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Abstract. We study long polymer chains in a poor solvent, confined to the
space between two parallel hard walls. The walls are energetically neutral
and impose only a geometric constraint which changes the properties of the
coil–globule (or ‘θ’) transition. We find that the θ temperature increases
monotonically with the width D between the walls, in contrast to recent claims in
the literature. Put in a wider context, the problem can be seen as a dimensional
crossover at a tricritical point of a φ4 model. We roughly verify the main
scaling properties expected for such a phenomenon, but we find also somewhat
unexpected very long transients before the asymptotic scaling regions are reached.
In particular, instead of the expected scaling R ∼ N4/7 exactly at the (D-
dependent) theta point, we found that R increases less fast than N1/2, even
for extremely long chains.
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1. Introduction

Thin films and quasi-low dimensional systems are of obvious technological interest, in
areas ranging from electronics to anti-corrosion coatings. Due to this, critical phenomena
in systems which are finite in one direction but infinite in all other ones have also been
studied in quite some detail [1, 2]. As the thickness of the film decreases, the properties
cross over from bulk (3D) behaviour to surface (2D) behaviour. Actually, in the true
thermodynamic limit the system should show the scaling typical for 2D critical phenomena
for all finite thicknesses. But since the behaviour must, for finite systems, resemble those
of 3D critical systems when the thickness is larger than the lateral size, the amplitudes
in the thermodynamics must show some special scaling. All this is known as dimensional
crossover. The forces exerted by the critical fluctuations on the walls are known as Casimir
forces [2]. The phenomenon exists also for tricritical points, although it has been studied
much less for them.

Long flexible polymers in very diluted solutions can be described as the limit of
the φ4 O(n) vector model in the limit n → 0 [4]. The coil–globule (‘theta’) transition
happening as the solvent quality becomes worse (typically as temperature is lowered) is in
this framework described as a tricritical point. Therefore, the problem of a polymer
confined within the gap between two parallel plane walls is formally described as a
dimensional crossover, either at a normal critical point (athermal polymers) or at a
tricritical point (theta polymers), and the forces exerted by such a polymer are analogous
to (critical/tricritical) Casimir forces.

But polymers have some special features which find no close analogy in O(n) models
with n > 0. One of them is the fact that the volume occupied by an athermal polymer of
fixed chain length N and confined within two athermal walls at distance D does not depend
monotonically on D [5]. If D is larger than the Flory radius RF ∝ Nν (with ν ≈ 0.5876),
then the main effect of the confining walls is to reduce the size perpendicular to the walls,
and thus both the gyration and the end-to-end radius shrink with decreasing D. But
when the polymer is strongly compressed (D � RF), then the main effect is the lateral
swelling due to the increased excluded volume interaction. In this case, R2 = R2

⊥ + R2
‖

and the occupied volume R⊥ × R2
‖ both increase when D is decreased further.

This observation was the basis for a recent claim [6] that the theta temperature Tθ

of a polymer in a poor solvent between two athermal walls should also be non-monotonic
in D. The argument is essentially that the monomer density controls the number of
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monomer–monomer contacts, and thus also Tθ: the higher is density, the more effective
the attractive monomer–monomer interaction, and the higher Tθ. Therefore, as D is
increased, Tθ should start at its 2D value, increase, go through a maximum, and finally
decrease in order to reach its 3D value when D → ∞. This predicted behaviour was then
supported by exact enumeration studies of short chains (N ≤ 20) on the simple cubic
lattice (see figure 6 below).

In the present paper we show by means of rather extensive Monte Carlo simulations
that this is not correct, and that Tθ increases monotonically with D. This is essentially
what one would have expected from a dimensional crossover of a tricritical point. On the
other hand, some of the details of this crossover are somewhat surprising. In particular,
we find extremely long transients. At T = Tθ(D), the asymptotic scaling R‖ ∼ Nνθ,2 with
νθ,2 = 4/7 being the Flory exponent for 2D theta polymers [7, 8] is not seen even when
RF/D ≈ 100, although we have no reason to doubt that it will hold for RF/D → ∞. The
same is true for the free energy: although we have no doubt that the scaling appropriate
for 2D theta polymers will apply asymptotically at T = Tθ(D), it is not yet seen in the
simulations.

These simulations are done with the pruned–enriched Rosenbluth method (PERM) [9]
which is ideally suited for this purpose. It allows one to study extremely long chains (for
D = 60 we went up to N = 600 000) with very high statistics, and it gives immediately very
precise estimates of free energies. Throughout the paper we shall model the polymers by
means of self-avoiding walks on the simple cubic lattice with attractive energy −ε between
non-bonded neighbouring monomers. Instead of quoting temperatures or values of ε, we
shall describe thermal effects in terms of the Boltzmann factor

q = eε/kBT (1)

per contact. The partition sum is therefore

ZN(q, D) =
∑

m

CN,m(D)qm (2)

where CN,m(D) is the number of walks with N steps and m monomer–monomer contacts.
The width D is defined such that D = 1 corresponds to the standard square lattice. For
large D we used hashing as described e.g. in [10] in order to minimize storage demands.

2. Numerical results

In the following, we will denote by qθ(D) the value of the Boltzmann factor at the
true quasi-2D theta point. The Boltzmann factor for 3D theta polymers in the bulk is

then q
(3)
θ = limD→∞ qθ(D), while the Boltzmann factor for strictly 2D theta polymers

on the square lattice is q
(2)
θ = qθ(D = 1). The same notation is used for theta

temperatures and for growth constants (inverse critical fugacities). Growth constants

at temperatures different from the collapse point will be denoted as µ(q, D), so e.g. µ
(3)
θ =

limD→∞ µ(q
(3)
θ , D).

Exactly at the 3D tricritical (theta) point, we can assume finite size scaling ansatze
for the partition sum and for the rms end-to-end distances both parallel and perpendicular
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Figure 1. Squared end-to-end distances parallel to the walls, divided by N3/2,
plotted against N . For self-avoiding walks in 2D one has R2 ∼ N3/2, i.e. the
walks are swollen coils if the lines become horizontal for large N .

to the walls:

ZN(q
(3)
θ , D) ≈ [µ

(3)
θ ]NΦ(D/RF(N)), (3)

RN,‖(q
(3)
θ , D) = 〈(xN − x0)

2 + (yN − y0)
2〉

≈ RF(N)Ψ‖(D/RF(N)) (4)

and

RN,⊥(qθ, D) = 〈(zN − z0)
2〉 ≈ RF(N)Ψ⊥(D/RF(N)), (5)

up to logarithmic corrections [9]–[12]. Here, RF(N) is the Flory radius (rms end-to-end
distance of chains in the bulk) which scales at the theta point like N1/2, again up to
logarithmic corrections. The scaling functions Φ(z), Ψ‖(z), and Ψ⊥(z) are finite and non-

zero in the limit z → ∞. Finally, the growth constant µ
(3)
θ is a non-universal constant

which for the present model is 5.047 9050± 0.000 0005 + (q
(3)
θ − 1.3087) × 1.616 [8, 9, 13].

If the theta temperature Tθ(D) increases with 1/D, sufficiently long polymers at

q = q
(3)
θ will be collapsed for finite D (i.e., RN(q

(3)
θ , D) ∼ N1/2), while they will be swollen

(RN (q
(3)
θ , D) ∼ N3/4) if Tθ(D) decreases with 1/D. In figure 1 we plot R2

N,‖(q
(3)
θ , D)/N3/2

against N , for various values of D. We see that all curves become horizontal for large N ,
i.e. all chains are swollen. This is in contradiction to the claim of [6]. The reason that
the heuristics leading to this claim were wrong is indeed quite clear: the location of the
theta point is determined by polymers whose Flory radius is much larger than D, while
the anomaly noticed by van Vliet et al [5] concerns only polymers with RF ≈ D.

From equation (4) we see that Ψ‖(z) ∼ z−1/2 for z → 0, in order to obtain

RN,‖(q
(3)
θ , D) ∼ A(D)N3/4 with some amplitude A(D). The dependence on D of the

amplitude is then also fixed by equation (4):

A(D) ∼ D−1/2. (6)
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Figure 2. Amplitudes for the end-to-end distance parallel to the walls (see
equation (6)) plotted against D. The smooth line is a fit done by eye with a
power law ∝D−1/2 modified by a logarithmic term.

To check this, we plot in figure 2 the amplitudes obtained by fitting horizontal lines to the
large-N data in figure 1. We see that the behaviour is roughly as predicted by equation (6),
but not quite. There are obviously substantial logarithmic corrections (similarly large
corrections are also seen in theta polymers in the bulk; see [9, 10, 12]). In the fit done
by eye shown in figure 2 these are described by a factor ∝ ln(D)1/4, but this is just done
to guide the eyes. A similarly good fit would have been obtained with a pure power law
A(D) ∼ D−0.54.

For all values of D, the partition sum for N 
 D1/ν2 is also compatible with the scaling
behaviour expected for 2D SAWs (ν2 = 3/4 is the Flory exponent in two dimensions),

ZN(q
(3)
θ , D) ∼ Z0(D)µ(q

(3)
θ , D)NNγ2−1, (7)

where γ2 = 43/32 = 1.343 75 and where −kBT
(3)
θ ln µ(q

(3)
θ , D) is the free energy per

monomer in the thermodynamic limit. This is compatible with equation (3), provided
that

µ(q
(3)
θ , D)

µ
(3)
θ

≈ 1 − a

D2
, (8)

Z0(D) ∼ D2−2γ2 , (9)

and

Φ(z) ∼ exp(−a/z2) for z → 0. (10)

Equation (8) can also be derived from field theory [1]–[3], [14], using de Gennes’ mapping

onto the O(N = 0) model. Numerical values for µ
(3)
θ − µ(q

(3)
θ , D) are shown in figure 3.

They are obviously in agreement with equation (8) for large values of D, although there
are large corrections for finite D.
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Figure 3. The dependence of the effective connectivity constant µ(q,D) on D, for
fixed q = q

(3)
θ . The straight line gives the asymptotic behaviour ∼1/D2, which

is obviously modified by logarithmic corrections. Error bars on the MC data are
much smaller than the symbol sizes.

Up to now we have only discussed the behaviour at the theta point of the free
(D = ∞) polymer. Let us finally study the behaviour at and in the vicinity of the
theta points for the quasi-2D systems at fixed finite D. According to the above results,
this corresponds, for any finite D, to temperatures where the free 3D polymer would be
collapsed. Asymptotically, for N → ∞, the behaviour exactly at the tricritical point
should be that for 2D theta polymers,

ZN(qθ(D), D) ∼ [µ(qθ(D), D)]NNγθ,2−1 (11)

and

RN,‖(qθ(D), D) ∼ Nνθ,2. (12)

Here, νθ,2 = 4/7 and γθ,2 = 8/7 are the Flory and entropic exponents for 2D theta
polymers.

In figures 4 and 5 we show R2
N,‖(q, D)/N8/7 versus N , for several values of q close to

(tri-)criticality, and for D = 5 (figure 4) and D = 60 (figure 5). According to equation (12),
one of the curves in each graph should become horizontal for N → ∞. Naively, one might
expect this regime to set in when the (3D) Flory radius is roughly equal to D, i.e. for
N ≈ 25 in figure 4 and for N ≈ 4000 in figure 5. We do not see this, although our
values of N are much larger than these, by factors more than one hundred. Although we
cannot pin down precisely qθ(D) due to this, we definitely see that RN increases at the

(D-dependent) theta point—and for numerically accessible values of N—slower than
√

N
(straight lines in figures 4 and 5). Thus instead of being swollen, as predicted by theory,
the polymers seem to be collapsed at the 3D theta point. Similar results were found for
all other values of D, and they are corroborated by the results obtained for ZN . Also for
ZN , the asymptotic behaviour stated in equation (11) was not seen for any of the chains
(data not shown).
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Figure 4. Average squared end-to-end distances parallel to the walls for nearly
tricritical polymers in a slit of width D = 5. More precisely, R2

N/N8/7 is plotted
against ln N , which would lead to a horizontal curve if equation (12) were satisfied
for all N . The straight line indicates, in contrast, a non-swollen behaviour
R2

N ∝ N .
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Figure 5. The same as figure 4, but for D = 60. Notice that the longest chains
in this case have N = 600 000.

While these results might look very surprising at first sight, it is indeed not too difficult
to understand them heuristically. As we said, free 3D chains would be slightly collapsed
at the temperatures shown in figures 4 and 5. In a blob picture, these chains are therefore
chains of blobs, each one of size ≈D, and each representing a short 3D polymer slightly
below the theta point. It is well known [9, 10, 12] that the 3D theta collapse of finite
chains happens at an effective (‘Boyle’) temperature Tθ(N) which is lower than the true

T
(3)
θ , and that concatenating such chains at Tθ(N) leads to a longer chain which is much

more collapsed than its short constituents: for temperatures slightly below T
(3)
θ , there is

a regime in N where dRN/dN < 0, i.e. chains actually shrink when more monomers are
attached to them! For the present problem this means that each blob might be swollen,
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Figure 6. Lower limit estimates of qθ(D), plotted against 1/D. The straight line
is q = 1.305 + 0.53/D. The inset shows some of these data plotted against D,
together with the data from [6] for comparison.

but when two blobs are brought into contact, they might not repel each other (as in a
swollen polymer), but rather attract each other. Obviously this is what happens. For
much longer chains than those we can simulate, this would finally stop: when too many
blobs are penetrating each other, repulsion finally dominates again and the chains behave
as ordinary 2D theta polymers.

According to this discussion, we can give only lower bounds on qθ(D). They are given
by those values of q for which the curves in plots such as figures 4 and 5 become horizontal.
These bounds, which should however be not too far from the true values of qθ(D), are
shown in figure 6. We see an essentially linear increase with 1/D. Extrapolating linearly
to 1/D → 0 we find a value q = 1.305 ± 0.001 which is close to, but definitely smaller

than, q
(3)
θ = 1.3087 ± 0.0003 [9]. This confirms that the curves in figures 4 and 5 which

become horizontal at the largest values of N are not yet the critical ones, and that the
true asymptotic behaviour is not yet seen in these figures.

3. Discussion

On the one hand, we have shown that some recent claims about re-entrant behaviour
of polymer collapse in restricted geometries are wrong. The theta collapse of a polymer
confined to the space between two parallel walls is very much as expected from a tricritical
behaviour in a film (quasi-2D) geometry. In particular, the collapse temperature is, for any
distance D between the walls, shifted to temperatures lower than the theta temperature
of free 3D polymers, and the decrease of the free energy with decreasing D is as predicted
from the theory of tricritical Casimir effects.

But on the other hand, we found that the detailed behaviour at the true quasi-2D
theta collapse is—for any chain length we could simulate, and presumably also for any
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chain length realistic in any foreseeable experiment—rather different from the predicted
one. This is related to the fact that the upper critical dimension of theta collapse (as
for any other tricritical phenomenon) is d = 3. Therefore long chains are, at the collapse
point, composed of blobs which are essentially free random walks but which slightly attract
each other.

In view of the analogy between theta collapse and other tricritical phenomena, it is
of interest to speculate whether similar anomalies should be expected also for the latter.
For tricritical Ising or Potts models one might then expect the effective correlation length
exponent not to be given by the true tricritical exponent for d = 2 (which is larger than
1/2 for all these models), but to have a value <1/2. To our knowledge this has neither
been predicted so far, nor been seen in simulations or in real experiments.
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