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ABSTRACT: Polymers grafted with one chain end to an
impenetrable flat hard wall which attracts the monomers with a
short-range adsorption potential (of strength ε) are studied by
large scale Monte Carlo simulations, using the pruned−
enriched Rosenbluth method (PERM). Chain lengths up to N
= 25600 steps are considered, and the intrinsic flexibility of the
chain is varied via an energy penalty for nonzero bond angles,
εb. Choosing qb = exp(−εb/kBT) in the range from qb = 1 (fully
flexible chains) to qb = 0.005 (rather stiff chains with a
persistence length of about = 52p lattice spacings), the
adsorption transition is found to vary from about ε/kBTc ≈ 0.286 to ε/kBTc ≈ 0.011, confirming the theoretical expectation that
ε ∝k T/ 1/c pB for large p. The simulation data are compatible with a continuous adsorption transition for all finite values of p,
while in the rigid rod limit ( → ∞p ) a first order transition seems to emerge. Scaling predictions and blob concepts on the
structure of weakly adsorbed semiflexible polymers absorbed at interfaces are briefly discussed.

1. INTRODUCTION

Adsorption of macromolecules onto surfaces and interfaces is of
basic importance for creating polymeric layers, nanostructured
soft materials, etc., and plays also a key role in processes
involving biopolymers in a biological context. In addition, the
interplay between the configurational entropy of the macro-
molecule (which is modified by the constraining interface) and
the enthalpic gain due to adsorption is a challenging problem of
statistical mechanics, and this aspect has found attention since a
long time (e.g., refs 1−15), even if one restricts attention to
neutral polymers in dilute solutions under good solvent
conditions. Understanding this generic problem is of crucial
importance before one can consider complications such as
variation of solvent conditions (e.g., refs 15 and 16), adsorption
of charged polymers (e.g., ref 17), interplay of adsorption and
stretching forces (e.g. refs 18−20), etc.
While the overwhelming part of the (very rich!) theoretical

literature on the subject has idealized the adsorbing macro-
molecules as fully flexible chains, it is well-known that intrinsic
chain stiffness is a very important characteristic of most
macromolecules,21−25 both for simple synthetic macromole-
cules like polyethylene or polystyrene, and biopolymers such as
single- and double-stranded DNA. Consequently, there have
been some attempts to consider the configurational statistics of
semiflexible polymers near an adsorbing surface.26−41 However,
all these approaches have some limitations: (i) in some studies
the semiflexible polymers are modeled as a directed random
walk or the continuum version thereof;28,30,40 some treatments
ignore excluded volume effects;26,29,32,37−39,41 existing com-
puter simulations could explore only limited ranges of chain
lengths and polymer stiffness;31,36 and some treatments rely on
qualitative scaling arguments together with an approximate
perturbation theory.33−35 Of course, some reservations about

these studies are appropriate: e.g., it is now clearly established
that in d = 2 dimensions, which is the proper situation to
consider for a strongly adsorbed chain, excluded volume
interactions are very important also for rather stiff poly-
mers.42−45 It has been shown that in d = 2 a direct crossover
from rod-like behavior to self-avoiding walk-like behavior
occurs when the contour length L of the chain significantly
exceeds the persistence length p, and hence the popular

Kratky−Porod (K−P) model46 of wormlike chains should not
be used in d = 2 at all.42,43 At the adsorption transition, a
grafted polymer changes its conformation from a three-
dimensional “mushroom” to a quasi-two-dimensional “pan-
cake”,3 and the extent to which the K−P model can be used to
describe the adsorption of semiflexible polymers hence needs to
be clarified: in fact, this is one of the main aims of the present
work. To avoid misconceptions, we stress that the terms
“mushroom” and “pancake” refer to the average configuration
of the segment cloud, where an orientational average around an
axis perpendicular to the adsorbing surface in the grafting point
has been taken. Instantaneous shapes of the chains will not
exhibit any cylindrical symmetry, of course (just as the
instantaneous shape of a random walk in d = 3 is not a sphere,
but rather resembles a soap bar).
We also note that the conclusions of the existing studies on

the adsorption transition of semiflexible chains are somewhat
confusing or even contradictory. E.g., Burkhardt30 finds that the
adsorption transition is of first order while Birshtein et al.26 and
Khokhlov et al.29 state it is second order, and Kuznetsov and
Sung33−35 propose a phase diagram where (in the limit of
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infinite chain length) one has both first order adsorption
transitions (to a “pancake” with liquid-crystalline order) and
second order transitions (to an isotropic “pancake”), depending
on the ratio between persistence length ( )p and the range of
the adsorption potential. Recalling that, unlike the case of ideal
chains considered in the textbooks,21−25 the concept of a
“persistence length” as a characterization of intrinsic stiffness of
polymer chains is problematic,42,43,47 it is clear that a proper
analysis of the effects of chain stiffness on polymer adsorption is
subtle.
One needs to realize that for semiflexible chains in d = 3

dimensions the persistence length is also responsible for two
crossovers in quantities characterizing the coil structure; such
crossovers that are not present for completely flexible chains
(Figure 1). The first crossover in the mean square end-to-end
distance, from rods to Gaussian coils, is described by the K−P
model, but when one takes excluded volume into account, this
is not the whole story: when =n L/p p becomes of the order of

* =n D( / )p p
2, Flory theory48 predicts a second crossover to

swollen coil behavior, with ⟨R2⟩ ∝ np
2ν, with the Flory exponent

ν = 3/5.22 Here the strength of the excluded volume interaction
has been related to the effective thickness (cross-section
diameter D) of the polymer chain.48 (Remember that in d = 3
dimensions the second virial coefficient v2 is simply propor-
tional to the excluded volume, proportional to Dp

2 , when one
pictures the chain as a freely jointed chain of rods of length p

and diameter D.) Note that for flexible chains under good
solvent conditions, p is of the same order as the bond length b

between subsequent effective monomers along the chain, and
then in Figure 1a both the rod-like regime and the Gaussian
plateau essentially disappear, and only the power law ⟨R2⟩ ∝
np

2ν survives, down to small values of np. For the case of stiff
chains where stiffness is caused by thickness ∝ D( )p , the
Gaussian plateau may disappear, but the rod regime remains In
d = 2 dimensions, however, irrespective of D one has always a
direct crossover from rods to self-avoiding walks, but with ν =

ν2 = 3/4,23−25 when np is large. The rod−coil crossover at np =
1 corresponds to a length scale p, and the crossover from
Gaussian to swollen coils at np* corresponds to a length scale

* = * =R n D/p p p
2 (prefactors of order unity are disre-

garded throughout). Of course, these length scales ⟨R2⟩1/2, R*,
and p can all be identified also from the scattering function of a
semiflexible polymer (Figure 1b49). Hence it is an interesting
problem to clarify the relation of these internal length scales to
the thickness of the “pancake” that forms in the adsorption
transition. This question will also be addressed in our study.
The outline of this paper is as follows: in the next section, we

briefly recall the main theoretical predictions for the adsorption
transition of flexible chains, and mention a few of the
predictions for semiflexible chains in more detail. The third
section gives a few comments on the model and simulation
method, while the fourth section describes our results. The
paper ends with a short summary.

2. SUMMARY ABOUT THEORETICAL CONCEPTS ON
THE POLYMER ADSORPTION TRANSITION

We remark that Figure 1 can be interpreted in terms of a blob
picture, with the length scale R* being the radius of a blob: we
have np segments of length p per blob, and Gaussian statistics
prevail inside a blob. The chain can then be pictured as a self-
avoiding walk of such blobs. Since the number of such blobs is
np/np*, one concludes

⟨ ⟩ ∝ * *

=

=

ν

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

R R n n

D
n

D N

( / )

( )

p p

p
p

p

p b

2 2 2

2

2/5

6/5

2/5 6/5 6/5
(1)

where in the last step we have written the contour length
= =L n Np p b in terms of the number N of effective segments

b.

Figure 1. (a) Schematic log−log plot of the normalized mean square end-to-end distance ⟨ ⟩R L/(2 )p
2 versus =n L/p p (note that np = 2nk, nk being

the number of Kuhn segments, if one has Gaussian chain statistics). The Kratky−Porod (K−P) model describes the crossover from rods (⟨R2⟩ = L2)
to Gaussian coils (⟨ ⟩ =R L2 )p

2 . At = * =n n D( / )p p p
2 a smooth crossover from Gaussian to swollen coils occurs, as indicated. Ignoring prefactors

of order unity, one has then ⟨ ⟩ =R D n2 ( / )p p p
2 2 2/5 6/5 in this regime. (b) Schematic Kratky plot qLS(q) of the structure factor S(q) plotted versus

the scaled wavenumber qL, on log−log scales. Four regimes occur: at small q the Guinier regime, S(q) = 1 − q2⟨Rg
2⟩/3, ⟨Rg

2⟩ being the mean square
gyration radius of the polymer; for q > qmax, with qmax ∝ 1/(⟨Rg

2⟩)1/2 being the position of the maximum of the Kratky plot, one has a power law
S(q)∝q−1/ν (characteristic of swollen coils) crossing over at qR* ≈ 1 to the power law of Gaussian coils (S(q)∝q−2) and at still larger q (namely for

>q 1p ) to rod-like scattering (S(q) ≈ π/(Lq)). Only the last two regimes are described accurately by the K−P model.
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In the adsorption transition, one relevant aspect is the range
of the adsorption potential;17 however, here we shall treat only
the case of a strictly short-range contact potential, consistent
with the choice of the lattice model used for the simulation (see
next section) where an energy ε is won only if an effective
monomer is situated in the surface plane.
The simplest case to consider by a phenomenological

theory17 is the case of fully flexible chains. For temperatures
slightly below the adsorption temperature the chain is expected
to form a quasi-two-dimensional “pancake” configuration,
which has a thickness ξ. However, the area taken by the
“pancake” is not uniformly filled by the N effective monomers;
rather we expect a two-dimensional self-avoiding walk of
“blobs” of diameter ξ. Inside a blob, we have statistics of self-
avoiding walks in d = 3, and hence each blob contains g
effective monomers, with ξ= νg ( / )b

1/ . Since each effective
monomer must be in a blob, the number of blobs is

ξ= = νn N g N/ ( / )bblob
1/ , while the size of the chain in the

directions parallel to the surface is (ν2 = 3/4 is the Flory
exponent in d = 2 dimensions)

ξ ξ ξ ξ≈ = =ν ν ν ν ν ν ν
||

−R n N N( / ) ( / )g b b bblob
/ ( / ) 12 2 2 2 2

(2)

The situation is analogous to the problem of confinement of
a chain between two repulsive walls a distance ξ apart,50 and
just analogous to this case one can argue that there is a free
energy cost of kBT per blob, so the repulsive part of the free
energy due to the confinement in the pancake is (in units of
kBT)

ξ= = νn N( / )brep blob
1/

(3)

This repulsive part now is balanced by the gain in free energy
due to the attractive surface potential17

= − −c T T Nf( / 1)c satt (4)

where c is a constant, Tc the critical temperature of the
adsorption transition, and fs the probability to find a monomer
at the substrate surface. For T = Tc the number of monomers in
contact with the surface is given by a power law, involving the
crossover exponent ϕ, Nfs ∝ Nϕ.4,6 By analogy, we can conclude
for the chain of nblob blobs containing g monomers that

ξ∝ =ϕ ϕ ν− −f g ( / )s b
1 ( 1)/ . Hence, the phenomenological free

energy expression becomes

ξ ξ= + = − −ν ϕ ν−⎜ ⎟⎛
⎝

⎞
⎠N Nc

T
T

( / ) 1 ( / )b
c

brep att
1/ ( 1)/

(5)

Now the thickness ξ of the pancake follows from
minimization of this free energy, ξ∂ ∂ =/ 0, as

ξ ∝ − ν ϕ−T T/ ( / 1)b c
/

(6)

For ideal Gaussian chains one has ν = ϕ = 1/2 and hence
ξ ∝ − −T T/ ( / 1)b c

1 while the crossover exponent ϕ in the
excluded volume case is still not accurately known. The first
Monte Carlo estimates4 yielded ϕ ≈ 0.59 while the current best
estimates are significantly smaller14 (ϕ ≈ 0.48). In contrast, ν is
known much more precisely51 (ν ≈ 0.588, rather than the Flory
value νF = 3/5). Combining then eqs 2, 6 one obtains

∝ − → ∞ν ν ϕ ν
||

−R T T N N/ ( / 1) ,g b c
( )/2 2

(7)

and the number of monomers in contact with the wall, which is
denoted as Ns in the following, becomes

= ∝ − → ∞ϕ ϕ−N Nf N T T N( / 1) ,s s c
(1 )/

(8)

Note that ξ can, ignoring again prefactors of order unity, be
identified with the perpendicular gyration radius of the chain in
the adsorbed regime,

ξ∝ ∝ − → ∞ν ϕ
⊥

−R T T N/ / ( / 1) ,g b b c
/

(9)

The relations eqs 7-9 were first derived on the basis of
renormalization group calculations and complementing scaling
arguments.4 In fact, one can also consider similarly the
crossover near Tc to the three-dimensional self-avoiding walk
behavior for large but finite N,

= ̃ −ν ϕ
|| ||R N R T T N/ {( / 1) }g b g c (10)

= ̃ −ν ϕ
⊥ ⊥R N R T T N/ {( / 1) }g b g c (11)

= ̃ −ϕ ϕN N N T T N{( / 1) }s s c (12)

The scaling functions all reduce to nonzero constants for
vanishing argument κ = (Tc/T − 1)Nϕ = 0, and behave for large
positive arguments (T < Tc) as

κ κ κ κ

κ κ

̃ ∝ ̃ ∝

̃ ∝

ν ν ϕ ν ϕ

ϕ ϕ

||
−

⊥
−

−

R R

N

( ) , ( ) ,

( )

g g

s

( )/ /

(1 )/

2

(13)

in order to reproduce eqs 7−9. Since κν/ϕ can be just
interpreted as the ratio of the free chain radius νNb and the
pancake thickness ξ, the scaling description of eqs 7-13 just
means that all large lengths in the system are rescaled in terms
of the blob size ξ as given in eq 6.
We now turn to a modification of this picture due to chain

stiffness: recall that already in eq 2 it was implicitly used that for
a free chain there was no other length scale than the chain
radius νNb , apart from the “microscopic” length b. As is
obvious from eq 1, for semiflexible polymers this is not true.
A simple case results again if the chain is not extremely long

but very stiff, such that =n N /p b p does not exceed np*. Then
we conclude that for the weakly adsorbed case excluded volume
effects are still negligible, and we simply can use a treatment
analogous to eqs 2−13, but replacing b by p, N by np, and
using mean field exponents ϕ = ν = 1/2 but keep ν2 = 3/4,
assuming that the adsorbed blobs that form the pancake remain
self-avoiding. In this way one would predict

ξ ∝ − ∝ −

∝ −

−
||T T R T T n

N n T T

/ ( / 1) , / ( / 1) ,

( / 1)

p c g p c p

s p c

1 1/2 3/4

(14)

It is clear that the observability of this regime will be rather
restricted, since we need to have ξ/ p larger than one but np
large enough so that ⟨Rg⊥

2⟩ no longer depends on N. It must be
noted, however, that also the location of the adsorption
transition itself shows a very interesting dependence on chain
stiffness: mean field calculations show26,29 ,32 that
ε ∝k T/ 1/c pB , i.e., at a fixed value of ε we expect Tc → ∞
for → ∞p . The obvious interpretation is that with increasing
stiffness the entropy loss upon adsorption gets smaller, and
therefore adsorption gets easier, as observed already in various
studies.31,32,36 It has been argued that for → ∞p , the
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adsorption of a rigid rod, the transition assumes the character of
a first order transition.26,27 However, we emphasize that the
mean field theories26,29,32 cannot make any useful predictions
for the parallel linear dimension Rg|| of the adsorbed chains,
irrespective of chain stiffness, since the Gaussian statistics
invoked in the theories implies ν2 =

1/2 as well.
When np ≫ np*, however, excluded volume is relevant on

large length scales for the structure of mushrooms in the
nonadsorbed regime and right at the adsorption transition, and
eq 1 describes perpendicular and parallel linear dimensions of
the chains also in this case. In order to discuss the weakly
adsorbed regime, we note that for the case where the pancake
thickness (or blob diameter) exceeds R*, we must replace the
relation ξ = νgb by a relation motivated by eq 1, namely

ξ
ξ

= = =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥D g n N g N

D
( ) , /

( )
p b

p b1/5 3/5 3/5
blob

3 1/5 5/3

(15)

Using again = nrep blob and comparing with eq 3 we see
that the length b in eq 3 is replaced by a slightly larger length,

namely D( )p b
3 1/5. Carrying through the further steps of this

scaling analysis, we expect another crossover near the
adsorption transition, when the length ξ (which very close to
Tc is of the same order as (⟨R2⟩)1/2 in eq 1) has decreased to ξ
≈ R*, since then inside of the blobs the excluded volume is no
longer operative.
As long as one has blobs of size R* or larger, which are

essentially three-dimensional objects, it is clear that one still has
many bonds in loops and hence the fraction of bonds that have
parallel orientation to the wall is small, and the corresponding
nematic order parameter that measures the fraction of bonds
parallel to the surface still is small. On the other hand, for a very
strongly adsorbed polymer most of the bonds will be in trains
tightly bound to the substrate surface, and only a small fraction
of bonds in loops is oriented differently. Kuznetsov and
Sung33−35 have presented various arguments to suggest that for
N → ∞ these weakly and strongly adsorbed states are
separated by a first order transition. However, we shall not go
into the details of these arguments here.

3. MODEL AND SIMULATION METHOD
Our model is the standard self-avoiding walk (SAW) on the
simple cubic lattice, for a semi-infinite geometry with the plane
z = 0 being the surface where a polymer is grafted with one
chain end. Effective monomers are described by occupied
lattice sites, connected by bonds of length b, equal to one
lattice spacing, which henceforth is taken as our unit of length.
Each site can be taken only once, to respect the excluded
volume interaction.
There are two energy parameters in our model: every

monomer in the surface plane z = 0 gains an adsorption energy
−ε (ε > 0), and the second energy parameter εb appears in the
bending energy Ub = εb(1− cos θ), where θ = 0, ± 90° is the
angle between two subsequent bond vectors along the chain.
The partition function then can be expressed in terms of the
two Boltzmann factors q = exp(ε/kBT) and qb = exp(−εb/kBT)
as follows

∑=Z q q C q q( , )N b N N N b
N N

config.
, , s

s
bend

bend

(16)

where CN,Nbend,Ns
is the total number of all configurations of a

polymer chain of length N containing Ns monomers at the
surface and Nbend kinks. This model is studied by Monte Carlo
methods using the pruned−enriched Rosenbluth method
(PERM).52,53 Details on this algorithm and its efficient
implementation have recently been extensively reviewed53

and hence are omitted here.
The quantities that are analyzed in the following are the

average number ⟨Ns⟩ of monomers in the surface plane,
components of the mean square gyration radius parallel
(⟨Rg∥

2⟩) and perpendicular (⟨Rg⊥
2⟩) to the surface, and the

local order parameter ζ(k) that describes the adsorption of
monomers along the chain, where k = 1, ..., N labels the
monomers along the chain from the grafting site to the free
chain end. We have defined ζ(k) as

ζ ζ= = = =k z k z( ) 1, if 0; ( ) 0, if 1, 2, ...k k
(17)

where zk is the z-coordinate of the k’th monomer (note that the
lattice spacing is our unit of lengths).
In addition, the conformational properties of the partially or

fully adsorbed chains have been analyzed in terms of the
concept of dividing a chain up in loops, trains and tails,7 see
Figure 2. Of particular interest are then the fraction of

monomers in loops, ⟨mloop⟩/N, trains, ⟨mtrain⟩/N, and in the
tail, ⟨mtail⟩/N, as well as the average lengths of trains ⟨ ⟩train ,
loops ⟨ ⟩loop and tails ⟨ ⟩tail , and the total number of loops
⟨nloop⟩, trains ⟨ntrain⟩, and tails ⟨ntail⟩ of a chain.
Next we define the average length of trains ⟨ ⟩train , loops

⟨ ⟩loop , and tails ⟨ ⟩tail in a chain

⟨ ⟩ = ⟨ ⟩m n/train train train (18)

⟨ ⟩ = ⟨ ⟩m n/loop loop loop (19)

and

⟨ ⟩ = ⟨ ⟩m n/tail tail tail (20)

Since some of the theories raise the possibility of nematic
order of the adsorbed chains (segments oriented predominantly
parallel to the adsorbing surface), we shall study also an
orientational order parameter defined as

∑η α⟨ ⟩ = ⟨ ⟩ −
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N

1
3 cos 1 /2

i

N

i
1

2

(21)

Figure 2. Schematic representation of the classification of a partially
adsorbed mushroom in terms of loops, trains and tail. “Trains” are
sequences of monomers adsorbed in the surface plane that are not
interrupted by any loops. For simplicity, a two-dimensional system
with a one-dimensional surface is sketched, but all actual data refer to
three-dimensional systems with two-dimensional walls.
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Here αi is the angle between the ith bond vector and the +z-
axis. Remember that η = 0 if the bond vectors are randomly
oriented, while η = −1/2 if all bonds are parallel to the
adsorbing surface. For N → ∞, a nonadsorbed mushroom is
expected to exhibit perfect orientational disorder, η = 0. In any
pancake of finite thickness, the fraction of bonds in trains
contributes terms (−1/2) per such bond; and hence the
average order parameter ⟨η⟩ is always nonzero for T < Tc in the
limit N → ∞. However, if a sharp transition from weakly
adsorbed to a strongly adsorbed state occurs, ⟨η⟩ will exhibit a
jump.
Finally, we shall also consider the bond orientational

correlation function ⟨cos θ(s)⟩, where s labels the distance
between the bonds along the chain contour (i = 1 being the
bond at the grafting site, s = j − i with 1 ≤ i,j ≤ N). This bond
orientational correlation will be used to estimate the persistence
length from the initial decay,

θ⟨ ⟩ = − <s s scos ( ) exp( / ), /b p p b (22)

However, one interesting aspect of the problem is that the
effect of the bending potential Ub depends very strongly on the
dimensionality of space that is available for the polymer chain:
for the same choice of εb the persistence length in d = 2
dimensions is much larger than in d = 3. Consequently, when
the chain gets adsorbed the effect of the bending potential gets
more pronounced. Figure 3 shows typical data for ⟨cos θ(s)⟩
versus s, for mushrooms interacting with an adsorbing surface.
It is seen that the curves ⟨cos θ(s)⟩ versus s indeed depend
distinctly on the parameter q = exp(ε/kBT), that characterizes
the adsorption strength, in the region where the adsorption
transition occurs. In particular, for rather stiff chains (qb =
0.005) the data for q = 1.020 already fall completely on the
curve for d = 2, while the data for q = 1.0107 for s ≤ 50 still are
close to the case d = 3. We also observe that the mushroom at a
nonadsorbing surface (q = 1.00) always coincide with the
behavior of the free three-dimensional chain: for such long

chains as studied here grafting does not have a significant effect
on ⟨cos θ(s)⟩.
In all cases we recognize significant curvature on the semilog

plot of ⟨cos θ(s)⟩ versus s: this flattening of the curves for large
enough s is not an accident, but rather an indication that the
asymptotic decay is not an exponential, but rather a power
law.42,43,47,54

θ β ν⟨ ⟩ ∝ = − ≈ =

=

β−s s d

d

cos ( ) , 2(1 ) 0.824 ( 3)

or 1/2 ( 2) (23)

While we expect that for adsorbed chains ultimately the two-
dimensional exponent (β = 1/2) will control the behavior for N
→ ∞, it is clear that for finite N gradual crossovers must occur.
These gradual crossovers will show up as “effective exponents”
having values intermediate between β = 0.5 and β = 0.824.
However, such effective exponents lack any deep physical
significance, and hence are not studied here. But we note that
from the initial slope of ⟨cos θ(s)⟩ versus s we can identify an
effective persistence length q( )p , which gradually increases

from the three-dimensional value p
d(3 ) to the two-dimensional

value p
d(2 ) as the critical point Tc of the adsorption transition is

crossed (Figure 3c). We expect that <q( )p p
d(2 ) as long as the

average order parameter ζ ̅ = (1/N)Σkζ(k) is less than unity.
Figure 3c shows numerical examples for this smooth crossover
of the persistence length from three-dimensional to two-
dimensional behavior.
This “renormalization” of the persistence length q( )p with

progressing adsorption has not been considered in the
literature, to the best of our knowledge, and hence it has also
been ignored in the theoretical arguments sketched in section 2.
Actually, we expect that the situation is even more complicated,
since a weakly adsorbed chain will exhibit an inhomogeneous
stiffness: tails and loops will appear to be more flexible rather

Figure 3. (a) Bond autocorrelation function ⟨cos θ(s)⟩ plotted (on a logarithmic scale) versus s (on a linear scale), for qb = 0.05 and four values of q,
as indicated. The limiting behavior of nongrafted semiflexible chains in d = 2 and d = 3 also is included. Fitting straight lines to the initial decay of
these curves on the plots yielded the estimates q( )p , cf. eq 22. (b) Same as part a, but for qb = 0.005. All data are for N = 25600. (c) Rescaled

persistence length =q q( )/ ( 1.0)p p plotted versus Tc/T − 1 for several values of qb. Estimations of qc = exp(ε/kBTc) are listed in Table 1.
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than the trains which obey already the two-dimensional
configurational statistics. Figure 4 corroborates this suggestion
by presenting data for ζ(k): One sees that for stiff chains ζ(k)
depends on k/N strongly, implying that near the grafting point
the chain is much stiffer than near the free end. It is clear that
all these effects are not captured by descriptions based on the
simple Kratky−Porod model.
The almost horizontal variation of ζ(k) for weakly adsorbed

chains in Figure 4a is understood from the fact that there occur
many short loops and short trains, and only for k/N near unity
there is a clear decrease due to the tail; for very stiff chains the
tail affects a significant fraction of the chain even for N as large
as N = 25600.
We also stress that the effects demonstrated in Figure 3 need

to be accounted for in experiments where one extracts
estimates of the persistence from electron microscopy or
atomic force microscopy images of adsorbed semiflexible
chains.

4. SIMULATION RESULTS FOR THE ADSORPTION OF
SEMIFLEXIBLE CHAINS

4.1. Estimation of the Location of the Adsorption
Transition. In order to obtain a first orientation, at which

values of q adsorption of the chains occurs, the ratio of the
linear dimensions ⟨Rg⊥

2⟩/⟨Rg∥
2⟩ of the chains is analyzed as a

function of N for various stiffnesses in Figure 5 using q as a
parameter in the region where (from preliminary runs) we
expect that adsorption occurs: theoretically, we expect that in
the adsorbed case (T < Tc, i.e., q > qc) for N → ∞ this ratio
decreases, since eqs 10−13 imply

κ κ κ κ⟨ ⟩ ⟨ ⟩ = ̃ ̃ ∝ → ∞ν ϕ
⊥ || ⊥ ||

−R R R R/ ( )/ ( ) ,g g g g
2 2 2 2 /2

(24)

On the other hand, for T > Tc and T = Tc, we expect that this
ratio tends to two (different) universal constants.
Figure 5 now demonstrates that finite chain length effects on

this ratio do depend on chain stiffness distinctly: for a rather
flexible chain (qb = 0.4) we observe that for short chains this
ratio increases with N up to a flat maximum, reached around N
≈ 103, while then curves for different q fan out, some
decreasing from this maximum, while others slowly increase
further (and hence exhibit no maximum at all). Thus, it is clear
that chains with N ≤ 103 cannot yield accurate results on the
location of the adsorption transition and its exponents, at least
for the present model. This finding clearly casts some doubts
on the reliability of some of the published estimates for similar

Figure 4. Plot of the local adsorption order parameter ζ(k) versus k/N for N = 25600, and for qb = 0.05 (a) and qb = 0.005 (b) including five values
of q near qc in each case, as indicated. Note that qc(qb = 0.05) ≈ 1.0901 and qc(qb = 0.005) ≈ 1.01095, respectively.

Figure 5. Plot of ⟨Rg⊥
2⟩/⟨Rg∥

2⟩ versus N (on a logarithmic scale) for qb = 0.4 (a), 0.05 (b), and 0.01 (c). Several choices of q are included as
indicated. (d) ⟨Rg∥

2⟩/N2ν2 ∼ const in the adsorbed regime (q > qc) for qb = 0.05.
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models where rather short chains were used.4,5,12,13 On the
basis of Figure 5a, it hence is tempting to conclude that for q =
1.2812 the ratio still decreases for large N, while for q ≤ 1.2810
it is still slightly increasing, so we might expect that qc ≈
1.2811(1).
For a moderately stiff chain (qb = 0.05), however, the

behavior of this ratio is rather different: it decreases with N to
reach a minimum near N ≈ 102, then it increases and reaches a
maximum only close to N = 104, for q = 1.0906, for instance.
For q = 1.0903, however, the data generated seem to suggest
that a horizontal plateau, indicative of the asymptotic behavior
at T = Tc, actually has been reached. Of course, the scaling
description of eqs 10−13 implies also that the ratio ⟨R̃g⊥

2(0)⟩/
⟨R̃g∥

2(0)⟩ should be a universal constant, irrespective of
nonuniversal parameters such as qb and hence the persistence
length. If we rely on Figure 5a, the plateau characterizing T = Tc
should be near ⟨Rg⊥

2⟩/⟨Rg∥
2⟩ = 0.32 rather than 0.24, which we

would conclude from Figure 5b if qc = 1.0903. This
contradiction already shows that the judgment whether the
asymptotic scaling regime was actually reached is a delicate
matter, and the probable answer for the case qb = 0.05 is
presumably negative, even chains with N = 25600 are too short.
Analyzing other quantities, as discussed below, our best
estimate actually is qc(qb = 0.05) = 1.0901, where clearly no
plateau in ⟨Rg⊥

2⟩/⟨Rg∥
2⟩ is reached yet. However, in the

adsorbed regime (q > qc) the expected scaling behavior Rg∥
2 ∝

N2ν2 is indeed seen (Figure 5c).
For the case of very stiff chains, such as for qb = 0.01 (Figure

5c), we see a monotonic decrease for q > qc, and a minimum for
q < qc. The value of the plateau, if this can be identified as a
plateau really, is very small (0.06), strongly contradicting the
conjecture that the plateau value is universal. However, it is
plausible that for such stiff chains the effect of excluded volume
still is too small to have strong effects for the adsorption
transition, for chains with N = 25600. Already in the bulk such
chains in d = 3 still showed only minor deviations from the
Kratky−Porod description.42,43,55 So the worst case scenario to

be considered is the possibility that what we take as a “plateau””
in Figure 5c at N = 104 is only the analogue of the flat part in
the minimum of Figure 5b at N = 102, and the true plateau
occurs for much larger N. The best estimate for qc in fact is
1.02143, for which the minimum in Figure 5c, has not been
reached yet. To check these results, it is interesting to also
examine the variation of the ratio ⟨Rg⊥

2⟩/⟨Rg∥
2⟩ with Tc/T − 1,

including only rather large N (N ≥ 3200), Figure 6. One
expects that these ratios should intersect at Tc/T − 1 = 0, of
course. Again the data are compatible with this expectation, but
it is clear that with increasing chain stiffness the judgment
where the intersection occurs precisely gets more and more
difficult. Figure 6d anticipates that despite the problems noted
in Figure 5 that data are roughly compatible with the scaling
description, eqs 10, 11.
Thus, it becomes very desirable to obtain an independent

estimate of qc. At this point, we recall that the partition function
ZN that we estimate with the PERM algorithm is expected to
exhibit the following behavior23,51 in the bulk {μ(qb) is the
fugacity of the chain; μ(qb = 1) = 0.21349098(5) in ref 14}:

μ γ∝ ≈ =γ− −Z q q N d( ) [ ( )] , 1.162 ( 3)N b b
N 1

(25)

while for a (nonadsorbed) mushroom we have4,6,9,10,14

μ γ∝ ≈ → ∞γ− −Z q q q N N( , ) [ ( )] , 0.679,N b b
N 1

1
1

(26)

In contrast, for an adsorbed chain in a (quasi-two-
dimensional) pancake conformation the exponent γ1 gets
replaced by the exactly known56,57 two-dimensional value γ2 =
43/32 and μ now depends on q as well,

μ∝ → ∞γ− −Z q q q q N N( , ) [ ( , )] ,N b b
N 12 (27)

In this description, the adsorption transition is a point4,6

where μ still depends on qb only, while γ1 takes the value
14,58 γ1

= γ1
sp ≈ 1.22 ± 0.01 at the so-called “special transition”. For

Gaussian chains, the values of these exponents simply are4,6

Figure 6. Ratio between the mean square gyration radius components perpendicular and parallel to the surface, ⟨Rg⊥
2⟩/⟨Rg∥

2⟩ plotted vs Tc/T − 1
for qb = 0.4 (a), 0.05 (b), and 0.01 (c), including four choices of N in each case, N = 3200, 6400, 12800, and 25600, as indicated. The estimates for
kBTc/ε used in the plot are 1/ln qc with qc = 1.2810 (a), 1.0904 (b), and 1.02140 (c), respectively. Part d shows the same data as in part b, but
rescaled versus the variable (Tc/T − 1)Nϕ with ϕ = 1/2.
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γ γ γ= = =1, 1/2, 1sp
1 1 (28)

In order to derive estimations of γ1 from eq 26, it is useful to
consider expressions such as (we omit here the argument qb, for
simplicity)

γ = + − −Z Z Z1 [4 ln 3 ln ln ]/ln 9N N N1,eff
(1)

/3 3 (29)

and

γ μ= + Z Z1 {ln[ / ]}/ln 4.N
N

N1,eff
(2)

2
3 /2

/2 (30)

As a test of this method, Figure 7 shows the estimation of γ1
and μ(qb) for mushrooms (q = 1). Indeed, one finds γ1 being
close to 0.68 for qb = 0.4, while γ1 is close to the mean field
value 1/2 for qb = 0.005, because in the available regime of
chain lengths excluded volume hardly matters for such stiff
chains. As expected, μ(qb) → 1 for qb → 0, for the same reason.
Next we turn to the estimation of qc and γ1

sp (Figure 8). The
best estimates for qc are chosen such that γ1,eff

(2) becomes

Figure 7. Effective exponents γ1,eff
(1) and γ1,eff

(2) [computed from eqs 29, 30] plotted versus N (on a logarithmic scale) for q = 1, and for qb = 0.4 (a) and
0.005 (b). To estimate μ(qb), the combination ln ZN(qb) + N ln μ(qb) + (1 − γ1) ln N is plotted vs N for q = 1, and for qb = 0.4 (c) and 0.005 (d).
Three trial values of μ are shown in each case (values of μ(qb) are chosen such that the shown curves become horizontal for large N).

Figure 8. Effective exponents γ1,eff
(2) at the adsorption transition, (computed from eq 30, using the estimates of μ(qb) obtained in the similar way as

shown in Figure 7), plotted versus N (on a logarithmic scale) for qb = 0.4 (a), 0.05 (b), and 0.01 (c); values of q are included in each case, as
indicated. At q = qc, computed values of γ1,eff

(1) using eq 29 are also included. Estimations of the critical point qc and the exponent γ1 are pointed out by
arrows.
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independent of N for large N. The resulting estimates for qc are
reasonably well consistent with the estimates obtained from the
ratio of the linear dimensions (Figure 5). We note that the
asymptotic region in Figure 8 seems to be reached for N > 200
in the case qb = 0.4, but N > 1000 for qb = 0.05 and still larger N
are required for qb = 0.01. Qualitatively, this observation can be
accounted for by the fact that the asymptotic behavior can only
be observed for > * = *N N np , and N*(qb) strongly increases
with increasing stiffness. From the analysis of free (nongrafted)
chains it was found49 that N*(qb = 0.05) = 180 while N*(qb =
0.01) = 9000. If these estimates are reliable, one must expect
that for qb ≤ 0.01 the asymptotic regime where excluded

volume effects dominate has hardly been reached. While in the

case of nonadsorbed mushrooms we can clearly see that the

estimates for γ1 for N > 1000 settle down at a value close to the

value for Gaussian chains, γ1 =
1/2 (eq 28), for rather stiff chains

(Figure 7b), at the adsorption transition data are compatible

with the Gaussian value γ1
sp = 1 only for the rod-like regime, N <

100 (Figure 8c). We note that for nonreversal random walks,

which are known to obey the Gaussian statistics, the exponents

γ1 = 1/2 and γ1
sp = 1 have been verified straightforwardly for

rather short chains already (20 ≤ N ≤ 100).4

Figure 9. Plot of ϕeff as defined in eq 31 versus N (on a logarithmic scale) for qb = 0.4 (a), 0.05 (b), and 0.01 (c). Five values of q are included in
each case, as indicated.

Figure 10. Average number of adsorbed monomers Ns relative to the fraction Nϕ expected at the adsorption transition plotted versus N (on a
logarithmic scale) for qb = 0.4 (a), 0.05 (b), and 0.01 (c). The effective values of the crossover exponent ϕ used are ϕ = 0.495 (a), 0.47 (b), and 0.88
(c). Several choices of q are included, as indicated.
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A third method to locate qc is based on eq 12, making use of
the fact that the scaling function Ñs(κ) for small κ = (Tc/T − 1)
Nϕ is a regular function of κ, we hence consider the function

ϕ =N q N N q N N q( , ) ln[ (2 , )/ ( /2, )]/ln 4s seff (31)

since with the help of eq 12 this becomes for |Tc/T − 1|Nϕ ≪ 1

ϕ ϕ≈ + − + ···ϕN q const T T N( , ) ( / 1)ceff (32)

Figure 9 shows that for relatively flexible chains we obtain
results compatible with a universal value of ϕ near ϕ = 0.48, but
for qb ≤ 0.01 clearly a reliable value can no longer be extracted.
From Figure 1, we can conclude that for very long semiflexible

chains we can expect for both exponents right at the adsorption
transition, γ1,eff

sp and ϕeff, three distinct regimes: a regime
characteristic for the adsorption of rods for ≤N /p b, a regime

characteristic for the adsorption of Gaussian coils for
≤ ≤ * =N N/ ( / )p b p b

3 2 , and a regime where the adsorp-

tion behavior characteristic of chains with excluded volume
behavior prevails (N > N*). Apart from the fact that the
behavior is difficult to analyze since the crossovers are smooth,
we must also take into account that the behavior is more
complicated since the location of the adsorption transition in
the various regimes differs: e.g., adsorption of rods occurs
already as soon as ε > 0, while in the other cases ε/kBT has to

Table 1. Estimations of the Adsorption Transition Point qc (Figures 5, 8, and 9), the Crossover Exponent ϕ, the Surface
Entropic Exponent γ1

sp, and the Persistence Length for the Semiflexible Polymer Chains with One Chain End Grafted on a
Surface and in the Bulk, lp(q = 1) and lp(bulk), Respectively

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0
qc(R⊥

2/R∥
2) 1.010 90 1.021 40 1.0410 1.058 95 1.0904 1.1497 1.2196 1.2810 1.3307

qc(γ1
s ) 1.010 95 1.021 43 1.0409 1.0587 1.0901 1.1495 1.2195 1.2809 1.3307

qc(ϕ) 1.010 97 1.021 48 1.0410 1.0588 1.0901 1.1495 1.2195 1.2810 1.3308
ϕ 0.97 0.88 0.61 0.51 0.47 0.49 0.50 0.495 0.483
γ1
sp 1.82 1.63 1.21 1.14 1.18 1.228 1.23 1.23 1.224
lp(q = 1) 52.60 26.80 13.91 9.54 5.92 3.34 2.00 1.13 0.68
lp (bulk) 52.61 26.87 13.93 9.54 5.96 3.35 2.05 1.13 0.68

Figure 11. Fraction of monomers in trains, loops, and tails, ⟨mtrain⟩/N, ⟨mloop⟩/N, and ⟨mtail⟩/N, respectively, plotted versus Tc/T − 1 for qb = 0.4
(a), qb = 0.05 (b), and qb = 0.005 (c). Fraction of monomers in trains, ⟨mtrain⟩/N for plotted versus Tc/T − 1 (d), and −q q q q( ) ( , )c p b (e) several
choices of qb, as indicated. In parts a−d. data are for chains of length N = 25600. In part e, chain lengths N are chosen such that

= =n N q q/ ( , ) 210p p b . The abscissa variable −q q( )c p in part e was used since ε− ≈ −q q T T k T( ) ( / 1)( / )c p c p cB for stiff chains and ε k T/p cB

tends to a constant.
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exceed a threshold ε/kBTc. For adsorption of rods on the simple
cubic lattice we do not expect any power law factor in the
partition function, and hence γ1 = γ1

sp = 1 for rods. Figures 7 and
8 are compatible with this assertion, considering that

= ≈q( 0.01) 27p b and = ≈q( 0.005) 52p b . Having obtained

an estimate of ϕ, one can perform a consistency check, plotting
Ns/N

ϕ vs N at various values of q: for q = qc one expects a
horizontal plateau for large N. Figure 10 shows that for flexible
chains indeed the data settle down to a plateau if N ≈ 400 or
larger, while for stiffer chains (e.g., qb = 0.05) the plateau only
starts at about N = 2000. For very stiff chains (qb = 0.01) we
have used an effective crossover exponent ϕeff = 0.88, motivated

by Figure 9c and the expectation that for qb → 0 the adsorption
transition becomes first order. At this point we recall the
suggestion by Causo et al.59 that first order adsorption
transitions still are described by eq 12 but with ϕ = 1. The
adsorption transition point qc determined by the gyration radii
(Figure 6), the surface entropic exponent γ1

sp referred to the
partition sum (Figure 8), and the crossover exponent ϕ
referred to the number of surface contacts (Figure 9) at q = qc,
and the persistence length p determined by the bond

orientational correlation function (Figure 3) are listed in
Table 1 for several values of qb.

Figure 12. Fraction of monomers in loops ⟨mloop⟩/N plotted versus Tc/T − 1 for qb = 0.05 (a) and 0.005 (b) and plotted versus −q q q q( ) ( , )c p b for
chains of length N = 25600 and several choices of qb, as indicated (c). In parts a and b, four chain lengths N = 400, 1600, 6400, and 25600 are
included, as indicated.

Figure 13. Average length of trains in a chain, ⟨ ⟩train , plotted versus Tc/T − 1 for qb = 0.05 (a) and 0.005 (b). Arrows in (b) indicate the trivial
limiting values ⟨ ⟩ = Ntrain for fully adsorbed chains where all monomers are in a single train. Average length of loops in a chain, ⟨ ⟩loop , plotted
versus Tc/T − 1 for qb = 0.05 (c) and qb = 0.005 (d). In each case four choices of N are included, N = 400, 1600, 6400, and 25600, as indicated.
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4.2. Structural Properties of Adsorbed Semiflexible
Chains: Loops, Trains, and Tails. We start by discussing the
fractions of monomers in trains, loops and tails, Figure 11. It is
remarkable that for flexible chains near the adsorption
transition there are almost no monomers in trains, and only
the fraction of monomers in loops grows on expense of the
monomers in the tail. Conversely, for moderately stiff chains we
do observe for T < Tc a continuous growth of ⟨mtrain⟩, and
⟨mloop⟩ reaches a maximum for T slightly smaller than Tc, while
in this regime there now are hardly any monomers in the tail.
For rather stiff chains (such as qb = 0.005, Figure 11c) we
observe that for T > Tc almost all monomers are in the tail,
while for T < Tc almost all monomers are in trains: only for T
very near Tc do we find some monomers in loops. For qb =
0.005, the maximum of ⟨mloop⟩/N is almost an order of
magnitude smaller than the maximum value reached for qb =
0.05. Plotting ⟨mtrain⟩/N versus Tc/T − 1 for different stiffness
at our largest chain length shows that the adsorption transition
gets much sharper with increasing stiffness (Figure 11d). Only
in the nonadsorbed regime (Figure 11e) emerges a simple
scaling ruled by the persistence length at the same

=n N q q/ ( , )p p b .
It is also interesting, of course, to study how this behavior

develops with increasing chain length (Figure 12). While the
height of the peak of ⟨mloop⟩ near T = Tc for moderately stiff
chains grows rather gradually (Figure 12a), for rather stiff
chains this growth is quite rapid (Figure 12b). In the
nonadsorbed regime (Figure 12c) a simple scaling ruled by
the persistence length only remains for flexible and moderately
stiff chains. Also when one considers the average length of
loops and trains (Figure 13), one finds that for moderately stiff
chains (qb = 0.05, Figure 13a) the train length increases with
decreasing T and it remains the same as chain lengths are large
enough at fixed temperature T (a master curve is seen). Note
that the monotonous behavior observed in Figure 13a is similar
to the behavior observed for flexible chains (such as qb = 0.4
[not shown]) for all chain lengths. For stiff chains (qb = 0.005,

Figure 13b) near T = Tc, the slope ⟨ ⟩d dT/train increases rapidly
with N. In the regime where the chain is strongly adsorbed the
curves reach a plateau, ⟨ ⟩ ≈ Ntrain , there is a single train
containing (almost) all monomers. Only in the nonadsorbed
regime we observe that the data for large enough N fall on a
master curve. Also with respect to the length of loops ⟨ ⟩loop , we

note very characteristic differences: for sufficiently large N, the
loop length always develops a maximum in the vicinity of Tc. A
master curve for large enough N is only observed in the
adsorbed regime and moderate stiffness (we expect that for qb =
0.005 much longer chains would be required to obtain a master
curve as well).
We find that the average length of tails per monomer in a

chain (Figure 14) qualifies as another criterion to estimate the
location of the adsorption transition: we find that ⟨ ⟩ N/tail is
monotonically increasing with N for T > Tc, while for T < Tc

this quantity is monotonically decreasing with N. Thus, in the
limit N→∞ almost all monomers belong to the tail for T > Tc,
the fraction of monomers in loops and trains is negligibly small,
consistent with observation (Figure 13). In contrast, for T < Tc

for N → ∞ the fraction of monomers in the tails is negligible
(remember that per definition there can only be at most one
tail, Figure 2, and hence ⟨ ⟩ = ⟨ ⟩mtail tail , of course). For flexible
chains, qb = 0.4, the data clearly suggest that the curves for
⟨ ⟩ N/tail versus q in tersect at a universa l point
⟨ ⟩ = ⟨ ⟩ ≈N m N/ / 0.5tail tail , however, for qb = 0.05 there is
clearly some spread of the intersections, while for qb = 0.005 the
data again are compatible with a unique intersection, but at a
smaller value, ⟨ ⟩ ≈N/ 0.3tail . It is tempting to speculatively
attribute this change of behavior to a crossover of a second
order adsorption transition for flexible chains to a first order
transition in the limit → ∞p . Figure 14d shows that the

average length of tails per monomer, ⟨ltail⟩/N converges to a
master curve for semiflexible chains (but not the flexible ones)
when plotted as a function of −q q q q( ) ( , )c p b .

Figure 14. Average length of tails per monomer in a chain, ⟨ ⟩ N/tail , plotted versus Tc/T − 1 for qb = 0.4 (a), 0.05 (b), and 0.005 (c), and plotted
versus −q q q q( ) ( , )c p b for chains of length N = 25600 and several choices of qb, as indicated (d). In parts a−c, four values of N are shown, N = 400,
1600, 6400, and 25600, as indicated.
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At this point it is also interesting to contrast the different
behavior of ⟨mloop⟩ and ⟨ ⟩loop for T < Tc (Figure 12a,b and
Figure 13c,d): while ⟨mloop⟩/N for T < Tc converges to a
limiting finite value with increasing N from below, the behavior
of ⟨ ⟩/2 ploop shows a monotonic increase with temperature T
(Figure 15a). The length of trains is monotonically decreasing
as T → Tc (Figure 15b). We have normalized both ⟨ ⟩loop and

⟨ ⟩train with 2 p here, since then our results can be compared to
analogous plots of Khokhlov et al.29 for the case without
excluded volume, where qualitatively similar trends are
observed. We note that at fixed T/Tc the length of trains
⟨ ⟩/2 ptrain increases very strongly with increasing stiffness, so
there is no simple rescaling with the persistence length. Actually
for T → Tc we expect that ⟨ ⟩ → ∞loop for infinitely long
chains, which is not seen. The reason for this fact, namely that
for N = 25600 and stiff chains the asymptotic regime has not
been reached, becomes clear when we examine the numbers of
trains, loops and tails (Figure 16): For flexible [not shown] and
semiflexible chains we typically find (for N = 25600) one tail
and ⟨nloop⟩ increases from about 10 to about 100 as T decreases
from Tc to smaller values. The number of trains exceeds the

number of loops by unity, if a tail occurs (only if the free chain
end is in a loop but also occurs at the surface z = 0, there is no
tail, and then nloop = ntrain, cf. Figure 2).) However, for qb =
0.005 the behavior for N = 25600 is rather different (Figure
16b): For T > Tc, there are essentially no loops, so the chain
conformation is composed from a train plus a tail; for T < Tc,
there are typically one or two trains (and at most one loop).
However, in the thermodynamic limit we do expect that both
⟨nloop⟩ and ⟨ntrain⟩ increase proportional to N; clearly this limit
is far beyond reach for our methods, however. For somewhat
larger values of qb (such as qb = 0.01) we can see that ⟨ntrain⟩
with increasing N starts to increase distinctly, however (Figure
16c). Figure 16d shows that the number of tails ⟨ntail⟩
converges to a master curve for semiflexible chains (but not
the flexible ones) when plotted as a function of

−q q q q( ) ( , )c p b .
4.3. Orientational Order Parameter and Its Distribu-

tion Function. Since in the literature the possibility of
transitions between phases of adsorbed chains with essentially
no orientational order to phases with order parameter close to
⟨η⟩ = −1/2 (all bonds being oriented parallel to the adsorbing
surface) has been raised,33−35 it is of great interest to investigate

Figure 15. Rescaled average length of loops in a chain, ⟨ ⟩ q q/(2 ( , ))p bloop (a), and rescaled average length of trains in a chain, ⟨ ⟩ q q/(2 ( , )p btrain (b),
plotted versus T/Tc for N = 25600 and qb = 0.4, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01, and 0.005 from top to bottom in part a, but from bottom to top in part
b.

Figure 16. Average number of trains, loops and tails (⟨ntrain⟩, ⟨nloop⟩, and ⟨ntail⟩) plotted versus Tc/T − 1 for N = 25600 and qb = 0.05 (a) and qb =
0.005 (b). Note the logarithmic scales of the ordinate axis in part a. (c) Average number of trains ⟨ntrain⟩ plotted versus Tc/T − 1 for qb = 0.01 and for
four different choices of N, as indicated. (d) Average number of tails ⟨ntail⟩ plotted versus −q q q q( ) ( , )c p b for N = 25600 and several choices of qb,
as indicated.

Macromolecules Article

dx.doi.org/10.1021/ma400112q | Macromolecules 2013, 46, 2496−25152508



the behavior of the orientational order parameter ⟨η⟩ {eq 21}
for our model (Figure 17). It is clear that the adsorbing surface
does create some bias to orient bonds parallel to the surface,
and so |⟨η⟩| always differs somewhat from zero, but one sees
that for flexible chains (Figure 17a) in the transition region this
order parameter is extremely small and decreases with
increasing chain length. Only when the thickness of the
adsorbed layer is already small (as is the case in Figure 17b) we
can see that ⟨η⟩ converges toward N-independent nonzero and
nontrivial values. Just as the density of monomers in the
“pancake” increases gradually with the distance Tc/T − 1 from
the adsorption transition point for N → ∞, also |⟨η⟩| increases
gradually from zero (at T = Tc) but reaches the saturation value
|⟨η⟩| = 1/2 only far below the adsorption transition
temperature, where (for N → ∞) all monomers belong to a
single train. For qb = 0.05 (and larger) our data clearly rule out
a first order transition between a weakly adsorbed and a
strongly adsorbed phase, which would show up as a jump
(rounded by finite size) in the ⟨η⟩ vs Tc/T − 1 curve. For rather
stiff chains (such as qb = 0.005, Figure 17c) the transition
toward orientational order is much more abrupt, however, and

becomes sharper with increasing N, reminiscent of a finite-size
rounded first-order transition, but it is a single transition, from
the mushroom to the pancake. The gradual crossover from the
behavior characteristic of a second order adsorption transition
toward a first order transition with increasing stiffness is
presented in the plot of ⟨η⟩ versus −q q q q( ) ( , )c p b (Figure

17d).
We have also checked that near the adsorption transition the

nonzero value of the orientational order parameter η is entirely
due to the bonds belonging to trains (which trivially have η =
−1/2) while the average value of η for bonds in the tail and
loops is η = 0, for large N. This fact is corroborated by
examining the linear dimension of loops: e.g., for qb = 0.01, q =
1 . 0 2 1 5 ( w h e r e ⟨ η ⟩ ≈ − 0 . 2 ) w e fi n d t h a t

⟨ ⟩ ⟨ ⟩ ≈ ±⊥R R( ( ) / ( ) ) 0.5 0.2g g
2

loop
2

loop
1/2 ; this implies that

the loops have a random self-avoiding walk like structure, and
should not be described as “hairpins”, as done in the
literature.29

Of course, in view of the behavior of trains, loops and tails
(Figure 16) this result cannot come as a surprise: basically the

Figure 17. Average orientational order parameter ⟨η⟩ plotted versus Tc/T − 1 for qb = 0.4 (a), 0.05 (b) and 0.005 (c), including data for four chain
lengths N = 3200, 6400, 12800, and 25600 in each case, as indicated. Part (d) shows the gradual crossover from the behavior characteristic of a
second order adsorption transition toward a first order transition with increasing stiffness, showing data for N = 25600 but different qb versus

−q q q q( ) ( , )c p b . Note that for qb ≤ 0.02 the curves no longer get steeper, since the finite size rounding gets more pronounced (the effective number

of Kuhn segments N q q/(2 ( , ))p b decreases with decreasing qb).

Figure 18. Distribution function P(η) of the orientational order parameter η for N = 25600 plotted vs η for qb = 0.05 (a) and qb = 0.005 (b). Several
values of q are shown in each case, as indicated.
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chain behaves near the transition like a two-state model, being
composed from a single train (of length )train and a tail (or
loop), respectively: while for T > Tc the length of the train is
very short (Figure 13b), and almost all monomers are in the tail
(Figure 14c), no loop being present as well, for T < Tc both the
length of loop (if one is present) and the length of the tail (if
one is present) get very small in comparison with the length of
the single train (or two trains). At the transition, the lengths of
the train and the tail (and/or loop) can fluctuate very easily and
hence very strongly, there is no free energy barrier hindering
the adsorption of a further part of the tail that then becomes
part of the train, for instance. As a consequence, the
distribution function of P(η) for qb → 0 becomes very
anomalous: While for continuous adsorption transitions P(η) is

a Gaussian (Figure 18a), whose center gradually shifts to more
negative values as q increases, for very stiff chains (such as for
the case qb = 0.005, see Figure 18b) the behavior is different:
the distribution function P(η) develops a strongly non-
Gaussian shape,with a “tail” extending from the peak position
deeply into the region of strongly negative values (see the curve
for q = 1.0106), while right at the transition(q ≈ 1.0109) the
distribution is essentially flat over a regime from η ≈ −0.15 to η
≈ −0.45 (Figure 18b). Then, for still larger q (e.g., q = 1.0110),
the distribution now has a peak near η = −0.48, but a tail still
extends out to η ≈ 0.1. Only for distinctly larger q (q = 1.0112
or larger) this tail diminishes.
This behavior seen in Figure 18b can be tentatively

interpreted as a rounded first-order transition between a state

Figure 19. Distribution function P(mtrain/N) as a function of mtrain/N for N = 25600 and three choices of qb: qb = 0.4 (a), 0.05 (b), and 0.005 (c).
Several choices of q are included in each case, as indicated. Note the different abscissa scales.

Figure 20. Distribution function P(mloop/N) versus mloop/N for qb = 0.4 (a) and qb = 0.005 (b). All data are for N = 25600, and several choices of q
are included, as indicated. Parts c and d present distributions of P( )loop vs N/loop for qb = 0.01 (c) and 0.005 (d), as log−log plots, to indicate that at
qc (see Table 1) a power-law behavior occurs, as shown by the indicated straight lines.
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without orientational order (η = 0 in the limit where first N →
∞ is taken and then qb → 0) to a state with orientational order
(η = −0.5). However, unlike standard first-order transitions, the
distribution in the system with finite N is not a double-Gaussian
distribution, with two Gaussians centered at the two competing
states, separated by a minimum in between; such a minimum
would only occur if in the intermediate situation of phase
coexistence between the two competing phases a free energy
cost due to an interface separating the phases would occur. This
is not the case here, the “interface” between the train and the
tail is just a single bond from the last monomer of the train to
the first monomer of the tail: this bond can be shifted along the
chain with no free energy cost for q = qc.
The situation is qualitatively similar to “phase coexistence” in

the problem of force-induced desorption of an adsorbed
chain.20 Restricting the approach to Gaussian chains without
excluded volume, the corresponding behavior could be
described by the exact calculation. While for the present
problem the transition point qc(qb) can also be computed
exactly if excluded volume is ignored,26 we are not aware of an
analysis of P(η) in this framework.
Of course, it is possible to draw such conclusions about the

gradual change of the nature of the adsorption transition from
second-order like for flexible chains to first-order like for stiff
chains directly from the corresponding distribution function of
trains and loops and tails as well. As an example, Figure 19
presents distribution functions P(mtrain) of mtrain. This
distribution both for qb = 0.4 and 0.05 is characterized by a
single peak, whose position gradually shifts as q is varied.
However, for qb = 0.005 the behavior is qualitatively different:
Now distributions develop tails extending over the full interval
0 < mtrain/N < 1, and right at the transition (near q = 1.0109) an
almost horizontal plateau develops. In contrast, the distribution
function P(mloop) is extremely broad at a continuous adsorption
transition (Figure 20a) but exponentially decaying for the
rounded first-order transition (Figure 20b). It is also interesting
that for the distribution P( )loop of the loop length loop at qc a
power law emerges (Figure 20c,d). Understanding this behavior
in full detail must be left as a challenge for future work.
As a last point of this section, we tentatively discuss the

question whether the change of the order of the adsorption
transition (in the limit N → ∞) occurs for qb → 0 only, or
whether a tricritical point occurs at the transition line qc(qb) at
some nontrivial value qb. For this purpose, we compare our
results for qc(qb) with the function of Birshtein et al.,26 recast
for a simple Gaussian chain by Van der Linden at al.32 in the
form (eq 15 of ref 32):

χ = + + +C ln[( ( 4) )/(2 2)]cr
k k k

2 1/2
(33)

where = 2k p is the Kuhn length, and in the normalization of
energy parameters used in ref.32 the constant C = 6. We find
that our data for qc(qb) can be fitted quantitatively by eq 33
when ln qc is identified with −χcr, using C = 1.2 (Figure 21a).
However, in eq 33 and in the corresponding function included
in Figure 21a, the actually observed values of q( )p b were used:
since the latter do reflect some influence of the excluded
volume effects implicitly, eq 33 is thus somewhat heuristic and
phenomenological. Thus, it is interesting to compare our data
as well to the original result of Birshtein et al.,26 without
adjusting any parameters. Their result is

= + +

+ + +

− −

−

q q q q

q

( ) 2(4 )/{2

[(2 ) 16] }
c b b b

b

1 1

1 2 1/2
(34)

While eq 34 clearly is inaccurate for qb near qb = 1, one sees
that eq 34 becomes accurate as qb → 0, as expected from Figure
21a since the smaller qb (and hence, the larger the persistence
length, which scales as = + q2 1 1/(2 )p b for qb → 0, see
Figure 21b), the less important are the excluded volume effects
in d = 3 dimensions (note that eq 34 is based on a treatment
where immediate reversals were forbidden).

4.4. Parallel and Perpendicular Linear Dimensions of
the “Pancake”. In the adsorbed phase, the monomers of the
chain are distributed in a disk-like volume with a radius
(⟨Rg||

2⟩)1/2 and a height (⟨Rg⊥
2⟩)1/2 = ξ and so the average

density ρ̅ of monomers in this disk is

ρ π ξ̅ = ⟨ ⟩ ∝ −ν ν ν ϕ
||

− − −N R N T T/( ) ( / 1)g b c
2 3 1 2 (3 2 )/2 2

(35)

Note that this quantity behaves very differently for Gaussian
chains, for which ν2 = ν = 1/2, ϕ = 1/2, and chains subject to
excluded volume interaction: for Gaussian chains we simply
have ρ ̅ ∝ −− T T( / 1)b c

3 , i.e. there is no N-dependence, the
density in the pancake is nonzero for N → ∞, but in the
excluded volume case we have

ρ ̅ ∝ −− −N T T( / 1)b c
3 1/2 0.55

(36)

Since we have seen that the location of the adsorption
transition is very accurately predicted by the mean field
approach that neglects excluded volume, when the chains get
rather stiff (Figure 21a), it is of interest to test the effect of
stiffness on the average density, defined according to eq 35, as
well. In addition, it is also of interest to consider the

Figure 21. Plots of the adsorption transition point ln qc (a) and the inverse of Kuhn length −
k

1 (b) versus the bending factor qb. Here the three-
dimensional persistence length p was used to compute k ( = 2k p). Two predicted functions, eqs 33 and 34, in part a, and (1 + 1/(2qb))

−1 given in
ref 29 are shown for the comparison, as indicated.
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distribution of the density within the “pancake”: According to

the mean field theory, this distribution in radial direction simply

is the standard Gaussian distribution in d = 2 dimensions,

ρ ξπ= ⟨ ⟩ − ⟨ ⟩||
−

||r N R r R( ) ( ) exp( / )g g
2 1 2 2

(37)

the scaling theory predicts a nontrivial power law for r ≪
⟨Rg||

2⟩1/2, namely

ρ ξ ξ∝ ∝ ≪ ≪ν− − − −
||r r r r R( ) , b g

1 1/ 2 1 2/3 22
(38)

Note that ρ(r) is related to the Fourier transform of the
(two-dimensional) structure factor.
In contrast, the distribution of the density ρ(z) in the z-

direction perpendicular to the adsorbing wall in the “pancake
regime” quickly develops an exponential decay (Figure 22a).
But ρ(z) is also useful since it yields an alternative definition of
the pancake thickness, which we denote as ξρ,

∑ξ ρ= = ⟨ ⟩ρ
=

∞

z z z( )
z 1 (39)

Figure 22. Density ρ(z) plotted versus z for N = 25600, qb = 0.02 and several choices of q, as indicated (a). Pancake thickness ⟨z⟩ (b), rescaled
average loop length ⟨lloop⟩/⟨z⟩ (c), and rescaled height ξ/⟨z⟩ (ξ = ⟨Rg⊥

2⟩1/2) (d) plotted versus T/Tc for N = 25600 and several choices of qb, as
indicated. In parts c and d, the corresponding data for several choices of qb are presented by the same symbols as indicated in part b.

Figure 23. Log−log plots of ξ = (⟨Rg⊥
2⟩)1/2 (a), ⟨Rg∥

2⟩1/2/N3/4 (b), and ρ̅ = N/(π⟨Rg||
2⟩ξ), (c) versus Tc/T − 1. In part a, straight lines with

exponents −ν/ϕ = −1 (Gaussian chains) and −ν/ϕ ≈ −1.22 (SAW’s) are included. In part b, straight lines with exponents (ν2−ν)/ϕ = 0 (Gaussian
chains) and (ν2−ν)/ϕ ≈ 0.34 (SAW’s) are included. In part c, straight lines with exponents (3ν − 2ν2)/ϕ = 1 (Gaussian chains) and (3ν − 2ν2)/ϕ
≈ 0.55 (SAW’s) are included. Semilog plot of fraction of monomer surface contacts, Ns/N, versus T/Tc (d). Data are for chain length N = 25600 and
several choice of qb, as indicated. The corresponding data for several choices of qb in part b are presented by the same symbols as indicated in part c.
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In Figure 22b a plot of ⟨z⟩ versus T/Tc is shown, and parts c
and d of Figure 22 plot the ratios ⟨ ⟩ ⟨ ⟩z/loop and ξ/⟨z⟩ versus
T/Tc, for various choices of the parameter qb that controls the
chain stiffness. From Figure 22b, we conclude that increase of p

at fixed ratio T/Tc does not cause a strong variation of ⟨z⟩, so
an argument that increasing p (and hence the Kuhn length

= 2 )k p just can be viewed as a trivial renormalization of all
length scales by the same factor obviously cannot work for the
adsorption problem. Note, in contrast, that both ⟨ ⟩ ⟨ ⟩z/loop and
ξ/⟨z⟩ do increase significantly with increasing stiffness,
however, and also ⟨Rg||

2⟩ at fixed T/Tc increases strongly with
p.
In Figure 23a, we present a log−log plot of ξ vs Tc/T − 1

including data for a broad range of stiffness. Both straight lines
with exponents −ν/ϕ = −1 (appropriate for Gaussian chains)
and −ν/ϕ = −0.588/0.483 ≈ −1.22 for SAW’s are included.
One sees that within our accuracy there is no strong effect of
chain stiffness; the mean field exponents apply (if they apply at
all) for data of rather stiff chains (qb ≤ 0.02) rather close to Tc.
Note that all these data apply to N = 25600 only, i.e. a chain
length for which we know that in the bulk three-dimensional
chains excluded volume effects still are rather weak, for stiff
chains. As expected, the data do not scale perfectly with either
choice of exponents, due to onset of slow crossover effects.
Figure 23b presents a plot of ⟨Rg∥

2⟩1/2/Nν2 vs Tc/T − 1.
Figure 23c presents a plot of ρ̅ vs Tc/T − 1 for the various
stiffnesses, and Figure 23d presents the corresponding values of
the adsorption order parameter Ns/N. All these data are
compatible with a gradual crossover from a second-order
transition, with nonmean field exponents, to a first-order
adsorption transition, as qb → 0 and hence → ∞p . While we
have found that ξ at fixed T/Tc exhibits almost no dependence
on qb and hence the persistence length of the chain, we see that
⟨Rg∥

2 ⟩, ρ̅ and Ns/N are strongly dependent on qb. In the case of
the density ρ̅, this dependence on p just reflects the strong
increase of ⟨Rg∥

2 ⟩ with p at fixed T/Tc. We get a rather clear

evidence for the exponent 0.55 of eqs 35 and 36 for flexible
chains, and possibly some indication for the exponent 1
(applying for Gaussian chains) for very stiff polymers.

5. CONCLUDING REMARKS

In the present work, we have studied the effect of polymer
stiffness on the adsorption of semiflexible polymers on flat
structureless walls under good solvent conditions by large scale
Monte Carlo simulations of self-avoiding walks (SAWs) on the
simple cubic lattice, including an energy penalty εb for 90° kinks
of the SAW on the lattice. In the three-dimensional bulk case
our model calculation encompasses a variation of the
persistence length p, which is extracted from the initial decay

of the bond vector autocorrelation function, from about one
lattice spacing (for fully flexible chains, εb = 0) up to about 52
lattice spacings (for qb = exp(−εb/kBT) = 0.005). However, we
find that p gets strongly renormalized by adsorption, i.e., we

observe an enhancement of the actual persistence length by a
factor up to a maximum value of about 2.3 (Figure 3). For
intermediate adsorption strength, where still an appreciable
fraction of bond vectors is contained in loops, we suggest that
the effective stiffness is inhomogeneous along the chain; i.e., in
large loops it should be close to its limiting three-dimensional

value, while in the trains (Figure 2) the persistence length
should be close to the three-dimensional value.
The character of the adsorption transition is found to stay

second order throughout, but it acquires more and more
features of a first-order transition as qb → 0 (and hence

→ ∞p ). For large p we find that ε ∝k T/ 1/c pB , in agreement

with the mean field theory of Birshtein et al.26 and Khokhlov et
al.29 Applying the standard crossover scaling description that
has been developed for flexible chains,4 with and without
excluded volume, we find that the data are compatible with the
standard critical exponents (ν ≈ 0.588, ν2 = 3/4, ϕ ≈ 0.48, γ1

sp

≈ 1.22)14 only for rather flexible chains, but not for rather stiff
ones. In the three-dimensional bulk, it is known that increasing
the persistence length causes the appearance of an intermediate
regime of Gaussian behavior, consistent with the Kratky−Porod
model, intruding in between the regime of rod-like behavior
and SAW-like behavior.42,43 Thus, one might expect that there
exists a counterpart of this regime in the adsorption problem,
too, where the (weakly adsorbed) chain can be pictured as a
two-dimensional chain of blobs, such that inside a blob
excluded volume effects are still negligible. However, little
evidence for the existence of such a regime where Gaussian
chain statistics rules the adsorption behavior has been found;
rather we found that the crossover toward the first-order
adsorption transition that appears (presumably) in the limit

→ ∞p and is (presumably59) characterized by a crossover

exponent equivalent to the adsorption of an equivalent
“renormalized” flexible chain (formed by a nonreversal random
walk with bond length = 2 )k p .4 It also differs from the

adsorption of chains from a solution at the Θ point.60 For the
two latter cases, clear evidence that the mean field exponents (ν
= 1/2, ϕ = 1/2, γ1

sp = 1) apply has been found,4,60 unlike the
present case. An interesting feature is that for strongly adsorbed
semiflexible chains the average density in the “pancake” is
orders of magnitude lower than for flexible polymers.
The fact that the critical line of adsorption transitions ε/kBTc

= ln qc(qb) is rather accurately predicted by the mean field
treatments that neglect excluded volume26,29 should not be
mistaken as the claim that these theories provide an accurate
description of the properties of the adsorbed chain. It is well-
known42,43 that in d = 2 dimensions there is no intermediate
regime of Gaussian-like behavior in between rod-like and SAW-
like behavior whatsoever. Thus, the lateral linear dimensions of
the adsorbed coil scale like ⟨Rg∥

2⟩ ∝ N3/2 rather than N,
irrespective of chain stiffness, and as a consequence the average
density ρ̅) of the “pancake” shows a scaling with 1 − T/Tc and
chain length N {eqs 35, 36} that differs strongly from mean
field predictions (Figures 22 and 23). On the other hand, the
behavior of the perpendicular linear dimensions (⟨z⟩ and
⟨Rq⊥

2⟩1/2 and the loop length ⟨ ⟩)loop is quite similar to the
corresponding mean field results.26,29 A particularly interesting
finding is that a plot of ξ vs Tc/T − 1 exhibits almost no
dependence on the persistence length (Figure 23). In contrast,
the parallel linear dimensions and the train length ⟨ ⟩train
increases strongly with persistence length.
Finally, we emphasize that we did not see the least evidence

for the multiple transitions (including a first-order transition
from a weakly adsorbed pancake with small absolute value of
the nematic order parameter to a strongly adsorbed pancake
with pronounced nematic order) predicted by Kuznetsov and
Sung.33−35 However, they predict these transitions for a very
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wide range b of a square-well adsorption potential (V(z < b) =
−U, V(z > b) = 0), with the transitions occurring for <b/ 1p .
Since their theory requires that the chains are very stiff, ≫p b,
but one must also be able to study strongly adsorbed pancakes
with linear dimensions ⟨z⟩ in the range exceeding10 p distinctly
(see Figure 7 of ref 34, for instance), it is clear that they
consider a parameter regime that is very different from the
regime studied here (and by Birshtein et al.26,29). It is not clear
to us whether their results are robust with respect to the
assumption of a rather unphysical square-well adsorption
potential (with a range ≫ ≫b )p b

For very stiff chains, it is clear that our numerical data do not
encompass the truly asymptotic regime: Figures 5c, 6c, 9c, and
10c clearly are caveats indicating that for ≥ 20p chain lengths
of the order 104 are still insufficient to pin down the asymptotic
behavior. More efficient numerical methods will be required to
go to chain lengths in the range 106 ≤ N ≤ 107, and also a more
detailed theoretical guidance for analysis of the various
crossovers will be desirable. We hope that our study will
stimulate such work, and will help already now for the
understanding of the adsorption of semiflexible polymers on
substrates such as double-stranded DNA.
Since our adsorption potential range equals the bond length

b, it also is not possible to still have undulations of the chain
conformation in z-direction (described by the Odijk61

deflection length) within the range of the adsorption potential.
Thus, the prediction that the adsorption threshold scales like62
−
p

1/3 does not apply here.
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