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1. INTRODUCTION

Cylindrical brushmolecules, the so-called “bottle brushes”, are
macromolecules with a comblike architecture, where (flexible or
stiff) side chains are densely grafted onto a long flexible main
chain, the so-called “backbone”. (See refs 1�5 for recent reviews
andmore extensive documentation of literature.) There is a great
freedom in the choice of the chemical species for the main chain
and the side chains, and varying their molecular weights can vary
both the overall size and the stiffness of these cylindrical brushes.
There is a delicate interplay between configurational entropy,
repulsive interactions (excluded volume), and attractive forces
(mediated by the solvent). Therefore, the structure of these
cylindrical brushes is very sensitive to solvent quality and other
external stimuli, leading to various interesting possible
applications.1,3,6,7 We note that macromolecules with bottle
brush architecture occur also in various biological contexts8�10

and are believed to have important functions there.
It is of particular interest to consider molecular brushes

adsorbed on substrates.11�18 First of all, under many circum-
stances nanotechnological applications require that these mol-
ecules are attached to a flat solid surface, and biological functions
often require that a biomolecule with this architecture is ad-
sorbed at a cell membrane. Furthermore, for a surface-adsorbed
conformation, additional experimental methods become avail-
able to directly visualize the (coarse-grained) molecular structure
of these cylindrical brushes, such as scanning force
microscopy3,11�16 or measuring force versus extension curves

via atomic force tips linked to a backbone chain end.14 Fascinat-
ing structures have been observed, such as a dense coiling into
spirals11 and spontaneously bent “meander-like” structures for
which asymmetries between the numbers of side chains on both
sides of the adsorbed backbone have been suggested17 as a
possible cause. Also, theoretical concepts for understanding the
stiffness of adsorbed bottle brushes have been developed.18

Although atomic force micrograph images of the ensemble of
adsorbed bottle brushes, as amply presented in the literature
(e.g., refs 3 and 11�16), give full information on their statistics on
the coarse-grained scale, the interpretation is nevertheless subtle:
the actual forces acting from the substrate on the monomers of
the backbone and the (mostly chemically different) side chains
are not explicitly known, and it is also not known whether the
bottle brush polymer is “strongly adsorbed”, in the sense that the
side chains assume essentially quasi-2D conformations or
“weakly adsorbed” in the sense that the local cross-sectional
monomer density profile resembles a section through a hemi-
cylinder or sphere-cap shape, where most of the side chain
monomers still occupy a 3D volume with a significant extension
in the z direction perpendicular to the substrate. Another
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ABSTRACT: Large-scale Monte Carlo simulations are pre-
sented for a coarse-grained model of cylindrical molecular
brushes adsorbed on a flat structureless substrate, varying both
the chain length N of the side chains and the backbone chain
length Nb. For the case of good solvent conditions, both the
cases of weak adsorption (only 10 to 15% of the monomers
being bound to the surface) and strong adsorption (∼40% of
the monomers being bound to the surface, forcing the bottle
brush into an almost 2D conformation) are studied. We focus
on the scaling of the total linear dimensions of the cylindrical
brush with both chain lengths N and Nb, demonstrating a
crossover from rod-like behavior (for not very large Nb) to the
scaling of 2D self-avoiding walks. Despite the fact that snapshot pictures suggest a “worm-like” picture as a coarse-grained
description of such cylindrical brushes, the Kratky�Porod worm-like chain model fails because there is no regime where Gaussian
statistics applies. We compare the stiffness (orientational correlations of backbone bonds, persistence length estimates, etc.) of the
adsorbed bottle brush polymers with their corresponding 3D nonadsorbed counterparts. Consequences for the discussion of
pertinent experiments are briefly discussed.
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problem is that the solvent conditions (good solvent versus θ
solvent versus poor solvent) are not always clear for bottle
brushes adsorbed to substrates, remembering also the different
chemical nature of backbone and side chains. Theta conditions in
bulk 3D solution need not coincide with θ conditions of a
strongly adsorbed polymer. Also, the applicability of very sim-
plified theoretical models, which completely neglect excluded
volume effects, such as the Kratky�Porod19 model of semiflex-
ible chains that is widely used (e.g., ref 14), is questionable.5,20,21

Therefore, it would be useful to have more detailed theoretical
studies:22�24 monomer�substrate interactions can be precisely
chosen, with respect to both their range and their strength, the
solvent conditions can be precisely controlled as well, and the
structure of the molecular brush is also accessible on the scale of
individual monomers not only its large-scale coarse-grained pro-
perties. First simulation studies23,24 indicated a scaling ÆRee2 æ � Nb

2ν

for the end-to-end distance of the backbone of the adsorbed
bottle brush where the (effective) exponent ν is close to the value
ν2 = 3/4 expected for 2D self-avoiding walks.25 Therefore,
these (preliminary) studies did not give evidence of the
suggestion16 that the spontaneous curvature predicted for 2D
molecular brushes13,17 causes an exponent ν ≈ 0.53. However,
Elli et al.23 did consider only a single, very short, side chain length
(N = 5), and Hsu et al.24 usingN = 6 to 48 considered primarily
the configurational changes near the adsorption transition, and
a systematic variation of the backbone chain length was not yet
performed.

de Jong et al.26 carried out a very pioneering study of a strictly
2D model of bottle brushes with flexible backbones but did
consider a few selected choices of Nb and N only. For the case
Nb = 100,N= 10, they compared a system,where the number of side
chains at the left and right side of the backbone were strictly equal
and fixed to a system where these numbers could fluctuate,
allowing flips of side chains from left to right or vice versa. They
found that in the latter case spontaneous curvature occurs,
whereas in the former case, it is absent. If one considers a
frozen-in uneven distribution of side chains to both sides of
the backbone, then spiral conformations occur,27 thus account-
ing for the corresponding experimental observations.11 However,
the strictly 2D case (where in the “top view” of the polymer
adsorbed to the surface chain “crossings” are strictly forbidden)
may differ somewhat from the limit of very strong adsorption
(where in the “top view” chain “crossing” may still occur,
requiring only at the crossing points monomers that still are
nonadsorbed to respect the excluded volume interaction). In the
present work, we shall investigate the latter case.

The present work uses the same model that was studied in our
previous work,24 disregarding now the vicinity of the adsorption
transition but rather presenting a systematic analysis of the
structure of adsorbed molecular bottle brushes by varying Nb

systematically over a wide range for side chain lengths N = 6, 12,
18, and 24, which nicely match the range that is experimentally
accessible.28�30 Our aim is to clarify the structure of both “weakly
adsorbed” and “strongly adsorbed” molecular brushes (what we
mean by “weakly” and “strongly” adsorbed has been defined
above), from themonomeric scale up to the global conformation.
We shall also compare our results for the “stiffness” of the
adsorbed bottle brushes (as characterized by backbone bond
orientational correlations, various estimates for the persistence
length, etc.) to corresponding results for nonadsorbed bottle
brushes in 3D space.30,31

In Section 2, we recapitulate the model that is used, whereas
Section 3 presents our numerical results. Our conclusions will be
summarized in Section 4, where a comparison to the 3D case is
presented, and also an outlook on pertinent experimental work
and its analysis is given.

2. MODEL AND SIMULATION METHODS

Following Hsu et al.,24,30,31 we use the bond fluctuation model
on the simple cubic lattice,32�34 where each (effective) monomer
blocks all eight sites of an elementary cube of the lattice for
further occupation, and the lattice spacing is the unit of length.
The adsorbing surface is the lattice plane z = 0, and one chain end
of the backbone is grafted onto the surface at a fixed position. The
bond vectors connecting two adjacent monomers (which can
occur only with z coordinates z g 0) are chosen from the set
{(2,0,0); (2,1,0); (2,1,1); (2,2,1); (3,0,0); and (3,1,0)} including
also all possible rotations, reflections, and reversions of these
bond vectors.We use the same set of bond vectors, irrespective of
whether the backbone or a side chain is considered and do not
allow for any other monomer�monomer interaction apart from
excluded volume: thus, any effects resulting from different
chemical structure of backbone polymer and side chains are
ignored, and because of the lack of any attractive forces between
monomers, we clearly consider only the good solvent regime.
Apart from the two end monomers of the backbone, one side
chain is grafted on each backbone monomer. Therefore, the total
number of monomers per chains is Ntot = Nb + N(Nb � 2).
Whereas in the bulk we succeeded to equilibrate chains as large as
Nb = 1027, N = 24 (Ntot = 25 627), in the present work, the
largest bottle brush simulated is only Nb = 643, N = 18 (Ntot =
12 181) because it is significantly more difficult to equilibrate
adsorbed chains rather than free chains. Adsorption is controlled
by an energy ε that is won if a monomer has (four) sites in the
plane z = 0. (The remaining four sites of the cube then are
necessarily in the plane z = 1.) No energy occurs for monomers
that do not have sites in the plane z = 0, so unlike other studies of
polymer adsorption (e.g., ref 35), our adsorption potential is an
extremely short-ranged “contact potential”.

Details of the preparation of the initial configuration and the
subsequent approach toward equilibrium can be found in our
previous work.24 Here we focus on two choices of the parameter
ε that we varied to control the adsorption of the molecular brush,
namely, ε = 1.25 (weak adsorption) and 1.5 (strong adsorption),
respectively. We choose units such that absolute temperature T =
1 and Boltzmann’s constant kB = 1, so a Monte Carlo move
that would take one monomer off the plane z = 0 is subject to
the standard acceptance probability36 Pacc = min{1,exp(�ε)}.
Figure 1 explains the motivation for this particular choice of
adsorption energies, showing themean distance Æzæb of backbone
monomers as a function of ε. The almost constant behavior for
ε e 0.9 indicates that the molecular brushes are not adsorbed
(only due to the grafted end a part of the macromolecule is close
to the surface) but repelled from it through the entropic excluded
volume interaction due to the wall. The adsorption transition,
which occurs near εc = 1.00 ( 0.02 (within the accuracy of this
estimate, no dependence on the lengthN of the side chains could
be identified24), is rounded for any finite length of the backbone
Nb and would become sharp only in the limitNbf∞, as is well-
known (e.g., refs 35, 37, and 38). Consequently, we see near εc =
1.0 a rounded onset of the decrease in Æzæb, which becomes
sharper with increasing Nb. Interestingly, this decrease then
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becomes flatter again for distances in the range 5e Æzæbe 10, for
adsorption energies in the range 1.1e εe 1.25. These still rather
large values of Æzæb indicate that actually most of the backbone
monomers are not yet adsorbed to the surface, whereas the
analysis of the global configuration of the macromolecule (data
on the mean-square gyration radius resolved in components
perpendicular (z) and parallel ( )) to the surface, ÆRg,z2 æ and ÆRg, )2 æ,
see ref 24) implies that the bottle brush polymer already is
adsorbed to the wall. The snapshot picture of the backbone for
ε = 1.25 (Figure 1) nicely illustrates this conclusion. For ε > 1.25, a
second rather steep decrease in Æzæb with ε occurs, and the values
Æzæb < 1.0 for ε = 1.5 indicate that now most of the backbone
monomers are already attached to the attractive wall. This
conclusion is again corroborated by the snapshot in Figure 1
and confirmed by a quantitative analysis of the fraction of surface
contacts of the backbone monomers. (See Figure 3c of ref 24).
An examination of snapshot pictures of the whole molecular
cylindrical brush (Figure 2) also clearly suggests that for ε = 1.25
the macromolecule still is a 3D object, despite its surface
attachment, whereas for larger values of ε a significant flattening
occurs. Linear dimensions of the side chains in the z direction are
of the same order as in parallel direction for ε = 1.25 but become
progressively smaller as ε increases. Ultimately (for still larger
values of ε than investigated by us), the configuration of the
adsorbed bottle brush becomes strictly 2D. We have not tried to
study this limit, however, because of severe equilibration pro-
blems. Note that our simulation technique is a dynamical Monte
Carlo method, attempting both local moves, where a monomer is
displaced by only one lattice unit (the so-called “L6”
move24,30,31,39), as well as by a larger distance (the “L26”
move39), which ensures faster equilibration because it allows
for bond crossings and nonlocal “pivot moves”.24,36 We consider
both pivot moves where at a randomly chosen backbone mono-
mer part of the backbone (plus attached side chains) are moved
to a new position and pivot moves that create a new configuration
for a side chain (or part thereof). Note that the presence of pivot
moves and L26 moves are particularly important for the case of
strongly adsorbed (almost 2D) chains to maintain ergodicity,
avoiding the frozen states that one observed otherwise.40 In d = 3

dimensions, these pivot moves are just derived from the 48
symmetry operations of the simple cubic lattice: rotations by 90
or 180� around any of the cubic axes, reflections, inversions, or no
change at all. To avoid an inappropriate bias, both the pivot
points and the type of move need to be chosen at random.
However, for adsorbed chains, the acceptance rate for most types
of these moves becomes extremely small. In the case of strong
adsorption, rotations by 90� around the z-axis leave the number
of monomers bound to the surface invariant as well as 180�
rotations around the x or y axis; nevertheless, the acceptance rate
of these moves is extremely small because of excluded volume
constraints. For ε > 1.5, a very extensive analysis of autocorrela-
tion functions is necessary to ensure that the runs are actually
long enough that full thermal equilibrium is reached. Of course,
these equilibration problems have a counterpart in experimental
studies, where irreversible adsorption leading to essentially
frozen structures may be a problem as well.

3. SIMULATIONRESULTS FOR THE CONFORMATIONAL
PROPERTIES OF ADSORBED BOTTLE BRUSH
POLYMERS

Figures 3�5 show our “raw data” for the linear dimensions of
the chain backbone, which demonstrates that the perpendicular
linear dimensions with increasing backbone chain length Nb

converge to a plateau value that increases with side-chain length
N for the weak adsorption case ε = 1.25, whereas the plateau
value decreases withN for the strong adsorption case (Figure 3).
The obvious interpretation is that in the weakly adsorbed case the
side chains still have a (almost) 3D conformation, and hence with
increasing N it is favorable that the grafting sites for the side
chains are more remote from the surface. A similar “shielding” of
the backbone by the side chains was already found by Saariaho
et al.41 for bottle brush polymers confined in a thin film geometry
between purely repulsive walls. In contrast, for the most strongly
adsorbed case, ε = 1.5, it is preferable to have the side chains in a
sense “pull” the backbone chain down to the surface. In this way,
one can understand that the trend of ÆRgb,^2 æwithN is opposite in
both cases.

Figure 1. Average position Æzæb of backbone monomers plotted versus adsorption energy ε for several choices of backbone chain length Nb and side
chain lengthN (denoted as bNbsN in the Figure). For the caseNb = 131,N = 24 and five choices of ε, typical snapshot pictures of the backbone chain are
shown, as indicated. Note that for each effective monomer, only the z coordinate of the four lower sites of the cube is counted. Note the logarithmic scale
of the ordinate in the Figure.
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When we study the parallel components (Figure 4), the trend
in both cases is qualitatively similar: for not so large Nb, there is a
significant increase in ÆRgb, )2 æ/(2lbNb

2v2) with Nb, indicating that
the structure of these bottle brushes is rodlike. Of course, for
simple linear polymers (N = 0), such a rodlike regime is absent;
also, when the side chains are rather short (e.g.,N = 6 and 12) the
rodlike regime stops already at relatively small Nb. The fact that

plateaus are reached after a factor Nb
2v2 with ν2 = 3/4 has been

divided out indicates that in both cases a crossover of the
backbone conformations to a self-avoiding walk-type behavior
in d = 2 dimensions has occurred. The same conclusion emerges
from the mean-square end-to-end distance (Figure 5). Defining
an effective persistence length lp, R via31

ÆR2
eb, jjæ ¼ 2lblp, RN

2ν2
b ð1Þ

we find that lp, R is only of the order of a few bond lengths lb
throughout: thus one should not be misled from the picture
emerging from single snapshots to misinterpret our data by
concluding that a very strong backbone stiffening occurs.

Another basic quantity to consider is the number ofmonomer�
surface contacts, distinguishing again between the backbone
(Figure 6) and the side chains (Figure 7). Consistent with our
discussion of ÆRgb,^2 æ, the trends for weak (ε = 1.25) and
strong (ε = 1.5) adsorption are opposite in Figure 6: with
increasing N the ratio ÆNsæb/Nb decreases for ε = 1.25 but
increases for ε = 1.5. In contrast, for the side-chain monomers,
ÆNsæc/[N(Nb� 2)] decreases with N in both cases; however, for
ε = 1.25, this ratio clearly converges to a value that is small in
comparison with unity as N f ∞, whereas for ε = 1.5, it
converges to a value near 0.3. Therefore, even in the more
strongly adsorbed case (ε = 1.5) our model system is very
different from a strictly 2D system, where ÆNsæc/[N(Nb � 2)] = 1.
We have also investigated the counterpart of Figure 6 for the
free ends of the side chain (not shown here), but we have found
that the free ends do not behave much differently from the inner
monomers of the side chains. We also remark that the conver-
gence of all of these data to their asymptotic values (reached
strictly only forNbf∞) is very rapid for the side chains (N = 6,
12) but becomes progressively slower with increasingN. ForN =
24, we could not study large enough Nb to quote a meaningful
estimate for the plateau values at all.

Finally, as a further geometric characteristic, we discuss the
average height Æzæ of monomers above the surface, distinguishing
again between backbone monomers Æzæb (Figure 8) and side-
chain monomers Æzæc (Figure 9). Again, for Æzæb, the trend withN
at ε = 1.25 and 1.5 is opposite. For ε = 1.25, we find that Æzæb
converges with increasingNb to plateau values that increase with
N, indicative for more or less 3D configurations of the side
chains. For ε = 1.5, however, Æzæb < 1 for all of our bottle brushes,
and Æzæb decreases with increasingN, indicative of a convergence

Figure 3. Mean-square gyration radius components ÆRgb,^2 æ of the backbone in the z direction perpendicular to the surface plotted versus backbone
chain length Nb for several choices of side chain length N, as indicated. (Also, the case of a simple linear polymer without side chains is included and
denoted as N = 0.) The data are normalized by 2lb, where lb (∼2.7 lattice spacings) is the average bond length. Case (a) refers to ε = 1.25, and case
(b) refers to ε = 1.5. Note the difference in ordinate scales in both parts of the Figure. The horizontal plateaus (entries at the ordinate) indicate tentative
estimates for the limiting behavior for Nbf∞, implying that the thickness of the resulting “pancake” configuration of the adsorbed polymer increases
with N for ε = 1.25, whereas for ε = 1.5, an essentially 2D configuration results.

Figure 2. Snapshot pictures of adsorbed bottle brushes for the case of
Nb = 131, N = 24, and three choices of ε: ε = (a) 1.25, (b) 1.50, and
(c) 2.0.
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Figure 4. Mean-square gyration radius components ÆRgb, )2 æ of the backbone in the x,y directions parallel to the surface plotted versus backbone chain
lengthNb for several choices of side chain lengthN as indicated. The data are normalized by a factor 2lbN

2v2
b with ν2 = 3/4, so that the horizontal plateaus

(entries at the ordinate) reached show that the backbone behaves like a 2D self-avoiding walk. Case (a) refers to ε = 1.25 and case (b) to ε = 1.5. Note the
difference in ordinate scales in both parts of the Figure.

Figure 5. Same as Figure 4, but for themean-square end-to-end distance components ÆReb, )2 æ/(2lbNb
2v2). Estimates for the asymptotic values forNbf∞

are shown by dotted horizontal lines and quoted at the ordinate axis.

Figure 6. Fraction of monomer�surface contacts for the monomers on the backbone, ÆNsæb/Nb, plotted versus backbone chain length Nb. Various
choices of side chain length are included, as indicated. Case (a) refers to ε = 1.25 and case (b) refers to ε = 1.5, respectively. Estimates for the asymptotic
values for Nb f ∞ are shown by dotted horizontal lines and quoted at the ordinate axis.

Figure 7. Same as Figure 6 but for side-chain monomers, ÆNsæc/(N(Nb � 2)).
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against a strictly 2D behavior. For the side chains, we find a strong
increase in Æzæc with N for ε = 1.25 and a weaker increase for ε =
1.5 (Figure 9). Once more, we have also computed Æzæc,e taking
only the free ends of the side chains into account (not shown),
but we have again found that there is not much difference to the
average obtained from all of the side chain monomers.

Given the fact that for ε = 1.25 the side chains takemore or less
3D configurations and “pull” the backbone away from the
surface, why does the bottle brush then adsorb at all? The answer
is that what matters in an adsorption transition is the “crossover
scaling variable” ς = (ε/εc� 1)Ntot

ϕ , where εc(∼1.0) is the critical
value of the adsorption energy and ϕ is the “crossover
exponent”35,37,38 (0.5 e ϕ e 0.59): Adsorption is taking place
for ς . 1. Because there is no distinction in our adsorption
potential between monomers of the backbone or monomers of
the side chains, a bottle brush polymer for which Nb is very large
and N . 1 as well, for a conformation where the backbone is
essentially oriented parallel to the surface and occurs at a vertical
distance of the order of ÆRgc2 æ1/2 of a side chain above the surface,
there will still occur enough contacts between monomers of side
chains and the wall such that the number of surface contacts ÆNsæc
is very large in comparison with unity because of the large
number of side chains. When we consider only those side chains
that have surface contacts and the backbone connecting their
grafting sites, the picture is not essentially different from the
classical description of a weakly adsorbed linear chain in terms of
loops and trains (and tails). The different chemical architecture
of the nonadsorbed part of the bottle brush polymer then does
not matter, as far as the location (εc) of the adsorption transition
is concerned, and thus we can give a better physical interpretation
to one of the main findings of our previous work.24

From Figure 7, it is evident that even for ε = 1.5 and side-chain
lengths N g 12, a fraction of only ∼1/3 of the side-chain

monomers is adsorbed (whereas the fraction of backbone
monomers that is adsorbed is much larger, Figure 6). Therefore,
most of the side chains start out from wall-attached monomers,
even though these side chains are rather incompletely adsorbed.
In view of this fact, it is interesting to consider the question of
what the typical shape of such a partially adsorbed “mushroom”
formed by a single-side chain is. Figure 10 plots the ratio of the
mean square gyration radii ÆRgc,^2 æ/ÆRgc, )2 æ in the z direction
perpendicular to the surface (ÆRgc,^2 æ) and the x�y-directions
parallel to the surface (ÆRgc, )2 æ) as a function of backbone chain
length Nb for both ε = 1.25 and 1.5. There are two surprising
features: (i) Apart from the case N = 6, the convergence of this
ratio to a limiting value with increasing Nb is very slow. (ii) The
dependence on ε is rather weak; for ε = 1.25, typical values of this
ratio are in the range 0.34 to 0.38 and for ε = 1.5 in the range 0.23
to 0.31. As a consequence, wemust again emphasize that the side-
chain conformations are far from quasi-2D in both cases; then,
this ratio would be much smaller. When we analyze the mean
square end-to-end distance of the side chains, the picture is very
similar to Figure 10; therefore, it is not shown. These findings
imply that the transition of the backbone chain from a weakly to a
strongly adsorbed state that takes place between ε = 1.25 and 1.5
does not affect the side-chain conformations very much.

This conclusion is corroborated by the study of cross-sectional
monomer density profiles (Figure 11). Here we extend the idea
of Hsu et al.42 to introduce a local coordinate system (for each
conformation of the bottle brush) where one coordinate (which
we denote as the x axis now) follows the (coarse-grained)
projection of the chain backbone onto the x�y plane. Whereas
in the bulk42 one could then record a radial monomer density
profile in the plane perpendicular to the backbone, one nowmust
consider that the direction (the y axis) perpendicular to the
(projected) backbone, but on the x�y surface plane and the

Figure 8. Average height Æzæb of backbonemonomers plotted versus backbone chain lengthNb for ε = (a) 1.25 and (b) 1.5. Several choices of side-chain
length are included, as indicated. Estimates for the asymptotic values for Nbf∞ are shown by dotted horizontal lines and quoted at the ordinate axis.

Figure 9. Same as Figure 8 but for side-chain monomers.
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direction perpendicular to the surface plane (the z axis) is not
equivalent. Figure 11 shows typical examples for the resulting
monomer density distributions F(y,z) where 2

R
0
∞R

0
∞ dz dy F(y,

z) = 1. One can see that with increasing ε the density in the plane
z = 0 gradually increases, and the density in the layers with z > 0
slowly decreases, but even for ε = 2.0, we are far from a strictly
2D state.

As a final point, we discuss the inadequacy of the Kratky�
Porod model19 to describe conformations of adsorbed bottle
brush polymers. First of all, we recall the concept of extracting a
persistence length lp from the asymptotic decay of the bond
vector autocorrelation function

Æcos θðsÞæ ¼ 1
Nb � 1� s ∑

Nb � 1 � s

i¼ 1
Æ aBi 3 aBiþsæ=Æ aB

2
i æ,

Æ aBi
2æ � l2b ð2Þ

In eq 2, aBi is the bond vector connecting monomer i to monomer
i + 1, and we have denoted byNb the total number of monomers
in the backbone, so Nb � 1 bond vectors can be defined. The
“chemical distance” between monomers (that are consecutively
labeled) is denoted by s. Assuming Gaussian chain statistics, one
defines43 lp from the exponential decay of Æcos θ(s)æ with the
contour length slb along the chain

Æcos θðsÞæ � expð � slb=lpÞ, 1 , s , Nb ð3Þ
Unfortunately, eq 2 fails in the presence of excluded volume
interaction (see refs 20, 21, and 31 and references therein), and
one rather has

Æcos θðsÞæ � s�β, β ¼ 2ð1� νÞ ¼ 1=2, 1 , s , Nb ð4Þ
where we have taken into account that the backbone conforma-
tion is quasi-2D in our case, and hence ν = ν2 = 3/4 in eq 4 to be
used. Figure 12 shows a plot of Æcos θ(s)æ versus s for our model.
Clearly, eq 3 is inadequate to describe the data; however, still
much larger values of Nb would be desirable to see eq 4 clearly.

As has already been noted for nonadsorbed free bottle brush
polymers in 3D space, there occurs a very rapid initial decay for
small s (s = 1, 2, and 3). This rapid initial decrease in Æcos θ(s)æ
from unity (for s = 0) to a value near 0.5 reflects the fact that on a
very small scale the backbone remains flexible even if on a coarse-
grained scale the cylindrical brush is rather stiff (as it must be
when one considers the snapshots Figures 1 and 2). Then, one
encounters a regime where a fit to eq 3 is possible, but both the
range over which this regime extends and the decay constant (the
persistence length lp) that one can extract from a fit to eq 3

distinctly depend on Nb, and hence the fitted value of lp is not a
reliable measure of the local “intrinsic” stiffness of the chain. For
the case of free bottle brush polymers in 3D solutions, this
problemwas already noted in our previous work,30,31 and here we
show that the same difficulty applies to adsorbed bottle brushes
as well. For large s, comparable to Nb, distinct downward

Figure 10. Ratio between the mean square gyration radius component perpendicular and parallel to the surface, ÆRgc,^2 æ/ÆRgc, )2 æ plotted versus backbone
chain length Nb for the bottle brush side chains on log�log scales: Side chain lengths N are indicated. Case (a) refers to ε = 1.25, and case (b) refers to
ε = 1.5.

Figure 11. Cross-sectional monomer density distribution F(y,z) in the
plane perpendicular to the (coarse-grained42) backbone of the bottle
brush, projected onto the x�y plane, plotted as function of y for Nb =
259,N =12, and six choices of z as indicated, for ε = (a) 1.25, (b) 1.5, and
(c) 2.0. F(y,z) is normalized such that 2

R
0
∞R

0
∞dy dz F(y,z) = 1.
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curvature on the semilog plot of Æ cos θ(s)æ versus s indicates that
bond orientations get uncorrelated when s approaches Nb, as
expected.

When one examines the data for N = 6 and 12 more closely,
one recognizes that the slope |d(lnÆcos θ(s)æ)/ds| first steadily
decreases with s until it reaches a minimum (near about Smin ≈
Nb/3) before the final decrease in slope (reflecting the loss of
orientational correlation due to the finite backbone chain length)
sets in. This initial decrease in the slopes of course is a
consequence of the fact that the long-range correlations due to
excluded volume interactions require that forNbf∞ the power
law, eq 4, must hold. Figure 13 shows that indeed the decrease in
the slope |d(lnÆcos θ(s)æ)/ds| with s in the regime 10 < s < 100
can be attributed to the power laws (eq 4). For s g 100, there
occurs for the bottle brushes a strong decrease in Æcos θ(s)æ
because of the fact that Nb is not large enough, but the data for
N � 0 and the corresponding self-avoiding walks data show the
power law more clearly.

An alternative way of estimating a persistence length for ideal
chains would be to attempt fitting the data for the end-to-end
distance of the backbone to the formula resulting for the
Kratky�Porod model19 (L ¼ Nblb is the contour length of
the backbone)

ÆR2
eb, jjæ ¼ 2lpL 1� lp

L
½1� expð � L=lpÞ�

� �
ð5Þ

Same as for 3D bottle brush polymers in bulk solution, we will
contrast this procedure to a physically more correct description,
where we search for a scaling behavior that describes the cross-
over from the rigid rodlike behavior for small Nb, to the self-
avoiding walk-like behavior pertaining atNbf∞19 because eq 5
rather describes a crossover from rigid rods (for L < lpto Gauss-
ian chains ðÆR2

eb, jjæ ¼ 2lpL � 2lplbNbÞ, which obviously cannot
be a correct description of our data (Figure 4). To derive the

correct crossover scaling for bottle brush polymers, it was
suggested5,20 to rescale the bottle brush polymer as a self-
avoiding walk of blobs, where the blob-diameter was chosen to
be just the cross-sectional diameter of the bottle brush. It is not
completely straightforward to choose the same definition for
adsorbed bottle brush polymers, however, because for adsorbed
bottle brushes the cross-sectional (coarse-grained) density pro-
file lacks rotational symmetry, of course (cf. Figure 11). To avoid
this problem, we take the blob radius simply equal to the end-to-
end distance of the side chains in the parallel directions
(ÆRec, )2 æ)1/2, so

ÆR2
eb, jjðsblobÞæ ¼ 4ÆR2

ec, jjæ ð6Þ

where ÆReb, )2 (s)æ is the parallel component of the mean square
end-to-end distance of a subchain of s consecutive monomers
along the backbone of the chain. From the mean square radius of

Figure 12. Bond vector correlation function Æcos θ(s)æ of the backbone plotted against the “chemical distance” s along the backbone for ε = (a) 1.25 and
(b) 1.5. Three sets of data for side chain lengthsN = 24, 12, and 6 from up to down are shown for backbone lengthsNb = 259, 387, and 515. For the sake
of comparison, case (c) shows corresponding data for a nonadsorbed free bottle brush polymers in 3D solutions.

Figure 13. Log�log plot of Æcos θ(s)æ versus s for the case N = 0
(simple adsorbed chain at ε = 1.5) for Nb = 515 and 1027, respectively,
and for N = 6, Nb = 387 and 515. The case of a simple 2D self-avoiding
walk on the square lattice (where for the chosen scale of s finite chain
length effects are negligible becauseNb = 25 600 was chosen

21) is shown
for comparison.
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the side chains (ÆRec,||2 æ) we hence obtain using eq 6, the function
sblob(N), as shown in Figure 14. In Figure 14a,c, we show the
determination of the values ÆRec, )2 æ(N), and these values are
employed in Figure 14b,d, to read off sblob(N) as defined by eq 6.
Figure 15 shows then a scaling plot of our data for ε = 1.25
(part a) and 1.5 (part c), identifying a crossover scaling chain
lengthNb* = sblob(N), to describe the crossover from the rod-like

behavior to the behavior according to 2D random walks

ÆR2
eb, jjðNbÞæ ¼ 2lblp, RN

2ν2
b , Nb=N

�
b f ∞ ð7Þ

ÆR2
eb, jjðNbÞæ ¼ l2b, effN

2
b , Nb=N

�
b e 1 ð8Þ

We contrast this scaling behavior to fits employing the

Figure 14. (a) Mean square end-to-end distance of the side chains in the direction parallel to the surface, ÆRec, )2 æ, plotted versus backbone chain length
Nb. (b) Mean square end-to-end distance of the backbone in the direction parallel to the surface, ÆReb, )2 (s)æ, plotted against the chemical distance s.
Horizontal and vertical straight lines indicate the construction 4ÆRec, )2 (N)æ = ÆReb, )2 (sblob(N))æ fromwhich the number of monomers sblob(N) is extracted.
ε = 1.25 in (a,b) and 1.5 in (c,d).

Figure 15. (a) Log�log plot of ÆR2
eb, jjæ=ð2lblp, RN2v2

b Þ versus Nb/Nb* identifying Nb* = sblob(N) as estimated from Figure 14. The straight line shows the
rodlike behavior. (b) ÆR2

eb, jjæ=ð2lbNbÞversusNblb. Broken curves show the rescaled Kratky�Porod model (eq 5). Here values of lb for various side chain
length N are determined by the best fit of our data. ε = 1.25 in (a,b) and 1.5 in (c,d).
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Porod�Kratky model in parts b and d, where it is clearly seen
that this model is a valid description of our data only in the trivial
rigid rod regime Nblb f 0. Note that the effective bond length
lb, ef f e lbin the rigid rod regime because for small chemical
distance, s, along the backbone there is only a limited rigidity.
(See Figure 12.) As a consequence, also the coarse-grained
contour length Lc of the bottle brush Lc ¼ lb, effNb in general
is smaller than the nominal contour length, L ¼ lbNb. Equating
both expressions, eqs 7 and 8, we find another crossover chain
length Nb

cross describing the crossover from rod-like to self-
avoiding walk-like behavior for d = 2 dimensions, where ν =
ν2 = 3/4 applies

Ncross
b ¼ ð2lp, R lb=l2b, eff Þ2, lp, ef f ¼ lb, effN

cross
b ð9Þ

where lp, eff is the effective length of a rod formed from Nb
cross

segments of length lb, eff (consistent with eq 8 for Nb = Nb
cross).

Table 1 quotes our estimates for lp,R and lp, eff for ε = 1.25 and 1.5.
The estimate for the effective length lp, eff is extracted from the
intersection of the two straight lines in the log�log plots such as
shown in Figure 15a. However, the prediction lp, eff � l2p, R
resulting from eq 9 is not quantitatively verified.

4. CONCLUSIONS

In this Article, we have analyzed the conformations of
adsorbed cylindrical molecular brushes, assuming very good
solvent conditions and focusing on the variation of the properties
as a function of the backbone chain length Nb and side chain
lengthN. Assuming that the chemical nature of the backbone and
the side chains is identical, we considered the limiting case of
extremely short-range attractive interactions between the
(effective) monomers and the substrate, which for simplicity
was treated as perfectly flat and structureless. Two rather distinct

cases were studied: (i) the case of “weak adsorption”, where the
intrinsic local structure of the cylindrical brush still is essentially
3D, side-chain radii in the range of interest (6 e N e 24 was
studied here) showing a scaling ÆRgc2 æ �N2νwith ν≈ 0.588 being
the exponent describing swollen coils in three dimensions, and
the fraction of adsorbed monomers of the backbone is very small
and (ii) the case of “strong adsorption”, the fraction of adsorbed
backbone monomers being of order unity and the parallel
components of the side-chain radii crossover to a scaling
behavior characteristic for 2D self-avoiding walks, ÆRgc, )2 æ �
N2ν2 with ν2 = 3/4. In this case, the average height Æzæb of the
backbone monomers is less than unity and decreases with
increasingN, whereas for the weak adsorption case Æzæb increases
with increasing N (and then Æzæc/Æzæb is about 1.3 for the
considered strength of adsorption energy ε = 1.25 and almost
independent ofN, whereas in the strong adsorption case, ε = 1.5,
the ratio Æzæc/Æzæb is in the range from 3 to 15 and increases
strongly with N). We emphasize, however, that the global
conformation of the bottle brush shows a 2D self-avoiding
walk-like scaling in both cases, ÆRgb2 æ � Nb

2ν2 as Nb f ∞. For
small Nb, the bottle brushes behave rodlike, ÆRgb2 æ � Nb

2. The
crossover from rods to (swollen) coils occurs at a backbone chain
lengthNb

cross(N), which clearly increases strongly withN, but our
side-chain lengths (which are comparable to side-chain lengths
accessible in experiments) are not large enough to make state-
ments about the asymptotic power law describing this variation
for large N. Unfortunately, our results for lp, R (Table 1) do not
corroborate the expected relation lp, R � (Nb

cross)1/2.
Our results do not give any evidence of a spontaneous

symmetry breaking because of a “left�right asymmetry” devel-
oping in the number of adsorbed side chains along the backbone
and the resulting spontaneous local curvature, showing up in
strongly meandering structures. To observe this limit, we pre-
sumably need much stronger adsorption energies, leading to
strictly 2D conformations of the side chains, a limit that is difficult
to equilibrate (both in experiments and in simulations) and that
has not been reached here.

Our results also do not confirm observations that have
occasionally reported16,44 a crossover from rigid rods to Gauss-
ian-like coils (ÆReb2 æ � Nb) for adsorbed long semiflexible
polymers. Because such a crossover occurs (if the intrinsic
persistence length strongly exceeds the local thickness of the
macromolecules, which is not the case for the model of bottle
brushes considered here) in d = 3 dimensions,5,20 a possible
explanation of these observations is that the macromolecules
during their adsorption process have taken a structure resem-
bling a projection of their d = 3 structure on the adsorbing plane,
without full equilibration in d = 2, whereas such a full equilibra-
tion was ensured in our study. We also note that in these
experiments16,44 a study where the stiffness was systematically
varied has not been reported.

Often experiments on adsorbed semiflexible polymers
(including bottle brushes14) are done with the motivation that
one wishes to characterize their intrinsic stiffness, measuring
their (intrinsic) “persistence length” lp. One method that is used
(e.g., ref 14) relies on the Kratky�Porod model, eq 5, describing
the variation of the mean square end-to-end distance with the
(coarse-grained) contour length Lc in terms of a crossover from
the rod-like regime (Lc < lp) to Gaussian coils (Lc . lp).
However, we have shown in our previous work that the
Kratky�Porod description does not work for bottle brushes with
flexible backbone under good solvent conditions in d = 3, and in

Table 1. Estimates of lp, R and lp, ef f for Bottle-Brush Polymers
with Side Chain Lengths N = 6, 12, 18, and 24a

N 6 12 18 24

lp,R (ε = 1.25) 2.18 3.29 4.32 5.43

lp,R(ε = 1.25) 63 106 144 185

lp,R (ε = 1.5) 2.96 4.98 7.52 11.60

lp,R (ε = 1.5) 111 198 291 412
aTwo values of ε, 1.25 and 1.5, are chosen.

Figure 16. Semilog plot of the bond vector autocorrelation function
Æcos θ(s)æ of the backbone plotted against the chemical distance s for the
case Nb = 259, N = 18, ε = 1.5 and 1.25, and a free chain in d = 3. This
comparison shows that one cannot infer easily the orientational correla-
tions of a free bottle brush from their adsorbed counterparts.
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the present Article, we show that for adsorbed bottle brushes it
fails as well. Alternatively, one sometimes tries (e.g., ref 14) to fit
the bond orientational correlation function to an exponential
decay over some regime, implying eq 3 to hold, to extract lp.
However, our study also implies that in general this procedure is
not reliable. In particular, this orientational correlation function
clearly differs for a free chain from a (weakly or strongly)
adsorbed chain, as illustrated in Figure 16. In our opinion, a
careful analysis of the crossover from the rod regime to the (d = 2
or 3) self-avoiding walk regime is more promising.

Defining lp by analogy to eq 9 as lp = lb Nb
cross being the value of

Nb where the power law fitted to the rod-like regime in Figure 15
crosses the power law for the self-avoiding walk regime, we would
get for the free bottle brush polymers in d = 3 dimensions that
lp, eff=lb ≈ 22, 37, 48, and 59 for N = 6, 12, 18, and 24,
respectively. However, whereas for the weakly adsorbed chains
(ε = 1.25) the corresponding numbers are similar, lp, eff=lb ≈ 23,
39, 53, and 68, respectively, larger numbers result for the strongly
adsorbed case (ε = 1.5) (41, 73, 108, 153). As expected from
Figure 16, there is no simple relation between the stiffness of an
adsorbed bottle brush and its nonadsorbed counterpart because
the stiffness is the result of a delicate interplay between enthalpic
forces and configurational entropy, and this balance is rather
different for adsorbed and free, nonadsorbed macromolecules.
We hope that our study stimulates more experimental work,
including an analysis of experimental data along similar lines as
used for the present simulations.
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