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ABSTRACT: Single semiflexible polymer chains confined in a planar slit geometry between
parallel nonadsorbing repulsive walls a distance D apart are studied by Monte Carlo
simulations of a lattice model, for the case of good solvent conditions. The polymers are
modeled as self-avoiding walks on the simple cubic lattice, where every 90° kink requires a
bending energy εb. For small qb = exp(−εb/kBT) the model has a large persistence length p

(given by p ≈ 1/(4qb) in the bulk three-dimensional dilute solution, in units of the lattice spacing). Unlike the popular Kratky−
Porod model of worm-like chains, this model takes both excluded volume into account and approximates the fact that bond
angles between subsequent carbon−carbon bonds of real chains are (almost) restricted to large nonzero values, and the
persistence length is controlled by torsional potentials. So the typical local conformation in the model is a straight sequence of
(on average) lp bonds (roughly corresponding e.g. to an all-trans sequence of an alkane chain) followed by a 90° kink. While
under weak confinement (D≫ lp) the model (for very long chains) still is compatible with the Daoud−de Gennes scaling theory,
for strong confinement (D ≤ lp) strong deviations from the predictions based on the Kratky−Porod model are found.

1. INTRODUCTION AND OVERVIEW

Semiflexible polymers confined into nanoscopic channels have
found much recent interest, both from analytical theory1−19

and simulation20−23 as well as from experiment.24−31 If the
distance D between the confining walls of the planar slit
channel is much larger than the persistence length p of the
semiflexible macromolecule, and one considers good solvent
conditions, the problem is essentially equivalent to the classical
problem of confined flexible polymers considered by Daoud
and de Gennes.32 These authors considered completely flexible
chains where N bonds of length p are linked together,
respecting excluded volume. A free chain then has linear
dimensions of order ≈ νR Nbfree , with33 ν ≈ 0.588 (here and
in the following, prefactors of order unity will be ignored).
When Rfree and D are of the same order, a crossover to a quasi-
two-dimensional self-avoiding walk occurs, which is charac-
terized by the exponent34 ν2 = 3/4. The chain can be pictured
as a two-dimensional self-avoiding walk of “blobs”32,34 of
diameter D. Each blob satisfies three-dimensional self-avoiding
walk statistics, and hence ≈ νD gb , with g monomers per blob,
and altogether there are nblob = N/g blobs. Hence, the linear
dimension of a chain in the directions parallel to the confining
walls is = νn N D{ ( / ) }bblob

1/

= = ≈ν− −R Dn N D N D( / ) ( / )b b b bblob
3/4 3/4 1 3/(4 ) 3/4 1/4

(1)

where in the last step the Flory approximation ν ≈ 3/532,34,35

was used. According to the blob picture, the free energy cost
per blob is the thermal energy kBT, and hence the free energy
cost of confinement is

Δ = = ≈νF k T n N D N D/ ( / ) ( / )b bB blob
1/ 5/3

(2)

Thus, the force = −∂ Δ ∂D F D( ) ( )/ acting on the walls scales

like ∝ −D ND( ) 8/3.
However, the generalization of this approach to semiflexible

polymers is somewhat subtle. If an increase of the persistence
length p is effected by an increase of effective chain “thickness”
(this is the case for “bottle brush” polymers36−39 where it was
found that ≈ R3p cs, where Rcs is the cross-sectional radius of
the cylindrical brush40,41), all lengths simply have to be rescaled
by replacing N by ′ =N N /b p and b by p in eqs 1 and 2. This
case shall be out of consideration here, where we assume that
the chain thickness (and hence the strength of excluded
volume, as measured e.g. by the second virial coefficient v2

34,35)
stays constant. For example, for alkane chains one can vary p

by changing the temperature.35,42 Then the effect of the
excluded volume interactions becomes less and less important,
the larger p becomes, and as consequence the conformation of
a coil in the bulk (in dilute solution) is characterized by three
regimes.39−41,43−47 The radius R of the coil can then be written
as

≈ ≡ < ‐R L N L, (rod like chain)b p (3)

≈ < <R L L( ) , / (Gaussian chain)p p p b
1/2 3 2

(4)

≈ > ‐R L L( ) , / (swollen, SAW like chain)p b p b
1/5 3/5 3 2

(5)

Thus, when the contour length L of a stiff polymer increases,
there are three distinct power laws for the end-to-end distance
Re (or the gyration radius Rg, which differs from Re only by a

Received: July 2, 2013
Published: September 23, 2013

Article

pubs.acs.org/Macromolecules

© 2013 American Chemical Society 8017 dx.doi.org/10.1021/ma401374e | Macromolecules 2013, 46, 8017−8025

pubs.acs.org/Macromolecules


numerical factor) as a function of L. But since the crossovers
between the three regimes are smooth and extend typically over
1 decade in L each,39−41,46,47 one needs to vary L over a wide
range to see these crossovers, and hence experimentally only
few data exist (e.g., ref 48) which exhibit this behavior clearly.
Note that the crossover contour length * =L /p b

3 2

corresponds to a crossover radius of the coil R*

* ≈R /p b
2

(6)

This quantity is central for a discussion of confinement effects:
when < < *D Rp and L < L*, we simply encounter the
problem of confining a Gaussian chain. Since for Gaussian
chains the different Cartesian coordinate components of the
distance vectors are uncoupled, we simply can conclude that
the parallel and perpendicular components of the radii scale
as49,50 for > =L L D /c p

2

≈ ≈ < < * < *⊥R D R L D R L L, ( ) , andp p
1/2

(7)

and the free energy excess (due to compression of a Gaussian
chain from a linear dimension L( )p

1/2 to D in the z-direction)
is49,50

Δ ≈F k T L D/ ( )/pB
2

(8)

and hence the force scales as ∝ L D/p
3.

We next consider the case that we still have < < *D Rp but
L > L*. Noting that eq 5 can simply be rewritten as R = (L/
L*)3/5R*, we see that the obvious interpretation of eq 5 is that
a long chain in dilute solution can be viewed as a self-avoiding
string containing nblob = L/L* blobs of radius R*, while inside a

blob we have Gaussian statistics. The obvious generalization to
the confined case then is (cf. eq 1) a string of elliptic blobs
(linear dimension D in z-directions, R* in parallel directions)

= * = *
*

=

=

−

−

⎜ ⎟
⎛
⎝

⎞
⎠R R n R

L
L

L

L

( / )p b b p

b p

blob
3/4

3/4
2 3/4 3/2 9/4

1/2 1/4 3/4
(9)

and the free energy cost is written as product of the number of
blobs times the free energy cost of compressing a Gaussian
blob:

Δ ≈ ≈F k T L n D L D/ ( ) / ( / ) ( / )p b pB blob
2 2 2

(10)

The surprising conclusion of eqs 9 and 10 is that there exists a
regime where for fixed D and fixed L both R∥ and ΔF decrease
when p is increased: this is due to the fact that the regime
where Gaussian statistics applies becomes more extended (of
course, this is an intermediate regime only, since one still must
respect < Dp as well).
Another regime occurs when D > R* but L > L*. Equating R

and D yields another crossover contour length L′c

′ = = −L D D[ /( ) ] ( )c b p b p
1/5 5/3 5/3 1/3

(11)

and then we expect that the chain is described as a two-
dimensional self-avoiding walk of nblob = L/L′c blobs

= = =− + −R Dn DL D L D( ) ( )b p b pblob
3/4 3/4 5/4 1/4 3/4 1/4 1/4

(12)

Equation 12 has previously been proposed by Cifra22 using a
Flory argument.34,35,50 However, it is well-known (see e.g. ref
51) that the Flory free energy minimization procedure can yield

Figure 1. Schematic log−log plot of the chain linear dimensions R∥, R⊥ of a confined semiflexible polymer with contour length L and persistence
length p as functions of the reduced contour length L/ b ( b is the bond length). Part (a) shows the case of < < *D Rp , part (b) the case R* < D,

with * ≈R /p b
2 describing the size of a free chain where excluded volume starts to dominate. The chain linear dimensions R∥, R⊥ parallel and

perpendicular to the confining walls are essentially the same and equal to the radius R of a free, unconfined chain, as long as R < D, while for R > D
we have R⊥ = D, while R∥ continues to increase with increasing L/ b. For <L/ /b p b the chains behave like rigid rods, while for > ≫L/ / 1b p b a

regime of Gaussian statistics of distances in the chain occurs. If D < R*, one finds a crossover at = =L L D /c p
2 , where R⊥ saturates at R⊥ = D, while

R∥ increases further with L up to L = L* (corresponding to R∥ = R*), where one has compressed Gaussian coils (the force of the walls scales as
∝ L D/p

3 in this regime). For still longer chains (L > L*) in this regime of moderately weak compression a crossover to =||
−R Lb p

1/2 1/4 3/4

occurs. In the case of very weak compression (b) one has an intermediate regime for * < < ′ = −L L L D ( )c p b
5/3 1/3 where R∥ = R⊥ increase with

L3/5 like a free chain. Note that for flexible chains where p and b are of the same order, both the rod regime and the Gaussian regime disappear from
the picture, and instead of three crossovers a single crossover remains. Finally, we emphasize that all crossovers are smooth, there are no kink
singularities at the log−log plot, but a gradual change of the slope spread out over typically a full decade of L/ b occurs.
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correct chain linear dimensions, due to a cancellation of errors,
but yields wrong estimates for the free energy itself. So the free
energy cost of confinement can not be obtained from the Flory
treatment, and we solely have to rely on the blob argument to
conclude that

Δ ≈ = ′ =

=

−

−

F k T n L L LD

ND

/ ( / ) ( )

( )

c b p

b p

B blob
5/3 1/3

5/3 4 1/3
(13)

Note that in this regime there is a weak enhancement of both
R∥ (by a factor ( / ) )p b

1/4 and ΔF (by a factor ( / ) )p b
1/3

relative to the result for a flexible chain, when we compare eqs
12 and 1 or eqs 13 and 2, respectively. We also note that Cifra22

did not discuss the other regimes (considered in eqs 7−10.
Figure 1 gives a graphical representation of the predicted
crossovers.
Of course, the most interesting case (relevant experimentally

for confinement of very stiff biomolecules, such as double-
stranded DNA or even actin) is the case <D p. Considering
not too long chains, for which hairpin formation can be
neglected, excluded volume effects for confined stiff chains are
considered to be unimportant. Then the standard description
that is postulated for semiflexible chains is the Kratky−Porod
model52

∫κ
⃗ = ∂ ⃗

∂

⎛
⎝⎜

⎞
⎠⎟r s s

r s
s

( ( ))
2

d
( )L

KP
0

2

2

2

(14)

The only contribution to the chain energy is due to its
bending stiffness κ = k T pB , and the chain conformation is not
described in terms of discrete monomers and bonds connecting
them, but in terms of a continuous curve r(⃗s) following the
chain contour, s being a coordinate along this contour. It is
thought that eq 14 can be derived from an atomistic description
by a suitable coarse-graining,42 and thus eq 14 is widely
accepted (e.g., refs 1−20) as a valid model for semiflexible
chains. Using eq 14, Odijk4 showed that for <D p a chain
follows essentially a straight path (but not parallel to the
confining walls) over a length λ, the so-called deflection length

λ λ= <D D( ) ,p p
2 1/3

(15)

and then the free energy cost of confinement is

λ λ λΔ ≈ =F k T L L D/ ( / ) ln( / )
2
3

( / ) ln( / )b p p (16)

Because of these bending undulations, the chain is not
propagating strictly parallel to the xy-plane, but typically
wou l d b e i n c l i n ed unde r an an g l e o f o r d e r
θ λ≈ ≈D D/ ( / )p

1/3 relative to this plane.
Of course, the standard description eqs 14−16 is doubtful

when the appropriate atomistic model of a stiff chain resembles
the well-known rotational isomeric state (RIS) model,35,42,53

where bond lengths and bond angles are rigidly fixed, and there
are three choices for the torsional angle. For example, for an
alkane chain the energy difference between the gauche +,−
states (torsional angle φ = ±120°) and the trans state (φ = 0°)
controls then the chain stiffness. The persistence length then is
related to the typical distance of gauche states along the chain
contour, while for very stiff chains trans states dominate. If such
a model, as is appropriate for alkane-like polymers, describes
the correct conformational statistics qualitatively correctly, eq

14 could result only when the coarse graining can be extended
over length scales much larger than p, which makes it very
doubtful whether then a regime where eqs 15 and 16 are valid
would exist. Of course, biopolymers have a much more
complicated chemical structure than alkane-like chains, and for
them eq 14 could have a wider validity, but nevertheless it is of
interest to explore the consequences of a model for stiff chains
where angles between subsequent effective bonds are not
continuously distributed, but only discrete angles can occur.
For simplicity and for the sake of computational efficiency, we
shall consider the self-avoiding walk (SAW) on the simple cubic
lattice where stiffness is introduced by an energy penalty εb
whenever the walk makes a 90° kink. Like eq 14, this is a drastic
simplification of reality, but a very different approximation:
while eq 14 ignores the fact that certain specific orientations of
bonds of a semiflexible chain relative to each other are
energetically preferred, the present model overemphasizes this
fact, and it remains to be seen for which polymer which model
is best.
In the following section, we introduce briefly the simulation

method, while the third section presents our numerical results
and the fourth section our conclusions.

2. SIMULATION DETAILS
We describe the semiflexible polymers as self-avoiding walks
(SAWs) on the simple cubic lattice, where each effective
monomer occupies a lattice site, multiple occupancy of lattice
sites being forbidden, and the effective bond length b between
nearest-neighbor occupied sites, the lattice spacing, henceforth
will be used as our length unit. Since only bond angles θ = 0°,
± 90° are possible on this lattice, the standard bond bending
potential Ub = εb(1 − cos θ) leads to the energy penalty εb if
the walk makes a kink (θ = ± 90°) while Ub = 0 for θ = 0°.
Note that in an off- lattice model, where small angles are
possible, one would find from this potential Ub ≈ 1/2εbθ

2

compatible with eq 14, but small bond angles are excluded on
the lattice. The partition sum then becomes a polynomial in the
Boltzmann factor qb = exp(−εb/kBT) for bond bending

∑=Z q D C q D q( , ) ( , )N b N N b b
N

config
, bend

bend

(17)

The sum over configurations includes all SAWs with z-
coordinates of the effective monomers in the range 1 ≤ z ≤ D;
to realize the confinement, coordinates z ≤ 0 and z ≥ D + 1 are
forbidden. In eq 17, N is the number of effective monomers and
Nbend is the number of kinks.
We note that the persistence length p can be extracted from

the initial decay of the bond vector autocorrelation function
(note that bond vectors ai⃗ are defined in terms of monomer
coordinates ri⃗ as ai⃗ = ri⃗+1 − ri⃗, i = 1, ..., N − 1)

⟨ ⃗ · ⃗ ⟩ = − < ≫+a a s sexp( / ), / , for / 1i i s b p p b p b

(18)

noting ⟨ai
2⟩ = 1 for our model. Equivalently, one can take

θ= − ⟨ ⟩/ 1/ln( cos )p b where ⟨cos θ⟩ = ⟨ai⃗ · ai⃗+1⟩. As discussed
at length in the literature,39−41,46,47 the standard textbook
definition to take p from the asymptotic decay

⟨ ⃗ · ⃗ ⟩ ∝ −+a a sexp( / )i i s b p for s → ∞ is wrong for self-avoiding
walks, since (for L → ∞) this asymptotic decay is not an
exponential, but rather a power law,54 ⟨a ⃗i·a ⃗i+s⟩ ∝ s−2(1−v) ≈
s−0.82.
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In the framework of a “nonreversal random walk” model,
where immediate reversals of the random walk are forbidden,
but otherwise excluded volume is completely neglected, one
o b t a i n s ⟨ c o s θ ⟩ = 1 / [ 1 + 4 q b ] a n d h en c e

ε≈ ≈−q k T/ /4 exp( / )/4p b b b
1

B . Table 1 compares this

approximation with actual simulation results of the full
model, taken from ref 46. It is seen that this simple
approximation becomes accurate for qb → 0, as expected,
unlike the two-dimensional case46,55,56 where irrespective of
stiffness no Gaussian regime for the distribution of distances
exists.

The simulation technique that is advantageous to use here is
the pruned enriched Rosenbluth method (PERM).57−59 This
chain growth algorithm with population control and depth-first
implementation has been reviewed recently elsewhere59 and
has already been very successfully applied to confinement of
flexible chains between parallel confining walls.58 Aspects
specific for the simulation of stiff chains can be found in refs 46
and 47. Accurate data for chain lengths up to N = 80 000 have
been obtained for qb = 1.0 (flexible chains), 0.4, 0.2, 0.1, 0.05,
0.03, 0.02, 0.01, and 0.005. The values chosen for the distances
between the confining slits were chosen as D = 8, 16, 30, 60,

Table 1. Estimates for Persistence Lengths, θ= − ⟨ ⟩/ ln( cos )p b , and ≈ −q/ /4p b b
1 for Semiflexible Chains in d = 3 with

Various Values of qb

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0

θ/p b, 51.52 26.08 13.35 9.10 5.70 3.12 1.18 1.12 0.67

qb
−1/4 50.00 25.00 12.5 8.33 5.00 2.50 1.25 0.625 0.25

Figure 2. (a) Plot of the mean-square end-to-end distance ⟨R∥
2⟩ parallel to the walls, normalized by N3/2 (=L3/2) plotted vs D q/ ( )p b . The straight

line shows the slope −1/2, predicted from eq 12. Many choices of qb are included, as indicated. Only data extrapolated to N → ∞ are included. (b)
Same as (a), but for the mean-square gyration radius.

Figure 3. Scaling plot of ⟨ ⟩ νR N/( )p
2 2/5 2 versus νN D/p

1/5 for qb = 0.4 (a), 0.05 (b), 0.02 (c), and 0.01 (d). Several choices of D are included, as
indicated. Here ν = 3/5.
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and 120. Occasionally also other choices (D = 10, 20, 40, 60,

and 80) were used. The present implementation of the

algorithm did reproduce previous results for flexible chains58

(as a special case for qb = 1.0) very well.

3. RESULTS

As a first step, we estimate the ratios of the mean-square end-
to-end distances and gyration radii ⟨R∥

2⟩/L3/2 and ⟨Rg∥
2⟩/L3/2,

extrapolated to the limit of very long chains. Since eq 12
predicts that these ratios should follow a simple power law

proportional to −D( / )p
1/2, we present these ratios in Figure 2.

Figure 4. Alternative scaling plot for stiff polymers in the Gaussian regime, ⟨ ⟩R N/( )p
2 plotted vs N D/( )p , for qb = 0.03 (a), 0.02 (b), 0.01 (c), and

0.005 (d). Various values of D are included, as indicated.

Figure 5. Scaling plot of ⟨ ⟩ ν
⊥R N/( )p

2 2/5 2 versus νN D/p
1/5 for qb = 0.4 (a), 0.05 (b), 0.02 (c), and 0.01 (d). Several choices of D are included, as

indicated.
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Having thus verified the final power law for R∥ vs L in Figure
1, which takes over after the last crossover, it is of interest to
examine what happens when one examines somewhat shorter
chains. From eq 11 we notice that this crossover occurs for
N3/5/D being of order −

p
1/5. So we expect that a plot of

⟨ ⟩||R N/( )p
2 6/5 2/5 versus this crossover variable N D/p

3/5 1/5

should be constant until one reaches this crossover point,
before it starts to increase as N D( / ) p

3/5 1/2 1/10, using again eq
12. While for qb = 0.4 (where ≈p b) the scaling is almost

perfect, the scaling slightly but consistently deteriorates as p

increases. Of course, this is expected, since for large p the range

where excluded volume effects are visible shrinks, and more and
more effects due to the Gaussian regime in Figure 1 come into
play. In this schematic figure, we have assumed p of order 100,

which leads to R* of order 104, so D of order 105 is needed in
order to have a regime of three-dimensional SAW behavior, but
then chain lengths of order 109 or larger would be needed, to
enter the two-dimensional SAW behavior. On the other hand,

Figure 6. Rescaled monomer density profile, (D + 1)ρ(z), plotted versus ξ = z/(D + 1) for qb = 0.4 (a), 0.05 (b), and 0.01 (c). Theoretical
prediction fρ(ξ) = 18.74[ξ(1 − ξ)]1/ν is also shown by the solid curve for comparison.

Figure 7. Rescaled distribution of chain ends, (D + 1)ρend(z), at the distance z from a wall plotted versus ξ = z/(D + 1) for qb = 0.4 (a), 0.05 (b), and
0.01 (c). Theoretical prediction gρ(ξ) = 4.78[ξ(1 − ξ)]0.865 is also shown for comparison (solid curve).
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when smaller values of p are studied, as done in Figure 3, the
various crossover regions of Figure 1 clearly are very close to
each other. Recall that already for bulk stiff chains, where the
two crossovers described by eqs 3−5 occur, there does not exist
a simple scaling by which one can collapse the data on a master
curves since there are two different scaling variables.46,47 This
breakdown of a simple scaling comes over here.
Figure 4 tries then the scaling appropriate for the Gaussian

regime, where free chains follow eq 4 rather than eq 5. So ⟨R∥
2⟩

is scaled by Np . To make it consistent with eq 12 for large N,

we note that eq 12 yields ⟨ ⟩ =R N N D/( ) [ /( )]p p
2 1/2, and so

we choose N D/( )p as an abscissa variable. Figure 4 shows
three regimes: the initial strong increase (which splays out for
different choices of D) is the rod-like regime. Of course, for
rod-like chains oriented parallel to the walls confinement has
little effect, so (at least for rather stiff chains, qb = 0.005) we
encounter essentially the same curve, shifted parallel along the
abscissa. Then we have an almost horizontal regime, reflecting
the Gaussian behavior, before the 2d SAW sets in. Thus, our
data for large persistence lengths miss the three-dimensional
SAW regime, while the data for medium persistence lengths
miss the Gaussian regime. Thus, Figure 4 gives only evidence
for 2 rather rounded crossovers instead of 3 crossovers: as
expected, the much fewer decades on the abscissa in the
simulation (in comparison with the schematic Figure 1)
preclude a clear proof in favor of all predicted regimes.
In Figure 5, scaling plots of the mean-square transverse end-

to-end distances are given, plotting ⟨ ⟩ ν
⊥R N/( )p

2 2/5 2 versus
νN D/p

1/5 . The theoretical result ⟨R⊥
2⟩ ≈ D2 for small D

corresponds to the slope −2 that is shown. In this case data
scale nicely if one disregards the case where D is smaller than p.
Finally, Figures 6 and 7 address the rescaled monomer

profiles and end monomer profiles across the film. Since in the
fully flexible case (where p is not present) it has been found
that some corrections to scaling can be incorporated if one
scales ⟨R∥

2⟩1/2 not with D but with D + 1, the distance between
the two confining walls, we also use D + 1 instead of D here. Of
course, in the scaling limit where both N3/5 → ∞ and D → ∞,
this correction does not matter, but for not so large D (such as
D = 10 and 20, as included here) such corrections may yield
some improvement (although this is more like an empirical
observation, without a deep theoretical explanation behind).
One can see that the character of the distribution changes
strongly with increasing polymer stiffness: for flexible chains
these densities are strongly suppressed near the confining walls,
and in fact the profiles can be fitted to simple empirical
expressions58

ρ

ξ ξ ξ

=
+ +

= − ν

⎜ ⎟⎛
⎝

⎞
⎠z

D
f

z
D

f A

( )
1

1 1
,

with ( ) [ (1 )](1/ )
(19)

with A = 18.74 and

ρ

ξ ξ ξ

=
+ +

= − γ γ ν−

⎜ ⎟⎛
⎝

⎞
⎠z

D
f

z
D

f A

( )
1

1 1
,

with ( ) [ (1 )]

e e

e e
( )/1 (20)

with Ae = 4.78, and γ, γ1 are the exponents describing the
partition function of a free SAW (Z ∝ Nγ−1μ−N) and of a

“mushroom” with one end at the repulsive wall (Z1 ∝ Nγ1−1μ−N;
μ being the fugacity per monomer60). The numerical values of
the exponents are predicted as33 1/ν ≈ 1.70 and61 (γ − γ1)/ν ≈
0.81. Note that the scaling theory for polymers near surfaces
(e.g. ref 60) implies that in the limit D→∞ one must have, for
N → ∞, ρ(z) ∝ z1/ν, ρe(z) ∝ z(γ−γ1)/ν, but the success of eqs 19
and 20 suggest that these power laws hold essentially from the
scale of the lattice spacing over the whole film. A closer look58

has revealed that it is appropriate to remove some corrections
to scaling by introducing a so-called “extrapolation length” δ(≈
0.15) via redefining ξ as ξ = (z + δ)/(D + 1 + 2δ), but this shall
stay out of consideration here. In any case, Figures 6 and 7
show that eqs 19 and 20 no longer apply for semiflexible chains;
rather, both ρ(z) and ρe(z) then are almost independent of z,
when p becomes comparable to D.
Note that the density near the walls is proportional to the

force per monomer.58,62 Thus, it is of interest to investigate the
rescaled force per monomer, f p

7/3 (eq 13), extrapolated to N
→ ∞, as a function of the stiffness (described by p) and film
thickness D. Figure 8 shows that irrespective of p in the limit of
N → ∞ always the excluded volume behavior dominates, and
hence ∝ ν− −f Dp

1/3 1 1/ as long as ≫D p.

4. CONCLUSIONS
In this paper we have discussed the scaling theory for
semiflexible polymers confined between parallel repulsive
walls a distance D apart, assuming good solvent conditions,
and studied its validity using large scale Monte Carlo
simulations of a simple lattice model to check some predictions
of the theory. For the first time, both the excluded volume
regime (valid if the radius R of the free chain exceeds the radius

* ∝R /p b
2 , eq 6 and the regime of Gaussian behavior

≪ < *R R( )p have been taken into account, and multiple
crossovers were found (Figure 1). Because of the use of a
model where bond angles cannot become small, the regime

<D p discussed much in the literature shows a different
behavior than what is usually assumed; i.e., the “deflection
length” (eq 15) does not control any chain properties here. As
discussed in the Introduction, both the continuum approx-
imation (on which the Kratky−Porod model, eq 14, is based)
and the present model with a large bond angle of 90° (or other
models with rigid bond lengths and discrete bond angles, such
as the RIS model) are severe idealizations of actual macro-
molecules. While the numerical data presented here include the

Figure 8. Rescaled force f p
7/3 (extrapolated to N → ∞) plotted vs

D/ p, including all the choices of qb that have been studied. The
straight line shows the theoretical slope −1 − 1/ν.
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regime <D p to some extent also, this regime is not
emphasized much in our paper, since the significance of our
numerical results in this regime for actual experiments due to
the above caveats is somewhat uncertain.
However, for free chains the double crossover of the chain

radii with chain length, from the rods to Gaussian chains (when
the contour length L is comparable to the persistence length p)
and then from Gaussian chains to swollen, SAW-like coils
(when L is comparable to * =L /p b

3 2, the contour length

corresponding to R*) is very similar46,47 to corresponding
experimental results,47 and thus we feel that our results for

>D p are physically relevant and will be useful to understand

experiments, and to clarify open theoretical problems. For
example, in ref 23 it was claimed “that scaling theory fails to
accurately describe the configurational probability distributions
for extremely long chains”. This criticism was based on Monte
Carlo studies of a crude coarse-grained model for double
stranded DNA, with = 50p nm, while b (and the bond
diameter) is taken to be 3 nm. However, it is clear that the
simulation results of ref 23 do not reach the regime L ≫ L*,
and hence it is mostly the regime of rods and Gaussian chains
that is probed. In ref 22 it is emphasized that “Theoretical
treatment of strong confinement for stiff chains in slit, however,
is still not established”, and it is suggested that eq 12 already
holds if L exceeds a length D /p b, which is not supported by
our analysis either.
Experimentally, it is typically only the channel width D that is

varied, keeping L fixed (as well as p, of course). For example,

Bonthuis et al.28 found for confined DNA evidence for a scaling
of R∥ with D according to R∥ ∝ (Rbulk/D)

1/4 for about 2 < Rbulk/
D < 8.4, while for thinner slits the ratio R∥/Rbulk stayed constant
at about 1.3, for a bulk radius of about Rbulk ≈ 0.84 μm . The
scaling R∥ ∝ D−1/4 is compatible with eq 12, of course. The
authors of ref 28 attribute the fact that R∥ does not change for
Rbulk/D > 8.4 to the Odijk4 regime, where no longer three-
dimensional blobs can be formed. However, a similar behavior
is also found in the present model, which does not have a
“Odijk regime” (in the strict sense). Of course, the present
model forms quasi-two-dimensional chains which simply scale
as46,55

≈R L( / )p p
3/4

(21)

where L∥ is the length of that part of the chain contour that is
parallel to the confining walls; note that for ≫ Dp the parts of

the contours that are oriented in the z-direction have a length
of order D only and are separated by pieces of length56

∝ D/p p,
2 from each other. This argument shows that the

part of the contour length oriented perpendicular to the
confining walls ∝⊥L L D( / )p

2, and hence L∥ = L(1 −
const D( / )p

2) ≈ L for ≪D/ 1p . Thus, also the present

model predicts R∥ to be independent of D in the region of
strong confinement.
One should also note that the sharp transition from the

Daoud and de Gennes regime to the regime of strong
confinement (where R∥ is independent of D) found by
Bonthuis et al.28 is not confirmed by the recent data of Tang
et al.,30 we find a much more gradual crossover. This is
compatible with the results presented here.

Thus, we hope that the present study will be useful for the
interpretation of future experimental studies of this problem as
well.
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■ NOTE ADDED IN PROOF
In our treatment (Figure 1, eqs 4 and 6) the simplifying
approximation was made to neglect residual effects of excluded
volume interactions in the Gaussian regime completely. Of
course, whenever the persistence length lp in our model is large
but finite, i.e. qb small but still nonzero, we do expect some
enhancement of linear dimensions of the chain relative to the
Gaussian results.34,35,50 For contour lengths in the regime
where L has not yet exceeded lp

3/lb
2 very much, the effects of

excluded volume can be still treated perturbatively, and hence
we expect already for an unconfined semiflexible chain (as
studied by us earlier46,47) that the expansion factor ⟨R2⟩/(2lpL)
exceeds unity, and this deviation increases with increasing qb.
This is in fact borne out by the numerical data for unconfined
chains (Figure 9a,b). Therefore as long as qb > 0 there is never a
strictly horizontal part in the plot of the expansion factor versus
L/lp, but rather there occurs a minimum in the slope and this
minimum gets smaller the smaller qb. The latter feature remains
also true for confined chains (Figure 9c). We are very grateful
to an anonymous referee on illuminating remarks on this point.

Figure 9. (a) Expansion factor ⟨R2⟩/(2lpL) plotted vs L/lp for
unconfined semiflexible chains. Various choices of qb are included, as
indicated. (b) Plot of these expansion factor for L/lp = 100 vs qb. The
best-fit straight for the data is given by: ⟨R2⟩/(2lpL) = 1 + 1.55qb as qb
→ 0. (c) Rescaled mean square end-to-end distance in the direction
parallel to the wall, ⟨R∥

2⟩/(2lpL), plotted vs, L/lp for D = 80. Note that
the curves near L/lp = 100 become flatter when qb decreases: similar as
for the chains (a), a perfect scaling in this crossover regimes cannot be
expected.
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