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Summary: The structure of bottle-brush polymers with a rigid backbone and flexible

side chains is studied in three dimensions, varying the grafting density, the side chain

length, and the solvent quality. Some preliminary results of theoretical scaling

considerations for one-component bottle-brush polymers in a good solvent are

compared with Monte Carlo simulations of a simple lattice model. For the simu-

lations a variant of the pruned-enriched Rosenbluth method (PERM) allowing for

simultaneous growth of all side chains in the Monte Carlo sampling is employed. For a

symmetrical binary (A,B) bottle-brush polymer, where two types (A,B) of flexible side

chains are grafted with one chain end to the backbone in an alternating way, varying

repulsive binary interactions between unlike monomers and the solvent quality, it is

found that phase separation into an A-rich part of the cylindrical molecule and a

B-rich part can occur only locally. Long range order (in the direction of the backbone)

does not occur, and hence the transition from the randomly mixed state of the

bottle-brush to the phase-separated structure is strongly rounded, in contrast to the

corresponding mean field predictions of a sharp transition to a ‘‘Janus cylinder’’

phase-separated structure. This lack of a phase transition can be understood from an

analogy with spin models in one dimension. By estimating the correlation length for

this phase separation along the backbone as a function of side chain length and

solvent quality, we present strong evidence that no sharp phase transition occurs.

Keywords: conformational analysis; copolymerization; macromolecules; Monte Carlo

simulation; phase separation

Introduction

Bottle-brush polymers are macromolecules

with a comb-like architecture, where flex-

ible side chains are densely grafted to a

linear long macromolecule which forms the

backbone chain. If the backbone is a rigid

polymer, its solubility and processability

are improved.[1–3] If the grafting density of

the side chains is very high, it is in the form

of a rather stiff cylindrical ‘‘bottle brush’’-

shaped object, which under certain condi-

tions shows a thermally induced collapse

transition to a spherical structure, providing

interesting perspectives for the design of

‘‘molecular actuators’’.[4] In the present

work, we focus on the following two

problems: (i) the conformation of a side

chain of one-component bottle-brush poly-

mers, where the backbone is treated as a

rigid straight line or thin cylinder,[5–16] and

(ii) the phase separation of copolymer

bottle-brushes with a rigid backbone, where

two types (A,B) of flexible side chains

are grafted with one chain end to the

backbone in an alternating way. In problem

(i), the stretching of the side chains in the

radial direction in the case of sufficiently

high grafting density was mostly discussed

in terms of a scaling description,[5–9,13–15]

extending the Daoud-Cotton[17] ‘‘blob pic-

ture’’[18–20] from star polymers to bottle-

brush polymers. If one uses the Flory

exponent[21,22] n¼ 3/5 in the scaling relation

for the average root mean square end-

to-end distance of a side chain in a radial

direction, Re�e/sð1�nÞ=ð1þnÞN2n=ð1þnÞ, where
s is the grafting density and N is the number
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of effectivemonomeric units of a side chain,

one obtains Re�e / s1=4N3=4. The resulting

exponents happen to be the same as for

quasi-two-dimensional configurations of a

chain one would obtain by assuming each

chain is confined to a disk of width s�1.[16]

Although this latter picture is a misconcep-

tion, in experimental studies {e.g. Ref.[23,24]}

this hypothesis of quasi-two-dimensional

chains is discussed as a serious possibility.

Therefore we find that it is necessary to give

a detailed discussion of the scaling concepts

based on the blob picture for bottle-brush

polymers with rigid backbone and verify

the theoretical prediction by computer

simulations with the pruned-enriched

Rosenbluth method (PERM).[25–27]

Concerning the second problem, recen-

tly the existence of a local phase separation

along the backbone of the bottle-brush

giving rise to ‘‘horseshoe’’ and ‘‘meander’’-

like structures of copolymer bottle-brushes

was observed in experiments.[28] The pro-

blem of phase separation within a simple

copolymer bottle-brush has also drawn

attention both by analytical theory[29] and

computer simulation.[30,31] In Ref.,[29,30]

authors gave the predictions of how the

phase transition point from the randomly

mixed state (where both A and Bmonomers

are homogeneously distributed in the

cylinder volume) to the separated state

depends on the chain length N of the side

chains and also suggested the possibility to

create ‘‘Janus cylinders’’ (upper half of the

cylinder containing the A monomers, lower

half containing the Bmonomers). Recently,

Hsu et. al.[31] reconsidered this problem

noting that for any finite chain length N also

the cylinder radius (or brush ‘‘height’’) h is

finite, and hence the system is quasi-

one-dimensional. In one-dimensional sys-

tems with short range interactions at

nonzero temperatures no long range order

is possible. Thus this problem can be

related to the one-dimensional XY-model.

The Flory-Huggins parameter xAB that

describes the incompatibility between A

and B monomers takes the role that J/kBT

plays for the spin model. However, the

problem whether for N ! 1 (and depend-

ing on the solvent condition) sharp phase

transitions are restored is nontrivial, and in

particular, describing the extent of round-

ing of the (mean field) transitions des-

cribed in[29] by these long range fluctuations

along the chain backbone remains a chal-

lenge. Performing Monte Carlo simulations

with PERM[25–27] of a similar model as in

Ref.,[30] a detailed conformational analysis

of copolymer bottle-brushes is described in

the latter section.

Model and Simulation Method

Here, we consider the simplest lattice

model of polymers, namely, the self-

avoiding walk on a simple cubic lattice.

The backbone of a copolymer bottle-brush

is treated as a completely rigid rod with

length Lb, oriented along the z-axis of a

simple cubic lattice. The grafting density s

is defined by s ¼ nc=Lb, where nc is the

total number of side chains. The side chains

are grafted to the backbone with equal

distance s�1 and the side chains of two

types A and B (note that B¼A for

one-component bottle-brush polymers)

are grafted regularly in an alternating

way. In order to avoid any effects due to

the ends of a finite backbone, periodic

boundary conditions are introduced in the

z-direction. Assuming that there is only

excluded volume interaction between mono-

mers on the backbone and monomers on

the side chains, but there are nearest

neighbor interactions eAB, eAA¼ eBB¼ e
between the respective pairs of monomers,

the partition sum for this model is

Z ¼
X
walks

qmAAþmBBqmAB

AB ; (1)

where q ¼ e�"=kBT , qAB ¼ e�"AB=kBT , and

mAA, mBB, mAB are the numbers of non-

bonded nearest neighbor monomer pairs

AA, BB, and AB, respectively. The sum in

Equation (1) extends over all possible

configurations of these walks. Varying q

in the range 1< q< 1.5, we cover the full

range from good solvents (q¼ 1) to poor

solvents (q¼ 1.5), since the u-solvent
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corresponds to a choice[25] qu ¼ e�"=kBTu �
1:3087.We vary qAB in the range 0�qAB � q:

The case qAB¼ 0 corresponds to a very

strong repulsion between A and B, while for

qAB¼ q the chemical incompatibility xAB
vanishes {recall that[22] xAB / "AB � ð"AAþ
"BBÞ=2}.

For our simulations, we use the algo-

rithm PERM[25] which is a biased chain

growth algorithm with resampling (‘‘popu-

lation control’’) and depth-first implemen-

tation. Polymer chains are built like

random walks by adding one monomer at

each step. As in any such algorithm there is

a wide range of possible distributions of

sampling, we have the freedom to give a

bias at each step while the chain grows, and

the bias is corrected by means of a weight

given to each sample configuration. In

order to limit the fluctuations in weight as

the chain is growing, the population control

is done by ‘‘pruning’’ configurations with

too low weight and ‘‘enriching’’ the sample

with copies of high-weight configurations.

Similar to a recent study of star poly-

mers,[26,27] the bottle-brush is generated by

adding one monomer to each side chain

until all side chains have the same number

of monomers, thus growing all side chains

simultaneously. For efficiency, side chains

are grown with higher probabilities in the

directions perpendicular to the backbone

and in the direction where there are more

free next neighbor sites. This additional

bias must be taken into account by suitable

weight factors.

Theory and Numerical Results

A. One-component Bottle-brush Polymers

in a Good Solvent

In a blob picture, according to the cylind-

rical geometry of bottle-brush polymers

with rigid backbone, the space is parti-

tioned into blobs of non-uniform size and

shape (Figure 1). The blobs are character-

ized by one effective radius j(r) depending

on the radial distance r from the cylinder

axis. One considers a segment (e.g. the

ith row in Figure 1) of the array of length L

containing p polymer chains.[8] On a surface

of a cylinder of radius r and length L there

should then be p blobs, each of cross-

sectional area j2(r) (geometrical factors of

order unity are ignored throughout). Since

the surface area of the cylindrical segment

is Lr, we must have[8,9,15]

pj2ðrÞ ¼ Lr; jðrÞ ¼ ðLr=pÞ1=2

¼ ðr=sÞ1=2: (2)

If the actual non-spherical shape of the

blobs is neglected, the blob volume clearly

is of the order of j3ðrÞ ¼ ðr=sÞ3=2. Using the

principle that inside a blob self-avoiding

walk statistics holds, we obtain

jðrÞ ¼ a½nðrÞ�n; and; nðrÞ
¼ ½jðrÞ=a�1=n ¼ ½r=ða2sÞ�1=2n; (3)

here a is a length of the order of the size of

an effective monomer, and n(r) is the

number of monomers contained within a

blob. The prediction of the power law decay

for the density profile r(r) is therefore

derived as follows[8,9,15,32]

rðrÞ ¼ nðrÞ=j3ðrÞ
¼ a�3½r=ða2sÞ��ð3n�1Þ=2n

� a�3½r=ða2sÞ��0:65; n � 0:588: (4)

Now the average height h of the

bottle-brush is obtained by requiring that

Macromol. Symp. 2007, 252, 58–6760

Figure 1.

Schematic drawing of a blob picture for a bottle-brush

polymer cut through the cylinder along the xz-plane

containing the cylinder axis (backbone).
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integrating r(r) from r¼ 0 up to r¼ h all s N

monomers per unit length in z-direction are

counted

sN ¼
Z h

0

rðrÞrdr / a�3ða2sÞð3n�1Þ=2n

Z h

0

rð1�nÞ=2ndr;

(5)

and hence

N ¼ ðasÞðn�1Þ=2nðh=aÞðnþ1Þ=2n (6)

and

h ¼ ðasÞð1�nÞ=ð1þnÞN2n=ð1þnÞ

¼ ðasÞ0:259N0:74: (7)

When s ! 0 one should expect a mush-

room regime where there are no interac-

tions between side chains. Side chains

behave as self-avoiding walks in three

dimensions, and the average height scales

as h / Nn. We verify that this occurs for a

lateral distance s�1 / Nn between grafting

points along the rigid backbone:

Nn / sð1�nÞ=ð1þnÞN2n=ð1þnÞ ) s / N�n: (8)

This argument shows that s�1 needs to

be compared with Nn, so we can give a

cross-over ansatz as follows,

h ¼ Nn ~hðh ¼ sNnÞ; (9)

where the scaling function ~hðhÞ / hð1�nÞ=ð1þnÞ

for h � 1, and ~hðhÞ � const for h ! 0. As

shown in Figure 1, the blobs are not circles

but rather ellipses in the xz-plane, hence the

3D geometric shape of blobs are ellipsoids

with three different axes, s�1 in z-direction

along the cylindrical axis, r is the y-direction

(tangential on the cylinder surface, normal

to z), and the geometric mean of the two

lengths,
ffiffiffiffiffiffiffiffiffiffi
rs�1

p
, in the radial (x) direction.

Since the physical meaning of a blob is that

of a volume region in which the excluded

volume interaction is not screened, this

result implies that the screening of excluded

volume happens in a brush consisting of

polymers grafted to a line in a very

anisotropic way: actually there are three

different screening lengths, s�1 in the axial

z-direction,
ffiffiffiffiffiffiffiffiffiffi
rs�1

p
in the radial r-direction,

and r in the third tangential y-direction. It is

still an open problem to verify that such a

property of very anisotropic screening

actually occurs. However, the volume of

the ellipsoid with these three axes still reads

Vellipsoid ¼ ðs�1ÞðrÞðrs�1Þ1=2

¼ ðr=sÞ3=2 ¼ j3ðrÞ;
(10)

with j(r) given by Equation (3), hence the

prediction of the density profile r(r),

Equation (4), and the average height h,

Equation (7), are unchanged by the sphe-

rical approximation.

In order to verify the above theoretical

prediction of the scaling behavior of side

chains, we simulate one-component bottle-

brush polymers in a good solvent, i.e. q¼ 1,

and qAB¼ 1 in Equation (1), and choose

backbone length Lb¼ 32, 64, and 128, and

grafting densities s¼ 1/32, 1/16, 1/8, 1/4, 1/2,

and 1. The side chain lengthNwas varied up

to 2000. A snapshot of the configuration of

a typical bottle-brush polymer with

Lb¼ 128, s¼ 1/4 (i.e., nc¼ 32 side chains)

and side chain length N¼ 2000 containing a

total number of monomers Ntot¼ Lbþ
ncN¼ 64128 is shown in Figure 2. The

average height of bottle-brush polymers is

estimated by taking the average of the

backbone-to-end distance perpendicular to

the direction of backbone (along the z-axis)

for all side chains, i.e.

RhðN; sÞ ¼< R2
b�e;xðN; sÞ

þ R2
b�e;yðN; sÞ >1=2 :

(11)

According to the cross-over scaling

ansatz, Equation (9), we plot R2
hðN; sÞ=N2n

against h ¼ sNn for various values of

backbone length Lb and grafting density

s, and take the value of n ¼ n3 � 0:58765

given by the best estimate for 3d self-

avoiding walks by PERM[25] in Figure 3.

We see that systematic deviations from

scaling occur for small Lb, large N and not

too large s in Figure 3a, which is due to

artifacts created by periodic boundary

conditions in our model. Each side chain

interacts with its own periodic image in the

region where its extension along the

direction of backbone is larger than Lb/2.

Removing these unphysical data, the nice
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data collapse shown in Figure 3b results as

predicted in Equation (9). As h increases,

we see a cross-over from the mushroom

behavior to the stretched bottle-brush

polymers. Although only mild stretching

of the side chains away from the backbone

is obtained, which is still far away from the

strong stretching predicted by scaling con-

siderations, this cross-over behavior has not

been obtained by any other numerical

simulations before.

B. Copolymer Bottle-brushes

As mentioned in the introduction, the

phase separation problem of copolymer

bottle-brushes is like the one-dimensional

Macromol. Symp. 2007, 252, 58–6762

Figure 2.

Snapshot of a bottle-brush polymer with Lb¼ 128, s¼ 1/4, and N¼ 2000 on the simple cubic lattice.

Figure 3.

Log-log plot of R2hðN; sÞ=N2n3 vs. h ¼ sNn3 , with n3¼ 0.58765 (a) including all data, and nc¼ sLb¼ 1, 2, 4, 8, 16,

and 32 from left to right for h< 1, (b) after removing all unphysical data due to periodic boundary conditions.

The asymptotic behavior for h � 1 is shown by the straight line with slope 2ð1� n3Þð1þ n3Þ � 0:519 from

Equation (9).
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XY-model. In theXY-model, one considers

a chain of spins on a one-dimensional lattice

where each spin at site i is described by an

angle wi in the xy plane, with 0 � ’i � 2p,

and where neighboring spins are coupled.

The coupling is described by the Hamilto-

nian

H ¼ �J
X
i

cosð’iþ1 � ’iÞ

¼ �J
X
i

~Siþ1 � ~Si; (12)

where ~Si ¼ ðcos’i; sin’iÞ is a unit vector in

the xy-plane. While mean field theory

predicts that ferromagnetic order (cf.

Figure 4a) occurs along the chain for

temperatures T< TMF
c ¼ cJ, where c is a

constant of order unity,[33] an exact solution

of this problem[33,34] shows that ferromag-

netic long range order is unstable against

long wavelength fluctuations, and actually

the ferromagnetic correlation length j

grows completely gradually as the tempera-

ture is lowered,

j ¼ 2aðJ=kBTÞ (13)

a being the lattice spacing. Thus j has to

diverge when Tc¼ 0 is approached, and the

singularity of j predicted by mean field

theory at T¼ TMF
c is completely washed out.

This consideration can be generalized to

cylinders of cross section area pR2.[35]

Equation (13) gets replaced by a more

complicated behavior that is sketched in

Figure 5, but is still similar to Equation (13)

at low temperatures

j ¼ 2GðTÞpR2=kBT

/ ðR2=aÞðJ=kBTÞ: (14)

Note that the ‘‘spinwave stiffness’’

(helicity modulus) G(T) characterizes the

cost of long wavelength order parameter

rotations, and GðT ! 0Þ / J. We suggest

that the correlation length describing phase

separation of a ‘‘Janus cylinder’’ type

behaves qualitatively similar to Equations

(13) and (14), cf. Figure 4b.[31]

Macromol. Symp. 2007, 252, 58–67 63

Figure 4.

Schematic drawing of perfect phase separation of side chains in a binary (A,B) bottle-brush with alternating

grafting sequence ABAB � � � into a ‘‘Janus cylinder’’ structure (a), where the A-chains occupy the upper part of the
cylinder, and B-chains occupy the lower part of the cylinder. The orientation of the interface (a sharp shaded

plane in the yz-plane) between them can be characterized by a vector oriented perpendicular to it (arrows). At

nonzero but low temperature phase separation will occur locally, but entropy will lead to long-wavelength

fluctuations of the orientation of this vector (b), destroying axial long range order along the direction of the

backbone of the bottle brush.

Figure 5.

Crossover scaling behavior of the correlation length j

as a function of temperature T. j / ðT=Tc � 1Þ�n
for

T> Tc, and j / R2GðTÞ=kBT for T< Tc. Tc is the critical

temperature of the corresponding bulk three-

dimensional system.
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We simulate binary bottle-brush poly-

mers of backbone length Lb¼ 32, 48, and 64,

in a good solvent (q¼ 1) and in a poor

solvent (q¼ 1.5). Varying the parameter

qAB which controls the chemical incompat-

ibility, typical snapshots of the conforma-

tions of bottle brush polymers for backbone

length Lb¼ 64, side chain length N¼ 8,

grafting density s¼ 1, are shown in

Figures 6 and 7. In a poor solvent, side

chains form more compact configurations

(Figure 7), which is due to the fact that a

very long single chain would experience a

collapse transition.[22] As qAB becomes

small, we see a more pronounced local

phase separation along the backbone of the

copolymer bottle-brush, although there still

no long range order is present. In analogy to

the spin model in one dimension, a simple

way to define a unit vector ~Sai characterizing

the orientation of the chain is that we draw

a vector from each grafting site to the

center of mass (CM), ~Ra
cm;j, of each side

chain i of type a (a¼A or B), project this

vector into the xy-plane, and normalize it

(Figure 8). Since side chains of two types A

Macromol. Symp. 2007, 252, 58–6764

Figure 6.

Snapshots of the copolymer bottle brushes for a good solvent (q¼ 1), Lb¼ 64, N¼ 18, (a) qAB¼ 1.0 and (b)

qAB¼ 0.1 Monomers A, monomers B, and monomers on the backbone are shown in black, gray and white colors,

respectively.

Figure 7.

Snapshots of the copolymer bottle brushes for a poor solvent (q¼ 1.5), Lb¼ 64, N¼ 18, (a) qAB¼ 1.5 (mixed state)

and (b) qAB¼ 0.1 (state with local phase separation). Monomers A, monomers B, and monomers on the backbone

are shown in black, gray and white colors, respectively.

Figure 8.

Construction of vectors ~RacmðnÞ from the grafting site n to the xy-component of the center of mass of the

respective chain a, and corresponding unit vectors (denoted by arrows). For a perfectly phase separated

structure with the interface between A and B being the yz-plane, for a¼ A all unit vectors point along the

positive x-axis and for a¼ B all unit vectors point along the negative x-axis.
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and B are grafted to the backbone in an

alternating way, i.e. ABAB . . ., we define a

correlation function Cn as follows

Cn � ~SAi � ~SAiþn

D E
þ ~SBi � ~SBiþn

D Eh i
=2;

forn ¼ 0; 2; 4; 6 . . .:

(15)

The average ~SAi � ~SAiþn

D E
in Equation

(15) includes an average over sites {i} on

which A chains are grafted, in order to

improve the statistics. If perfect long range

order occurs, as implied in Figure 4a,

we clearly have Cn¼ 1 independent of n,

while for the case of short range order, we

expect Cn / expð�n=jÞ. Actually, consid-

ering the fact that we use a periodic

boundary condition, i.e. Cn ¼ CLb�n, we

have analyzed our numerical data in terms

of the ansatz

Cn / fexpð�n=jÞ
þ exp½�ðLb � nÞ=j�g (16)

Figures 9 and 10 show our data for Cn for

two choices of N: indeed we recognize that

Cn decays to zero with increasing n, but the

increase does get slower with increasing

side chain length N. The scale of this

correlation effect clearly increases with

decreasing qAB. While for N¼ 6 the correla-

tion length j hardly depends on qAB, for

large N a slight increase of jwith decreasing

qAB is suggested. In a poor solvent, the

decay of Cnwith n is much slower indicating

a distinctly larger correlation length. This

result gives a quantitative evidence for the

Macromol. Symp. 2007, 252, 58–67 65

Figure 9.

Correlation function Cn plotted vs. n on a semi-log scale, for a good solvent (q¼ 1.0), Lb¼ 32, (a) N¼ 6 and (b)

N¼ 18. Several choices of qAB are included, as indicated.

Figure 10.

Correlation function Cn plotted vs. n on a semi-log scale, for a poor solvent (q¼ 1.5), Lb¼ 32, (a) N¼ 6 and (b)

N¼ 18. Several choices of qAB are included, as indicated.
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qualitative observation made already on

the basis of the snapshot pictures,

Figure 7b. Results for the correlation length

j, determined by fitting Cn to Equation (16)

in a poor solvent, are shown in Figure 11a. j

increases gradually with increasing chemi-

cal incompatibility xAB (decreasing tem-

perature), and with increasing N. Since 1/j

decreases linearly as xAB
�1 ! 0, one can

extrapolate the data to xAB
�1 ¼ 0 by fitting

a straight line 1=j ¼ 1=jN þ b=xAB. Results

for jN in a poor solvent are shown in

Figure 11b. It gives an indication that a

sharp phase transition only develops in the

limit x�1
AB ! 0 and N ! 1.

Conclusion

In summary, we have studied bottle-brush

polymers with a straight rigid backbone

using the PERM algorithm. For one-

component bottle-brush polymers in a good

solvent, we verify the cross-over scaling

prediction of the mean-square end-to-end

distance in the radial direction. We also

observe that there is a rather gradual and

smooth crossover rather than a kink-like

behavior of the scaling function. The full

understanding of the structure of bottle-

brush polymers in detail is still in process.

For binary bottle-brush polymers we have

presented the evidence that the phase

separation towards a ‘‘Janus cylinder’’

structure develops completely gradually

as the incompatibility between the two

types of monomers increases. In analogy to

the one-dimensional XY model, long

wavelength random ‘‘twist’’-like rotation

of the local interface between the A-rich

and B-rich region in the ‘‘Janus cylinder’’

costs very little energy and destroys long

range order completely. On the other hand,

varying the chemical incompatibility and

solvent quality, one can influence the

occurrence of local phase separation and

control the nanoscopic length scale over

which Janus-type phase separation occurs

along the backbone of the bottle brush.
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behavior as N ! 1.
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