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Abstract. We present high statistics simulations of weighted lattice bond
animals and lattice trees on the square lattice, with fugacities for each non-bonded
contact and for each bond between two neighbouring monomers. The simulations
are performed using a newly developed sequential sampling method with
resampling, very similar to the pruned-enriched Rosenbluth method (PERM)
used for linear chain polymers. We determine with high precision the line of
second-order transitions from an extended to a collapsed phase in the resulting
two-dimensional phase diagram. This line includes critical bond percolation
as a multicritical point, and we verify that this point divides the line into
different universality classes. One of them corresponds to the collapse driven
by contacts and includes the collapse of (weakly embeddable) trees. There is
some evidence that the other is subdivided again into two parts with different
universality classes. One of these (at the far side from collapsing trees) is bond
driven and is represented by the Derrida–Herrmann model of animals having
bonds only (no contacts). Between the critical percolation point and this bond-
driven collapse seems to be an intermediate regime, whose other end point is a
multicritical point P ∗ where a transition line between two collapsed phases (one
bond driven and the other contact driven) sparks off. This point P ∗ seems to be
attractive (in the renormalization group sense) from the side of the intermediate
regime, so there are four universality classes on the transition line (collapsing
trees, critical percolation, intermediate regime, and Derrida–Herrmann). We
obtain very precise estimates for all critical exponents for collapsing trees. It
is already harder to estimate the critical exponents for the intermediate regime.
Finally, it is very difficult to obtain with our method good estimates of the
critical parameters of the Derrida–Herrmann universality class. As regards the
bond-driven to contact-driven transition in the collapsed phase, we have some
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evidence for its existence and rough location, but no precise estimates of critical
exponents.

Keywords: critical exponents and amplitudes (theory), phase diagrams (theory),
polymers
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1. Introduction

Lattice animals are just clusters of connected sites on a regular lattice. They play an
important role in many models of statistical physics, such as percolation [1] and the Ising
model, where they are related to Fortuin–Kastleyn clusters and to the famous Swendsen–
Wang algorithm [2, 3]. Apart from this, they also form the prototype model for randomly
branched polymers, just as self-avoiding random walks (SAWs) are a model for unbranched
polymers [4].

In the case of single unbranched polymers in a very diluted solvent, a much
studied phase transition happens when the solvent deteriorates (as it usually does when
temperature is lowered). Below the so-called θ-point a polymer no longer forms a swollen
coil with Flory radius RN ∼ Nν with ν > 1/2 (N is here and in the following the
number of monomers), but rather a collapsed ‘globule’ with RN ∼ N1/d, where d is the
dimensionality of space [5, 6]. In the simplest model of polymers living on a regular
lattice, the collapse is induced by an effective attractive interaction between non-bonded
monomers on neighbouring lattice sites. It is easy to see that such a monomer–monomer
attraction is equivalent to a monomer–solvent repulsion, so there is no need to include
the latter, if one is only interested in universal properties of the transition.

A similar collapse transition is expected also to occur for branched polymers. Here the
situation is somewhat more complicated, though. In a lattice model, one can introduce
two different kinds of attraction, so one obtains a two-dimensional phase diagram with
a line of collapse transition points. The basic reason for this difference to unbranched
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Figure 1. Phase diagram for interacting animals. The full line separates an
extended phase (below) from a collapsed phase (above). The points on this line
are obtained by Monte Carlo simulations in the present work, except for the
point at y = 6.48, τ = 0 which is taken from [16]. At y = 0 the clusters are
trees (minimal number of bonds), while at τ = 0 they have no contacts but only
bonds. The dashed line corresponds to bond percolation, with the critical point
being at y = τ = 2. The short dashed–dotted line is a rough estimate for the
transition between a contact-rich and a bond-rich collapsed phase.

polymers (interacting self-avoiding walks, ISAWs) is that the number of bonds is fixed
to b = N − 1 for SAWs (as it is also for trees), while it can fluctuate, b ≥ N − 1, for
general animals. Thus one can introduce two different fugacities for monomer–monomer
bonds and for non-bonded monomer–monomer contacts. As for unbranched polymers,
there is no need to introduce a separate monomer–solvent interaction, since the number
s of monomer–solvent contacts is not independent, but is given by

NN = 2b + 2k + s, (1)

where N is the lattice coordination number (N = 2d on a simple hypercubic lattice in d
dimensions) and k is the number of non-bonded monomer–monomer contacts. A general
partition sum for interacting lattice animals is therefore [7]–[15]

ZN(y, τ) =
∑

b,k

CNbky
b−N+1τk, (2)

where CNbk is just the number of configurations (up to translations and rotations) of
connected clusters with N sites, b bonds, and k contacts. Notice that we changed the
definition slightly with respect to [7]–[15], so that ZN(y, τ) is non-zero for y = 0.

The phase diagram in terms of the control parameters y and τ is shown in figure 1
for two-dimensional animals on the square lattice. There is an extended phase for small
y and τ which includes also the unweighted animal model (y = τ = 1), and at least one
collapsed phase. At the collapse transition we expect that

ZN(y, τ = τc(y)) ∼ µ(y)NN−θ, (3)
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where µ(y) should depend continuously on y, but θ should take discrete values depending
on the respective universality class.

There have been claims, based on exact enumerations of very small clusters [9, 10],
that there are two distinct collapsed phases, one bond rich and the other contact rich.
This has led to some controversy, since later authors could not find it either with other
numerical models [8] or in simplified models [7]. We also find such a transition between
two collapsed phases, although at significantly smaller values of y (short dashed–dotted
curve). The two end points of the transition curve shown in figure 1 are given by collapsing
weakly embeddable trees (y = 0) and by a model where non-bonded contacts are forbidden
(τ = 0). The latter has been studied in detail by Derrida and Herrmann [16], and
others [17]–[20].

Bond percolation is a special model of weighted clusters. The generating function for
bond percolation clusters is defined as

Zperc
N (p) =

∑

b,k

CNbk pb(1 − p)k+s. (4)

More precisely, this equation gives the probability that the origin is connected to a cluster
of precisely N sites, if lattice bonds are established with probability p and broken with
probability 1 − p. Using equation (1), one sees that

Zperc
N (p) = (1 − p)NN−2N+2pN−1ZN(y(p), τ(p)), (5)

with the curve (y(p), τ(p)) parameterized as

y = p/(1 − p)2, τ = 1/(1 − p), 0 ≤ p ≤ 1 (6)

or given explicitly by

y = τ(τ − 1). (7)

This curve is also shown in figure 1. It contains in particular the critical bond
percolation point, p = 1/2, corresponding to y = τ = 2. This point lies also on the
collapse transition line [7], and divides it into two parts: one branch with high density
of contacts (y < 2) and one with high density of bonds (y > 2). Since it is known
that the critical percolation point is fully repulsive in the renormalization group (RG)
sense [21], it would be natural to assume that the RG flow along the transition curve goes
to the two end points y = 0 (collapsing trees) resp. τ = 0 (Derrida–Herrmann model).
Thus we could naively expect that the critical behaviour on each of the two parts of the
transition curve is given by the fixed point at its end. But if there are indeed two different
collapsed phases, then the point at which the transition line between them meets the
collapse transition line should be some multicritical point (y∗, τ ∗). A priori, this point
could be the critical percolation point. But according to [9, 10, 22] this is clearly not the
case: while y = 2 for percolation, y∗ ≈ 4 (see figure 2 of [7]). If all that is true, then there
should be two multicritical points on the transition curve, and three different universality
classes in addition to the percolation class.

In the following we shall investigate the details of this scenario by means of extensive
Monte Carlo simulations. In section 2 we shall briefly describe the algorithm. The critical
percolation point is studied in section 3, both as a means to verify the exactness of our
codes and to discuss the crossover exponents at this point. We shall see that both crossover
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exponents (the one associated to fluctuations of the number of bonds and the other one
for contacts) are exactly equal to 1/2, although the fluctuations of the number of contacts
have huge corrections to scaling. After that we turn in section 4 to the collapse of trees,
i.e., to the case y < 2. We find that there our results are very clean, allowing us to
obtain conjectures for the exact values of all critical exponents. We also verify with high
precision a previous conjecture that the transition curve for y < 2 is strictly horizontal,
with τ = 2. Next, we will turn to the case y > 2 in section 5. There we have many
more problems in arriving at a consistent scenario, presumably because there exist indeed
two different collapsed phases which meet on the transition curve at a point different
from critical percolation. In particular, at face value our results would suggest that the
crossover exponent for bonds depends continuously on y, and would thus be not universal.
But apart from these problems it seems very clear that the critical behaviour for y > 2 is
not in the same universality class as that for y < 2, in contrast to recent speculations [14].
We follow up the question of a transition between two collapsed phases by simulating deep
in the collapsed phase. We conclude with a discussion in section 7.

2. Numerical methods

We use essentially the same method as in [23]. There we introduced a sequential sampling
method with resampling, implemented depth-first as in the PERM (pruned-enriched
Rosenbluth method) algorithm of [24]. More precisely, we first choose a value of p near
the percolation threshold (i.e., p ≈ 1/2), and simulate bond percolation clusters at this
p by means of a variant of the Leath algorithm [25]. While they are still growing we
estimate their current contribution to the percolation partition sum, and—by reweighting
them according to the animal ensemble, equation (2)—to the animal ensemble. If the
latter happens to be higher that average, we clone the cluster and let both copies evolve
independently further. If the weight is too small, we prune with probability 1/2 and
increase the weights of the survivors by a factor 2.

For this to be efficient, we have to take the following considerations into account.

• The clusters are grown breadth first, not depth first [23], although the ‘population
control’ is done depth first.

• The optimal value of p depends on y and τ , and has to be found by trial and error.

• The optimal value of the pruning/cloning threshold was found, to very good precision,
to be the same as for ordinary animals [23], although we could improve also this by
trial and error search.

• To make things even more subtle, the optimal parameters depended slightly on the
maximal sizes to be simulated.

To monitor the performance of the algorithm, we used mostly the variance of the
estimated partition sum. Notice that estimating the partition sum is an integral part of
this algorithm (it is needed for the ‘population control’). In addition, we checked that the
distributions of ‘tour weights’ remain acceptable, as described in [23].

It is clear that this algorithm should work best near the percolation point (since there
is then a minimal amount of resampling needed). Indeed, exactly at the percolation point
the method works even better than Leath itself, if one uses p slightly below 1/2. The
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reason is that with p = 1/2 and without resampling the sample contains very few large
but finite clusters. The partition sum equation (4) decreases at p = pc = 1/2 very slowly
with N , like N−0.054 945 [1]. Thus most clusters which did not stop growing early will do
so only very late, beyond the maximal N we can simulate. Therefore, estimates of specific
heat or of gyration radii will be based on rather small samples and will have rather large
errors. With resampling we can work at p < pc, and we will have many more large finished
clusters in the sample.

All the work reported in this paper was done on fast Linux PCs and used nearly two
years of CPU time.

3. The percolation point

We use the above algorithm to simulate critical bond percolation clusters (y = τ = 2, p =
1/2) of up to N = 6000 sites. The nominal p-value at which the clusters were grown was
p ≈ 0.473, the difference between this and the target value p = 1/2 being made up by
reweighting. In this way the variances of the observables were reduced by roughly two
orders of magnitude, as compared to a straightforward Leath algorithm.

Results for the logarithm of the partition sum and for the gyration radius will be
shown later, together with results obtained for y < 2. They will be discussed in detail
in the next section; here we just point out that they are in perfect agreement with the
expectations [1]

Zperc
N (p = 1/2) ∼ N−5/91, R2

N ∼ N96/91 (8)

and with simulations using the plain Leath algorithm.
More interesting are the average numbers of contacts and bonds, and the fluctuations

thereof. Near the critical point, one has the scaling ansatz [1]

Zperc
N (p) ≈ N−5/91F ((p − 1/2)Nσ) (9)

with σ = 36/91. This gives ∂ ln Zperc
N /∂p|p=1/2 ∼ Nσ and ∂2 ln Zperc

N /∂p2|p=1/2 ∼ N2σ. On
the other hand, using the defining equation (3), one obtains at p = 1/2

∂ lnZperc
N

∂p

∣∣∣∣
p=1/2

=
1

2
〈b − s − k〉 (10)

and

∂2 ln Zperc
N

∂p2

∣∣∣∣
p=1/2

=
1

4
{Var[b − s − k] − 〈b + s + k〉}. (11)

Using this and eliminating s in favour of N , one finds that

〈3b + k〉 = 4N + O(Nσ), (12)

while

Var[3b + k] = 2〈b〉 + O(N2σ). (13)

Our estimates for the average numbers of bonds and contacts are

〈b〉 = 1.1215(3)N + O(Nσ), 〈k〉 = 0.6360(5)N + O(Nσ), (14)

in excellent agreement with equation (12).
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Figure 2. Variances and covariance for bond and contact numbers at the critical
percolation point, divided by N . Normalizations are chosen such that the curves
do not overlap. Notice that the covariance is negative for all N and increases
less quickly than N . In contrast, all three variances increase asymptotically ∼N ,
although with vastly different finite size corrections.

Our results for the 2 × 2 covariance matrix of the bond and contact numbers are
shown in figure 2. More precisely, we show there the (co-)variances divided by N ,

Cij = (〈ij〉 − 〈i〉〈j〉)/N. (15)

From this figure we see first that Cbk is negative for all N . This is intuitively very plausible:
the sum b+k fluctuates less than b and k themselves. Moreover, Cbk seems to scale as Nα

with α ≈ −0.09, i.e., the covariance between bonds and contacts increases less fast than
N . Secondly, we see that Cbb tends to a constant for N → ∞. A more precise analysis
shows that the corrections to this are ∝N−1/2, i.e., Cbb ∼ (1 − const/N1/2). Next, the
variance of 3b+k seems to scale with a power of N larger than 1, but this would contradict
equation (13). Indeed, a more careful analysis shows that the data for Var[3b + k] are in
perfect agreement with equation (13), and that the increase apparent of Var[3b + k]/N
with N is entirely due to the (predicted!) corrections to scaling. Finally, although it
increases even faster with N , Var[k] must also ultimately scale ∼ N , since it is just a
linear combination of the previous (co-)variances.

We should stress again that all these results are as expected from the scaling theory for
percolation (although they had not been derived or checked previously, to our knowledge1).
They show that naive power law fits without guidance by the scaling theory would lead
to Ckk ∼ Nβ with β > 0 and thus to erroneous conclusions.

1 For critical site percolation one has 〈s〉 = (1 − pc)N/pc + O(Nσ) and Var[s] = (1 − pc)N/p2
c + O(N2σ), where

s is the number of non-wetted perimeter sites and pc = 0.5927 . . .. The only paper dealing with fluctuations of
bonds, contacts, or perimeter sites in percolation we are aware of is [26], but these authors were unaware of the
fact that these fluctuations could be derived from accepted scaling ansatz.
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4. The region y < 2: collapsing trees

Let us first discuss the case y = 0, and treat the general case 0 < y < 2 later. In this
case there are only the minimal number of bonds, b = N − 1. To find the transition point
τc = τc(0), we studied the scaling of the gyration radius and of the partition sum. We also
studied the specific heat (i.e., the variance of the number of contacts), but as in previous
cases [23, 28] this gives much less precise estimates.

In figure 3 we plot the rescaled squared gyration radii, R2
N/N2ν , with a suitably chosen

value of ν, against ln N . In figure 4 we show effective exponents θeff defined by the triple
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Table 1. Estimates of critical points τc(y), of critical exponents ν and θ, and of
inverse critical fugacities µ(y).

y τc(y) ν θ µ(y)

0.0 2.0 0.5362(1) 1.845(1) 7.148 93(2)
0.5 2.0 0.5362(1) 1.845(1) 7.3432(1)
1.0 2.0 0.5362(1) 1.845(1) 7.5485(1)
1.5 2.0 0.5362(1) 1.845(1) 7.7665(2)
2.0 2.0 0.527 47... 2.054 94... 8.0
2.25 1.994(2) 0.5230(12) 2.11(1) 8.1088(5)
2.5 1.970(4) 0.5223(8) 2.12(1) 8.1770(5)
3.0 1.880(3) 0.5220(4) 2.12(1) 8.2275(5)
3.5 1.733(7) <0.524 <2.05 8.182(3)
3.75 1.642(6) 0.524(2) <2.03 8.109(5)
4.0 1.54(1) 0.524(2) 2.00(3) 8.035(10)
4.5 1.32(1) 0.520(3) 2.01(4) 7.88(2)
5.0 1.04(1) 0.521(3) 1.98(5) 7.63(3)
5.5 0.71(1) 0.522(4) 1.88(6) 7.32(4)

ratios [27]

θeff(N, τ) =
7 lnZN − 6 lnZN/3 − ln Z5N

6 ln 3 − ln 5
. (16)

If we assume the scaling ansatz

ZN(y, τ) ∼ µ(y)NN−θG((τ − τc(y))Nφ), (17)

these triple rations should tend to θ for N → ∞, provided τ = τc(y).
From these plots we obtain τc(y = 0) = 2.001±0.001 (from figure 3) and 1.998±0.002

(from figure 4). We conjecture that the collapse transition occurs indeed exactly at τc = 2.
This was already conjectured by previous authors [13], although based on much more noisy
data. Our best unbiased estimates of the critical exponents for collapsing trees are

ν = 0.5359 ± 0.0003, θ = 1.842 ± 0.002. (18)

If we accept the conjecture that τc = 2, then these estimates can be improved to

ν = 0.5362 ± 0.0001, θ = 1.845 ± 0.001. (19)

These values are close to rationals with relatively small denominators, which might
suggest that ν and θ are indeed simple rational numbers, ν = 37/69 = 0.536 23 . . . and
θ = 59/32 = 1.843 75. Together with the estimated inverse critical fugacity and with
results given below, these estimates are collected in table 1.

Universality suggests that the same exponents should also describe the transition for
all y < 2. But direct verification is less easy, since there are important corrections to
scaling due to the crossover from the percolation point. Making plots like figures 3 and 4
for y > 0 would not give very clean results: searching for cleanest power laws would give
exponents which depend on y, and would give mutually exclusive estimates τc(y) from the
gyration radius and from the partition sum scaling.

We therefore adopt a different strategy. Assuming that τc(y) = 2 for all y ≤ 2 and
that critical exponents are independent of y, we plotted in figure 5 R2

N/N2ν against N

doi:10.1088/1742-5468/2005/06/P06003 9
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µ(y) were chosen such that the curves show least bending for large N .

for different values of y. Similarly, we plotted ln[ZNN θ/µ(y)N ] in figure 6, where µ(y) is
carefully chosen such as to take into account the dominant exponential increase of ln ZN

with N . In both plots, the curves for percolation (i.e., the lowermost curves) become
straight lines for N → ∞, with slopes 2(νperc − νtree) and θtree − θperc (notice that θperc

is usually called τ in the percolation literature [1]). The curves for trees (y = 0) become
horizontal. Finally, the curves for 0 < y < 2 first follow the percolation curves and
ultimately also become horizontal for N → ∞, but very slowly due to the slow crossover.
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Although we cannot claim from figures 5 and 6 that this scenario is unique, they
strongly suggest that there is indeed just a slow crossover from critical percolation to
collapsing trees, and that the collapse transition occurs for all y < 2 exactly at τ = 2.

Let us finally discuss the fluctuations of the bond and contact numbers. The
normalized variance of the number of contacts, Ckk, of collapsing trees (i.e., at y = 0)
is shown in figure 7 as a function of τ for various values of N . These data are in good
agreement with the less precise results of previous simulations [12, 14]. They verify that
τc(0) ≈ 2, but it would obviously be difficult to estimate from them τc(0) (as attempted
in [12, 14]) with a precision comparable to that obtained from figures 3 and 4.

Fluctuations for different values of y but precisely at τ = τc(y) are shown in figures 8–
10. In each figure, the normalized (co-)variance is plotted against ln N . For y ≤ 2
the curves correspond to τ = 2, while they represent our best estimates of the collapse
transition for y > 2.

As expected, the fluctuations of b are very small and tend to zero as y → 0. They
scale ∼N . The bond-contact covariances seem to increase more slowly than N for all
y > 0, although the decrease of |Cbk| with increasing N becomes weaker for small y. Of
most interest (for the present case y < 2) is the scaling of Ckk, since it is the contacts
which should drive the collapse transition.

Obviously Ckk increases with N . Naive fits (e.g. least square) would give power laws
Ckk ∼ N2φ−1 with φ ≈ 0.6 to 0.65. This would agree with previous estimates [8, 9], [12]–
[14], but we should be extremely careful with accepting such a fit. The reason is that
there is no qualitative difference between the cases y < 2 and y = 2, and for the latter we
had seen in section 3 that Ckk → const for N → ∞. Thus we propose that Ckk → const,
i.e., φ = 1/2, also for y < 2. If we would have φ > 1/2, then there should be either a clear
crossover (which is not seen in figure 10), or φ would have to be non-universal.
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Figure 9. Same as figure 8, but for number of bonds.

5. The region y > 2

For y > 2 the clusters are richer in bonds, and less rich in contacts. The collapse transition
was again located by requiring both the gyration radius and the partition sum to scale.
But this time it is much more difficult to estimate corrections to scaling. The main reason
is that our algorithm deteriorates very rapidly when y becomes large. While it is still
efficient for y ≤ 3.5, it becomes virtually useless for y ≥ 5.5. According to [16], the end
point of the transition line is at y = yDH = 6.48±0.12. At this point, the present algorithm
was unable to give reasonable statistics of clusters with N = 200. The algorithm based on
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Figure 10. Similar to figures 8 and 9, but for the covariances between bond
and contact numbers. Since these covariances are negative for all y and N , we
actually plot −Cbk.

site animals discussed in [23] does a bit better and allowed us to obtain a good sample of
clusters with N = 300. But even for this sample errors are quite large, and extrapolation
to N → ∞ obviously becomes very difficult. We thus do not present any data for the
Derrida–Herrmann model (τ = 0, y = yDH), but we just state that our simulations were
in complete agreement with the results of [16].

We therefore must obtain estimates of the critical parameters from the region
2 < y < 5, although there could again be important crossover contributions from the
percolation point.

Typical results for y = 3.0 are shown in figures 11 and 12. In figure 11 we
see that gyration radii suggest the transition to be at τc(y = 3.0) = 1.878 ± 0.003,
with ν = 0.5222 ± 0.0005. Effective θ-exponents defined by equation (16) are shown
in figure 12. They corroborate the determination of τc; more precisely, they suggest
τc(y = 3.0) = 1.884±0.004. Using as a compromise τc(y = 3.0) = 1.880±0.003, we obtain
as our best estimates of the critical exponents ν = 0.5220 ± 0.0004 and θ = 2.12 ± 0.01.

Estimates of ν and θ compatible with these were obtained for y = 2.5 and 2.25, with
τc(y = 2.5) = 1.970 ± 0.004 and τc(y = 2.25) = 1.994 ± 0.002. But we encountered
problems when going to 3.5 ≤ y ≤ 4. Results analogous to figures 11 and 12, but for
y = 3.75, are shown in figures 13 and 14. This time, there is no value of τ at which R2

N

shows a pure power law for large N (say, N > 100). For small τ the curves bend upward
(the clusters are extended), while for τ ≥ 1.630 they bend down for very large N , showing
that the collapse sets first in for very large clusters only. Moreover, taking the curve in
figure 13 for τ = 1.625 (which seems to become straight for very large N) to estimate ν,
we would obtain ν = 0.527, which is definitely much larger than the estimates obtained
from 2.5 ≤ y ≤ 3.0.

Similarly, the partition sum also shows late scaling, with all curves in figure 14
decreasing. Only the curves for τ ≥ 1.64 show some tendency to level off for very large
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Figure 12. Effective exponents θeff at y = 3.0, plotted against ln N .

N . If this is taken as an indication that scaling should set in similarly late also for the
gyration radii, then indeed the lowest curve in figure 13 should be the critical one, and
its slope for N > 1000 should give the correct estimate of ν: ν ≈ 0.520. But all this looks
very unconvincing. In addition, the value of θ suggested from figure 14 is much smaller
than that from figure 12, any reasonable estimate based on figure 14 being θ ≤ 2.06.

Similar results were obtained for y = 3.5 and 4.0. In all these cases the estimated
value of θ is definitely smaller than the estimate obtained from y = 2.5 and 3.0. Our best
estimates from the region y ≥ 3.5 are θ < 2.0, ν < 0.515. Notice that this is not easily
understood from a crossover from percolation, since there θ = 187/91 = 2.054 945. Why
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should the estimates first move away from the percolation value as we move away from
the percolation point, just to come back to it later?

Notice that these difficulties, serious as they are for the estimation of the critical
exponents, have very little effect on the estimation of τc(y). In spite of them, our estimates
(shown in figure 1) have errors less than 0.02.

They also have very little influence on the estimates of the bond and contact variances.
These depend rather weakly on τ (thus they would not be very useful for determining the
collapse transition curve, as proposed in all previous works). The errors in the data shown
in figures 8–10 are comparable to the thickness of the lines. As expected, Ckk decreases
as y gets larger, while Cbb increases. Thus we can safely say that

Ckk → const for N → ∞, (20)
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since this was already shown for y = 2. The scaling of Cbb is much more subtle. Previous
analyses, starting with the seminal work of [16], obtained Cbb ∼ N2φ−1 with φ ≈ 0.6 to
0.65. Just making least square fits to the curves in figure 9 for the largest values of y
would give the same estimate. But we think that this is misleading, as it was also for
y ≤ 2. First of all, we would expect some sort of crossover in figure 9, which is not seen:
the transition from y = 2 to y > 2 is perfectly smooth. Secondly, we should expect Ckk

and Cbb to scale in the same way. These two variances control the divergence of ZN(y, τ)
as we cross the transition curve vertically and horizontally. In both cases one crosses the
transition curve transversally, and along each transverse line the divergence should be the
same. Therefore we suggest that Cbb ∼ const, i.e., φ = 1/2.

6. Collapsed animals: one or two phases?

According to [9, 10, 22] there are indeed two collapsed phases (one rich in contacts, the
other rich in bonds). The transition line between them bifurcates off from the collapse
curve not at y = yc = 2, but at y∗ ≈ 4 (see the figure shown in [7]). If this is basically true,
but with y∗ ≈ 3.2, this would easily explain our results discussed in the previous section:
the point (y∗, τ ∗) would separate an intermediate part 2 < y ≤ y∗ of the collapse curve
which is still basically contact driven from the bond-driven part y > y∗. The only unusual
feature would be that the fixed point (y∗, τ ∗) has to be attractive when approached from
the left along the collapse transition curve, while it has to be repulsive on the right. Such
a behaviour is not typically expected from the RG group, although we see no reason why
it should be forbidden (it requires that the linearized RG flow near the fixed point is zero,
and the flow is dominated by quadratic terms).

For a direct test of this scenario, one has to simulate deep in the collapsed region
and verify that there is a transition between two different collapsed phases. To search
for such a transition, we have to modify our strategy. We cannot use the gyration radius
as an indicator (because R2

N ∼ N in both phases), and we cannot use the partition
sum either. We checked that the free energy of collapsed animals has a surface term,
ln ZN = N ln µ− constN1/2 + · · ·, as one expects for any two-dimensional compact object
(a similar term is well known for droplets, and was shown to exist also for collapsed
unbranched polymers [29, 30]). Even if there is in addition a term ∼ ln N in the free
energy, there would be just too many unknown parameters to pin it down precisely and
to use this for locating the transition.

Thus we have to look directly to the order parameter, which is the difference b − k,
and its fluctuations2. In figure 15 we show the normalized average difference 〈k − b〉/N
between the numbers of contacts and bonds against τ , for several values of N . More
precisely, we used b − N + 1 instead of b in this figure, which is the number of bonds
exceeding the minimal number. For this figure, y was kept fixed at y = 3.75, i.e., we scan
figure 1 along a vertical line which starts at the collapse transition line at a τ which the
previous section suggested to be above τ ∗. We see that this difference increases with τ ,
indicating that we move indeed from a situation rich in bonds to a system rich in contacts.
But this increase is so smooth that this cannot be used as an argument in favour of a

2 Define a spin variable si = 1 if the edge i between two occupied adjacent lattice sites is occupied by a bond,
and si = −1 if it is occupied by a contact. We could then have also looked at spatial spin–spin correlations, but
we shall not discuss this further in the present paper.
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thermodynamic phase transition. Instead, figure 15 could suggest that there is no such
transition. But we should be aware that an analogous search for the θ collapse in ordinary
(unbranched) polymers, based on the number of contacts, would also fail, because this
number varies rather smoothly with temperature [31]. Thus we would need much larger
systems to obtain a firm conclusion from a plot like in figure 15.

Things change if we look at the corresponding variances; see figure 16. If there is a
phase transition, we expect a peak which becomes higher as N increases. What we see
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is not quite a sharp peak (it is rather a broad bump), but its height definitely increases
with N . Also, its maximum shifts with increasing N to higher values of τ , indicating that
it is not related to the collapse transition. Notice that the existence of this bump and its
increase with N are definitely not due to any statistical fluctuations.

It is not clear whether the data shown in figures 15 and 16 taken by themselves speak
more for or against a phase transition between two collapsed phases. They certainly do
not exclude this possibility. And taken together with the anomaly found in the previous
section, we believe that such a transition is the most natural interpretation. In this case,
a naive (least square, say) fit to an ansatz Ck−b,k−b ∼ N2φ−1 would suggest φ ≈ 0.54, but
there is the same kind of curvature in plots of Ck−b,k−b versus ln N as in figures 8 and 9,
and a more careful extrapolation suggests again that φ is close to 1/2; more precisely,
φ = 0.52 ± 0.02. Since the shift of the maximum to larger τ with increasing N seems to
stop for N > 400, we locate the transition near the maximum observed for N = 1600,
τ ≈ 2.1± 0.2. Because these simulations were very costly in terms of CPU time, we have
not made similar searches at different values of y, and the location of the transition line
indicated in figure 1 should only be taken as a very rough guess.

We should however point that it seems hard to come up with a theoretical argument
for such a transition. Usually, a phase transition requires some sort of cooperativity, i.e.,
some mechanism leading to positive correlations. In the ferromagnetic Ising model, for
example, this is the spin–spin interaction which tends to make neighbouring spins parallel.
In the antiferromagnetic Ising model on a square lattice, the spin–spin interaction favours
parallel next-nearest neighbours. In the present case we see no such interactions. The
only source for correlations is the fact that the bonds must make the cluster connected,
i.e., they cannot all be in one part of the cluster, leaving the rest of the cluster to contacts.
But this should give rise to negative correlations, and it is not clear how it can lead to a
phase transition.

We should also mention that the individual bond and contact variances show no bump
or peak when going into the collapsed region, but fall off continuously with τ . The bump
seen in the variance of k − b is entirely due to an increase of the absolute value of the
covariance. Indeed, as we move off the collapse curve into the collapsed phase, the scaling
of Ckb changes from decreasing with N to increasing with it, and continues to increase
with N even for very large τ .

7. Conclusions

We have presented extensive Monte Carlo simulations of collapsing lattice animals and
collapsing lattice trees. We used a novel algorithm which should be most efficient near
the (bond) percolation point, and it indeed was. At the percolation point it was even
more efficient than the straightforward Leath algorithm. It was also very efficient along
the entire transition line for y < 2, including the point y = 0 which describes the collapse
of weakly embeddable trees. For the latter we conjectured exact values for all critical
exponents.

Our simulations encountered severe problems for the bond-induced collapse at y > 2.
For very large y, near the point studied first by Derrida and Herrmann, it essentially
breaks down. Thus we were able to verify their analysis, but we were not able to improve
on it.
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For moderately large y, i.e., for 3.5 ≤ y ≤ 4.0, our algorithm is still efficient enough
to generate high statistics samples of rather large clusters (N ≈ 1000). But we found
there very large corrections to scaling which prevent us from extracting precise values of
the critical exponents, and we can only give upper bounds for ν and θ: ν < 0.515, θ < 2.0.
These corrections seem to be absent for even smaller y (i.e., 2.5 ≤ y ≤ 3.0), but we cannot
of course exclude that they would show up if we would go to even larger clusters. Assuming
this not to happen, we can then propose ν = 0.5220± 0.0004, φ = 0.5 and θ = 2.12± 0.01
along the bond-induced collapse transition, while ν = 37/69 ≈ 0.536 23, φ = 0.5 and
θ = 59/32 = 1.843 75 for collapsing trees. Together with the exact results ν = 48/91 ≈
0.527 47, φ = 1/2, and θ = 187/91 ≈ 2.054 945 for critical percolation, these values show
that there are indeed (at least) three different universality classes. We cannot rule out
that the anomalies observed at y ≈ 3.75 hint at yet another universality class.

We found somewhat weaker but still statistically significant evidence for a transition
between two collapsed phases, one contact rich and the other bond rich. This line
branches off from the collapse line at y∗ = 3.2 ± 0.2, which is clearly larger than the
value y = 2 for critical percolation, but is substantially smaller than the estimate y∗ ≈ 4
given in [9, 10, 22]. The crossover exponent at this transition is again φ ≈ 0.5. Other
critical exponents were not measured for this transition.

We should finally comment on our claim that φ = 1/2 for critical percolation (and
indeed along the entire collapse line and for the transition between the two collapsed
phases). This is based on the definition of φ in terms of bond and/or contact fluctuations.
It is also true for site percolation, if we look at fluctuations in the number of non-wetted
surface sites. It should not be confused with the fact that the crossover exponent in a
scaling ansatz, equation (9), usually called σ in the percolation literature, is smaller than
1/2. From this scaling ansatz it follows surprisingly that the variances of bond and contact
numbers must scale ∼N . Our claim that φ = 1/2 is entirely based on this observation,
and is made in spite of the fact that naive fits would give φ > 1/2. This should again be
a warning that power law fits not guided by a solid theory can be very misleading.

Acknowledgment

It is a pleasure to thank Walter Nadler for numerous discussions and for critically reading
the manuscript.

References

[1] Stauffer D and Aharony A, 1992 Introduction to Percolation Theory 2nd edn (London: Taylor and Francis)
[2] Fortuin C M and Kasteleyn P W, 1972 Physica 57 536
[3] Swendsen R H and Wang J-S, 1986 Phys. Rev. Lett. 57 2607
[4] Lubensky T C and Isaacson J, 1978 Phys. Rev. Lett. 41 829

Lubensky T C and Isaacson J, 1979 Phys. Rev. Lett. 42 410 (erratum)
Lubensky T C and Isaacson J, 1979 Phys. Rev. A 20 2130

[5] de Gennes P G, 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[6] Grosberg A Yu and Khokhlov A R, 1994 Statistical Physics of Macromolecules (New York: AIP)
[7] Henkel M and Seno F, 1996 Phys. Rev. E 53 3662
[8] Seno F and Vanderzande C, 1994 J. Phys. A: Math. Gen. 27 5813

Seno F and Vanderzande C, 1994 J. Phys. A: Math. Gen. 27 7937
[9] Flesia S, Gaunt D S, Soteros C E and Whittington S G, 1994 J. Phys. A: Math. Gen. 27 5831

[10] Flesia S, Gaunt D S, Soteros C E and Whittington S G, 1992 J. Phys. A: Math. Gen. 25 L1169

doi:10.1088/1742-5468/2005/06/P06003 19

http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.41.829
http://dx.doi.org/10.1103/PhysRevLett.42.410
http://dx.doi.org/10.1103/PhysRevA.20.2130
http://dx.doi.org/10.1103/PhysRevE.53.3662
http://dx.doi.org/10.1088/0305-4470/27/17/015
http://dx.doi.org/10.1088/0305-4470/27/17/015
http://dx.doi.org/10.1088/0305-4470/27/17/016
http://dx.doi.org/10.1088/0305-4470/25/19/007
http://dx.doi.org/10.1088/1742-5468/2005/06/P06003


J.S
tat.M

ech.
(2005)

P
06003

Collapsing lattice animals and lattice trees in two dimensions

[11] Stratychuk L M and Soteros C E, 1996 J. Phys. A: Math. Gen. 29 7067
[12] Madras N and Janse van Rensburg E J, 1997 J. Stat. Phys. 86 1
[13] Janse van Rensburg E J and Madras N, 1997 J. Phys. A: Math. Gen. 30 8035
[14] Janse van Rensburg E J, Orlandini E and Tesi M C, 1999 J. Phys. A: Math. Gen. 32 1567
[15] Janse van Rensburg E J, 2000 J. Phys. A: Math. Gen. 33 3653
[16] Derrida B and Herrmann H J, 1983 J. Physique 44 1365
[17] Dickman R and Schieve W C, 1984 J. Physique 45 1727
[18] Lam P M, 1987 Phys. Rev. B 36 6988
[19] Lam P M, 1988 Phys. Rev. B 38 2813
[20] Chang I S and Shapir Y, 1988 Phys. Rev. B 38 6736
[21] Nienhuis B, cited in [8]
[22] Peard P, 1995 PhD Thesis King’s College, London
[23] Hsu H-P, Nadler W and Grassberger P, 2005 J. Phys. A: Math. Gen. 38 775
[24] Grassberger P, 1997 Phys. Rev. E 56 3682
[25] Leath P, 1976 Phys. Rev. B 14 5046
[26] Borstnik B and Lukman D, 2000 Euro. Phys. J. B 16 113
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