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One- and Two-Component Bottle-Brush
Polymers: Simulations Compared to
Theoretical Predictions
Hsiao-Ping Hsu,* Wolfgang Paul, Kurt Binder
Scaling predictions for bottle-brush polymers with a rigid backbone and flexible side chains
under good solvent conditions are discussed and their validity is assessed by a comparison
withMonte Carlo simulations of a simple lattice model. It is shown that typically only a rather
weak stretching of the side chains is realized, and then the scaling predictions are not applicable.
Also two-component bottle brush polymers
are considered, where two types (A,B) of side
chains are grafted, assuming that monomers
of different kind repel each other. In this case,
variable solvent quality is allowed. Theories
predict ‘‘Janus cylinder’’-type phase separation
along the backbone in this case. The Monte
Carlo simulations, using the pruned-enriched
Rosenbluth method (PERM) give evidence that
the phase separation between an A-rich part
of the cylindricalmolecule and a B-rich part can
only occur locally. The correlation length of this
microphase separation can be controlled by the
solvent quality. This lack of a phase transition
is interpreted by an analogy with models for
ferromagnets in one space dimension.
Introduction

Flexible macromolecules can be grafted to various sub-

strates by special endgroups. Such ‘‘polymer brushes’’ find

widespread applications[1–5] and also pose challenging

theoretical problems, such as an understanding of the

conformational statistics and resulting geometrical struc-
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ture of these tethered chain molecules. Only this latter

aspect shall be considered in the present paper, for chains

grafted to a straight line or a very narrow cylinder. This

problem is a limiting case of ‘‘bottle brush’’ polymers

where side chains are grafted to a long macromolecule that

forms the backbone of the bottle brush. When this back-

bone chain is also a flexible polymer and the grafting

density is not very high, a ‘‘comb polymer’’[6] results,

which is outside of consideration here. Also we shall not

discuss the case where the backbone chain is very short, so

the conformation would resemble a ‘‘star polymer’’.[7–11]

Here we restrict attention to either stiff backbone chains or

high grafting density of side chains at flexible backbones.

In the latter case stiffening of the backbone occurs due to
DOI: 10.1002/mats.200700031
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excluded volume interactions, and a cylindrical shape of

the molecule as a whole results. In fact, many experi-

ments have been carried out where with an appropriate

chemical synthesis bottle brush polymers with a worm-

like cylindrical shape were produced.[12–16] The recent

papers[14–16] contain a more detailed bibliography on this

rapidly expanding field.

On the theoretical side, two aspects of the conformation

of bottle brush polymers were mostly discussed: (i) con-

formation of a side chain when the backbone can be

treated as a rigid straight line or thin cylinder[10,17–27] (ii)

conformation of the whole bottle brush when the back-

bone is (semi)flexible.[28–40] The latter problem is left out of

consideration in the present paper. Problem (i), the stretch-

ing of the side chains in the radial direction in the case of

sufficiently high grafting density, was mostly discussed in

terms of a scaling description,[10,17–20,24–26] extending the

Daoud–Cotton[8] ‘‘blob picture’’ [41–43] from star polymers

to bottle brush polymers. If one uses the Flory expo-

nent[44,45] n¼ 3/5 in the scaling relation for the average

root mean square end-to-end distance of a side chain,

Re / sð1�nÞ=ð1þnÞN2n=ð1þnÞ, where s is the grafting density

and N is the number of effective monomeric units of a side

chain, one obtains Re / s1/4N3/4. These exponents happen

to be identical to those which one would obtain assuming

that the chains attain quasi-two-dimensional configura-

tions, resulting if each chain is confined to a disk of width

s�1.[27] Although this latter picture is a misconception, in

experimental studies (e.g.,[14,15]) this hypothesis of quasi-

two-dimensional chains is discussed as a serious possi-

bility. Therefore, we find it clearly necessary to first review

the correct scaling theory based on the blob picture, and

discuss in detail what quantities need to be recorded in

order to distinguish between these concepts. Thus, in the

next section we shall give a detailed discussion of the

scaling concepts for bottle brush polymers with rigid

backbones.

Thereafter we shall describe the Monte Carlo test of

these predictions, that we have recently performed using

the pruned-enriched Rosenbluth method (PERM).[46–49]

After a brief description of the Monte Carlo methodology,

we present our numerical results and compare them to the

pertinent theoretical predictions.

In the second part of this paper, we discuss the exten-

sion from one-component to two-component bottle brush

polymers. Just as in a binary polymer blend (A,B) typically

the energetically unfavorable interaction (described by the

Flory–Huggins parameter x [44,45,50–52]) should cause phase

separation between A-rich and B-rich domains. However,

just as in block copolymers where A chains and B-chains

are tethered together in a point,[53–55] no macroscopic

phase separation but only ‘‘microphase separation’’ is

possible: for a binary (A,B) bottle brush with a rigid back-

bone one may expect formation of ‘‘Janus cylinder’’
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structures.[56–58] This means, phase separation occurs such

that the A-chains assemble in one half of the cylinder, the B

chains in the other half, separated from the A-chains via a

flat interface containing the cylinder axis. However, it has

been argued that the long-range order implied by such a

‘‘Janus cylinder’’ type structure has a one-dimensional

character, and therefore true long-range order is destroyed

by fluctuations at non-zero temperature.[58] Only local

phase separation over a finite correlation length along the

cylinder axis may persist.[58]

We shall again first review the theoretical background

on this problem, and then describe the simulation evi-

dence. We conclude our paper by a summary and outlook

on questions that are still open, briefly discussing also

possible consequences on experimental work. However,

we shall not deal with the related problems of microphase

separation of a bottle brush with only one kind of side

chains induced by deterioration of the solvent quality
[59,60] or by adsorption on flat substrates.[61–63]
Conformation of Side Chains of Bottle
Brushes under Good Solvent Conditions:
Theoretical Background

The most straightforward approach to understand the

conformations of chains in polymer brushes and star

polymers under good solvent conditions uses the concept

to partition the space available for the chains into com-

partments, called ‘‘blobs’’. The idea is that in each such

region there occur only monomers of one chain, no mono-

mers of any other chains occur in such a blob, and hence

self-avoiding walk statistics holds in each blob. This

means, if a (spherical) blob has a radius rB and contains n

monomers, these numbers must be related via
rB ¼ ann ; n � 0:588 ; n � 1 (1)
Here a is a length of the order of the size of an effective

monomer, and we emphasize from the start that it is crucial

to use the correct value of the self-avoiding walk exponent n,

as it is provided from renormalization group calculations[64]

or accurate Monte Carlo simulations.[65] If one would ignore

the small difference between n and the Flory estimate 3/5,

one would already miss an important distinction between

two different scaling regimes for a brush on a flat sub-

strate.[66] An almost trivial condition of this ‘‘blobology’’[43] is

that each of the N effective monomeric units of a chain must

belong to some blob. So we have
N ¼ nnB (2)
where nB is the number of blobs belonging to one par-

ticular chain.
www.mts-journal.de 661
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Finally we note that the space available to the chains

must be densely filled with blobs. It then remains to discuss

which factors control the blob size rB.[43] The simplest case is

a polymer brush on a flat substrate (under good solvent

conditions, as assumed here throughout): if we neglect, for

simplicity, any local fluctuations in the grafting density, the

distance between grafting sites simply is given by s�1/2.

Putting rB¼ s�1/2 in Equation (1), we find n ¼ ðsa2Þ�1=2n, i.e.,

each chain is a string of nB ¼ N=n ¼ Nðsa2Þ1=2n blobs.

According to the simple-minded description of polymer

brushes due to Alexander,[41] this string simply is arranged

like a one-dimensional cigar, and one would conclude that

the height of a flat brush is
Macrom

� 2007
h ¼ s�1=2nB ¼ Naðsa2Þ1=ð2nÞ�1=2 (3)
The free end of the chain is in the last blob and hence the

end-to-end distance Re �h in this ‘‘Alexander picture’’ of

polymer brushes.[1,41–43] However, a more detailed theory

of polymer brushes, such as the self-consistent field theory

in the strong stretching limit,[67–70] yields a somewhat

different behavior: the end monomer is not localized at

the outer edge of the brush, but rather can be located

anywhere in the brush, according to a broad distri-

bution; also the monomer density in polymer brushes at

flat substrates is not constant up to the brush height h,

but rather decreases according to a parabolic profile. So

even for a polymer brush at a flat substrate already a

description in terms of non-uniform blob sizes, that

increase with increasing distance z from the substrate,

is required.[71] However, in the following we shall dis-

regard all these caveats about the Alexander picture for flat

brushes, and consider its generalization to the bottle brush

geometry, where polymer chains are tethered to a line

rather than a flat surface. Then we have to partition space

into blobs of non-uniform size and shape in order to

respect the cylindrical geometry (Figure 1).

In the discussion of brushes in cylindrical geometry in

terms of blobs in the literature [19,20,26] the non-spherical

character of the blob shape is not explicitly accounted for,

and it rather is argued that one can characterize the blobs

by one effective radius j(r) depending on the radial

distance r from the cylinder axis. One considers a segment

of the array of length L containing p polymer chains.[19] On

a surface of a cylinder of radius r and length L there should

then be p blobs, each of cross-sectional area j2(r); geo-

metrical factors of order unity are ignored throughout.

Since the surface area of the cylindrical segment is Lr, we

must have [19,20,26]
R

pj2ðrÞ ¼ Lr; jðrÞ ¼ ðLr=pÞ1=2 ¼ ðr=sÞ1=2 (4)
If the actual non-spherical shape of the blobs (Figure 1) is

neglected, the blob volume clearly is of the order of
ol. Theory Simul. 2007, 16, 660–689
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j3ðrÞ ¼ ðr=sÞ3=2. Invoking again the principle that inside a

blob self-avoiding walk statistics hold, we have, in analogy

with Equation (1)
jðrÞ ¼ a½nðrÞ�n;

nðrÞ ¼ ½jðrÞ=a�1=n ¼ ½r=ðsa2Þ�1=2n
(5)
From this result one immediately derives the power law

decay for the density profile r(r) as follows[3,19,20,26]
rðrÞ ¼ nðrÞ=j3ðrÞ ¼ a�3½r=ðsa2Þ��ð3n�1Þ=2n

� a�3½r=ðsa2Þ��0:65 (6)
Using the Flory approximation[44,45] n¼ 3/5 one would

find rðrÞ / r�2=3 instead.

Now the average height h of the bottle brush is esti-

mated by requiring that we obtain all sN monomers per

unit length in the z-direction along the axis of the bottle

brush (cf. Figure 1) when we integrate r(r) from r¼ 0 to

r¼h
sN ¼
Zh

0

rðrÞrdr

¼ a�3ðsa2Þð3n�1Þ=2n
Zh

0

rð1�nÞ=2ndr (7)
This yields, again ignoring factors of order unity
N ¼ ðsaÞðn�1Þ=ð2nÞðh=aÞðnþ1Þ=ð2nÞ (8a)
h=a ¼ ðsaÞð1�nÞ=ð1þnÞN2n=ð1þnÞ ¼ ðsaÞ0:259N0:74 (8b)
Note that the use of the Flory estimate n¼ 3/5 would

simply yield h / s1=4N3=4, which happens to be identical to

the relation that one obtains when one partitions the

cylinder of height L and radius h into disks of height s�1,

requiring hence that each chain is confined strictly into

one such disk. Then each chain would form a quasi-two-

dimensional self-avoiding walk formed from n0
blob ¼ N=n0

blobs of diameter s�1. Since we have s�1 ¼ an0n again, we

would conclude that the end-to-end distance R of such a

quasi-two-dimensional chain is
¼ s�1ðn0
blobÞ3=4 ¼ s�1 n0�3=4 N3=4 ¼ aðsaÞ�1þ3=4nN3=4

¼ aðsaÞ1=4N3=4

(9)
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Figure 1. Schematic construction of a blob picture for star polymer (a), and for a bottle brush (b), (c). We assume that along the rigid
backbone there occur at a regular spacing fs�1 grafting sites where at each grafting site f side chains containing N effective monomeric
units are grafted. If the rigid backbone of the cylindrical bottle brush is oriented along the z-axis, part (c) shows a view of the blob
partitioning in the xy-plane perpendicular to the backbone, while part (b) shows a cut through the cylinder along the xz-plane containing
the cylinder axis. A few possible chain configurations are indicated. While for a star polymer the blobs have a spherical shape, their radius j
(r) increasing linearly proportional to the distance r from the center of the star (a), for the bottle brush the blobs are ellipsoids with three
axes j (r) (in x-direction), proportional to r/f (in y-direction), and fs�1 (in z-direction), respectively. For a considered chain the x-axis contains
the center of mass of the chain.
Putting then R¼h, Equation (8b) results when we use

there n¼ 3/5. However, this similarity between Equation

(8b), (9) is a coincidence: in fact, the assumption of a

quasi-two-dimensional conformation does not imply a

stretching of the chain in radial direction. In fact, when we

put the x-axis of our coordinate system in the direction of

the end-to-end vector ~R of the chain, we would predict that

the y-component of the gyration radius scales as
Macrom

� 2007
Rgy ¼ aðsaÞ1=4N3=4 (10)
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since for quasi-two-dimensional chains we have Rgx /
Rgy / R, all these linear dimensions scale with the same

power laws. On the other hand, if the Daoud–Cotton-like[8]

picture [Figure 1(a)] holds, in a strict sense, one would

conclude that Rgy is of the same order as the size of the last

blob for r¼h
Rgy ¼ jðr ¼ hÞ ¼ ðh=sÞ1=2

¼ aðsaÞ�n=ð1þnÞNn=ð1þnÞ (11)
www.mts-journal.de 663
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Clearly this prediction is very different from Equation

(10), even with the Flory exponent n¼ 3/5 we find from

Equation (11) that Rgy / s�3=8N3=8. Hence it is clear that an

analysis of all three components of the gyration radius of a

polymer chain in a bottle brush is very suitable to

distinguish between the different versions of scaling

concepts discussed in the literature.

However, at this point we return to the geometrical

construction of the filling of a cylinder with blobs, Figure 1.

We explore the consequences of the obvious fact that the

blobs cannot be simple spheres, when we require that each

blob contains monomers from a single chain only, and the

available volume is densely packed with blobs touching

each other.

Since the blob picture for star polymers (grafting to a

point) as well as for planar polymer brushes (polymers

grafted to a plane) both work with spherical blobs, one

may wonder why the intermediate case of bottle-brush

polymers (grafting to a line) requires non-spherical blobs.

However, one should note the lower symmetry of the

cylindrical geometry: while both for stars and planar

brushes the two spatial directions perpendicular to the

stretching direction are equivalent by symmetry, this is

not true for bottle-brushes (the directions parallel to the

cylinder axis and tangential to the cylinder surface are

inequivalent). Moreover, spherical blobs are impossible

near the cylinder axis, when we consider the general case

that grafting sites occur at a distance s�1 along the cylin-

der axis, and from each grafting site emanate f chains. If

we would assume that the blob diameter is s�1 for the

blobs adjacent to the axis, as for planar brushes, the

cylinder surface through these blob centers is at a radial

distance s�1/2, and has a tangential linear dimension of

ps�1, imply that three blobs would fit in to fill space

(almost, taking p� 3). Clearly, such a construction does not

fit for general f. On the other hand, adjusting the blob

radius to the chosen value of f the blobs either would not

fill space (for f¼ 1, 2) or overlap each other (for f� 4).

Nevertheless, we emphasize that the following extension

of the blob picture allowing for ellipsoidal blob shapes is

not based on a detailed theory but rather has the character

of a heuristic (if not speculative) proposal only.

As mentioned above, j(r) was defined from the available

surface area of a cylinder at radius r, cf. Equation (4). It was

argued that for each chain in the surface area Lr of such a

cylinder a surface area j2(r) is available. However, consi-

deration of Figure 1 shows that these surfaces are not

circles but rather ellipses, with axes fs�1 and r/f. The blobs

hence are not spheres but rather ellipsoids, with three

different axes: fs�1 in z-direction along the cylinder axes,

r/f in the y-direction tangential on the cylinder surface,

normal to both the z-direction and the radial direction, and

the geometric mean of these two lengths ðrs�1Þ1=2, in the

radial x-direction. Since the physical meaning of a blob is
Macromol. Theory Simul. 2007, 16, 660–689
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that of a volume region in which the excluded volume

interaction is not screened, this result implies that the

screening of excluded volume in a bottle brush happens in

a very anisotropic way: there are three different screening

lengths, fs�1 in the axial z-direction, ðrs�1Þ1=2 in the radial

x-direction, and r/f in the third, tangential, y-direction. Of

course, it remains to be shown by a more microscopic

theory that such an anisotropic screening actually occurs.

However, the volume of the ellipsoid with these three

axes still is given by the formula
Vellipsoid ¼ ðs�1f Þðr=f Þðrs�1Þ1=2 ¼ ðrs�1Þ3=2

¼ ½jðrÞ�3 (12)
with j(r) given by Equation (4), and hence the volume of

the blob has been correctly estimated by the spherical

approximation. As a consequence, the estimations of the

density profile r(r), Equation (6), and resulting brush

height h, [Equation (8b)], remain unchanged.

More care is required when we now estimate the linear

dimensions of the chain in the bottle brush. We now orient

the x-axis such that the xz-plane contains the center of

mass of the considered chain. As [Figure 1(b)] indicates, we

can estimate Rgz assuming a random walk picture in terms

of blobs. When we go along the chain from the grafting site

towards the outer boundary of the bottle brush, the blobs

can make excursions with Dz ¼ �fs�1, independent of r.

Hence we conclude, assuming that the excursions of the

nblob steps add up randomly
R2
gz ¼

Xnblob

i¼1

ðfs�1Þ2 ¼ nblobðfs�1Þ2;

Rgz ¼ fs�1 ffiffiffiffiffiffiffiffiffiffi
nblob

p
(13)
Hence we must estimate the number of blobs nblob per

chain in a bottle brush. We must have
nblob ¼
Xnblob

i¼1

1 ¼
Zh

0

½jðrÞ��1dr (14)
Note from Figure 1 that we add an increment 2j(ri) to r

when we go from the shell i to shell iþ 1 in the cylindrical

bottle brush. So the discretization of the integral in

Equation (14) is equivalent to the sum. From Equation (14)

we then find, again ignoring factors of order unity
nblob ¼ s1=2h1=2 ¼ ðsaÞ1=ð1þnÞNn=ð1þnÞ (15)
DOI: 10.1002/mats.200700031
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and consequently
Macrom
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Rgz ¼ faðsaÞ�
2nþ1
2nþ2Nn=½2ð1þnÞ� / s�0:685N0:185 (16)
With Flory exponents we hence conclude nblob / s5=8N3=8,

and thus Rgz / fs�11=16N3=16. The estimation of Rgy is most

delicate, of course, because when we consider random

excursions away from the radial directions, the excursions

Dy ¼ �jðrÞ are non-uniform. So we have instead of

Equation (13),
R2
gy ¼

Xnblob

i¼1

j2ðriÞ ¼
Zh

0

jðrÞdr (17)
in analogy with Equation (14). This yields R2
gy ¼ s�1=2h3=2

and hence
Rgy ¼ s�1=4h3=4 ¼ aðsaÞ�ð2n�1Þ=ð2nþ2ÞN3n=ð2nþ2Þ

/ s�0:055N0:555 (18)
while the corresponding result with Flory exponents is

Rgy / s�1=16N9=16. These different results for Rgx / h

[Equation (8b)], Rgy [Equation (18)], and Rgz [Equation

(16)] clearly reflect the anisotropic structure of a chain in a

bottle brush. Note that the result for Rgy according to

Equation (18) is much larger than the simple Daoud–

Cotton-like prediction, Equation (11), but is clearly smaller

than the result of the quasi-two-dimensional picture,

Equation (10).

As a consistency check of our treatment, we note that

also Equation (7) can be formulated as a discrete sum over

blobs
N ¼
Xnblob

i¼1

nðrÞ ¼
Zh

0

½nðrÞ=jðrÞ�dr

¼
Zh

0

½r=ðsaÞ�1=2n�1=2dr (19)
which yields [Equation (8a)], as it should be.

Finally we discuss the crossover towards mushroom

behavior. Physically, this must occur when the distance

between grafting points along the axis, fs�1, becomes

equal to aNn. Thus we can write
h ¼ aNn ~hðsaNnÞ (20)
where we have absorbed the extra factor f in the scaling

function ~hðzÞ. We note that [Equation (8b)] results from
ol. Theory Simul. 2007, 16, 660–689
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Equation (20) when we request that
~hðz � 1Þ / zð1�nÞ=ð1þnÞ (21)
and hence a smooth crossover between mushroom be-

havior and radially stretched polymer conformations

occurs for saNn of order unity, as it should be. Analogous

crossover relations can be written for the other linear

dimensions too:
Rgz ¼ aNn ~RgzðzÞ; ~Rgzðz � 1Þ / z�ð2nþ1Þ=ð2nþ2Þ (22)
Rgy ¼ aNn ~RgyðzÞ; ~Rgyðz � 1Þ / z�ð2n�1Þ=ð2nþ2Þ (23)
The agreement between Equation (16) and Equation (22)

or Equation (18) and Equation (23), respectively, provides a

check on the self-consistency of our scaling arguments.

However, it is important to bear in mind that the blob

picture of polymer brushes, as developed by Alexander,[41]

Daoud and Cotton,[8] Halperin,[1,43] and many others, is a

severe simplification of reality, since its basic assumptions

that (i) all chains in a polymer brush are stretched in the

same way, and (ii) the chain ends are all at a distance h

from the grafting sites, are not true. Treatments based on

the self-consistent field theory[67–70,72–77] and computer

simulations[3,22,66,71,78–84] have shown that chain ends are

not confined at the outer boundary of the brush, and the

monomer density distribution is a non-trivial function,

that cannot be described by the blob model. However, it is

widely believed that the blob model yields correctly the

power laws of chain linear dimensions in terms of grafting

density and chain length, so the shortcomings mentioned

above affect the pre-factors in these power laws only. In

this spirit, we have extended the blob model for brushes in

cylindrical geometry in the present section, taking the

anisotropy in the shape of the blobs into account to predict

the scaling behavior of both the brush height h (which

corresponds to the chain end-to-end distance R and

the x-component Rgx of the gyration radius) and of the

transverse gyration radius components Rgy, Rgz. To the best

of our knowledge, the latter have not been considered in

the previous literature.
Monte Carlo Methodology

We consider here the simplest lattice model of polymers

under good solvent conditions, namely the self-avoiding

walk on the simple cubic lattice. The backbone of the bottle

brush is just taken to be the z-axis of the lattice, and in

order to avoid any effects due to the ends of the backbone,
www.mts-journal.de 665
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we choose periodic boundary conditions in the z-direction.

The length of the backbone is taken to be Lb lattice

spacings, and the lattice spacing henceforth is taken as one

unit of length. Note that in order to avoid finite size effects

Lb has to be chosen large enough so that no side chain can

interact with its own ‘‘images’’ created by the periodic

boundary condition, i.e., Rgz � Lb.

We create configurations of the bottle brush polymers

applying the PERM.[46–49,85–88] This algorithm is based on

the biased chain growth algorithm of Rosenbluth and

Rosenbluth,[89] and extends it by resampling technique

(‘‘population control’’[46]) with depth-first implementa-

tion. Similar to a recent study of star polymers[47,48] all side

chains of the bottle brush are grown simultaneously,

adding one monomer to each side chain one after the other

before the growth process of the first chain continues by

the next step.

When a monomer is added to a chain of length n� 1

(containing n monomers) at the nth step, one scans the

neighborhood of the chain end to identify the free

neighboring sites of the chain end, to which a monomer

could be added. Out of these nfree sites available for the

addition of a monomer one site is chosen with the

probability pn,i for the ith direction. One has the freedom to

sample these steps from a wide range of possible distri-

butions, e.g., pn,i¼ 1/nfree, if one site is chosen at random,

and this additional bias is taken into account by suitable

weight factors. The total weight Wn of a chain of length n

with an unbiased sampling is determined recursively by

Wn ¼ Pn
k¼1wk ¼ Wn�1wn. While the weight wn is gained at

the nth step with a probability pn,i, one has to use wn/pn,i
instead of wn. The partition sum of a chain of length n (at

the nth step) is approximated as
Macrom
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Zn � Ẑn � M�1
n

XMn

a¼1

WnðaÞ; (24)
where Mn is the total number of configurations {a}, and

averages of any chain property (e.g., its end-to-end dis-

tance, gyration radius components, etc.) A(a) are ob-

tained as
An ¼ 1

Mn

PMn

a¼1
AðaÞWnðaÞ

Zn
(25)
As is well-known from ref.[90], for this original biased

sampling[89] the statistical errors for large n are very hard

to control. This problem is alleviated by population

control.[85] One introduces two thresholds
Wþ
n ¼ Cþ Ẑn; W�

n ¼ C� Ẑn (26)
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where Ẑn is the current estimate of the partition sum, and

Cþ and C� are constants of order unity. The optimal ratio

between Cþ and C� is found to be Cþ/C�	 10 in general. If

Wn exceeds Wþ
n for the configuration a, one produces k

identical copies of this configuration, replaces their weight

Wn by Wn/k, and uses these copies as members of the

population for the next step, where one adds a monomer to

go from chain length n to nþ 1. However, if Wn < W�
n , one

draws a random number h, uniformly distributed between

zero and one. If h< 1/2, the configuration is eliminated

from the population when one grows the chains from

length n to nþ 1. This ‘‘pruning’’ or ‘‘enriching’’ step

has given the PERM algorithm its name. On the other hand,

if h� 1/2, one keeps the configuration and replaces its

weight Wn by 2Wn. In a depth-first implementation, at

each time one deals with only a single configuration until a

chain has been grown either to the end of reaching the

maximum length or to be killed in between, and handles

the copies by recursion. Since only a single configuration

has to be remembered during the run, it requires much less

memory.

In our implementation, we used Wþ
n ¼ 1 and W�

n ¼ 0 for

the first configuration hitting chain length n. For the

following configurations, we used Wþ
n ¼ CẐnðcn=c0Þ and

W�
n ¼ 0:15Wþ

n , here C¼ 3.0 is a positive constant, and cn is

the total number of configurations of length n already

created during the run. The bias of growing side chains was

used by giving higher probabilities in the direction where

there are more free next neighbor sites and in the outward

directions perpendicular to the backbone, where the second

part of bias decreases with the length of side chains and

increases with the grafting density. Totally 105–106 inde-

pendent configurations were obtained in most cases we

simulated.

Typical simulations used backbone lengths Lb ¼ 32, 64,

and 128, f¼ 1 (one chain per grafting site of the backbone,

although occasionally also f¼ 2 and f¼ 4 were used), and

grafting densities s¼ 1/32, 1/16, 1/8, 1/4, 1/2, and 1. The

side chain length N was varied up to N¼ 2 000. So a typical

bottle brush with Lb¼ 128, s¼ 1/4 (i.e., nc¼32 side chains),

and N¼ 2 000 contains a total number of monomers

Ntot ¼ Lb þncN¼ 64 128. Figure 2 shows a snapshot con-

figuration of such a bottle brush polymer. Note that most

other simulation algorithms for polymers[65,90–92] would

fail to produce a large sample of well-equilibrated confi-

gurations of bottle brush polymers of this size: dynamic

Monte Carlo algorithms using local moves involve a

relaxation time (in units of Monte Carlo steps per mono-

mer [MCS]) of order Nz where z¼ 2nþ 1 if one assumes that

the side chains relax independently of each other and one

applies the Rouse model[93] in the good solvent regime.[91]

For N¼ 2 000 such an estimate would imply that the time

between subsequent statistically independent confi-

gurations is of the order of 107 MCS, which clearly is
DOI: 10.1002/mats.200700031
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Figure 2. Snapshot picture of a bottle brush polymer with Lb¼ 128
s¼ 1/4, and N¼ 2 000 on the simple cubic lattice. Note that
different chains are displayed in different colors to distinguish
them, and the periodic boundary condition is undone for the sake
of a better visibility in the visualization of this configuration.
impractical. While the pivot algorithm[65] would provide a

significantly faster relaxation in the mushroom regime,

the acceptance rate of the pivot moves quickly deteriorates

when the monomer density increases. This algorithm

could equilibrate the outer region of the bottle brush rather

efficiently, but would fail to equilibrate the chain confi-

gurations near the backbone. The configurational bias

algorithm[92,94] would be an interesting alternative when

the monomer density is high, but it is not expected to work

for very long chains, such as N¼ 2 000. Also, while the

simple enrichment technique is useful to study both star

polymers[95] and polymer brushes on flat substrates[96] it

also works only for chain lengths up to about N¼ 100.

Thus, existing Monte Carlo simulations of one-component

bottle brushes under good solvent conditions either used

the bond fluctuation model[91,97] on the simple cubic

lattice applying local moves with side chain lengths up to

N¼ 41[30] or 64[36] or the pivot algorithm[65] with side

chain lengths up to N¼ 80,[34] but considering flexible

backbone of length L¼ 800. An alternative approach was

followed by Yethiraj[31] who studied an off-lattice tangent

hard sphere model by a pivot algorithm in the continuum,

for N
 50. All these studies addressed the question of the

overall conformation of the bottle brush for a flexible

backbone, and did not address in detail the conformations

of the side chains. Only the total mean square radius of

gyration of the side chains was estimated occasionally,
Macromol. Theory Simul. 2007, 16, 660–689
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obtaining[30,36] R2
g / N1:2 or[31] R2

g / N1:36 and[34] R2
g / N1:4.

However, due to the smallness of the side chain lengths

used in these studies, as quoted above, these results have

to be considered as somewhat preliminary, and also a

systematic study of the dependence on both N and s was

not presented. We also note that the conclusions of the

quoted papers are somewhat contradictory.

An interesting alternative simulation method to the

Monte Carlo study of polymeric systems is molecular

dynamics,[91] of course. While in corresponding studies of a

bead-spring model of polymer chains for flat brushes[82]

chain lengths N up to N¼ 200 were used, for chains grafted

to thin cylinders[22] the three chain lengths N¼ 50, 100,

and 150 were used. For N¼ 50, also four values of grafting

density were studied.[22] Murat and Grest[22] used these

data to test the scaling prediction for the density profile,

Equation (6), but found that r(r) is better compatible with

rðrÞ / r�0:5 rather than rðrÞ / r�0:65. However, for N¼ 50

the range where the power law is supposed to apply is very

restricted, and hence this discrepancy was not considered

to be a problem for the theory.[22]

Thus, we conclude that only due to the use of the PERM

algorithm has it become possible to study such large bottle

brush polymers as depicted in Figure 2. Nevertheless, as we

shall see in the next section, even for such large side chain

lengths one cannot yet reach the asymptotic region where

the power laws derived in the previous section are strictly

valid.
Monte Carlo Results for One-Component
Bottle-Brush Polymers

In Figure 3, we present our data for the mean square end-

to-end radii and gyration radii components of the side

chains. Note that for each chain configuration a separate

local coordinate system for the analysis of the chain

configuration needs to be used; while the z-axis is always

oriented simply along the backbone, the x-axis is oriented

perpendicular to the z-axis and goes through the center of

mass of the chain in this particular configuration. The

y-axis then also is fixed simply from the requirement that

it is perpendicular to both the x- and z-axes.

For a polymer mushroom (which is obtained if the

grafting density s is sufficiently small) we expect that all

chain linear dimensions scale as Nn, for sufficiently long

chains. Therefore, we have normalized all mean square

linear dimensions in Figure 3 by a factor N2n, using the

theoretical value[64,65] n¼ 0.588. However, as we see from

Figure 3 in the range 10
N
 103 displayed there, even for

the smallest s presented, where a single side chain is

simulated, the shown ratios are not constant. This fact

indicates that corrections to scaling[64,65] should not be

disregarded, and this problem clearly complicates the test
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Figure 4. Log–log plot of R2
? ¼ R2

x þ R2
y divided by N2v versus

z ¼ sNn, including all data for N> 5, and three choices of Lb as
indicated (a), or alternatively removing data affected by the finite
size of the backbone length via the periodic boundary condition
(b). The slope indicated in (b) by the dotted straight line corre-
sponds to the scaling estimate from Equation (21),
2ð1 � nÞ=ð1 þ nÞ � 0:519:

Figure 3. Log–log plot of the mean square gyration radius com-
ponents hR2

gxi (a), hR2
gyi (b), and hR2

gzi (c), versus side chain length
N. Only data for N> 10 are included. All data are for f¼ 1, Lb¼ 128,
and various choices of s. All chain mean square linear dimensions
are normalized by N2v with n ¼ n3 � 0:588.

668
of the scaling predictions derived above. For the largest

value of s included (s¼ 1/4), the irregular behavior of some

of the data [Figure 3(b)] indicate a deterioration of

statistical accuracy. This problem gets worse for increasing

number of side chains nc.

In any case, our data do corroborate our statement (made

on general grounds, considering the lower symmetry of
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bottle brushes as compared to stars or planar brushes,

respectively) that all three mean square gyration radius

components differ from each other.

A further complication is due to the residual finite size

effect. Figure 4 shows a plot of R2
? ¼ R2

x þ R2
y versus the

scaling variable z ¼ sNn. One can recognize that for small

Lb but large N and not too large s systematic deviations

from scaling occur [Figure 4(a)], which simply arise

from the fact that an additional scaling variable (related

to R2
z

� �1=2
=Lb) comes into play when R2

z

� �1=2
no longer is

negligibly smaller than Lb. While for real bottle brush

polymers with stiff backbone effects due to the finite

lengths of the backbone are physically meaningful and

hence of interest, the situation is different in our simu-

lation due to the use of periodic boundary conditions. The

choice of periodic boundary conditions is motivated by

the desire to study the characteristic structure in a bottle
DOI: 10.1002/mats.200700031
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Figure 5. Log–log plot of hR2
gxi=N2n (a), hR2

gyi=N2n (b), and hR2
gzi=N2n

(c) versus the scaling variable z ¼ sNn, using the data in Figure 3
but for N> 50. The slopes indicated by dashed straight lines
illustrate the scaling estimates from Equation (21), 2ð1 � nÞ= ð1 þ
nÞ � 0:519 (a), from Equation (23), �ð2n� 1Þ=ðnþ 1Þ � �0:111 (b),
and from Equation (22), �ð2nþ 1ÞÞ=ðnþ 1Þ � �1:370 (c).

Figure 6. Log–log plot of the mean-square gyration radius com-
ponents hR2

gx;sliti=N2n2 (a), hR2
gy;sliti=N2n2 (b), and hR2

gz;sliti (c) versus
side chain lengthN with v2 ¼ 3/4. As in Figure 3, only data for N> 5
are included. Various choices of s are included. Note that the
walls of the slit are located at z ¼ �ðs�1 þ 1Þ=2 and are strictly
repulsive hard walls. One chain end is fixed at the x-axis at z¼0,
and since the x-axis represents the backbone if this polymer in a
slit is taken as a model of a disk-shaped section of a bottle brush,
all sites of the x-axis are excluded from occupation of the
monomers of the (side) chain as well.
brush polymer far away from the backbone ends, not

affected by any finite size effects. However, if hR2
gzi

1=2

becomes comparable to Lb, each chain interacts with its

own periodic images, and this is an unphysical, undesir-

able, finite size effect. Therefore, in [Figure 4(b)], the data
Macromol. Theory Simul. 2007, 16, 660–689
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Figure 7. Log–log plot of Rgx;slit
� �

=N2n (a), hR2
gy;sliti=N2n, and

hR2
gzsliti=N2n (c) versus the scaling variable z ¼ sNn. Only data

for N> 10 are included. The slopes indicated by dashed straight
lines illustrate the scaling exponent implied by Equation (27),
namely 3/2v� 2 (a,b) and �2 (c), respectively. In (c) s�1 is replaced
by s�1 þ 1 to remove a finite-size effect.
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affected by such finite size effects are not included. One

finds a reasonable data collapse of the scaled mean square

end-to-end distance when one plots the data versus the

scaling variable z ¼ sNn. These results constitute the first

comprehensive test of the scaling relations for bottle brush

polymers, Equation (21)–(23), and the consistency between

the data and the proposed scaling structure in terms of the

variable z is indeed very gratifying. On the other hand, it is

also evident from Figure 4 and 5 that only a mild stretching
Figure 8. Log–log plot of hR2
gxi=hR2

gx;sliti (a), hR2
gyi=hR2

gy;sliti (b), and
hR2

gzi=hR2
gz;sliti versus N, for values of s strictly corresponding to

each other, as indicated.
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of the side chains away from the backbone is observed, and

in this region one is still far away from the region of strong

stretching, where the simple power laws [Equation (8b)],

(18), and (16) apply. Obviously, the crossover from the

simple mushroom behavior (observed for z ¼ sNn � 1) to

the strongly stretched bottle brush (observed for z � 1)

takes at least one decade of the scaling variable z. There is a

rather gradual and smooth crossover rather than a kink-

like behavior of the scaling function. While in the x-compo-

nent at least near z¼ 10 a weak onset of stretching can be

recognized, hardly any evidence for the contraction of the y

and z-components is seen.

Of course, this observation does not imply that the

scaling theory is wrong, it rather is implied that

much longer chains (or much higher grafting densities)
Figure 9. Radial distribution function r (r) plotted versus r, for
N¼ 500 (a), and N¼ 1 500 (b), for various choices of s, as indi-
cated. Note that due to the discreteness of the lattice, the
number N (r) of monomers in the interval [r, rþdr] is not
normalized by the factor pr that applies in the continuum limit,
but by the number Nr of lattice sites (x,y) satisfying the constraint
r2¼ x2 þ y2, i.e.,

P
r NðrÞ ¼ N and rðrÞ ¼ NðrÞ=Nr . All data refer to

Lb ¼ 128 and f¼ 1.
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are needed to reach the scaling regime. We also note

that polymer coils have a ‘‘soap-like’’ shape, i.e., the eigen-

values of the squared gyration radius tensor scale like

14.8:3.06:1.[98] As a consequence, the chains in the

bottle-brush can develop a significant anisotropy without

additional stretch, by orienting the direction of the eigen-

vector belonging to the smallest eigenvalue along the

cylinder axis while the eigenvector belonging to the largest

eigenvalue is oriented in the radial x-direction.

In order to test what one would expect if the picture of

the chains as quasi-two-dimensional self-avoiding walks

were correct, we have also studied single chains grafted to

a straight backbone of length s, s¼ 1, 1/3, 1/5, . . . 1/63

which are confined between two parallel repulsive infinite

walls. The grafting site of the chains was chosen at the

site located symmetrically between the confining walls in

the slit [if the grafting site is chosen to be the origin of the

coordinate system, the confining hard walls occur at
Figure 10. Density distribution function r(z) plotted versus the
coordinate z along the backbones, for N¼ 500 (a), and N¼ 1 500
(b), and various choices of s, as indicated. This distribution is
normalized by choosing

P
z rðzÞ ¼ 1.
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Figure 11. Density distributions of chain ends re(z) plotted versus
z, for the same choice of parameters as in Figure 10.

Figure 12. Radial density distribution of chain ends re(r) plotted
versus r, for the same choice of parameters as in Figure 9–11.

672
z ¼ �ðs�1 þ 1Þ=2]. Figure 6 gives log–log plots of the

gyration radii components of such chains confined to such

disk-like slits, which we denote as Rga,slit, a¼ x, y, and z, in

order to distinguish then from the actual gyration radii

components of the side chains in a bottle brush polymer.

One can clearly see that hR2
gx;sliti, hR2

gy;sliti scale as N2n2 ¼
N3=2 for large N, as it must be. These data are very similar to

data for chains confined between repulsive walls without

a grafting to a piece of a rigid backbone,[99] of course. In the

corresponding scaling plot (Figure 7) one can see that both

R2
gx;slit and R2

gy;slit have the simple crossover scaling

behavior[45,100]
Macrom
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R2
gx;slit

D E
¼ N2n ~f xðsNnÞ;

R2
gy;slit

D E
¼ N2n ~f yðsNnÞ

ð27Þ
with ~f xðzÞ / ~f yðzÞ / z2ðn2�nÞ=n with n2 ¼ 3/4, as expected,

and seen in related previous work.[99,101] Obviously,
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although we use in Figure 6 and 7 the same range of N

and s as in Figure 3 and 5, the behavior is rather different.

As expected from our scaling analysis presented above, the

confinement that a chain experiences in a bottle brush due

to the presence of the other chains is much weaker than

the confinement of a chain in the equivalent disk-like

sector between confining walls. This fact is demonstrated

very directly in Figure 8, where the ratios hR2
gai=hR2

ga;sliti are

plotted versus N for the corresponding values of s. If

the hypothesis of quasi-two-dimensional confinement

were valid, we would expect these ratios to be constants.

Obviously, this is not the case.

As a final point of this section, we discuss the distri-

bution of monomers (Figure 9 and 10) and chain ends

(Figure 11 and 12) in the simulated model for the bottle

brush polymer. Unlike corresponding radial density

distributions for the off-lattice bead-spring model of

Murat and Grest,[22] where for small distances close to

the backbone a kind of ‘‘layering’’ was observed, we see a

rather smooth behavior also for small distances (Figure 9).
DOI: 10.1002/mats.200700031
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Figure 13. Schematic description of perfect phase separation of
side chains in a cylindrical binary (A,B) bottle brush polymer into a
Janus cylinder structure, where the A-chains occupy the lower
hemicylinder and the B-chains occupy the upper hemicylinder.
The interface between B-rich and A-rich phases is assumed to be
oriented in the yz-plane. The figure indicates the characterization
of this order in terms of a local order parameter, namely the
vector ~cðzÞ oriented normal to the interface at every grafting site.
The absolute value of this vector characterizes a suitable average
of the local phase separation in a disk of the cylinder located at z
(see text). For perfect order hj~cðzÞji ¼ 1 and ~cðzÞ is oriented along
the same axis for the whole bottle brush polymer.
For larger distances, the behavior is qualitatively very

similar. Again we fail to provide a clear-cut evidence for

the predicted power law decay, Equation (6). Note, how-

ever, that this power law is supposed to hold only in the

strong stretching limit, where [Equation 8(b)] is observable

(which we do not verify either), and in addition the strin-

gent condition 1 � r � h needs to be obeyed, to have this

power law. Although our simulations encompass much

longer chains than every previous work on bottle brushes,

we clearly fail to satisfy this double inequality.

Thus we reach the important conclusion, that the

scaling predictions should be observable only for chains

that are much longer (or grafting densities that are much

higher) than are accessible in our study (and presumably a

similar caveat also holds for experiments).

Turning to the distribution along the backbone

(Figure 10), the periodicity due to the strictly periodic

spacing of grafting sites is clearly visible. If desired, one

could also study a random distribution of grafting sites

along the backbone, of course, but we have restricted

attention to the simplest case of a regular arrangement of

grafting sites only. The distribution of chain ends r(z)

exhibits an analogous periodicity for small values of s

only, while re(z) is approximately constant (Figure 11) for

larger values of s.

Most interesting is the radial distribution of chain ends

(Figure 12). One can see an increasing depression of re(r) for

small r when s increases. Again these data are similar to

the off-lattice results of Murat and Grest.[22] In no case do

we see the ‘‘dead zone’’ predicted by the self-consistent

field theory in the strong stretching limit,[21,24] however.
Phase Separation in Two-Component Bottle
Brushes: Theoretical Background

We still consider a bottle brush polymer with a strictly

rigid straight backbone, where at regularly distributed

grafting sites (grafting density s) side chains of length N

are attached, but now we assume that there are two

chemically different monomeric species, A and B, compos-

ing these side chains with NA ¼NB¼N. These systems

have found recent attention, suggesting the possibility of

intramolecular phase separation.[56–58] In a binary system

pairwise interaction energies eAA, eAB, and eBB are expected,

and consequently phase separation between A and B could

be driven by the Flory–Huggins parameter
Macrom
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x ¼ zc"=kBT; " ¼ "AB � ð"AA þ "BBÞ=2 (28)
where zc is the coordination number of the lattice, like in

the Flory–Huggins lattice model of phase separation in a

binary polymer blend.[44,45,50–52] However, since the side

chains are grafted to the backbone, only intramolecular
ol. Theory Simul. 2007, 16, 660–689
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phase separation is possible here. Actually, the energy

parameter e suffices for dense polymer blends or dense

block copolymer melts, where no solvent is pre-

sent.[44,45,50–52] For the problem of intramolecular phase

separation in a bottle brush, the solvent cannot be dis-

regarded and hence the enthalpy of mixing rather is

written as[52,56]
Emix=kBT ¼
Z

dV

v
½xASfAð~rÞfSð~rÞ

þ xBSfBð~rÞfSð~rÞ þ xABfAð~rÞfBð~rÞ� (29)
where v is the volume per monomer, fAð~rÞ, fBð~rÞ, and fSð~rÞ
are the local volume fractions of monomers of types A and

B, and the solvent density, respectively, and three pairwise

interaction parameters xAS, xBS, and xAB enter. The latter

xAB corresponds to the x-parameter written in Equation

(28), while the former two control the solvent quality for

polymers A and B, respectively. Of course, using the

incompressibility condition
fAð~rÞ þ fBð~rÞ þ fSð~rÞ ¼ 1 (30)
the solvent density can be eliminated from the problem

(but one should keep in mind that in the free energy

density there is an entropy of mixing term fSð~rÞlnfSð~rÞ
present[56]). In the framework of the lattice model studied

here, n� 1 and solvent molecules are only implicitly consi-

dered, identifying them with vacant sites. For simplicity,

the following discussion considers only the most sym-

metric case, where xAS¼xBS, and the numbers of A chains

and B chains are equal.
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Stepanyan et al.[56] used Equation (29) and (30), as the

starting point of a self-consistent field calculation, adding

conformational free energy contributions accounting for

the entropy associated with the stretching of Gaussian

chains. It is found that when xAB exceeds a critical value

x�
AB, intramolecular phase separation of Janus cylinder-

type occurs (Figure 13). Then an interface is formed,

containing the backbone of the bottle brush, such that

there is an excess of A-monomers below the interface and

an excess of B-monomers above the interface (or vice

versa). Assuming that at the position z of the backbone the

interface is oriented in x-direction, we can describe this

Janus-type phase separation in terms of an one-dimen-

sional order parameter density
Macrom
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cðzÞ ¼ ðnþ
B � nþ

A þ n�
A � n�

B Þ=ðnþ
A þ n�

A þ nþ
B

þ n�
B Þ (31)
where n�
A and n�

B are the numbers of A(B) monomers in the

interval [z, zþdz] with x> 0(nþ
A , nþ

B ) and x< 0(n�
A , n�

B ),

respectively. Since we shall see below that the orientation

of the interface is an important degree of freedom, we may

consider c(z) as the absolute value of a vector order

parameter ~cðzÞ, and the direction of ~cðzÞ is defined such

that c(z) takes a maximum. However, Stepanyan et al.[56]

did not consider the possibility of an inhomogeneity along

the z-axis, and they also did not derive how the order

parameter depends on the parameters N, s, and the various

x parameters of the problem [Equation (29)]. Stepanyan

et al.[56] also assume that the distribution of chain ends is a

delta function at the radius (or ‘‘height’’ h) respectively) of

the bottle brush, where h is given by h/a¼ (sa)1/4N3/4 in

the good solvent regime. They then find that phase sepa-

ration occurs for
x�
AB / 1=

ffiffiffiffi
N

p
(32)
but argue that this result holds only for a ‘‘marginal

solvent’’ rather than a good solvent, due to the mean-field

approximation used which neglects that inside a blob all

binary contacts are avoided, estimating the number of

contacts simply proportional to the product fAfB, cf.

Equation (29), and neglecting the correlations due to

excluded volume. The regime of marginal solvents is

reached near the u-point (which occurs for 1 � 2xAS ¼
1 � 2xBS ¼ 0), and requires that[56]
0 < 1 � 2xAS < N�1=3 (33)
where again prefactors of order unity are omitted.

Stepanyan et al.[56] extend Equation (32) by a simple

scaling-type argument, stating that the transition from the

mixed state to the separated state occurs when the energy
ol. Theory Simul. 2007, 16, 660–689
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of the A–B contacts per side chain, DE, is of the order of kBT.

They estimate this energy as
DE=kBT � NpðfÞxAB (34)
where pðfÞ is the probability of the A–B contact, which

depends on the average volume fraction f of the mono-

mers inside the brush. According to the mean field theory,

pðfÞ / f, where f ¼ N=h2, h being the radius of the

cylindrical brush. Using h / N3=4 [Equation (8b)] one finds

pðfÞ / N�1=2 and using this result in Equation (34) implies

DE=kBT / N1=2xAB, and from DE=kBT ¼ 1 we recover

Equation (32).

The merit of this simple argument is that it is readily

extended to other cases: e.g., for a u-solvent, we have[18]

h / N2=3 and hence pðfÞ / N�1=3, yielding[56]
x�
AB / N�2=3; u � solvent: (35)
For the poor solvent case, the bottle brush should

collapse to a cylinder densely filled with monomers, and

hence h / N1=2, f ¼ 1, and thus
x�
AB / N�1; poor solvent: (36)
Note that Equation (36) is the same relation as for a

dense bulk polymer blend or block copolymer melt,

respectively.[44,45,50–52]

The situation is more subtle in the good solvent case,

however, since there the probability of contact is no longer

given by the mean field result pðfÞ / f but rather by[45]
pðfÞ / f
5=4 / N�5=8 (37)
where the Flory approximation n¼ 3/5 was again used,

with f / N�1=2 when h / N3=4. Equation (34) and (37) now

imply
x�
AB / N�3=8; good solvent (38)
However, these crude estimates do not suffice to prove

that for xAB > x�
AB true long-range order of this Janus

cylinder type (Figure 13) is established. Hsu et al.[58]

suggested that there is also the need to consider variations

of the direction of the order parameter ~cðzÞ along the

z-direction (Figure 14). It was argued that for any finite side

chain length N also the cylinder radius (or brush height) h

is finite, and hence the system is one-dimensional. In

one-dimensional systems with short-range interactions at

non-zero temperatures no long-range order is possi-

ble.[102,103] The situation depicted in Figure 14 is reminis-

cent of the one-dimensional XY-model of a chain of spins

on a one-dimensional lattice where each spin at site i is
DOI: 10.1002/mats.200700031
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Figure 15. Schematic sketch of the temperature dependence of
the correlation length j of the ferromagnetic XY-model in a
cylinder of radius R.

Figure 14. Same as Figure 13, but allowing for a long wavelength
variation of the vector ~cðzÞ characterizing the local interface
orientation in the Janus cylinder.
described by an angle wi in the xy-plane, with 0
 i
 2p,

and where neighboring spins are coupled. This coupling is

described by the Hamiltonian
Macrom

� 2007
H ¼ �J
X
i

cosð’iþ1 � ’iÞ ¼ �J
X
i

~Siþ1 �~Si (39)
when ~Si ¼ ðcos’i; sin’iÞ is a unit vector in the xy-plane.

While mean field theory predicts that ferromagnetic order

occurs along the chain, for ferromagnetic exchange J> 0

and temperatures T less than the critical temperature Tc
MF

which is of the order of J/kB, the exact solution of this

model, Equation (39), shows[102,103] that Tc ¼ 0, since

ferromagnetic long-range order is unstable against long

wavelength fluctuations. One can show that the spin–spin

correlation function for large z¼ a ( j� i) decays to zero

exponentially fast
~Si �~Sj
D E

/ exp½�z=j�; z ! 1 (40)
where a is the lattice spacing of this spin chain. The

correlation length j gradually grows as the temperature is

lowered
j ¼ 2aðJ=kBTÞ (41)
Equation (41) is at variance with mean field theory,

which rather would predict[102] (the index MF stands for

‘‘mean field’’ throughout)
jMF / ðT=TMF
c � 1Þ�nMF ; nMF ¼ 1=2: (42)
Figure 16. Snapshot pictures of bottle brush configurations for
Lb ¼64, q¼ 1, N¼ 18, s¼ 1, and three choices of qAB, qAB¼ 1.0 (a),
qAB¼0.4 (b), and qAB¼0.1 (c). Monomers A, monomers B, and a
straight rigid backbone are shown in black, light gray, and white
colors, respectively.
This critical divergence at a non-zero critical tempera-

ture Tc
MF is completely washed out by the fluctuations:

rather than diverging at Tc
MF, the actual correlation length

j [Equation (41)] at Tc
MF still is only of the order of the

lattice spacing.
ol. Theory Simul. 2007, 16, 660–689
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This consideration can be generalized to spin systems on

lattices which have a large but finite size in (d� 1)

dimensions and are infinite in one space dimensions

only.[104,105] For example, when we consider an infinitely

long cylinder of cross section pR2 we expect that Equation

(41), (42) are replaced by the finite size scaling rela-

tion[106,107]
j ¼ j1 ~jðR=j1Þ; ~jðz � 1Þ ¼ 1; ~jðz � 1Þ / z (43)
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where j1 is the correlation length of the XY model on a

lattice which is infinitely large in all d¼ 3 directions of

space.
Fig
mh

and
mo
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j1 / ðT=Tc � 1Þ�n (44)
where again kBTc / J (but with a smaller constant of

proportionality than that in the relation kBT
MF
c / J), and n

is the correlation length exponent of the XY model (n�
0.67).[108] Equation (43) describes a smooth crossover of the

ferromagnetic correlation length describing spin correla-

tions along the axis of the cylinder from bulk, Equation

(44), to a quasi-one-dimensional variation. For T � Tc the

correlation length resembles Equation (41), since[104,105]
j ¼ 2pGðTÞR2=kBT � 2pðR2=aÞðJ=kBTÞ; T ! 0 (45)
the ‘‘helicity modulus’’ (also called ‘‘spin wave stiffness’’)

G(T) is of order J for T!0 and shows a critical vanishing as

T! Tc from below, in the thermodynamic limit R!1.
ure 17. (a) Average number of AB pairs per monomer
ABi=ðNncÞ plotted versus qAB for side chain lengths N¼6, 12,

18. All data refer to s¼ 1, Lb ¼64. (b) Specific heat per
nomer, cv=ðNncÞ plotted versus qAB for N¼6, 12, and 18.

ol. Theory Simul. 2007, 16, 660–689

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
However, for finite R there is a finite size rounding of this

singularity of GðT ! TcÞ, such that GðT ¼ TcÞ is of order 1/R,

and hence a smooth crossover to Equation (43) occurs near

Tc. Figure 15 gives a qualitative account of this behavior.

For more details of this finite size crossover we refer to the

literature.[104,105] But we suggest a qualitatively similar

behavior for the domain size j of segregated A-rich and

B-rich domains in binary bottle brush polymers. So, when

we study the correlation function of the order parameter

considered in Equation (31)
Figu
Lb ¼
tran
plo
qAB
GcðzÞ ¼ ~cðz0Þ � ~cðz0 þ zÞ
D E

/ expð�z=jcÞ (46)
we expect that the correlation length jc describing the

local phase separation in the direction along the backbone

of the bottle brush polymer remains of order unity as long

as x�1
AB exceeds x� �1

AB distinctly. For xAB near x�
AB we expect

that jc becomes of order h, the radius of the bottle brush.

For xAB � x�
AB, we expect jc / h2xAB, by analogy with
re 18. (a) Radial density distribution r(r) plotted versus r for
64, N¼ 18, q¼ 1, s¼ 1, f¼ 1, and various qAB. (b) Normalized
sverse mean square end-to-end distance ðhR2

xi þ hR2
yiÞ=N2n

tted versus N, for Lb ¼64, q¼ 1, s¼ 1, f¼ 1, and three choices of
as shown.
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Equation (45). Unfortunately, the test of those predictions

even in the poor solvent case where x� �1
AB is largest, is

rather difficult, since the prefactor in the relation

x�
AB / 1=N is unknown.
Figure 19. Vectors ~R
a

cmðnÞ from the grafting site n to the xy-
component of the center of mass of the respective chain, and
corresponding unit vectors (denoted by arrows). For a perfectly
phase separated structure with the interface between A and B
being the yz plane, for a¼A all unit vectors point along the
negative x-axis and for a¼B all unit vectors point along the
positive x-axis.
Monte Carlo Results for Binary Bottle Brush
Polymers

We use the same lattice model as considered before in our

Monte Carlo study of the chain conformations of one-

component bottle brush polymers, but now in the

construction of the weights Wn(a) we have to take into

account that the partition function now is
Macrom
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Z ¼
X
a

qmAAþmBBqmAB
AB (47)
with (remember that we restrict attention to the choice

eAA ¼ eBB)
q ¼ expð�"AA=kBTÞ; qAB ¼ expð�"AB=kBTÞ (48)
Figure 20. Correlation function Cn measuring local Janus cylin-
der-type phase separation plotted versus n, for 12 (a), and 18 (b).
Various choices of qAB are included, as indicated in the figure.
Curves show fits to Equation (50). All data refer to good solvent
conditions (q¼ 1), and Lb¼64, s¼ 1, f¼ 1.
In Equation (47) the numbers of non-bonded occupied

nearest-neighbor monomer pairs AA, BB, and AB are

denoted as mAA, mBB, and mAB, respectively. Note that the

sum in Equation (47) extends over all possible configura-

tions {a} of the bottle brush polymer. The choice q¼ qAB¼ 1

corresponds to the previously studied one-component

bottle brush under good solvent conditions, while the

choice q¼ qAB>1 corresponds to variable solvent quality

for the one-component brush (note that q¼ qAB means

x¼ 0, Equation (28), and also xAB which is proportional to x

then vanishes: this means there is no chemical incom-

patibility between A and B any longer, no physical

difference between A and B exists any more). From

previous work on single chains[46] we know that the

u-point occurs for qu¼ 1.3087. Therefore, we varied q in the

range 1 
 q 
 1:5; q¼ 1.5 hence falls in the regime of poor

solvent quality already. Of course, in order to have rather

compact configurations of cylindrical bottle brushes a

choice of much larger q would be desirable. However, the

efficiency of the PERM algorithm quickly deteriorates with

increasing q: for q¼ 1.5 we encounter already for rather

small values of the side chain length N such as N¼ 18 and a

backbone length of Lb¼ 64 huge statistical fluctuations.

The total size of the bottle brush polymer under poor

solvent conditions reached here, Ntot ¼ NsLb þ Lb ¼ 1 216,

is almost two orders of magnitude smaller than the

maximal size studied under good solvent conditions!

However, all known simulation algorithms for polymers

suffer from difficulties of equilibration in the limit of very

dense configurations.[90–92]
ol. Theory Simul. 2007, 16, 660–689
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Since we are mostly interested in the high grafting limit

(s¼ 1, so the number of side chains nc¼ sLb ¼ Lb) in the

PERM algorithm where all side chains grow simulta-

neously we use a bias factor such that side chains are
www.mts-journal.de 677
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grown with higher probability in the directions perpendi-

cular to the backbone. This additional bias (which is not

present in the standard Rosenbluth[89] and PERM[46]

methods) must be taken into account by suitable weight

factors. About 106 independent configurations were

typically generated.

Figure 16–18 now show typical results for the good

solvent case (q¼ 1) but varying the parameter qAB

controlling the chemical incompatibility. The visual

inspection of the configurations (Figure 16) reveals little

influence of qAB, however, and this observation is corro-

borated by the more quantitative analysis: the average

number of A–B pairs per monomer is extremely small

[Figure 17(a)] even for qAB ¼ 1, and hence not much

enthalpy could be won if A-chains and B-chains avoid each

other: due to the excluded volume interaction, very few

nearest neighbor contacts between any non-bonded

monomers occur in our bottle brush model. For N¼ 18
Figure 21. Distribution P(u) of the angle u between the vectors
towards the centers of mass of subsequent (unlike) side chains
plotted versus u/p, for N¼ 12 (a) and N¼ 18 (b). Various choices of
qAB are included, as indicated.

Macromol. Theory Simul. 2007, 16, 660–689

� 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and qAB ¼ 1 the total number of AB contacts per chain is

only about 1.4, and increases with increasing N only very

slowly. So for the range of side chain lengths accessible

in our work, no phase separation should be expected. In

the specific heat one does see a weak peak near

0:2 
 qAB 
 0:4, but the height of this peak decreases very

strongly with increasing N. Furthermore, neither does the

peak position shift with increasing N (as one would expect

from Equation (38), if this peak would be a rounded

precursor of the phase transition that should occur at x�
AB

in the limit N ! 1) nor does the peak width decrease with

increasing N. Thus, it is clear that this peak is not an

indicator of a Janus cylinder-type phase separation in the

bottle brush: rather we interpret it as a Schottky-type

anomaly, expected from the fact that in our model of

alternatingly grafted A- and B-chains at a straight line

backbone with coordinates (0, 0, z) in the immediate

environment of the backbone [e.g., at lattice sites (x, y,
Figure 22. (a) Specific heat per monomer, CN=ðNncÞ, plotted versus
qAB for N¼6, 12, and 18 for s¼ 1, Lb¼64, and q¼ 1.3087 (a Theta
solvent). (b) Radial density distribution r(r) plotted versus r
for Lb¼64, N¼ 18, q¼ 1.3087, s¼ 1, f¼ 1, and three choices of
qAB.
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z)¼ (�1, 0, z) or (0,� 1, z)] there is a non-zero a-priori

probability of 1/4 that between the first monomer of the

chain grafted at z and the first monomer of the chain

grafted at zþ 1 a nearest-neighbor contact occurs. The

finite energy from this local contacts near the backbone

gives rise to the peak in the specific heat.

Also the radial density profile [Figure 18(a)] shows

little effects of varying qAB, and there is also no effect in

the gyration radius component hR2
g?i ¼ hR2

gxi þ hR2
gyi of the

side chains, although a weak increase occurs in the

corresponding component of the end-to-end distance

[Figure 18(b)]. In the latter figure, one can see for small

N an even–odd oscillation, but this lattice effect clearly has

died out for N> 10.

In order to test for correlations measuring local phase

separation along the backbone, Equation (46) is somewhat

cumbersome to implement numerically, since for each z
Figure 23. (a) Normalized transverse mean square end-to-end
distance ðhR2

xi þ hR2
yiÞ=N plotted versus N, for Lb ¼64, s¼ 1,

f¼ 1, and q¼ 1.3087 (Theta solvent). Three choices of qAB are
included. (b) Distribution P(u) of the angle between the vectors
towards the centers of mass of subsequent (unlike) side chains
plotted versus u/p, for N¼ 18, other parameters as in (a).
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one has to find the direction of ~cðzÞ from the condition that
~cðzÞ
�� �� is maximal [cf. Equation (31)]. A simpler and similar

correlation function has been defined from the vectors

pointing from the grafting site i to the center of mass of the

respective side chains. Projecting this vector into the

xy-plane and defining an unit vector ~S
a

i (a¼A or B) along

this projection (Figure 19) we define a correlation function

Cn as follows
Figu
n, f
qAB
the
wh
the
z¼
Cn � ~S
A

i �~S
A

iþn

D E
þ ~S

B

iþ1 �~S
B

iþ1þn

D Eh i.
2 (49)
Here we have explicitly incorporated the alternating

grafting ABAB. . . of side chains along the backbone. The

average . . .h i in Equation (49) includes an averaging over

all sites {i} on which A chains are grafted, in order to

improve the statistics. If perfect long-range order occurs, as
re 24. Correlation function Cn [Equation (49)] plotted versus
or Lb¼64, q¼ 1.3087, s¼ 1, f¼ 1, N¼ 12, and various choices of
, as indicated. Case (a) refers to a choice of unit vectors from
z-axis to the center of mass of the chain that is grafted at z¼ i,

ile case (b) refers to a choice of unit vectors from the z-axis to
center of mass of all monomers of type a in the xy-plane at
i. Curves are fits to Equation (50).
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Figure 25. Snapshot pictures of bottle brush conformations for Lb ¼64, q¼ 1.5, N¼ 18, s¼ 1, and three choices of qAB, namely qAB ¼ 1.5 (a),
qAB¼0.6 (b), and qAB¼0.1 (c). Monomers A, monomers B, and a straight rigid backbone are shown in black, light gray, and white colors,
respectively.

680
implied in Figure 19, we clearly have Cn¼ 1 independent of

n, while for the case of short-range order, we expect

Cn / expð�n=jÞ. Actually, considering the fact that we use

a periodic boundary condition, we have analyzed our

numerical data in terms of the ansatz
Macrom

� 2007
Cn / fexpð�n=jÞ þ exp½�ðLb � nÞ=j�g (50)
Figure 20 shows our data for Cn for the three choices

of N: indeed we recognize that Cn decays to zero with

increasing n, but the increase does get slower with

increasing side chain length N. The scale of this correlation

effect clearly increases with decreasing qAB. While for N¼ 6

the correlation length j hardly depends on qAB, for large N a

slight increase in j with decreasing qAB is suggested.

In an earlier simulation study of phase separation in

binary bottle brushes,[57] it was suggested to quantify the

degree of separation by considering the distribution of

the polar angle wi from the axis to monomer ‘. Defining a

variable sA
‘ , which is sA

‘ ¼ 1 if monomer ‘ is of type A and

zero otherwise, and similarly sB
‘ , de Jong and ten Brinke[57]
ol. Theory Simul. 2007, 16, 660–689
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introduced a function
PðfÞ ¼
X
‘

X
‘0

ðsA
‘ s

B
‘0 þ sB

‘ s
A
‘0 Þdðj’i � ’jj � fÞ (51)
and studied P(f) varying xAB. However, it turns out that

P(f) always has a rather complicated shape, and its

dependence on xAB is rather weak. Thus we investigated a

related but somewhat different function, namely the

histogram P(u) of the angle u between the vectors from the

axis to the centers of mass of subsequent unlike side chains

(Figure 21). We see in this distribution P(u) also only a

rather small dependence on xAB, however: while for qAB¼
1 this distribution is essentially structureless for

p=2 
 u 
 3p=2, for small qAB¼ 1 a rather pronounced

peak at u�p develops, indicating a preference of

antiparallel orientation of subsequent side chains. How-

ever, we feel that such indicators as P(f) or P(u) are

sensitive only to the presence of short-range order rather

than long-range order, and hence we shall focus on the

correlation function Cn in the following.

Next we focus on binary bottle brushes in a Theta

solvent (q¼ 1.3087). Figure 22–24 show that the results are
DOI: 10.1002/mats.200700031
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Figure 27. Radial density profile r(r) plotted versus r for Lb ¼64,
qAB¼0.1, q¼ 1.5, s¼ 1, f¼ 1, and three choices of N¼6, 12, and 18.

Figure 26. (a) Average number of AB pairs per monomers,
mABh i=ðNncÞ, plotted versus qAB for side chain lengths N¼6, 12,

and 18. All data refer to s¼ 1.5, Lb¼64. (b) Specific heat per
monomer, Cv=ðNncÞ, plotted versus qAB for N¼6, 12, and 18.
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not very different from the good solvent case: the average

number of AB pairs per monomer (not shown) and the

specific heat [Figure 22(a)] are hardly distinguishable from

the good solvent case. Also the radial density profile

[Figure 22(b)] exhibits only minor differences, slightly

larger densities occur inside the brush than in the good

solvent cases, and the transverse component of the

end-to-end distance does not exhibit much additional

stretching, when qAB decreases [Figure 23(a)]. The dis-

tribution P(u) is somewhat less flat near u�p [Figure 23(b)]

than in the good solvent case (Figure 21).

Also the correlation function Cn shows again an

exponential decay with n [Figure 24(a)], the correlation

length j being rather similar to the good solvent case

(Figure 20). Since one might argue that our definition of a

correlation function as given in Equation (49) is not the

optimal choice, and there might occur larger correlation

lengths for a more clever choice of a correlation function,

we tried a different choice which is also easy to compute.

Namely in the xy-plane at the index i of the z-coordinate

we determine the center of mass of the monomers of type

a¼A or B in that plane (the choice of a is dictated by the
Figure 28. Same as Figure 20, but for poor solvent conditions
(q¼ 1.5); for n¼ 12 (a), and n¼ 18 (b).
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Figure 29. Plot of the inverse correlation length 1/j versus the
inverse Flory–Huggins parameters, zc/x, for good solvent con-
ditions (q¼ 1), case (a), Theta solvent conditions (q¼ 1.3087), case
(b), and poor solvent conditions (q¼ 1.5), case (c). Data for three
chain lengths N¼6, 12, and 18 are included throughout. In several
cases two or three choices of backbone lengths Lb¼ 32, 48, and 64
are included as well. All data refer to the choice of one grafted
polymer per grafting site (s¼ 1).
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type of chain grafted at z¼ i). Then we introduce an unit

vector ~S
a

i from the z-axis in the direction towards this

center of mass. In terms of these unit vectors, which then

no longer distinguish from which chain the monomers a in

the i’th xy-plane are coming, we can again apply the

definition, Equation (49) to derive a correlation function.

This correlation function is shown in Figure 24(b). One sees

that the qualitative behavior of both types of correlation

functions is the same, but the decay of this second type of

correlation function even is slightly faster than that of the

correlation function used previously. Since normally,

when one studies problems involving a phase transition,

the correlation length of the order parameter is the largest

correlation length that one can find in the system, the

previous definition (focusing on the location of the center

of mass of the individual side chains) seems preferable to

us. It is possible of course that such differences between

different ways of measuring correlations along the back-

bone remain so pronounced for small N only, where the

correlation lengths are only of the order of a few lattice

spacings, and hence are less universal and depend on the

details of the studied quantity.

We now turn to the poor solvent case (Figure 25–28).

Already the snapshot picture of the bottle brush polymer

conformations (Figure 25) reveals that now the side chains

adopt much more compact configurations, due to the

collapse transition that very long single chains would

experience in a poor solvent.[45] If now qAB becomes small,

one recognizes a more pronounced phase separation along

the backbone of the polymer, although there still is no

long-range order present.

Still, neither the variation of the average number of AB

pairs per monomer mABh i=ðNncÞ with qAB [Figure 26(a)] nor
Figure 30. Inverse correlation length plotted versus 1/N, in the
limit qAB !0, for poor solvent conditions (q¼ 1.5), and three
choices of the backbone length Lb, to exclude that the data
are strongly affected by finite size artifacts. The straight line
indicates that the data are compatible with a simple linear
relation, j�1ðN;0Þ / 1=N.
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the specific heat [Figure 26(b)] give a hint for the

occurrence of a phase transition: in fact, these data still

look like in the good solvent case, Figure 17! Also the

distribution P(u) and the variation of ðhR2
xi þ hR2

yiÞ=N2=3

with N and qAB are qualitatively similar to the results

found for good solvents and Theta solvents, and therefore

are not shown here. More interesting is the monomer

density profile (Figure 27). While for N¼ 6 it still has the

same character as in the previous cases, for N¼ 12 and

N¼ 18 we recognize an inflection point. In fact, for a

collapsed polymer bottle brush we expect a profile exhib-

iting a flat interior region at melt densities (r(r) near

to r¼ 1), then an interfacial region where r(r) rapidly

decreases towards zero; in the ideal case reached for

q ! 1, the profile should even be a Heaviside step

function, in the continuum limit, rðrÞ ¼ uðh� rÞ. Obvious-

ly, for q¼ 1.5 we are still far from this behavior even for
Figure 31. Possible ground structures of binary bottle brush poly-
mers, showing the cross-section perpendicular to the backbone
(dot) in the continuum limit, for the symmetric case "AA ¼ "BB. Left
part shows a double cylinder, each cylinder has a radius h. Right
part shows a Janus cylinder (with the same volume this requires a
radius h0 ¼

ffiffiffi
2

p
h. The surface energy cost of the double cylinder is

4hpLbj"AAj, while the surface energy cost of the Janus cylinder is
2

ffiffiffi
2

p
hLbðpj"AAj þ j"ABjÞ. (b) Possible generalizations of the double

cylinder structure to the asymmetric case "AA 6¼ "BB. The left part
assumes "BB ¼ 0, so the B chains are in good solvent, only the
A-chains collapse. The right part assumes j"BBj>j"AAj, so that the
collapsed B-rich cylinder is denser than the A-rich cylinder.

Macromol. Theory Simul. 2007, 16, 660–689

� 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
N¼ 18, but we can identify an interface location at about

rint � 3:5, and in the interior of the cylindrical bottle brush

(for r< rint) the monomer density corresponds at least to a

concentrated polymer solution.

Figure 28 then shows again plots of Cn versus n, and the

resulting fits to Equation (50). The behavior is qualitatively

similar to the previous cases of good and Theta solvents

again, but now the decay of Cn with n is clearly much

slower, indicating a distinctly larger correlation length.

This result corroborates the qualitative observation made

already on the basis of the snapshot pictures, Figure 25,

and quantifies it.

Our findings on the local character of phase separation

in binary bottle brush polymers are now summarized in

Figure 29, where plots of the inverse correlation length 1/j

versus the inverse Flory–Huggins parameter zc=x ¼ kBT=

ð"AB � "AAÞ ¼ 1= ln½q=qAB� are shown (cf. Equation (28) and

remember our choice eAA ¼ eBB). This choice of variables is

motivated by the analogy with the XY-model in cylindrical

geometry, Equation (45); on the basis of this analogy, we

would expect that j�1 / T, i.e., we expect straight lines

that extrapolate through zero as T!0.
Figure 32. Correlation function Cz [Equation (57)] plotted versus z,
for Lb ¼64, q¼ 1.5, s¼ 1, f¼ 1, N¼6 (a) and N¼ 18 (b), and various
choices of qAB, as indicated.
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Figure 29 demonstrates that this analogy[58] clearly is

not perfect. Rather the data are compatible with an

extrapolation
Macrom
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j�1ðN; TÞ ¼ j�1ðN; q; 0Þ þ CNðqÞT ; T ! 0 (52)
where CN (q) is a coefficient that decreases with increasing

N and depends on solvent quality and with a non-zero

intercept j�1 (N, q, 0) implying that even in the ground

state (T¼ 0) there is lack of long-range order!

A very interesting question concerns the dependence of

j (N, T) on chain length. Figure 30 presents a plot of j�1 (N,

q, 0), as estimated from extrapolation of the data shown in

Figure 29 to qAB ¼ 0, as a function of 1/N. Indeed the data

are compatible with a relation j�1ðN; q; 0Þ / 1=N, implying

long-range order for N ! 1 in the ground state. In

principle, carrying out the same extrapolation at non-zero

temperature and testing for which temperature range

j�1ðN ! 1; TÞ starts to be non-zero, one could obtain an

estimate for the critical point of intramolecular phase

separation, that should occur (and then is well defined) in

the limit of infinite side chain length, N ! 1. Unfortu-

nately the accuracy of our estimates for j (N, T) does not

warrant such an analysis.

The reason for this surprising persistence of disorder at

low temperatures is configurational entropy, of course. As

long as q<1, the bottle brush polymer is not fully

compact, and when the density is small enough inside the

bottle brush (as it still is in the cases shown in Figure 27),

the two types of chains A, B can avoid making binary

contacts (as is evident from Figure 17 and 26): mABh i ! 0

as qAB! 0. Hence there is a perfect avoidance of ener-

getically unfavorable contacts in the ground state, and the

finite correlation length j (N, 0) and non-zero entropy of the

ground state are not a consequence of ‘‘frustrated inter-

actions’’[109] as in spin glasses, random field spin models,

etc.[109,110] In the present problem, if both q and N are not

too large, a ground state (for q! 0) occurs where the

structure of the bottle brush is NOT a cylinder with an

interface separating an A-rich and a B-rich domain, as

hypothesized in Figure 31! Thus a (coarse-grained) cross

section of the bottle brush in the xy-plane is NOT a circle,

separating A-rich and B-rich regions by a straight line, but

rather looks like the number 8, i.e., a dumbbell-like shape,

where a (more or less circular and more or less compact

A-rich region) occurs for x< 0, a similar B-rich region

occurs for x> 0, but no monomers (apart from the

backbone monomer) occur at the y-axis at x¼ 0. The

orientation of the x-axis can fluctuate as one moves along

the z-axis, and unlike Figure 14 [twisting an interface in a

cylinder along the z-axis clearly involves an energy cost,

and this is described by the helicity modulus in the XY-

model analogy, Equation (45)] the free energy cost of this

structural distortion is outweighed by the configurational
ol. Theory Simul. 2007, 16, 660–689
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entropy gain, at least for q and N not too large. It is an

unresolved question whether some critical value qc (N)

exists, where j�1 (N, q, 0) vanishes, and a long range

ordered ground state occurs. Another unresolved question

is, whether (another?) critical value q0cðNÞ exists, where

the character of the ground state changes such that the

local cross section of the binary bottle brush changes from

an 8-shaped to a circular density distribution. Actually, the

problem of alternatingly grafting A-chains and B-chains

along a line is equivalent to grafting symmetric AB diblock

copolymers along a line, such that the junction points of

the diblocks form a straight line. This problem is the

lower-dimensional analog of diblocks grafted with their

junction points to the flat interface between an unmixed

binary (A,B) homopolymer blend: for this problem it is

well-known (see Werner et al.[111] for references) that the

shape of the diblocks is dumbbell like, the A-block being

stretched away from the interface, in order to be embed-

ded in the A-rich phase underneath of the interface, and

the B-rich block also being stretched away from the inter-

face, in order to be embedded in the B-rich phase above the

interface.

As a consequence of our discussion, we call into question

the idea of the Janus cylinder-type phase separation[56–58]

and propose as an alternative possibility (Figure 31) the

‘‘double cylinder’’ (with cross-section resembling the

number 8). Which of these cross-sectional structures occur

will depend on the interaction parameters "AA ¼ "BB, and

eAB, of course. If the strength of the attractive interactions

j"AAj ¼ j"BBj exceeds the strength of the repulsion j"ABj
sufficiently much, it is clear that for T!0 the Janus

cylinder-type phase separation will occur, while in the

opposite limit, when j"ABj exceeds j"AAj ¼ j"BBj sufficiently

much, the double cylinder geometry will win. In the

macroscopic continuum limit a comparison of the res-

pective surface energies would imply that the double

cylinder geometry, which avoids an AB interface, but

requires for the same volume taken by A and B monomers

a surface area of pure A and B that is larger by a factor offfiffiffi
2

p
than for the Janus cylinder (Figure 31), becomes

energetically preferable for
"AB > ð
ffiffiffi
2

p
� 1Þpj"AAj ¼ 1:301j"AAj (53)
Since in the present work we consider the limit qAB ¼
expð�"AB=kBTÞ ! 0 at fixed q ¼ expð�"AA=kBTÞ, it is clear

that in our case Equation (53) is fulfilled. However, for the

‘‘most symmetric’’[52] choice of interaction parameters,

"AB ¼ �"AA ¼ �"BB, the conclusion would be different.

For lattice models Equation (53) is questionable since

very compact configurations of collapsed polymers must

respect the lattice structure, and different geometrical
DOI: 10.1002/mats.200700031
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factors, depending on the type of the lattice, in the in-

equality Equation (53) may occur.
Conclusion and Outlook

In this article, we have restricted attention exclusively to

static conformational properties of very long bottle brush

polymers with a rigid backbone. We feel that this ‘‘simple’’

limiting case needs to be understood first, before the very

interesting extension to the case of flexible or semiflexible

backbones,[28–40] or the question of the crossover between

a bottle brush polymer and a star polymer,[112] can be

correctly addressed. Thus the latter two problems were not

at all considered in this paper, and hence we also do not

wish to comment on the recent controversy[14–16] con-

cerning the correct interpretation of experiments on the

overall linear dimensions of bottle brush polymers. Thus,

the focus of the present article, as far as one-component

bottle brush polymers are concerned, is the conformation

of the side chains. We recall that this information is

experimentally accessible, if one prepares bottle brushes

with a single arm being deuterated, while all remaining

arms of the polymer remain protonated, to allow a study of

the static structure factor S(q) of a single arm by elastic

coherent neutron scattering. It is clear that such experi-

ments are very difficult, and hence no such experiment of

this type is known to the present authors yet, but clearly it

would be highly desirable to obtain such experimental

information.

As discussed in the first part of the paper, one can find in

the literature rather diverse concepts about the conforma-

tions of the side chains of a bottle brush polymer under

good solvent conditions and high grafting density. One

concept assumes that the cylindrical volume that the

bottle brush occupies can be partitioned into disks, such

that each disk contains just one polymer chain confined

into it, no other chain participating in the same disk. A

simple geometric consideration, reviewed in the first part

of the present paper, then yields the following predictions

for the linear dimensions of the chain, as a function of

grafting density s and side chain length N
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Rgx / s1=4N3=4; Rgy / s1=4N3=4; Rgz / s�1 (54)
Remember that we choose the z-axis as the direction of

the rigid backbone, the x-axis is oriented normal to the

z-axis towards the center of mass of the chain, and the y-

axis is perpendicular to both x- and z-axes. Thus the chain

conformation has a quasi-two-dimensional character, and

there is no stronger stretching of a chain in radial direction

than in tangential direction, since Rgy/Rgx¼ constant

(independent of both N and s).
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Clearly, this quasi-two-dimensional picture is not very

plausible, and more popular is an extension of the Daoud–

Cotton[8] blob picture for star polymers to the present case.

While for a star polymer the blob radius simply increases

proportional to the distance from the center, r, and there is

no geometrical difficulty to densely pack the conical com-

partments resulting from dividing a sphere into f equal

sectors, such that each sector contains a single arm of the

star, with a sequence of spheres of increasing size, it has

been argued in the literature that for cylindrical geometry

the blob radius scales as jðrÞ / ðr=sÞ1=2. While in the

literature no mentioning of a non-spherical blob shape (or,

equivalently anisotropic local screening of the excluded

volume interaction) is found, we have emphasized here

the geometrically obvious fact that a dense filling of space

with blobs in the cylindrical geometry appropriate for a

bottle brush requires that the blobs have the shape of

ellipsoids with three different axes, proportional to r, (r/

s)1/2, and s�1, respectively. While this picture does not alter

the prediction for the stretching of the chain in the

radial x-direction found in the literature, Rgx / sð1�nÞ=ð1þnÞ

N2n=ð1þnÞ � s1=4N3=4, different predictions result for the

other two linear dimensions. While the regular Daoud–

Cotton picture would yield for Rgy the size of the last blob,

Rgy ¼ jðr ¼ hÞ ¼ ðh=sÞ1=2 / s�n=ð1þnÞNn=ð1þnÞ � s�3=8N3=8,

we find instead
Rgy / s�ð2n�1Þ=ð1þnÞN3n=ð2nþ2Þ � s�1=16N9=16 (55)
Rgz / s�ð2n�1Þ=ð1þnÞNn=ð2nþ2Þ � s5=8N3=8 (56)
Equation (55) and (56) make use of both the anisotropic

blob linear dimensions and random walk-type arguments

[cf. Equation (13)–(28)] and are new results, to the best of

our knowledge.

Also the crossover scaling towards mushroom behavior

has been considered, Equation (20)–(23), and Monte Carlo

evidence for this crossover scaling description was ob-

tained, from extensive work using the PERM algorithm.

Although rather large bottle brushes were simulated

(backbone length Lb up to Lb ¼ 128, avoiding free end

effects by periodic boundary conditions, side chain length

up to N¼ 2 000 for grafting density s¼ 1, see Figure 2), it

was not possible to reach the asymptotic regime of strong

side chain stretching where Equation (55) and (56) hold,

however. One reason why for moderate grafting densities

even fairly long side chains can avoid each other with

small significant amount of stretching is the fact that the

natural shape of a self avoiding walk configuration is an

elongated ellipsoid, with three rather different eigenvalues

of the gyration tensor. So side chains can to a large extent

avoid each other[36] by orienting themselves such that
www.mts-journal.de 685
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the longest axis of the ellipsoid is oriented in the radial

x-direction and the smallest axis in the backbone z-

direction. This implies that very large values of saNn are

needed to obtain significant stretching. This difficulty to

verify any such scaling laws in our simulations, which

were only able to explore the onset of stretching away

from simple mushroom-type behavior of the side chains

and not the strongly stretched behavior, suggests that no

such scaling behavior should be observable in the experi-

ments as well: given the empirical fact that one bond of a

coarse-grained lattice model corresponds to n¼ 3–5

chemical monomers,[90–92] it is clear that the experimen-

tally accessible side chain lengths do not exceed those

available in our simulation. Thus, scaling theories of

bottle brushes are unfortunately of very restricted

usefulness for the interpretation of either experiments

or simulations. The only firm conclusion that we like to

make about the theories mentioned above is that there is

no evidence whatsoever for the quasi-two-dimensional

picture, since we do see a decrease in Rgy/Rgx with

increasing N.

Turning to the problem of intramolecular phase separa-

tion in binary (AB) bottle brush polymers, we have exami-

ned the proposal that a Janus cylinder-type phase

separation occurs.[56–58] This idea is questionable for

several reasons: (i) in a quasi-one-dimensional system,

no sharp phase transition to a state with true long-range

order can occur; at most one can see a smooth increase in

the corresponding correlation length, as the temperature is

lowered (or the incompatibility between A and B is

enhanced, respectively). Thus we have defined suitable

correlation functions and studied the variation of the

corresponding correlation length as function of the chain

length N and the parameter qAB ¼ exp½�"AB=kBT� control-

ling the incompatibility (eAB is the repulsive energy

encountered when two neighboring lattice sites are occu-

pied by monomers of different kind). Three choices of

solvent quality (taken symmetric for both A and B through

the choice "AA ¼ "BB) were considered, q ¼ expð�"AA=

kBTÞ ¼ 1 (good solvent), q¼ 1.3087 (Theta solvent), and

q¼ 1.5 (poor solvent). It was found that in all the cases the

correlation length suited to detect Janus cylinder-type

ordering increases rather weakly as qAB !0, approaching

finite values even for qAB ¼ 0, for finite side chain length N,

while for N!1 an infinite correlation length is compa-

tible with the data. No evidence for the predicted critical

points[56] and their scaling behavior with N Equation

(32–38) could be detected, however. The gradual establish-

ment of a local phase separation lacking a sharp transition

is compatible with observations from a previous simula-

tion,[57] however. (ii) Depending on the relation between

the energy parameters eAA and eBB [cf. Equation (53)], the

‘‘local’’ phase separation (considering a slice of suitable

thickness perpendicular to the backbone of the bottle
Macromol. Theory Simul. 2007, 16, 660–689
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brush to obtain suitable coarse-grained densities rA, rB on

mesoscopic scales) for temperatures T! 0 may have two

different characters [Figure 31(a)]: the Janus cylinder,

which contains an interface between A-rich and B-rich

phases, competes with the double cylinder. In the latter

structure, there is no extended AB interface, A-chains

and B-chains meet only in the immediate vicinity of the

backbone where they are grafted. Thus, the coarse-grained

density distribution under poor solvent conditions in a

slice has the shape of the number 8, where in the upper

part of the 8 we have the B-rich phase and in the lower part

we have the A-rich phase. Of course, when we orient the

x-axis (Figure 13) such that it is parallel to the vector

connecting the center of mass of the A-rich region to the

center of mass of the B-rich region in the slice, the

orientation of the x-axis for both structures in Figure 31

can randomly rotate when we move along the backbone

(z-direction) due to long wavelength fluctuations, cf.

Figure 14, and hence the comments about finite correlation

lengths of this phase separation apply here as well.

Actually, the numerical results of the present Monte

Carlo simulations give clear evidence that local phase

separation of double cylinder-type rather than Janus

cylinder type is observed, since the number of AB-contacts

tends to zero.

Thus, varying the solvent quality and chemical incom-

patibility, one can influence the character of local intra-

molecular phase separation, and one can control the cor-

relation length over which the vector characterizing either

interface orientation or the axis of the local dumbbell is

oriented in the same way along the z-axis. Of course, in real

systems one must expect that the solvent quality for the

two types of chains will differ [Figure 31(b)]. Then asym-

metric 8-shaped local structures will result: e.g., if the

solvent is a good solvent for B but a poor one for A, but the

incompatibility between A and B is very high, we expect a

structure where the A-chains are collapsed in a cylinder

with the backbone on the cylinder surface, and from there

the B-chains extend into the solution like a ‘‘flower’’ in the

cross-section [Figure 31(b), left part]. Conversely, it may

happen that the solvent quality is poor for both A and B,

but nevertheless different, so the densities of both

cylinders and hence their radii will differ [Figure 31(b),

right part]. Similar asymmetries are also of interest if

the local character of the phase separation is of the

Janus cylinder type: then in the cross-section the A-rich

and B-rich regions will take unequal areas, rather than

equal areas as shown in Figure 31(a), and the interface

will be bent rather than straight. Similar effects will

occur when the chain lengths NA, NB differ from each

other, or the flexibilities of both types of chains are

different, etc.

An aspect which has not been discussed here but which

is important for the binary bottle brush under poor solvent
DOI: 10.1002/mats.200700031
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conditions is the question whether or not the density in

the collapsed bottle brush is homogeneous along the

z-direction (so one really can speak about ‘‘Janus cylinders’’

or ‘‘double cylinders’’, Figure 31), or whether it is inhomo-

geneous so the state of the system rather is a chain of

‘‘pinned clusters’’. For the one-component bottle brush,

this question was discussed by Sheiko et al.,[60] from a

scaling point of view, but (unlike the related problem of

brush-cluster transition of planar brushes in good sol-

vents[113–116]) we are not aware of any simulation studies

of this problem yet. In order to understand the structures

of the binary bottle brush in the poor solvent, we count the

number of monomers M(z) (irrespective of A or B) in each

xy-plane, and calculate the normalized correlation func-

tion Cz of dMðzÞ ¼ MðzÞ � N along the backbone,
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Cz ¼ hdMðiþ zÞdMðiÞi=hdMðiÞ2i (57)
Here the average . . .h i includes an averaging over all

sites {i} on which chains are grafted, in order to improve

the statistics. In Figure 32, we see that this correlation

actually is negative for 2
 z
 8, indicating some tendency

to pinned cluster formation.

Before one can try to understand the real two-component

bottle brush polymers studied in the laboratory,[117,118] two

more complications need to be considered as well: (i) the

flexibility of the backbone; (ii) random rather than regular

grafting along the sequence. While the effects due to (i) were

already addressed to some extent in an earlier simulation,[57]

randomness of the grafting sequence has not been explored

at all. However, in the study of binary brushes on flat

substrates[119] it has been found that randomness in the

grafting sites destroys the long-range order of the micro-

phase separated structure, that is predicted to occur[120] for a

perfectly periodic arrangement of grafting sites. In the one-

dimensional case, we expect the effects of quenched disorder

in the grafting sites to be even more dominant than in these

two-dimensional mixed polymer brushes. Hence, it is clear

that the explanation of the structure of one- and two-

component bottle brush polymers still is far from being

complete, and it is hoped that the present article will

motivate further research on this topic, from the point of

view of theory, simulation, and experiment.
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