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ABSTRACT: The adsorption of a single multiblock AB copolymer on a solid planar substrate is investigated
by means of computer simulations and scaling analysis. It is shown that the problem can be mapped onto an
effective homopolymer adsorption problem. In particular, we discuss how the critical adsorption energy and the
fraction of adsorbed monomers depend on the block length M of sticking monomers A, and on the total length
N of the polymer chains. Also the adsorption of the random copolymers is considered and found to be well
described within the framework of the annealed approximation. For a better test of our theoretical prediction,
two different Monte Carlo (MC) simulation methods were employed: (a) off-lattice dynamic bead-spring model,
based on the standard Metropolis algorithm (MA), and (b) coarse-grained lattice model using the pruned-enriched
Rosenbluth method (PERM) which enables tests for very long chains. The findings of both methods are fully
consistent and in good agreement with theoretical predictions.

1. Introduction

Adsorption of polymers on surfaces plays a key role in
numerous technological applications and is also relevant to many
biological processes. During the last three decades it has been
constantly a focus of research interest. The theoretical studies
of the behavior of polymers interacting with solid substrate have
been based predominantly on both scaling analysis1–5 as well
as on the self-consistent field (SCF) approach.7 The close
relationship between theory and computer experiments in this
field5,6 has proved especially fruitful. Most investigations focus
as a rule on the determination of the critical adsorption point
(CAP) location and on the scaling behavior of a variety of
quantities below, above, and at the CAP. Thus, an eminent
relation between polymer statistics and the corresponding
correlation functions5 in the n-vector model of magnets with a
free surface in the limit nf 0 has led to a number of important
results. Special interest has been paid to the determination of
the so-called crossover exponent φ which is known to govern
the fraction of adsorbed monomers at the CAP. Recently, the
scaling relationship for a single-chain adsorption has been tested
by Monte Carlo (MC) simulation on a cubic lattice8,9 as well
as by an off-lattice model6,10,, and the adsorption transition of
a polymer could be viewed nowadays as comparatively well
understood.

While the investigations mentioned above have been devoted
exclusively to homopolymers, the adsorption of copolymers
(e.g., multiblocks or random copolymers) is still much less
understood. Thus, for instance, the CAP dependence on block
size M at fixed concentration of the sticking A-mers is still
unknown as are the scaling properties of regular multiblock
copolymers in the vicinity of the CAP. From the theoretical
perspective, the case of diblock copolymers has been studied
mainly within the SCF approach7,11. The case of random
copolymers adsorption has gained comparatively more attention
by researchers so far. It has been investigated by Whittington
et al.12,13 using both the annealed and quenched models of

randomness. In the latter case, the authors implemented the
Morita approximation (which is reduced to an optimization
problem with a set of constraints involving the moments of the
quenched random probability distribution). The influence of
sequence correlations on the adsorption of random copolymers
has been studied by means of the variational and replica method
approach.14 Sumithra and Baumgaertner15 examined the question
of how the critical behavior of random copolymers differs from
that of homopolymers. Thus, among a number of important
conclusions, the results of Monte Carlo simulations demon-
strated that the crossover exponent φ (see below) is independent
of the fraction of attractive monomers n.

In the present paper, we use scaling analysis as well as two
MC simulation methods to study the critical behavior of
multiblock and random copolymers. It turns out that the critical
behavior of these two types of copolymers could be reduced to
the behavior of an effective homopolymer chain with “renor-
malized” segments. For the multiblock copolymer this allows,
e.g., to explain how the critical attraction energy depends on
the block length M and to derive an adsorption phase diagram
in terms of CAP against M. In the case of random copolymers,
the sequence of sticky and neutral (as regards the solid substrate)
monomers within a particular chain is fixed which exemplifies
a system with quenched randomness. Nevertheless, close to
criticality the chain is still rather mobile, so that the sequence
dependence is effectively averaged over the time of the
experiment and the problem can be reduced to the case of
annealed randomness. We show that our MC findings close to
criticality could be perfectly treated within the annealed
randomness model.

2. Scaling Properties of Homopolymer Adsorption

2.1. Order Parameter. Before discussing copolymers ad-
sorption, we briefly sketch the scaling theory of homopolymer
adsorption5,8,10. It is well-known that a single polymer chain
undergoes a transition from a nonbound into an adsorbed state
when the adsorption energy ε per monomer increases beyond a
critical value εc. Here and in what follows ε is measured in
units of the thermal energy kBT (with kB being the Boltzmann
constant and T the temperature of the system). The adsorption
transition can be interpreted as a second-order phase transition
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at the critical point (CAP) of adsorption ε ) εc in the
thermodynamical limit, i.e., N f ∞. Close to the CAP the
number of surface contacts Ns scales as Ns (ε ) εc) ∼ Nφ.
The numerical value of φ is somewhat controversial and lies in
a range between φ ) 0.59 (ref 5) and φ ) 0.484 (ref 9), we
adopt, however, the value φ ) 0.50 ( 0.02 which has been
suggested as the most satisfactory10 by comparison with
comprehensive simulation results.

Consider a chain tethered to the surface at the one end. The
fraction of monomers on the surface n ) Ns/N may be viewed
as an order parameter measuring the degree of adsorption. In
the thermodynamic limit N f ∞, the fraction n goes to zero
(≈O (1/N)) for ε , εc, then near εc, n ∼ Nφ-1, and for ε . εc

(in the strong coupling limit) n is independent of N. Let us
measure the distance from the CAP by the dimensionless
quantity κ ) (ε - εc)/εc) and also introduce the scaling variable
η ≡ κNφ. The corresponding scaling ansatz is then

n(η))Nφ-1G(η) (1)

with the scaling function

G(η)) { const, for ηf 0

η(1-φ)/φ, for η. 1
(2)

The resulting scaling behavior of n follows as

n ∝ { 1/N, for κ, 0

Nφ-1, for κf 0

κ
(1-φ)/φ, for κ. 1

(3)

2.2. Gyration Radius. The gyration radius in direction
perpendicular to the surface, Rg⊥ (η), has the form

Rg⊥ (η)) aN νGg⊥ (η) (4)

One may determine the form of the scaling function Gg⊥ (η) from
the following consideration. At κ < 0 one has Rg⊥ ∼ aNν, so
that Gg⊥ ) const. In the opposite limit η . 0 the N - Gg⊥ (η ∼
η-ν/φ. Thus

Gg⊥ (η)) { const, for ηe 0

η-ν/φ, for η. 0
(5)

As a result

Rg⊥ (η) ∝ { aN ν, for ηe 0

κ
-ν/φ, for η. 0

(6)

The gyration radius in direction parallel to the surface has
similar scaling representation:

Rg|(η)) aN νGg|(η) (7)

Again at κ < 0 the gyration radius Rg| ∼ aNν and Gg| ) const.
At η . 0 the chain behaves as a two-dimensional self-avoiding
walk (SAW), i.e., Rg| ∼ aNν2, where ν2 ) 3/4 denotes the Flory
exponent in two dimensions. In result, the scaling function
behaves as

Gg|(η)) { const, at ηe 0

η(ν2-ν)/φ, at η. 0
(8)

Thus

Rg|(η) ∝ { aNν, at ηe 0

κ
(ν2-ν)/φNν2, at η. 0

(9)

2.2.1. Blob Picture. In the limit κNφ . 1 the adsorbed chain
can be visualized as a string of adsorption blobs which forms
a pancake-like quasi-two-dimensional layer on the surface. The
blobs are defined to contain as many monomers g as necessary
to be on the verge of being adsorbed and therefore carry an

adsorption energy of the order of kBT each. The thickness of
the pancake Rg⊥ corresponds to the size of the blob and the
chain conformation within a blob stays unperturbed (i.e., it is
simply a SAW), thus g ∼ (Rg⊥ /a)1/ν ) κ-1/φ where we have
used eq 6. The gyration radius can be represented thus as

Rg|)Rg⊥ (N
g )ν2

∝ κ
(ν2-ν)/φNν2 (10)

and one goes back to eq 9 which proves the consistency of the
adsorption blob picture. Generally speaking, the number of
blobs, N/g ∼ κ1/φN, is essential for the main scaling argument
in the above-mentioned scaling functions. For example, we could
recast the order parameter scaling behavior eq 1 as

n)Nφ-1H(N
g ) (11)

where H(x) denotes a new scaling function:

H(x)) { const, for xf 0

x1-φ, for x. 1
(12)

2.2.2. Ratio of Gyration Radius Components. The study of
the ratio, r(η) ≡ Rg⊥ /Rg|, of gyration radius components is a
convenient way to find the value of εc (see refs 8 and 10). In
fact, from the previous scaling equations

r(η) ≡
Rg⊥ (η)

Rg|(η)
)

Gg⊥ (η)

Gg|(η)
(13)

Hence at the critical point, i.e., at ηf 0, the ratio r(0) ) const
is independent of N Thus, by plotting r vs ε for different N all
such curves should intersect at a single point which gives εc .

Another way to fix εc is the following. Exactly at the critical
point n ∼ Nφ-1, so that by plotting nN1-φ vs N at different values
of ε one can determine the value ε ≈ εc under which nN1-φ

becomes independent of N.

2.3. Free Energy of Adsorption. The adsorption on a surface
at κ > 0 is due to a free energy gain which is proportional to
the number of blobs, i.e.

F-Fbulk

N
∝ -1

g
∼ -κ

1/φ (14)

The expression for the specific heat per monomer follows
immediately from eq 14 as

CV )-
∂

2(F-Fbulk)

∂
2
κ

∝ κ
-R (15)

where R ) 2 - φ-1. Note that a factor of kBT is absorbed in
the free energy throughout the paper. If φ ) 0.5 then R ) 0
and the specific heat undergoes a jump at the CAP (cf. section
6.1.2).

For a chain (of the length N) on the verge of adsorption, the
foregoing free energy gain, F - Fbulk, should be of the order of
unity. In view of eq 14, this gives an estimate for the critical
energy of adsorption, CAP

εc(N)) εc(∞)(1+ 1

Nφ) (16)

where we have explicitly marked the CAP, εc(N) and εc(∞), for
finite and infinitely long chains, respectively.

3. Multiblock Copolymer Adsorption

Consider now the adsorption of a regular multiblock copoly-
mer which is built up from monomers A which attract (stick)
to the substrate and monomers B which are neutral to the
substrate. In order to treat the adsorption of a regular multiblock
AB copolymer, we reduce the problem to that of a homopolymer
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which has been considered above. The idea is that a regular
multiblock copolymer can be considered as a “homopolymer”
where a single AB diblock plays the role of an effective
monomer.18 For such a mapping we first estimate the effective
energy of adsorption per diblock.

3.1. Effective Energy of Adsorption Per Diblock. Each
individual diblock is made up of an attractive A block of length
M and a neutral B block of the same length M. Upon adsorption,
the attractive A block forms a string of blobs whereas the B
part forms a nonadsorbed tail (or loop) (see Figure 1).

The free energy gain of the attractive block may be written
according to eq 14 as

Fattr )-κ
1/φM (17)

where we measure the energy in units of kBT and κ ≡ (ε - εc
h)/

εc
h measures the normalized distance from the CAP εc

h of a
homopolymer. The neutral B part which is most frequently a
loop connecting adjacent A blocks, but could also be a tail with
the one end free, contributes only to the entropy loss

Frep ) (γ- γ11) lnM (18)

where the universal exponents γ and γ11 are well-known17 (e.g.,
in 3D space γ ) 1.159, γ11 ) -0.390). In the case that also
the tails are involved, one should also use the exponent γ1 )
0.679 albeit this does not change qualitatively the expression
eq 18. They enter the partition function expressions for a free
chain, a chain with both ends fixed at a two points, and for a
chain, tethered by the one end.17 In result the effective
adsorption energy of a diblock is

E(M)) κ
1/φM- (γ- γ11) lnM (19)

One may see from Figure 1b that the number of A monomers
in the immediate vicinity of the attractive wall substantially
exceeds (by a factor of 30) the number of B monomers, although
the chain is at the critical threshold for adsorption. The
theoretical treatment which follows below takes this into
account.

3.2. Order Parameter. Now we consider a “homopolymer”
which is build up from effective units (diblocks), with the
attractive energy given by eq 19. Let us denote the total number
of such effective units by N ) N/2M. The fraction of effective
units on the surface obeys then the same scaling law as given
by eq 1, i.e.

Ns

N
)N φ-1G(∆N φ) (20)

where now ∆ ≡ (E – Ec
h)/Ec

h with the critical adsoption energy
Ec

h of the renormalized homopolymer. Generally, one would
expect Ec

h to be of the order of εc
h albeit for different models

both critical energies would probably differ from each other.
Equation 20 is accurate if one requires that (i) κ , 1 but M .
1 such that ln M . 1 and κ1/φM . 1, and (ii) N . 1. The
effective attraction E of a segment of the renormailzed chain
now depends on M according to eq 19.

Within each effective unit only Ms A monomers will be
adsorbed at criticality whereby this monomer number scales as

Ms )MφG(κMφ) (21)

with κ ≡ (ε - εc
h)/εc

h.
The total number of adsorbed monomer is given by

Ns )NsMs )NsM
φG (κMφ) (22)

It follows that the fraction

n ≡
Ns

N
)

Ns

N
MφG(κMφ)

)
Ns

2N
Mφ-1G(κMφ)

) 1
2

Mφ-1G(κMφ)( N
2M)φ-1

G(∆( N
M)φ) (23)

where we have used the scaling law, eq 20, for the effective
units. Hence, the final expression for the order parameter can
be written as follows:

n) 1

2φ
Nφ-1G(κMφ)G(∆( N

M)φ) (24)

Thus we have expressed the order parameter n of a multiblock
copolymer in terms of the chain length N, the block length M,
and the monomer attraction energy ε as well as the model-
dependent homopolymer critical attraction energy Ec

h. Let us
consider now some limiting cases.

3.2.1. Close to Criticality ∆ ) 0. At the CAP of the
multiblock chain one has ∆ ) 0, thus one can estimate the
deviation κc

M, of the corresponding critical energy of adsorption,
εc

M, from that of a homopolymer, namely

Figure 1. (a) Schematic representation of an individual adsorbed AB diblock. The A part forms a string of quasi-two-dimensional blobs and the
B part is neutral regarding the substrate and its contribution to the free energy is of pure entropical nature. (b) Density profiles against distance z
from the adsorbing plane of A and B monomers at the CAP εads ) 2.12 for a chain with N ) 256 and block size M ) 8. In the inset this is magnified
for better visibility. The ratio of the number of A and B monomers in the immediate vicinity of the attractive wall is about 30.
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κc
M ≡

εc
M - εc

h

εc
h

) ((γ- γ11) lnM+Ec
h

M )1/2

(25)

where we have used eq 19 and set φ ) 0.5. Under this condition,
the second G function in eq 24 is a constant, i.e., G(0) ) const.
On the other hand, with respect to a single effective unit the
chain stays far from the criticality because of

κc
M√M) √(γ- γ11) lnM+Ec

h . 1 (26)

Equation 26 reflects our simulation result, cf. Figure 1b, and
justifies the consideration of A monomers as a string of blobs.
In this case the first G function in eq 24 behaves as G(κc

M�M)
∼ κc

M�M, where κc
M now is fixed by eq 25. As a result, eq 24

becomes

n ∝ ((γ- γ11) lnM+Ec
h

N )1/2

(27)

3.2.2. State of the Strong Adsorption. In this regime κ�M .
1 and ∆�N/M . 1 so that n = (1/�N)G(κ�M)G(∆�N/M) ∼
κ∆. Therefore

n=
κ[κ2M- (γ- γ11) lnM-Ec

h]

Ec
h

(28)

3.3. Gyration Radius. The components of the gyration radius
of a multiblock copolymer can be treated again by making use
of the mapping on the homopolymer problem given by eqs 4
and 7. In doing so the mapping looks as follows:

af aMν

κf∆)
E-Ec

h

Ec
h

NfN ) N
2M

(29)

Thus the gyration radius component in direction perpendicular
to the surface becomes

Rg⊥ ) aNνGg⊥ (∆( N
M)φ) (30)

In the strong adsorption limit ∆�N/M . 1 and
R⊥ ∼ a∆-ν/φMν, which yields

R⊥ =
aMνEc

h2ν

[κ2M- (γ- γ11) lnM-Ec
h]2ν

(31)

In a similar manner, the gyration radius component parallel
to the surface has the form

Rg|) aNνGg|(∆( N
M)φ) (32)

which in the limit ∆�N/M . 1 results in

Rg| = a(∆1/φ

M )ν2-ν

Nν2

=
a[κ2M- (γ- γ11)lnM-Ec

h]2(ν2-ν)

Mν2-ν
Nν2

(33)

Like in the homopolymer case, one can define a blob length
geff ∼ (R⊥ /a)1/ν ∼ ∆-1/φM which in the strong adsorption limit,
∆ g 1, approaches the block length, geff = M, as it should be.

Also in the limit of strong adsorption, ∆�N/M . 1, the ratio

Rg|

R⊥
= (∆1/φN

M )ν2

= ( N
geff

)ν2
(34)

leads to the correct scaling in terms of number of blobs.

4. Random Copolymer Adsorption

Consider a random copolymer which is built up of Np A-type
and Nh B-type monomers. The sampled AB sequences are frozen

(i.e., a distinct sample does not change during the measurement)
which corresponds to quenched disorder. The binary variable
σ specifies the arrangement of monomers along the chain, so
that σ ) 1, if the monomer is of A-type (A monomers attract
to the surface) and σ ) 1 otherwise (i.e., in case of neutral B
monomers). Let the fraction of attractive monomers (i.e., the
composition) be p ) Np/N and the fraction of neutral ones be
1 - p ) Nh/N We assume that the statistics of sequences is
governed by the Bernoulli distribution,20 i.e., the corresponding
distribution function looks like

P{σ}) pδ(1- σ)+ (1- p)δ(σ) (35)

This distribution is a special case of the more general Markovian
copolymers20 when the “chemical correlation length” goes to
zero. Two statistical moments which correspond to the distribu-
tion eq 35 are

〈σ〉 ) p

〈θ2〉 ≡ 〈 [σ - 〈σ〉]2〉 ) p(1- p)
(36)

4.1. How Does the Critical Ec Depend on the Composi-
tion p? The adsorption of a random copolymer on a homoge-
neous surface has been studied by Whittington et al.12,13 within
the framework of the annealed disorder approximation. Physi-
cally, this means that during the measurements the chain touches
the substrate at random in such a way that, as a matter of fact,
one samples all possible distributions of monomers sequences
along the backbone of the macromolecule. Following this
assumption,12 let cN

+(n) be the number of polymer configurations
such that n units have contact with the surface simultaneously.
The percentage of A monomers (composition) is denoted by p.
In the annealed approximation, one then averages the partition
function over the disorder distribution, i.e.

Z(ε))∑
n)1

N

∑
np)0

n

cN
+(n) (n

np
)pnp(1-p)n-npeεnp

)∑
n)1

N

cN
+(n)[peε+ 1- p]n )∑

n)1

N

cN
+(n)enεeff

h

(37)

where εeff
h is the attraction energy of an effective homopolymer.

From eq 37 one can see that the annealed problem is reduced
to that of a homopolymer where the effective attractive energy
is defined as

εeff
h ) ln[peε+ 1- p] (38)

We know that at the critical point the homopolymer attraction
energy, εeff

h ) εc
h, is model dependent. Then the critical attraction

energy ε ) εc
p of a random copolymer reads

εc
p ) ln[ exp εc

h + p- 1

p ] g εc
h (39)

where the composition 0 e p e 1. At p f 0, εc
p f ∞ whereas

at p ) 1, εc
p ) εc

h. The relationship in eq 39 has been recently
found to be confirmed by Monte Carlo simulations.19

5. Simulation Methods

To check the theoretical predictions mentioned in the previous
sections, we performed Monte Carlo simulations and investi-
gated the adsorption of a homopolymer, multiblock copolymers,
and random copolymers on flat surfaces. Two coarse-grained
models, the bead spring model and the simple cubic lattice
model, Figure 2, are used, and two different Monte Carlo
algorithms, the Metropolis algorithm (MA) and pruned-enriched
Rosenbluth method (PERM), are applied to the two models,
respectively.

5.1. Off-Lattice Bead Spring Model with MA. We have
used a coarse grained off-lattice bead spring model6 to describe
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the polymer chains. Our system consists of a single chain
tethered at one end to a flat structureless surface. There are two
kinds of monomers: “A” and “B”, of which only the “A” type
feels an attraction to the surface. The surface interaction of the
“A” type monomers is described by a square well potential Uw(z)
) ε (for z < δ and Uw(z) ) 0 otherwise. Here ε/kBT is varied
from 0.6 to 3.6. The effective bonded interaction is described
by the FENE (finitely extensible nonlinear elastic) potential.

UFENE )-K(1- l0)
2 ln[1- ( l- l0

lmax - l0
)2] (40)

with K ) 20, lmax ) 1, l0 ) 0.7, lmin ) 0.4
The nonbonded interactions are described by the Morse

potential

UM(r)

εM
) exp(-2R(r- rmin))- 2 exp(-R(r- rmin)) (41)

with R ) 24, rmin ) 0.8, εM/kBT ) 1.
We use periodic boundary conditions in the x-y directions

and impenetrable walls in the z direction. We have studied
polymer chains of lengths 32, 64, 128, 256, and 512. We have
also studied homopolymer chains and random copolymers (with
a fraction of attractive monomers, p ) 0.25, 0.5, 0.75). The
size of the box was 64 × 64 × 64 in all cases except for the
512 chains where we used a larger box size of 128 × 128 ×
128. The standard Metropolis algorithm was employed to govern
the moves with self-avoidance automatically incorporated in the
potentials. In each Monte Carlo update, a monomer was chosen
at random and a random displacement attempted with ∆x, ∆y,
∆z chosen uniformly from the interval -0.5 e ∆x, ∆y, ∆z e
0.5. The transition probability for the attempted move was
calculated from the change ∆U of the potential energies before
and after the move as W ) exp(-∆U/kBT). As for standard
Metropolis algorithm, the attempted move was accepted if W
exceeds a random number uniformly distributed in the interval
[0,1]. As a rule, the polymer chains were originally equilibrated
in the MC method for a period of about 106 MCS (depending
on the degree of adsorption ε and chain length N, this period is
varied) whereupon one performs 200 measurement runs, each
of length 8 × 106 MCS. In the case of random copolymers, for
a given composition, i.e., percentage p of the A monomers, we
create a new polymer chain in the beginning of the simulation
run by means of a randomly chosen sequence of segments. This
chain is then sampled during the course of the run, and replaced
by a new sequence in the beginning of the next run.

5.2. Coarse-Grained Lattice Model with PERM. The
adsorption of AB block copolymer with one end (monomer A)
grafted to a plane impenetrable surface and with only monomers
A attractive to the surface are described by SAWs of N - 1
steps on a simple cubic lattice with restriction z g 0. There is

an attractive interaction between monomers A and the wall. The
partition sum now is written as

ZN
(1)(q))∑

Ns

AN(Ns)q
Ns (42)

where AN(Ns) is the number of configurations of SAWs with N
steps having Ns sites on the wall, and q ) eε/kBT (kBT ) 1)
hereafter) is the Boltzmann factor, ε > 0 is the attractive energy
between the monomer A and the wall. As q f 1, there is no
attraction between the monomer A and the wall. On the other
hand, it becomes clear that any copolymer will collapse onto
the wall, if q becomes sufficiently large. Therefore, we expect
a phase transition from a grafted but otherwise detached to an
adsorbed phase, similar to the transition observed also for
homopolymers.

For our simulations, we use the pruned-enriched Rosenbluth
method (PERM)21 which is a biased chain growth algorithm
with resampling (“population control”) and depth-first imple-
mentation. Polymer chains are built like random walks by adding
one monomer at each step. Thus the total weight of a
configuration for a polymer consisting of N monomers is a
product of those weight gains at each step, i.e., WN ) ∏i)0

N-1wi.
As in any such algorithm, there is a wide range of possible
distributions of sampling, we have the freedom to give a bias
at each step while the chain grows, and the bias is corrected by
means of giving a weight to each sample configuration, namely,
wif wi/pi, where pi is the probability for putting the monomer
at step t. In order to suppress the fluctuations of weights as the
chain is growing, the population control is done by “pruning”
configurations with too low weight and “enriching” the sample
with copies of high-weight configurations. Therefore, two
thresholds are introduced here, Wn

+ ) c+Zn and Wn
- ) c-Zn,

where Zn ) (1/Mn)Σconfig Wn from the Mn trail configuration is
the current estimate of partition sum at the n - 1 step, c+ and
c- are constants of order unity and c+/c- ≈ 10. In order to
compare with the results obtained by the first method, we
simulate homopolymers of length N ) 2048 and multiblock
copolymers with block size M ) 2k k ) 0, 1, 2, · · · , 9, The
number of monomers is increased to N ) 8192 as the block
size increases. There are 105/106 independent configurations for
each measurement. We also simulate random copolymers of N
) 2048 monomers with composition p ) 0.125, 0.25, 0.50, and
0.75.

6. Simulation Results

6.1. Determination of the Critical Point of Adsorption.
The determination of the critical adsorption point (CAP) is
essential for testing the scaling results and for comparison with
theory. In this work, we determine the CAP from the analysis
of several quantities: the order parameter n, the variance of the

Figure 2. Schematic representation of a grafted chain close to criticality. (a) Snapshot of a chain with length N ) 128 from the MA model and
block size M ) 2; (b) N ) 2048 with M ) 8 from the PERM simulation.
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number of adsorbed monomers, Cv, and the gyration radius Rg.
These methods are described as follows:

6.1.1. CAP from the Order Parameter. From the plots of the
order parameter n against the adsorption energy ε for chains of
different length N we determine the CAP as the point where
the tangent taken at the inflection point of the order parameter
curve intersects the horizontal axis ε. The results are shown in
Figure 3 for homopolymers and in Figure 4 for multiblock
copolymer with block size M ) 2. In Figures 3a and 4a the
data is obtained by MA method in our off-lattice model, while
in Figures 3b and 4b the data is obtained by PERM for self-
avoiding chains on a cubic lattice. Evidently, in both cases the
order parameter n increases with growing strength of the
substrate potential ε. Thus, the polymer chain undergoes a
transition from a grafted, but otherwise detached state, to an
adsorbed state whereby the chain lies flat on the surface plane,
see Figure 2b. The transition region narrows down as N
increases, which is in good agreement with the scaling prediction
of n, eq 16, in all cases. In the inset of Figures 3 and Figure 4,
we see that the critical point εc

h(N) for homopolymers of chain
length N as well as the critical points εc

M(N) for multiblock
copolymers of chain length N with M ) 1, M ) 2, M ) 4, M
) 8, and M ) 16, gradually increase as Nf ∞. By extrapolating
the data to 1/N ) 0, one obtains the CAP values in the
thermodynamic limit. Results for εc

h, obtained from the analysis
of the order parameter, MA and PERM, are listed in Tables 1
and 2. In the last column of both tables we give the estimate
from the intersection point of the respective Rg data. We should
point out here that the simulation with the MA model requires

considerable computational effort for N g 512; therefore, with
the PERM method we confine ourselves to chain lengths not
large than N ) 2048 (Figure 3b), which are considerably shorter
than feasible.9 Nevertheless, our estimate of the CAP εc

h )
0.285(3) is in good agreement with previous results9 (within
the error bars) although corrections to scaling have not been
considered here.

6.1.2. From the Variance of the Order Parameter. In a
computer simulation, one usually computes the variance of the
order parameter, ∆f, which yields some important thermody-
namic quantities like isothermal compressibility, and/or specific
heat, via the fluctuation relations.

N2∆n) 〈 Ns
2 〉 -〈Ns〉

2 (43)

At the CAP ∆n has a maximum which becomes larger and
narrower as one approaches the thermodynamic limit, N f ∞.

Figure 3. Order parameter n against the adsorption energy ε for homopolymers of different chain lengths N. The value of the CAP εc
h(N) for N f

∞ is extrapolated from the log–log plot of εc
h(N) versus 1/N as shown in the inset. In the thermodynamic limit (a) εc

h ≈ 1.716 (MA off-lattice model),
(b) εc

h ≈ 0.284 (PERM on a cubic lattice).

Figure 4. Order parameter n plotted as a function of attractive energy ε for copolymers with block size M ) 2. The extrapolation plots for εc(N)
versus 1/N for block sizes M ) 1, 2, 4, 8, 16, and for the homopolymer, plotted versus 1/N, are shown in the inset. (a) MA model, (b) PERM.

Table 1. MA

M/N 64 128 256 512 ∞ Rg

1 2.47(3) 2.58(3) 2.63(3) 2.63(3) 2.672(30) 2.65(3)
2 2.32(3) 2.44(3) 2.47(3) 2.48(3) 2.52(2) 2.52(3)
4 2.13(3) 2.260(3) 2.29(3) 2.29(3) 2.34(2) 2.30(4)
8 1.93(3) 2.08(3) 2.12(3) 2.14(3) 2.19(3) 2.06(4)
16 1.76(3) 1.93(3) 2.00(3) 2.01(3) 2.06(3) 1.95(4)
p/N
1.0 1.62(2) 1.66(2) 1.701(20) 1.698(25) 1.716(20) 1.718(20)
0.75 1.83(2) 1.89(2) 1.92(2) 1.946(20) 1.95(3) 1.95(3)
0.50 2.21(2) 2.25(2) 2.29(2) 2.32(2) 2.33(2) 2.38(5)
0.25 2.81(4) 2.97(4) 2.98(4) 3.02(4) 3.05(5) 2.91(6)
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In Figure 5a this is shown for the PERM model along with an
extrapolation of the CAP εc

h(N) for chains of length N (see inset)
which for Nf ∞ becomes a straight line in agreement with eq
16. It becomes also evident from Figure 5b that the alternative
method of using the position of the maximum of the specific
heat, CV ) (kBT2)-1 (〈U2〉 - 〈U〉2) from the fluctuations of the
internal energy, U ) εNs, does not give satisfactory results due
to the rather flat shape of the maximum. This behavior is not
surprising, if one recalls that the critical exponent R describing
the divergence of CV at the CAP, i.e., for κ f 0, according to
CV ∝ κ-R (see eq 15) is given by R ) 2 - φ-1 ≈ 0.22 It has
been shown earlier,22 however, that one can still use specific
heat data to determine the CAP if, instead of the position of
the maximum, one examines the common intersection point of
CV vs ε. In our simulation this yields again εc

h ) 0.284 (cf.
Table 2).

6.1.3. From the Components of Rg. According to eqs 6, 9,
and 13, one should expect that all curves of Rg⊥

2/Rg|
2, for

different chain length N intersect at a fixed point which gives

the CAP in the limit of N f ∞. In Figure 6, we illustrate this
method by plotting the ratio Rg⊥

2/Rg|
2 vs ε for copolymers with

block size M ) 2 . For both methods, MA and PERM, the
curves for different N intersect nearly at a single intersection
point; however, as before, the CAP determined by MA (see
Figure 6a) is less accurate than the results given by PERM (see
Figure 6b). The CAPs obtained from this method, εc

M)2 )
2.52(3) by MA and εc

M)2 ) 0.556(4) by PERM are consistent
with the estimates from the order parameter method where εc

M)2

) 2.521(20) by MA and εc
M)2 ) 0.546(8) by PERM. The CAPs

εc
M for homopolymers, multiblock copolymers with different

block size M, and for random copolymers are listed in Tables
1 and 2.

6.2. Scaling Behavior. From the data for the CAP one may
check the value of the crossover exponent φ ) 0.50 by plotting
the order parameter n vs N (eq 3). This is illustrated in Figure
7 as a double logarithmic plot of n vs N for the case of M ) 1,
i.e., regular alternating polymers. Figure 7 demonstrates clearly

Table 2. PERM

M/N 64 128 256 512 1024 ∞ Rg

1 0.337(9) 0.457(5) 0.505(5) 0.535(3) 0.548(2) 0.560(2) 0.568(6)
2 0.322(4) 0.438(4) 0.486(3) 0.516(2) 0.536(2) 0.545(8) 0.556(3)
4 0.296(7) 0.411(4) 0.465(3) 0.489(3) 0.511(2) 0.520(4) 0.524(2)
8 0.368(4) 0.422(4) 0.455(2) 0.464(3) 0.474(2) 0.480(2) 0.478(3)
16 0.320(4) 0.385(4) 0.411(2) 0.426(3) 0.432(2) 0.441(2) 0.437(4)
p/N
1.0 0.173(4) 0.223(4) 0.250(3) 0.267(4) 0.278(2) 0.285(3) 0.286(3)
0.75 0.241(10) 0.294(6) 0.325(5) 0.346(3) 0.352(3) 0.363(2) 0.366(2)
0.50 0.370(20) 0.439(15) 0.469(8) 0.485(5) 0.499(4) 0.507(2) 0.509(2)
0.25 0.77(2) 0.78(2) 0.82(1) 0.83(2) 0.83(2) 0.843(6) 0.845(4)
0.25/N 100 200 400 800 1600

Figure 5. Results for (a) the variance of the order parameter n multiplied by N in the case of a homopolymer. The inset shows an extrapolation of
the CAP εc

h(N) for 1/Nφ f 0 which converges to the value for an infinite chain, εc
h ) 0.284 (cf. Table 2). (b) Specific heat per monomer, CV/N,

which is plotted as a function of ε for homopolymers of different chain length N.21

Figure 6. Ratio of Rg⊥
2/Rg|

2 plotted as a function of ε for copolymers with block size M ) 2. The critical point is determined by the intersection
of all curves which are found to be at (a) εc

M)2 ≈ 2.52 (MA) and (b) εc
M)2 ≈ 0.556 (PERM).
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that the slope of the n vs N curves in logarithmic coordinates is
equal to φ - 1 ) -0.5 only in those cases where the strength
of the substrate potential equals the CAP value εc, in agreement
with the relation n ∝ Nφ-1. As in the case of homopolymers
(eq 3), Figure 7a shows that in the strongly adsorbed regime (ε
) 3.40) above the CAP the order parameter n ∝ N0 (all
monomers stick). In contrast, far below the CAP, only the
anchoring monomer is attached to the substrate, n ∼N-1, as in
the asymptotic limit Nf ∞ of homopolymers. This is observed
for ε ) 0.60 for the alternating chains (M ) 1). In Figure 7b,

where the statistical precision and the chain lengths involved
are much higher, one may see that for large N the curves which
are slightly above, ε ) 0.571, or below, ε ) 0.560, the CAP at
ε ) 0.568 (cf. Figure 6) display slopes which differ slightly
from -0.5 and thus considerably narrow the interval of critical
behavor.

In Figure 8 we present the results for the components of the
mean square gyration radius, Rg|

2 and Rg⊥
2, in scaled form in

terms of the parameter kNφ for regular block copolymers with
block size M ) 1 and M ) 8. Generally, one observes a good

Figure 7. log–log plot of the order parameter n vs N for block copolymers with block size (M ) 1). The value of ε for each curve is given in the
legend while the slope is also indicated. One may readily check that the straight lines with slope 0.5 correspond to the respective values of εc in
both models, (a) MA and (b) PERM.

Figure 8. log–log plots of the scaled order parameter nN1-φ and the gyration radius components Rg|
2/N2ν and Rg⊥

2/N2ν vs kNφ with ν ) 0.588 and
ν2 ) 3/4. The straight lines indicate the asymptotic behaviour of the scaling functions given by eqs 24, 6, and 9: (a) and (b) represent results for
regular multiblock copolymers with block size M ) 8 and are obtained by MA; (c) and (d) similar results but for M ) 16 are obtained by PERM.
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agreement with the predictions of section 2, especially concern-
ing the data obtained by PERM, Figure 8c,d. Considerable
deviations from the expected scaling behavior are observed only
in Figure 8b where the effective segment of a diblock with M
) 8 is comparatively large for the simulated chain lengths N e
512, meaning effective chain lengths of Neff ) N/16 e 32 which
are definitely too short for a well-pronounced scaling behavior
to be demonstrated. With the much longer chains, N e 2048,
sampled by PERM and shown in Figure 8d, this problem is
absent.

6.3. Phase Diagram of Multiblock Copolymer Adsorption.
Using the values for the CAP, given in Table 1, one may
construct a phase diagram showing the relative increase of the
critical potential εc(M) compared to that of a homopolymer
against (inverse) block size M. This is one of the central results
of the present study.

In Figure 9 one may see that the line of critical points,
defining the region of adsorption, for both models is a steadily
growing function of the inverse block size M-1. Evidently, the
theoretical result, eq 25, appears to be in good qualitative
agreement with simulation data for the different models. As far
as eq 25 comes as a result of scaling analysis, it can be verified
only up to a factor of proportionality. As mentioned in section
2.1, the CAP of a homopolymer, εc

h, is of the same order as
that of the “renormalized” chain consisting of diblocks, Ec

h. Thus
from a fit of the data points with the expression eq 25 one may
actually determine Ec

h. So in the MA model one gets Ec
h ) 3.306

and for PERM Ec
h ) 1.254, that is, one gets values which are

two to four times larger than the respective CAP values of a
homopolymer in both models.

6.4. Random Copolymers. In this section we examine the
adsorption transition of random copolymers with quenched
disorder and average percentage p of the A monomers. In
addition to testing the scaling behavior, we also check to what
extent one may employ the theory developed within approxima-
tion of “annealed disorder” for the description of the CAP
properties. We performed Monte Carlo simulations for hetero-
geneous random copolymers of chains lengths 32, 64, 128, 256,
and 512 (MA) and for 64 e N e 2048 (PERM) with different
fraction of attractive monomers (p ) 0.125, 0.25, 0.50, and
0.75).

It has been pointed out earlier15,16 that the crossover exponent
stays the same, φ ) 0.5, also in the case of random copolymers.
Both simulation methods used in the present study demonstrate
this in Figure 10 where qualitatively the observed picture is
similar to that of Figure 7ssmall deviations in the attraction
potential ε, which was used when sampling the values of the
order parameter n, manifest themselves in significant changes
of the log–log slope φ - 1 from the expected value of -0.5 .
In Figure 11 we demonstrate that the scaling of the mena square
gyration radius components, which we discussed before with
regard to the multiblock copolymers, holds also for random
copolymers with different composition p. Again, the value of
φ ) 0.5 gives best scaling results. Thus, it turns out that the
composition affects only the value of the CAP εc

p.

In Figure 12 we present a plot of the critical point of
adsorption against the fraction of attractive monomers. The full
line corresponds to the theoretical prediction,12 eq 39. Given
that there are no fitting parameters in this equation, one finds a
very good agreement between theoretical predictions and

Figure 9. kc
M ) (εc

M - εc
h)/εc

h plotted vs 1/M for multiblock copolymers with various values of M. The critical points of adsorption for homopolymers
are (a) εc

h ) 1.716 (MA) and (b) εc
h ) 0.285 (PERM). The curves give the best fit of eq 25, k ∝ ((γ - γ11) ln(M) + Ec

h))/M)1/2. Note that the block
size 1 e M e 16 in (a), and 1 e M e 512 in (b).

Figure 10. Same as in Figure 7 but for random copolymers with the composition p ) 0.5 (a) MA where εc
p ) 2.33 and (b) PERM with εc

p ) 0.507.
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simulation results as well as with very recent simulation results19

which demonstrates the adsorption of random copolymers can
be properly described within the scope of the annealed ap-
proximation. This confirms an earlier theoretical result derived
in a somewhat different context (heteropolymer coil-globule
transition) by Grosberg and Shakhnovich.23 Figure 12 also
indicates that this approximation breaks down for chains which
are not random;19 at 50% composition the CAPs of regular block
copolymers are clearly off the theoretical prediction, eq 39. As
far as polymer adsorption is greatly facilitated by the formation
of trains of monomers on the substrate,19 the larger the block
size M, the lower the respective CAP εc

M under the line, eq 39.
No monomer trains are possible in the case of alternating chains
which results in an εc

M)1 > εc
p. Thus, from the position of the

CAPs in Figure 12 one may conclude that the mean length of
an A train on the substrate at p ) 0.5 is close to 4.

7. Concluding Remarks

The main focus of the present investigation was aimed at
the adsorption transition of random and regular multiblock
copolymers on a rigid substrate. We have used two different
models to establish an unambiguous picture of the adsorption
transition and to test scaling predictions at criticality. The first
one is an off-lattice coarse-grained bead-spring model of
polymer chains which interact with a structureless surface by
means of a contact potential, once an A monomer comes close
enough to be captured by the adsorption potential. The second
one deals with SAW on a cubic lattice by the pruned-enriched
Rosenbluth method (PERM) which is very efficient, especially
for very long polymer chains, and provides high accuracy of
the simulation results at criticality. Notwithstanding their basic
difference, both methods suggest a consistent picture of the

Figure 11. log–log plots of the gyration radius components Rg|
2/N2ν and Rg⊥

2/N2ν vs kNφ with ν ) 0.588 and ν2 ) 3/4 for random copolymers at
different composition p.

Figure 12. CAP, εc
p, plotted vs the composition p for random copolymers. The curves give the best fit of eq 39, εc

p ) ln[(exp εc
h + p - 1)/p] g εc

h.
The critical points of adsorption for homopolymers are (a) εc

h ) 1.716 (MA) and (b) εc
h ) 0.285 (PERM). Symbols denote the CAP for multiblock

copolymers with block size M.
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adsorption of copolymers on a rigid substrate and confirm the
theoretical predictions even though the particular numeric values
of the critical adsorption potential (CAP) are model-specific and
differ considerably.

As a central result of the present work, one should point out
the phase diagram of regular multiblock adsorption which gives
the increase of the critical adsorption potential εc

M with decreas-
ing length M of the adsorbing blocks. For very large block
length, M-1 f 0, we find that the CAP approaches systemati-
cally that of a homogeneous polymer. We demonstrate also that
the phase diagram, derived from computer experiment within
the framework of two different models, agrees well with the
theoretical prediction based on scaling considerations.

The phase diagram for random copolymers with quenched
disorder which gives the change in the critical adsorption
potential, εc

p, with changing percentage of the sticking A
monomers, p, is also determined from extensive computer
simulations carried out with the two models. We observe perfect
agreement with the theoretically predicted result which has been
derived by treating the adsorption transition in terms of the
“annealed disorder” approximation.

We show that a consistent picture of how some basic polymer
chain properties of interest such as the gyration radius compo-
nents perpendicular and parallel to the substrate, or the fraction
of adsorbed monomers at criticality, scale when a chain
undergoes an adsorption transition appears regardless of the
particular simulation approach. An important conclusion thereby
concerns the value of the universal crossover exponent φ ) 0.5
which is found to remain unchanged, regardless of whether
homopolymers, regular multiblock polymers, or random poly-
mers are concerned. Thus, the universality class of the adsorption
transition of a heteropolymer is the same as that of a homopoly-
mer.
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