/(6ℓ2
b
) and ⟨R2

g⟩/ℓ2
b

plotted versus N are shown in Fig. 1
for polymer melts containing nc = 1000 chains of sizes
N = 500, 1000, and 2000. Here the root-mean square bond
length ℓb =| b⃗2 |1/2 ≈ 0.964. We see that ⟨R2

e⟩ ∝ ⟨R2
g⟩ ∝ N ,

and ⟨R2
e⟩/⟨R2

g⟩ ≈ 6 as one would expect for ideal chains.
The conformational behavior of individual polymer

chains of size N in a melt can also be described by
the probability distributions of end-to-end distance R⃗e and
gyration radius Rg , PN(R⃗e), and PN(Rg), respectively. For
ideal chains where ⟨R2

e⟩ ∝ Nℓ2
b
, the probability distribution of

FIG. 1. Log-log plot of rescaled mean square end-to-end distance
⟨R2

e⟩/(6ℓ2
b
) and gyration radius ⟨R2

g ⟩/ℓ2
b

versus N . The straight line indi-
cates a fit of the power law, ⟨R2

e⟩∝ ⟨R2
g ⟩∝ N 2ν with ν = 1/2 for ideal chains,

to the data.

R⃗e is a Gaussian distribution,

PN(R⃗e) =
(

3
2π⟨R2

e⟩
)3/2

exp *
,
−

3R⃗2
e

2⟨R2
e⟩
+
-
. (3)

Although there exists an exact theoretical prediction2,18,19

for the probability distribution of Rg , it is much more
complicated to evaluate. However, it has been checked5,15,20

that the formula suggested by Lhuillier21 for polymer chains
under good solvent conditions in d-dimensions is still a good
approximation for ideal chains (ν = 1/2), i.e.,

PN(Rg) ∼ exp

−a1

(
ℓbNν

Rg

)αd
− a2

(
Rg

ℓbNν

)δ , (4)

where a1 and a2 are (non-universal) constants, and the
exponents α and δ are linked to the space dimension d and
the Flory exponent ν by α = (νd − 1)−1 and δ = (1 − ν)−1.
Here (1 + α) is the des Cloizeaux exponent22 for the osmotic
pressure of a semidilute polymer solution, and δ is the Fisher
exponent23 characterizing the end-to-end distance distribution.

The probability distribution of any observable x is
normally obtained numerically by accumulating the histogram
HN(x) = 

config. δx,x′ over all configurations and all chains of
size N , and then normalizing the histogram such that

hN(x) = HN(x)
x′HN(x ′) and


x

hN(x) = 1. (5)

In Fig. 2, we present the normalized probability
distribution hN(re) (hN(rg)) as a function of re = (R2

e/⟨R2
e⟩)1/2

(rg = (R2
g/⟨R2

g⟩)1/2) for polymer melts of three different chain
sizes N = 500, 1000, and 2000. Note that an angular average
over all directions has been included in hN(re). We see the
nice data collapse for both hN(re) and hN(rg), and they are
described very well by the following two N-independent
normalized distribution functions obtained from Eqs. (3), (4),
and ⟨R2

g⟩ = kℓ2
b
N with k = 0.4839 shown in Fig. 1,

Ge(re) = 4πr2
e

(
3

2π

)3/2

exp
(
−

3r2
e

2

)
, ∞

0
dreGe(re) = 1

(6)
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FIG. 2. Normalized probability distributions of re = (R2
e/⟨R2

e⟩)1/2, hN (re) (a), and rg = (R2
g/⟨R2

g ⟩)1/2, hN (rg ) (b), plotted versus re and rg , respectively, for
polymer chains in a melt. Data are for N = 500, 1000, and 2000. Theoretical predictions Ge(re) {Eq. (6)} and Gg (rg ) {Eq. (7)} with b1= 0.14, b2= 1.52, and
Cg = 7.92 such that

 ∞
0 drgGg (rg )= 1 are also shown in (a) and (b), respectively, for comparison.

and

Gg(rg) = Cg exp
(
−b1r−αdg − b2rδg

)
, ∞

0
drgGg(rg) = 1

, (7)

where the parameters b1 = a1k−αd/2, b2 = a2kδ/2, and the
normalization factor Cg are determined numerically by a
least-squares fit.

For understanding the connectivity and correlation
between monomers, the conformations of linear chains of
contour length L = (N − 1)ℓb in a melt are usually described
by the average mean square internal distance, ⟨R2(s)⟩,

⟨R2(s)⟩ =


1
nc

nc
i=1



1
N − s

N−s
j=1

(r⃗i, j − r⃗i, j+s)2



, (8)

where s is the chemical distance between the jth monomer and
the ( j + s)th monomer along the identical chain. It is generally
believed that the theoretical prediction of mean square internal
distance for polymer melts consisting of semiflexible chains
in the absence of excluded volume effect described by a freely
rotating chain (FRC) model is24

⟨R2(s)⟩ = sℓ2
b


1 + ⟨cos θ⟩
1 − ⟨cos θ⟩ −

2⟨cos θ⟩(1 − ⟨cos θ⟩s)
s(1 − ⟨cos θ⟩)2


, (9)

with

⟨cos θ⟩ = ⟨b⃗j · b⃗j+1⟩/ℓ2
b, j = 1,2, . . . ,N − 1. (10)

In the limit N → ∞, the bond-bond orientational correlation
function therefore decays exponentially as a function of
chemical distance s between any two bonds along a linear
chain,7,25

⟨b⃗j · b⃗j+s⟩ = ℓ2
b⟨cos θ(s)⟩

= ℓ2
b⟨cos θ⟩s = ℓ2

b exp(−sℓb/ℓp), (11)

where ℓp is the so-called persistence length, which can be
extracted from the initial decay of ⟨cos θ(s)⟩.

As s = N − 1, Eq. (9) gives the asymptotic behavior of
the mean square end-to-end distance of a FRC equivalent to
the behavior of a freely jointed chain

⟨R2
e(N)⟩ = C∞(N − 1)ℓ2

b with C∞ =
1 + ⟨cos θ⟩
1 − ⟨cos θ⟩ (12)

= ℓKL = 2ℓpL, (13)

where C∞ is so-called Flory’s characteristic ratio,24 and
ℓK = 2ℓp is the Kuhn length.

Results of ⟨R2(s)⟩ scaled by (sℓ2
b
), obtained by taking

the average over O(10) independent polymer melts containing
1000 chains to reduce fluctuations at large s, are shown
in Fig. 3. For kθ = 1.5, we see the nice data collapse for
chains of different sizes N . The universal scaling behavior for
kθ = 1.5 is nearly in perfect agreement with the theoretical
prediction of ⟨R2(s)⟩ for semiflexible chains in the absence of
excluded volume effect described by a FRC model. However,
a slight deviation from the predicted curve for FRC occurs
for N > 800. This deviation becomes more prominent as the
flexibility of polymer chains increases due to the correlation
hole effects that the correlation hole is deeper for more
flexible chains. Note that here we do not take the bond-bond
orientational correlation between two successive bond vectors,
⟨cos θ⟩ in Eq. (9), as a fitting parameter,26 but rather we
estimate ⟨cos θ⟩ directly from the equilibrated configurations
of polymer melts.

The correlations ⟨cos θ(s)⟩ between two bonds along an
identical chain at a chemical distance s for kθ = 1.5, 0.75,

FIG. 3. Rescaled mean square internal distance, ⟨R2(s)⟩/(sℓ2
b
), plotted as a

function of s with error bars. Three different chain sizes N = 500, 1000, and
2000 are chosen for kθ = 1.5, as indicated. For kθ = 0.75 and kθ = 0, only
data for N = 2000 are included. The theoretical prediction for freely rotating
chains (FRCs) is also shown by solid curves for comparison.
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FIG. 4. (a) Semi-log plot of the bond-bond orientational correlation function ⟨cosθ(s)⟩ vs. s with error bars. (b) Normalized probability distribution of bond
angles θ, hN (θ), plotted versus θ. In (a), the straight lines indicate the initial exponential decay exp(−ℓbs/ℓp) with ℓp/ℓb = 0.67, 0.97, and 1.38 for kθ = 0,
0.75, and 1.5, respectively. In (b), the theoretical prediction (solid curve) for an ideal chain in a dilute solution is also shown for comparison. Data are for
polymer melts containing nc = 1000 chains of N monomers. N = 500, 1000, 2000 for kθ = 1.5 and N = 2000 for kθ = 0.75, 0, as indicated.

and 0 are shown in Fig. 4(a). As it was clarified in Refs. 3,
20, and 27, the asymptotic decay of ⟨cos θ(s)⟩ as a function
of s for dense melts and at the Θ point is not a single
exponential as predicted by Eq. (11), but rather a power
law decay, ⟨θ(s)⟩ ∝ s−3/2 for s∗ ≪ s ≪ N , due to excluded
volume effects. Therefore only the initial decay of ⟨cos θ(s)⟩
is meaningful for the estimation of the persistence length ℓp.
However, the crossover point s∗ shifts to larger value of s
as the chain stiffness increases, i.e., the range over which
the exponential decay holds extends. We also check how the
profiles of probability distribution P(θ) of bond angles θ vary
with increasing chain stiffness. Using Eq. (5), P(θ) is estimated
by accumulating normalized histograms hN(θ) of θ between
two successive bonds along a chain. We see that in Fig. 4(b),
the distributions have a bimodal form. For fully flexible chains
(kθ = 0) in a melt, there exists one peak occurring at θ ≈ 110◦

due to the competition between the excluded volume effect and
the flexibility. As the chain stiffness increases (kθ increases),
a second peak starts to develop at θ < 90◦, and the position
where the peak is located shifts to a smaller value of θ. For an
ideal chain in a dilute solution, one should expect that

P(θ) = 1
2

sin θ,
 π

0
dθP(θ) = 1. (14)

This is also shown in Fig. 4(b) for comparison.
The scattering from single chains in a melt in equilibrium

is shown in Fig. 5. In Fig. 5(a), we see that Sc(q)
≈ N exp(−q2⟨R2

g⟩/3) ≈ N(1 − q2⟨R2
g⟩/3) for small q (q ≪ 2π

Rg
,

Rg =

⟨R2

g⟩) in the Guinier regime, then a crossover occurs to
the power law of Gaussian coils (ideal chains), S(q) ∼ q−1/ν

with ν = 1/2 for 2π
Rg

< q < 2π
ℓk

. Here ℓk = 2ℓp ≈ 2.66 for
kθ = 1.5 using Eq. (11). Though our chains are moderately stiff
(kθ = 1.5), the short range initial rigid-rod regime S(q) ∼ q−1

for 2π/ℓk < q ≪ 2π/ℓb is hardly visible, thus allowing them
still to be taken as a model for flexible polymers. In order
to clarify whether single chains in a melt behave as ideal
chains, we show the structure factors Sc(q) in a Kratky-plot in
Fig. 5(b). The Debye function1,28–30 describing the scattering
from Gaussian chains,

SDebye(q) = 2
η − 1 + exp(−η)

η2 with η = q2⟨R2
g⟩, (15)

is also presented in Fig. 5(b) for comparison. The deviations
from ideality are clearly recognized near q⟨R2

g⟩1/2 ≈ 20 for
rather flexible chains (kθ = 0, kθ = 0.75) of size N = 2000,
and a minimum value is reached in the Kratky-plot as q
increases, in agreement with the previous work.3,20 As a

FIG. 5. (a) Structure factors of single chains in a melt, Sc(q), plotted vs. q on log-log scales for polymer melts consisting of nc = 1000 chains of N = 500,
1000, and 2000 monomers and for kθ = 1.5, as indicated. (b) Same data as in (a) but in a Kratky-plot. Data for N = 2000 and kθ = 0 and 0.75 are also shown,
as indicated. In (a), the theoretical predictions Sc(q)= N (1−q2⟨R2

g ⟩/3) at the Guinier regime for small q, Sc(q)∼ q−2 for a Gaussian coil, and Sc(q)∼ q−1

for a rigid rod are shown by solid curves for comparison. The theoretically predicted cross-over points between different regimes are pointed out by arrows.
Here the root-mean-square gyration radius Rg = ⟨R2

g (N = 2000)⟩1/2≈ 30.15 (Re ≈ 73.44), the Kuhn length ℓk ≈ 2.66, and the root-mean-square bond length
ℓb ≈ 0.964. In (b), the Debye function, Eq. (15), is also shown by a solid curve for comparison.
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first conclusion, one can state that polymer melts of chains
with a stiffness parameter kθ = 1.5 offer a good compromise
for modeling highly flexible polymers while at the same
time minimizing deviations from ideality, which significantly
impair the use of simple models for fully flexible chains.

III. DYNAMIC PROPERTIES OF EQUILIBRATED
POLYMER MELTS

The dynamic behavior of polymer chains in a melt or
solution is usually characterized by the mean square displace-
ment (MSD) of monomers. The theoretical predictions of
the dynamic scaling behavior of MSD given by the reptation
theory1,6 show that the crossover behavior occurs at different
time scales, the characteristic time τ0, the entanglement time

τe ∼ τ0N2
e , the Rouse time τR ∼ τ0N2, and the disentanglement

time τd ∼ τ0N3/Ne (in the ideal case where the chain length
N is very large). However, all simulations and experiments
support τd ∝ N3.4 due to the reason that contour length
fluctuation, constrains release, and correlation hole effects
shift the crossover to the asymptotic behaviors to very long
chains.31–34

Three quantities describing the dynamic properties of
polymer chains in a melt are listed as follows: the mean
square displacement of a monomer,

g1(t) ≡ 1
nc(N/2 + 1)

nc
i=1

3N/4
j=N/4

�
r⃗i, j(t) − r⃗i, j(0)�2


, (16)

the mean square displacement of monomers with respect to
the corresponding center of mass (c.m.),

g2(t) ≡ 1
ncN

nc
i=1

N
j=1

�(r⃗i, j(t) − r⃗i,c.m.(t)) − (r⃗i, j(0) − r⃗i,c.m.(0))�2

, (17)

and the mean square displacement of the center of mass

g3(t) ≡
�

r⃗i,c.m.(t) − r⃗i,c.m.(0)�2

, r⃗i,c.m.(t) = 1

N

N
j=1

r⃗i, j(t). (18)

Note that in Eq. (16), only half of the monomers in the middle of each chain are considered in order to suppress the fluctuations
caused by chain ends,9,12 while all monomers in each chain i are considered in the calculation of the center of mass r⃗i,c.m.(t)
{Eq. (18)}. The corresponding scaling predictions of g1(t), g2(t), and g3(t) are given by9,35

g1(t) ∼




t1, t < τ0

t1/2, τ0 < t < τe

t1/4, τe < t < τR

t1/2, τR < t < τd

t1, t > τd

, g2(t) ∼




t1, t < τ0

t1/2, τ0 < t < τe

t1/4, τe < t < τR

t1/2, τR < t < τd

t0, t > τd

, g3(t) ∼



t1, t < τe

t1/2, τe < t < τR

t1, t > τR

. (19)

Our extensive molecular dynamics results of g1(t), g2(t),
and g3(t) up to t ∼ O(107)τ for polymer chains of sizes
N = 500, 2000 in a melt are shown in Fig. 6. The best
fits of the theoretical predictions given in Eq. (19) are
shown by solid lines for comparison. The characteristic
time scales τ0 ≈ 2.89τ where τ is the Lennard-Jones (LJ)
time unit (see the Appendix), τe = τ0N2

e ≈ 1.98 × 103τ, and
τR,500 = τ0N2 ≈ 6.44 × 105τ for N = 500 are determined by
the intersection points of two lines from the results of
g1(t) in Fig. 6(a). They correspond to the crossover points
between two scaling regimes that are pointed out by
arrows also in Figs. 6(b)–6(d). The disentanglement time
τd ≈ 2.97 × 107τ is determined from the intersection between
the fitting straight lines of g1(t) ∝ t1/2 for τd > t > τR and
g3(t) ∝ t1 for t > τR, respectively, since we should expect that
g1(t) = g3(t) for t > τd. The characteristic time τ0 estimated
from τR = τ0N2 for N = 500 is 2.58τ, which is compatible

with the direct measurement. If we estimate the entanglement
length Ne from characteristic time scales τ0, τe, τR, and τd
determined by the scaling predictions of the mean square
displacement for N = 500 (Figs. 6(a) and 6(d)), we get
Ne = (τe/τ0)1/2 ≈ 26(1) and Ne = N(τR/τd)1/1.4 ≈ 32(2) if we
assume that τd = τR(N/Ne)1.4. Both estimates are consistent
with results from PPA and from the relaxation plateau modulus
within error bars (see Table I). The two estimates are deviating
by about 10% from the expected value Ne = 28. If we fit
our data with τd = (N/Ne)τR, we get Ne ∼ 11, which is
underestimate. Thus our data perfectly fit experiments that
τd ∝ N3.4 and show the limitations of the asymptotic theory.

According to the theoretical predictions, we see that
in Fig. 6(a), g1(t) ≈ ℓ2

b
at t = τ0. At t = τe, g1(t) ∼ d2

T

≈ 2⟨R2
g(Ne)⟩ ≈ (5.02σ)2 (assuming that a Rouse chain of Ne

monomers is relaxed),9,12 where the entanglement effect starts
to set in, and monomers in an identical chain are restricted

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  194.95.63.248 On: Wed, 20 Apr

2016 13:49:13



154907-6 H.-P. Hsu and K. Kremer J. Chem. Phys. 144, 154907 (2016)

FIG. 6. Mean square displacement of inner monomers g1(t) (a), monomers with respect to the center of mass of the corresponding chain, g2(t) (b), and center
of mass, and g3(t) multiplied by N (c), plotted versus t for N = 500 and N = 2000, as indicated. (d) g1(t) and g3(t) versus t for N = 500. The crossover
points between two different scaling regimes are determined by the intersections of two straight lines shown in (a) and marked by arrows at t =τ0≈ 2.89τ,
τe ≈ 1.98×103τ, and τR,500≈ 6.44×105τ, while τd,500≈ 2.97×107τ is determined by the intersection of the two neighboring fitting curves for g1(t) and g3(t)
at t ≫ τR,500 in (d).

to move only along the contour of an imaginary tube of
diameter dT and contour length LT = dT(N/Ne) until reaching
t = τR,500 for N = 500. Since the tube itself is a random walk
with a step length dT , the displacement of a monomer at
t = τR,500 is thus g1(t) ∼ d2

T(N/Ne)1/2 ≈ 2⟨R2
g(Ne)⟩(N/Ne)1/2.

In the case of N = 2000, we find that our data of g1(t)
(g2(t)) follow the power law t1/4 about three decades for
t > τe, a much longer time window than observed so far
via simulation. For τd > t > τR, the polymer chain slides
back and forth along the tube-like regime and results in a
second g1(t) ∝ t1/2 regime which is predicted by the reptation
theory.6 After reaching the disentanglement time (reptation
time) τd,500, a chain has moved a distance comparable to
its own size g1(t) = g3(t) ≈ 3⟨R2

g(N)⟩ for N = 500 (see Fig.
6(d)). The initial tube is completely destroyed and another
new tube-like regime will appear depending on the polymer
chain size or polymer molecular weight. Finally, monomers
diffuse such that g1(t) ∝ t1 for t > τd.

Results of g1(t), g2(t), and Ng3(t) (Figs. 6(a)–6(c)) show
that they are all independent of N for t < τR,500. Furthermore

TABLE I. Estimates of the entanglement lengths Ne from relaxation plateau
modulus G0

N and Ne,PPA from the primitive path analysis for polymer chains
of sizes N = 2000, 1000, and 500 in a melt and for kθ = 1.5.

N Ne(plateau) Ne,PPA

2000 28 ± 2 28.01 ± 1.06
1000 26 ± 3 28.30 ± 1.38
500 28 ± 3 27.60 ± 1.45

g1(t) � g2(t) in that regime. For τR < t < τd, either the size
N = 500 is still too short or the statistics for long relaxation
time are insufficient, and the expected scaling law g2(t) ∝ t1/2

is only seen slightly, while for t ≈ τd, g2(t) = 2⟨R2
g(N)⟩

for N = 500 is barely reached. However, such a proof for
N = 2000 or even longer chain lengths might only be possible
with further improved soft and hardware.36,37

IV. COMPARISON BETWEEN THE ORIGINAL CHAIN
CONFORMATIONS AND THE PRIMITIVE PATH

In order to understand the structural differences between
the original path and the pp of polymer chains in a melt,
we implement the same primitive path analysis proposed by
Everaers et al.17 based on the concept of Edwards’ tube
model38 to identify the primitive path of each polymer
chain in a melt.39–44 A detailed discussion regarding self-
entanglements, local self-knot effect, and finite-size effect is
given in Refs. 39 and 45.

Since the motion of a chain is confined in a tube-like
regime with fluctuation due to entanglements with other
chains (see Sec. III), the primitive path of the chain is
the contracted contour of an imaginary tube without any
other chain crossing when all endpoints are fixed in space.
In this analysis, topologies of chains are kept, and chains
are assumed to behave as random walks along their primitive
paths. The mean square end-to-end distance of chains therefore
remains the same as that for the original paths of chains,
i.e., ⟨R2

e,pp⟩ = ⟨R2
e⟩, and
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FIG. 7. (a) Semi-log plot of the bond-bond orientational correlation function ⟨cosθ(s)⟩ vs. s. (b) Normalized probability distribution of bond angles θ, hN (θ),
plotted versus θ. Data are for the primitive paths of polymer melts containing nc = 1000 chains of N monomers. N = 500, 1000, and 2000 for kθ = 1.5, as
indicated. In (a), data for the original paths are also shown for comparison. The straight lines indicate the initial exponential decay. In (b), data for the primitive
paths for N = 2000 and for Kθ = 0.75, 0 are also shown for checking the effect of chain stiffness.

⟨R2
e(N)⟩ = ℓ

(pp)
K Lpp = ℓ

(pp)
K (N − 1)l(pp)

b
with

ℓ
(pp)
b
=

N−1
j=1 | r⃗ j+1 − r⃗ j |

N − 1
. (20)

Here ℓ
(pp)
K is the Kuhn length, Lpp is the contour length, and

ℓ
(pp)
b

is the average bond length of the primitive path. The
so-called entanglement length Ne,PPA defined by the number
of monomers per Kuhn segment of the primitive path is then

Ne,PPA =
ℓ
(pp)
K

ℓ
(pp)
b

. (21)

Quantitatively, the primitive paths of all polymer chains
in a melt are determined by slowly cooling the system toward
T = 0 and minimizing the energy of the system.17,45 In the
simulation, two ends of chains are fixed and the intrachain
excluded volume interactions, as well as the bond bending
interactions are switched off while the interchain interactions
are kept. In the case where the intrachain excluded volume
is kept, Sukumaran et al.39 have found that the difference
of the estimate of Ne,PPA between these two cases is within
error bars. Results of the bond-bond orientational correlation
function ⟨cos θ(s)⟩ and the normalized histogram of bond
angles θ, hN(θ) for the primitive paths of polymer chains in
a melt with kθ = 1.5 are shown in Fig. 7. The initial decay of
⟨cos θ(s)⟩ described by an exponential decay exp(−sℓ(pp)

b
/ℓ

(pp)
p )

up to s = 80 is shown by a dashed line with ℓ
(pp)
p = ℓ

(pp)
K /2.

Since the endpoints of chains are fixed, without considering
the interchain interactions and thermal fluctuations, chains are
stretched out when the bond springs try to reduce the average
bond length from ℓb = 0.964 to ℓ

(pp)
b
= 0.31. This effect is

stronger at the short length scale (s < 10) where the result of
⟨cos θ⟩ shows some deviations from the fitting curve if we
take a closer look. The stretching conformations of chains
are also observed from the normalized histogram hN(θ) of
bond angles θ shown in Fig. 7. The distribution of θ still has
a bimodal form, but the range of θ shrinks from [0◦,130◦]
(Fig. 7(b)) for the original paths to [0◦,30◦] for the primitive
paths in the case of kθ = 1.5. The distance between two peaks
decreases as kθ decreases.

Results of the mean square internal distance ⟨R2(s)⟩ for
the original and the primitive paths of polymer chains in a

melt with kθ = 1.5 are shown in Fig. 8. Since the endpoints of
chains are fixed, one should expect that results of ⟨R2(s)⟩ for
both paths approach to the same value with increasing s. It
is indeed seen in Fig. 8. If we use ⟨cos θ⟩ = exp(−sℓ(pp)

b
/ℓ

(pp)
p )

where ℓ
(pp)
p /ℓb = Ne,PPA/2 with Ne,PPA ≈ 28 in Eq. (9), we see

that results of ⟨R2(s)⟩ for the primitive path can still be well
described by the FRC. We also check the distributions of bond
length ℓ

(pp)
b

{Eq. (20)} for the primitive paths and show that
the distribution is simply a normal (Gaussian) distribution of
x (x = ℓ

(pp)
b

) given by

PN(x) = 1
2πσ2(x) exp

(
− (x − ⟨x⟩)

2

2σ2(x)
)

and  ∞

0
dxPN(x) = 1, (22)

where σ2(x) = ⟨x2⟩ − ⟨x⟩2 is the standard deviation of x, and
⟨x⟩ is the mean value of x (Fig. 9). The distributions of the
entanglement length Ne,PPA, PN(Ne,PPA), for N = 2000, 1000,
and 500 and for kθ = 1.5 are shown in Fig. 9(b). We see that

FIG. 8. Rescaled mean square internal distance, ⟨R2(s)⟩/s, plotted as a func-
tion of s. Data are for the original paths and the primitive paths of polymer
melts containing nc = 1000 chains of N = 500, 1000, and 2000 monomers,
as indicated, and for kθ = 1.5. The theoretical predictions for freely rotating
chains (FRCs) with ⟨cosθ⟩= exp(−sℓb/ℓp) for the original and the primi-
tive paths and ⟨cosθ⟩= exp(−sℓ(pp)

b
/ℓ

(pp)
p ) with ℓ

(pp)
p = Ne,PPAℓ

(pp)
b

/2 for the
primitive path are also shown for comparison.
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FIG. 9. (a) Normalized probability distributions of bond length ℓ
(pp)
b

of the primitive paths, P(ℓ(pp)
b

). (b) Normalized probability distributions of the entanglement
lengths Ne,PPA, P(Ne,PPA). (c) Same data as in (b) but multiplied by Ne,PPA. The peak of Ne,PPAP(Ne,PPA) indicates the estimate of entanglement length
⟨Ne,PPA⟩≈ 28. Data are for N = 500, 1000, and 2000, as indicated, and for kθ = 1.5.

PN(Ne,PPA = ℓ
(pp)
K /ℓ

(pp)
b

) does not depend on N . The position
of the peak of Ne,PPAP(Ne,PPA) (Fig. 9(c)) corresponds to the
estimate45 of ⟨Ne,PPA⟩ ≈ 28. Results of Ne,PPA through the
PPA are listed in Table I for three different chain sizes and for
kθ = 1.5.

V. VISCOELASTICITY

The viscoelasticity of polymer melts is normally
characterized by the stress relaxation modulus G(t) as a
function of relaxation time t. For t < τe, G(t) ∼ t−1/2 since
the dynamics of chains can be described by the Rouse model,
while G(t) reaches a plateau value G0

N = (4/5)(ρkBT/Ne)
depending on the entanglement length or the molecular weight
between entanglements predicted by the reptation theory6,46

for τe < t ≪ τd where chains are assumed to move in a tube-
like regime due to entanglements. Finally, entangled chains
are relaxed for t > τd, and G(t) starts to deviate from the
plateau.

In order to clarify whether the entanglement length Ne

estimated from stresses σ(t) using the standard expression
of the plateau modulus G0

N = (4/5)(ρkBT/Ne) is equivalent
to Ne,PPA determined through PPA mentioned in Sec. IV,
we perform MD simulations to estimate the stress relaxation
modulus G(t). Two methods are considered here. One is
from the stress autocorrelation function (SAF) of off-diagonal
elements of the preaveraged stress tensor for fully equilibrated
polymer melts.47,48 The components of stress tensor taking the
pairwise potential Ui j and the three-body potential Ui jk into
account are defined via the virial theorem,

σαβ(t) = − 1
V

*.
,

ncN
i=1

miv
(α)
i v

(β)
i +

1
2

ncN
i, j=1

f (α)i j r (β)i j
+/
-
+

1
6V

ncN
i, j,k=1

*.
,

r (α)i j r (β)i j

ri j

∂Ui jk

∂ri j
+

r (α)
jk

r (β)
jk

r jk

∂Ui jk

∂r jk
+

r (α)
ki

r (β)
ki

rki

∂Ui jk

∂rki
+/
-
, (23)

where mi and vαi are the mass and the αth component
of the velocity vector of the ith bead, respectively, and
f (α)i j ≡ −r (α)i j

∂Ui j

∂ri j
is the αth component of the force vector

acting on the ith bead by the jth bead. Using the Green-Kubo
relationship,49 the stress relaxation modulus

G(t) = (Gxy(t) + Gxz(t) + Gyz(t))/3, (24)

where the off-diagonal element Gαβ(t) = (V/kBT)SAFαβ(t).
In order to reduce the strong noise in SAF,47,48 SAFαβ(t) is

defined by

SAFαβ(t) = ⟨σ̄αβ(t)σ̄αβ(0)⟩, (25)

where the preaveraged stress tensor

σ̄αβ(t) = 1
Nt

Nt
k=1

σαβ(t + kδt). (26)

In our simulations, we choose Nt = 100 MD steps with the
time step δt = 0.01[τ].
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FIG. 10. (a) Stress relaxation modulus G(t) scaled by G0
N = (4/5)ρkBT /Ne plotted as a function of t from SAF {Eq. (25)} using the Green-Kubo relation.

(b) Same data for N = 2000 as shown in (a) and G(t) obtained from stress response to strain {Eq. (27)} after an uniaxial elongation with two different strain
rates ε̇, as indicated. Values of Ne extracted from G0

N in (a) for three choices of N are listed in Table I.

The other method is to measure the normal stress decay
σnorm(t) after deforming polymer chains in a melt by a small
step strain elongation, since linear viscoelastic properties are
associated with near equilibrium measurements of the system
where the configurations of polymer chains are not moved far
away from their equilibrium states. In our simulations, this
is done by applying Ncycles cycles of uniaxial elongation to
deform the simulation box with a strain rate τ−1

R < ε̇ < τ−1
e

(holding each chain in a tube-like regime) at each cycle
such that at the end the simulation box is elongated in
the x-direction (Lx = λL) but shrunk in the y-, z-directions
(Ly = Lz = L/

√
λ). Here the volume of the simulation box is

kept fixed, V = L3, and the stretch ratio λ = (1.02)Ncycles ≈ 1.2
with Ncycles = 9 such that the system is in the linear viscoelastic
regime. Using the stress-strain formulas for classical rubber
elasticity,50 the stress relaxation modulus

G(t) = σnorm(t)
λ2 − 1/λ

=
σxx − 1

2 (σy y + σzz)
λ2 − 1/λ

. (27)

Results of G(t) scaled by G0
N with Ne estimated by the

plateau value of G(t) are shown in Fig. 10. The estimates of Ne

are also listed in Table I. They are in perfect agreement with
the estimates through PPA within error bars. In Fig. 10(a),
G(t) is estimated from Eqs. (24)-(26) for polymer melts
consisting of nc = 1000 chains of sizes N = 500, 1000,
and 2000 and for kθ = 1.5. Due to the difference between
microscopic structures of independent equilibrated polymer
melts, we observe that the plots of G(t) as a function of t
show slightly different scenarios for different sets of data (not
shown). Therefore, besides taking the preaverage of σαβ for
the estimate of G(t), we shall also take the average of G(t) over
O(10) independent sets of data although our systems are quite
large. For t < τe, the scaling law G(t) ∼ t−1/2 predicted by the
Rouse model is verified. As t increases, the curves of G(t) for
three different sizes N first reach a plateau for τe < t ≪ τd,
then start to deviate from it depending on the chain size N .
Since τd ∼ N3.4, the range over which G(t) ≈ constant
extends with increasing N . However, in Fig. 10(b), we only
focus on the case of N = 2000 and compare the results of G(t)
obtained from two different measurements, Eqs. (24) and (27).
For the second measurement, two values of the strain rate ε̇ are
chosen, ε̇τR = 2000 and ε̇τR = 32 000. We see that G(t) only
depends on ε̇ for t < te. For t > te, results of G(t) estimated

from the normal stress tensor σnorm(t) are consistent with the
estimates from SAF(t).

VI. CONCLUSION

In this paper, we have studied bead-spring chains in a
melt at a monomer density ρ = 0.85 by extensive molecular
dynamics simulations using the ESPResSo++ package.51 We
investigate the static and dynamic properties of polymer chains
in a melt. For fully equilibrated large polymer melts, we
observe that for moderately stiff chains (kθ = 1.5), the ratio
⟨R2

e⟩/⟨R2
g⟩ ≈ 6 as expected for ideal chains. For fully flexible

chains (kθ = 0), results of the mean square internal distance
⟨R2(s)⟩ show remarkable deviations from the freely rotating
chain model describing the behavior of ideal chains, while the
deviations are diminished as the stiffness of chains increases.
For kθ = 1.5, ⟨R2(s)⟩ is in perfect agreement with FRC up
to N ≈ 800, while a slight deviation occurs for N > 800
due to the correlation hole effect. Results of the probability
distributions of reduced end-to-end distance re = (R2

e/⟨R2
e⟩)1/2

and reduced gyration radius rg = (R2
g/⟨R2

g⟩)1/2 for polymer
chains in a melt for various values of N and for kθ = 1.5 show
the nice data collapse and are described by universal functions,
Eqs. (6) and (7), for ideal chains. A detailed investigation of
the standard structure factor Sc(q) for single chains in a melt
for kθ = 0, 0.75, and 1.5 is also given. Results of Sc(q)
presented in a Kratky-plot show that there exists a significant
deviation from the Debye function for Gaussian chains at
the intermediate values of q as observed by Wittmer et al.3

and Hsu,20 while for kθ = 1.5, it is very well described by
the Debye function. We have also seen that the probability
distributions of bond angles for kθ > 0 have a bimodal form,
which is very different from the distribution for ideal chains
{Eq. (14)}, and the positions of two peaks depend on the
stiffness of chains. All these findings support the idea that
polymer chains in a melt are described by ideal chains to
some extent. The stiffer the chains of fixed size in a melt, the
more ideal the chain.

From our extensive molecular dynamics simulations, we
have provided evidence for the crossover behavior of the mean
square displacements g1(t), g2(t), and g3(t) between several
characteristic time scales, τ0, τe, τR, and τd, as predicted by
the Rouse model and the reptation theory.1,6,7 Especially, our
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results for N = 2000 strongly support the reptation theory and
the scaling law g1(t) = g2(t) ∝ t1/4 for τe < t < τR. We also see
that the corresponding values of the mean square displacement
of a monomer, g1(t), at τ0, τe, τR, and τd, show that the
theoretical predictions are not only verified qualitatively but
also quantitatively. The entanglement length Ne determined
from the estimates of τ0, τe, and τd is not affected by the chain
size, and the estimates of Ne are consistent with the estimates
through the primitive path analysis, and the plateau modulus
obtained from the stresses (Table I).

Also a direct comparison between the original paths
and the primitive paths (obtained through the primitive path
analysis) of polymer chains in a melt is presented in this
work. Results of the bond-bond orientational correlation
function and the mean square internal distance of chains
verify the assumption that chains behave as random walks
along their primitive paths. The Kuhn length ℓ

(pp)
K of the

primitive path is larger than ℓK of the original path. The
probability distribution of the average bond length along the
primitive paths shows a normal Gaussian distribution. The
peak of the first moment of the probability distribution of
the entanglement length, Ne,PPAP(Ne,PPA), corresponds to the
expected value of ⟨Ne,PPA⟩.

Finally, the stress relaxation modulus G(t) that describes
viscoelasticity of polymer melts is estimated. From the
stress autocorrelation function (SAF) of off-diagonal elements
using the Green-Kubo relation, and the normal stress tensor
after applying an uniaxial elongation but still keeping the
system in a linear regime, we verify the Rouse behavior,
G(t) ∼ t−1/2 for t < τe. We also see that G(t) reaches a plateau
value, and the plateau stays longer as the size of chains
increases as predicted by the reptation theory.1,6,7 Moreover,
we show that using the standard expression of plateau modulus
G0

N = (4/5)(ρkBT/Ne), the estimate of the entanglement Ne

from the stresses is equivalent to Ne,PPA through PPA.
All our results show that the coarse-grained bead-

spring model is an ideal model for understanding the
properties of fully equilibrated polymer chains in a melt
from various aspects. It marks a good compromise between
chain flexibility and small entanglement length. While the
flexibility allows for relatively large time steps and the
application of recently developed equilibration schemes, the
moderate stiffness warrants small deviations from ideality
and at the same time relatively small entanglement lengths,
which are decisive for comparably small, though still huge,
relaxation times. Therefore, we expect that this model can
serve as an optimal test case, where one can gain insight into
non-linear viscoelasticity regime for large polymer melts by
non-equilibrium molecular dynamics simulations.

Note added in proof: After submitting this paper, we
became aware of a closely related work of Salerno et al.,52

in which the intermediate t1/4 scaling in the mean squared
displacement, and the plateau modulus are probed.
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APPENDIX: BEAD-SPRING MODEL

Polymer melts consisting of nc chains of N monomers
in a melt are described by the standard bead-spring model9

at a volume fraction φ = 0.85 for our work here. In this
model, the excluded volume interactions between bonded
and non-bonded monomers at a distance r are considered by
the truncated and shifted LJ potential, i.e., Weeks-Chandler-
Andersen (WCA) potential,

ULJ(r) =



4ε
(
σ

r

)12
−

(
σ

r

)6
+

1
4


, r ≤ rcut

0, r > rcut

, (A1)

where ε denotes the pairwise interaction energy, and rcut
= 21/6σ is a cutoff such that ULJ(rcut) = 0 = min.{ULJ(r)}.
The bond length | b⃗j |=| r⃗ j+1 − r⃗ j | between any two connected
monomers j and j + 1 of size σ and mass m along a chain is
controlled by the finitely extensible nonlinear elastic (FENE)
potential

UFENE(r) =



− k
2

R2
0 ln


1 −

(
r
R0

)2
, r ≤ R0

∞, r > R0

, (A2)

where the force constant k = 30ε/σ2, and the maximum value
of bond length R0 = 1.5σ. The chain stiffness is dominated by
the bending potential depending on the bond angle θ between
the sequential bonds along a chain itself and the strength of
the bending factor kθ,

Ubend(θ) = kθ(1 − cos θ). (A3)

The ESPResSo++ package51 is used to perform the
standard MD with Langevin thermostat including a friction
constant Γ = 0.5τ−1 where τ = σ(m/ε)1/2, and random force
f⃗ Ri that

m
d2r⃗i
dt2 = − ▽ (ULJ +UFENE +Ubend) − Γ dr⃗i

dt
+ f⃗ Ri (t), (A4)

and

⟨ f⃗ Ri (t) · f⃗ Rj (t ′)⟩ = 6kBTΓδi jδ(t − t ′). (A5)

Here the temperature T = 1ε/kB, kB is the Boltzmann factor,
σ = m = 1, and the basic time step ∆t for the integration
is 0.01τ throughout the paper. In the primitive path analysis
Sec. IV, we set the temperature T = 0.001ε/kB (close to zero),
the basic time step ∆t = 0.006, the friction constant Γ = 20τ−1
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during the first 103 MD steps, and Γ = 0.5τ−1 after the first
103 steps.39,45
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