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Understanding the Multiple Length Scales
Describing the Structure of Bottle-brush
Polymers by Monte Carlo Simulation Methods
Hsiao-Ping Hsu,* Wolfgang Paul,* Kurt Binder*
Bottle-brush polymers contain a long flexible macromolecule as a backbone to which flexible
side chains are grafted. Through the choice of the grafting density and the length of the side
chains the local stiffness of this cylindrical molecular brush can be controlled, but a quan-
titative understanding of these phenomena is lacking. Monte Carlo simulation results are
presented and discussed which address this issue, extractingmesoscopic length scales (such as
the cross-sectional radius, persistence length, and contour length of these objects). Large-scale
simulations of the bond fluctuation model are
combined with simulations of the simple self-
avoiding walk (SAW) model with flexibility con-
trolled by a bond-angle potential, using the
pruned-enriched Rosenbluth algorithm. It is
shown that under good solvent conditions the
bottle-brush polymers never display a pre-asymp-
totic Gaussian regime that would be described by
the Kratky–Porod worm-like chain model, unlike
the semiflexible SAWmodel. Implications of these
results for the proper interpretation of exper-
iments are discussed.
Introduction and Overview

Macromolecules with comb-like chemical architecture,

where linear side chains are grafted to a backbone polymer

chain have recently found a lot of interest (see reviews[1–4]
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and references therein). Due to the interplay of steric

repulsion between the monomers of the densely grafted

side chains with effective attractive interactions that can be

controlled e.g., by solvent quality, intricate spatial self-

organization of these molecular brushes becomes possible.

With increasing chain length N of the side chains and

increasing grafting density already in good solvent

conditions a stiffening of an intrinsically flexible backbone

can be induced. Since the global conformations of the

complex macromolecules are rather sensitive to various

external stimuli, various applications have been envisaged

(sensors, actuators, building blocks in supramolecular

assemblies, etc.[3,5,6]). Also in a biological context biopoly-

mers with bottle-brush architecture occur in a variety of
library.com DOI: 10.1002/mats.201000092



Figure 1. Schematic explanation of the multiple length scales for
molecular bottle-brush polymers. A coarse-grained continuum
description depicts the polymer as a flexible sphero-cylinder with
a cross-sectional radius Rcs and a contour length Lcc along the axis
of the coarse-grained cylinder. Over a length scale ‘p, the per-
sistence length, the cylinder is straight, while over larger length
scales it bends. The monomer density distribution in the cylinder
is assumed to be uniform. A less coarse-grained view (lower part
of the figure) depicts the backbone of the bottle-brush polymer as
an SAW of Nb effective monomeric units connected by effective
bonds ~‘b. Side chains of chain length N (with bond vectors ~‘s) are
grafted at the effective monomers of the backbone with grafting
density s. Characteristic lengths of interest are the end-to-end
distances and gyration radii of both side chains ð
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contexts.[7] For example, aggrecane molecules that occur in

the soft layers of mammalian joints are thought to

contribute to the excellent lubricating function of these

layers.[8] Similar structures occur in neurofilaments.[9]

For designing such molecules for possible applications, or

for understanding the function of bottle-brush polymers in

a biological context, the relation between the properties

characterizing the chemical architecture (chemical nature

of the backbone and its chain length Nb; grafting density s

of the side chains, their chemical nature and their chain

length N) and the geometrical structure needs to be

understood. This turns out to be a difficult problem, since

the conformation of these bottle-brush polymers is

characterized by a multitude of length scales. Sometimes

one relies on atomic force microscopy observations of

bottle-brush polymers adsorbed on substrates, e.g., mica,[10]

but there is clear simulation evidence[11] that the config-

urational properties of adsorbed (quasi-two-dimensional)

bottle-brush polymers differ very much from their (three-

dimensional) counterparts in dilute solution. This differ-

ence is no surprise, of course, since a linear flexible

macromolecule with a chain length Nb (we denote by

‘‘chain length’’ the number of effective subunits of the

polymer throughout this paper) exhibits a scaling of its

(gyration) radius Rg / Nn
b where[12] n � 0.588 in d¼ 3

dimensions while n¼ 3/4 for d¼ 2, in good solvent

conditions. Thus, most conclusions about the structure of

bottle-brush polymers result from the analysis of small

angle neutron scattering (often combined with light

scattering) from bottle-brush polymers in solution, e.g.,

ref.[13–21] Such an analysis is difficult for a variety of

reasons: (i) in order to have enough scattering intensity, one

often does not work in extremely dilute solution, but under

conditions where the bottle-brush polymers overlap.[18,21]

As expected from the behavior of ordinary linear poly-

mers,[12,22–25] in semidilute solutions the chain conforma-

tions differ substantially from those under very dilute

conditions. As is well-known, a description of the concen-

tration dependence is subtle,[22–25] simplistic theories like

the random phase approximation (RPA)[12] cannot be

quantitatively relied upon.[22,23,25] Thus, the extrapolation

of the excess scattering due to the polymers to small volume

fraction is difficult. (ii) Real polymers never are strictly

monodisperse. For bottle-brush polymers, corrections due

to the polydispersity of both the backbone chain and the

side chains may be necessary. (iii) The scattering back-

ground intensity must be properly subtracted. (iv) While

the mean square gyration radius hR2
gi of the bottle-brush

polymer as a whole can be extracted independent from

model assumptions from the behavior at small scattering

wave number, q, from a Taylor expansion of the total

structure factor SðqÞ ¼ Sð0Þ½1�q2hR2
gi=3 þ� � � ��, all other

mesoscopic length scales of interest (Figure 1) such as the

cross-sectional radius Rcs, the contour length Lcc and the
www.MaterialsViews.com
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persistence length ‘p can only be extracted via an intricate

fitting procedure to a complicated model.[14–18,21] This

model[26] relies on approximations which have been shown

to be somewhat inaccurate.[27]

In view of all these caveats, it is no surprise that serious

disagreements between the findings of various experi-

mental groups on the properties of chemically very similar

bottle-brush polymers occur.[14–16] Even if one accepts a

description in terms of a coarse-grained continuum picture

as sketched in Figure 1, the question must be asked what is

the quantitative relation between the lengths ‘p and Lcc and

the chain lengths N, Nb, and the grafting density s.
2011, 20, 510–525
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Figure 2. (a) Snapshot of a typical conformation of a simulated bottle-brush polymer
[using backbone chain length Nb¼ 1 027, side chain length N¼ 24, in the framework of
the bond fluctuation model, see The Semiflexible Self-avoiding Walk (SAW) Model
section], and three possible corresponding coarse-grained models, a model of freely
jointed rods of Kuhn step length ‘K and diameter d (b), an SAW model on the simple
cubic lattice where 908 bends cost an energy "b � kBT, so the chain consists of straight
pieces of nstr � 1 steps (c), and a model of tangent hard spheres with radius Rcs (d).
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Actually, two scenarios are conceivable (Figure 2): if the

coarse-grained length scales satisfy the inequality ‘p � Rcs,

the coarse-grained bottle-brush polymer can be described

by the Kratky–Porod[28] worm-like chain (WLC) model. It

can be described by a Hamiltonian[29,30]
H ¼ k

2

ZLcc

0

dt
d2~rðtÞ

dt2

� �2

(1)
where the curve ~rðtÞ describes the contour of length Lcc,

and the parameter k ¼ ‘pkBT describes the bending

stiffness. Here, t is a coordinate along the (curved) contour

of the coarse-grained polymer in Figure 1. Equation (1)

neglects excluded volume completely; Pedersen and

Schurtenberger[26] consider a discrete version of

Equation (1) numerically, where cylinders of diameter

d ¼ 2Rcs and a Kuhn step length ‘K ¼ 2‘p are freely jointed

[Figure 2(b)], assuming ‘K ¼ 5d, and respecting excluded

volume. As will be discussed below, this model is

equivalent to the original Kratky–Porod model only for

not too large Nb (and Lcc). The same statement applies to a

lattice variant of the Kratky–Porod model with excluded
Macromol. Theory Simul. 2011, 20, 510–525
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volume, that will be studied in the

present paper, the self-avoiding walk

(SAW) on the simple cubic lattice with an

energy penalty "b=kBT � 1 for 908 bends

to the chain [Figure 2(c)]. However, if in

the Pedersen–Schurtenberger model[26]

one would choose ‘K and d of the same

order, or in the SAW model "b is of the

same order as the thermal energy kBT,

even for small Nb the Kratky–Porod

model[28] is not a reasonable approxima-

tion, as will be shown in the present

paper: rather the polymer conformation

then resembles a chain of freely jointed

spheres of radius Rcs [Figure 2(d)]. Other

variants of the Kratky–Porod model,

such as the ‘‘discrete chain model,’’[31]

which are used in the context of the

stretching response of semiflexible poly-

mers,[32–40] are essentially equivalent

to the model of jointed cylinders

[Figure 2(b)].

Another questionable approximation

implicitly inherent in the coarse-grained

picture of Figure 1 is that the monomer

density inside the effective cylinder stays

approximately constant up to the radius

Rcs and is zero outside (r>Rcs, see insert of

Figure 3). The actual monomer density

profile, as it results from simulations of

model polymer brushes[27,41–44], differs
very much from a constant (Figure 3), and also the

popular assumption[14] of a Gaussian density profile,

rcsðrÞ / exp �r2
�
R2

cs

� �
provides a good fit of the simulation

only for r� 3 nm, but not close to the backbone. It is clear

that a constant density profile rcs(r) may be appropriate for

the description of cylindrical micelles, or for bottle-brush

polymers in poor solvent conditions, but both the experi-

ments[13–21] with which we are concerned here, and the

simulations[27,41–57] all deal with good solvent conditions,

for which excluded volume effects must be consid-

ered.[22,23]

Experiments[13–21] indeed indicate that the length scales

of the coarse-grained description (Figure 1) are difficult to

understand. For example, Zhang et al.[16] present a

comparative discussion of the dependence of both Rcs

and the Kuhn length ‘K (taking the relation ‘K ¼ 2‘p for

granted, as usually done[58,59]) on side chain length, for

bottle-brush polymers composed from polymethylmetha-

crylate as a backbone chain and polystyrene side chains.

Taking work from several groups in good solvents

(cyclohexane, toluene) they report[16] exponents neff in

the relation Rcs / Nneff in the range from 0:56 � neff � 0:67

(we use here the notation neff instead of the standard
im www.MaterialsViews.com
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Figure 3. Radial density distribution of the monomers rcs(r) in the
direction perpendicular to the cylinder axis, for a simulated
bottle-brush polymer [using the bond fluctuation model, see
The Semiflexible Self-avoiding Walk (SAW) Model section] with
a backbone chain of length Nb¼ 259, grafting density s¼ 1, and
side chains of length N¼ 48 (circles connected by a dotted curve)
compared to a Gaussian which results from a fit to an exper-
imental system.[14,41] Note that Rcs according to this fit is 6.3 nm
while the corresponding value of the simulation (defined from
R2
cs ¼ 2p

R1
0 r3drrcs rð Þ with 2p

R1
0 rdrrcsðrÞ 
 1) is 5 nm. In this

comparison, a conversion of lengths from the simulation
to the experiment was done requiring that 1 nm¼ 3.79 lattice
spacings, since then a very good agreement between the
experimental[14] and simulated[41] structure factor is obtained,
without any adjustable parameters whatsoever (Figure 4). The
insert shows another popular assumption for rcs(r), namely
rcs(r)¼ const. for 0< r<Rcs and zero else.

Figure 4. log–log plot of the experimental structure factor Sexp(q)
of a bottle-brush (with a polyhydroxyethylmethacrylate) [PMMA]
backbone of Nexp

b ¼ 400 monomers, poly(n-butyl acrylate) [PnBA]
side chain containing Nexp¼62 monomers, grafting density s¼ 1)
versus the wavenumber q scaled with the gyration radius
Rexpg ¼ 30:5 nm
� �

of the total bottle-brush polymer (curve). The
corresponding simulation result are shown by circles (as dis-
cussed in ref.,[41] roughly three chemical monomers in the exper-
iment correspond to two effective monomers of the simulation),
with Nb¼ 259 and N¼ 48. Since in the simulation Rg¼ 115.8 lattice
spacings, a conversion of lengths units such that 1 nm¼ 3.79
lattice spacings was chosen. Note that both the simulation
and the experiment correspond to good solvent conditions (using
in the experiment toluene as a solvent, and strictly repulsive
excluded volume interactions in the simulation model).
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notation n for the Flory exponent[12,22,23,59,60] since the data

refer to a fit in the range 6�N� 33). While e.g., for side chain

molecular weight Msc
n ¼ 3:5:� 103 gmol�1 these experi-

ments all yield Rcs � 3 nm, the corresponding estimates for

‘K vary from 20 to 65 nm.[16] While some of these

experiments indicate a rapid increase of ‘K with N, other

experiments indicate a slow increase,[16] and for the system

of Rathgeber et al.[15] (analyzed in Figure 3, 4) it was

suggested that ‘K ¼ 70 	 4 nm forN� 22 independent ofN,

so that ‘K=Rcs then is a decreasing function of N, contrary to

theoretical expectations.[2,46,61–63] Also the estimated

values for the effective contour length Lcc of the cylindrical

brush (Figure 1) seem to be problematic, and our conclusion

is that the experiments are not fully understood. We feel

that claims in the literature,[21] that bottle-brush polymers

can be fully accounted for by the WLC model, ‘‘flexible

cylinders with a circular cross-section and a uniform

scattering length density,’’ are overly optimistic (note that

this work[21] did neither study the variation of the lengths

Rcs, ‘K ,Lcc with side chain lengthNnor with backbone length

Nb, unlike[15]).

In view of these problems, we wish to clarify by

systematic simulation studies whether bottle-brush poly-

mers with both intrinsically flexible backbone and side
www.MaterialsViews.com
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chains under good solvent conditions (as studied experi-

mentally[13–21]) on a coarse-grained scale are described by

the WLC model [with relatively small excluded volume, i.e.,

in its discretized version, Figure 2(b), the length ‘K of

the cylinders is much larger than the diameter] or by a

flexible chain of hard spheres [Figure 2(d)], where the

sphere radius is of the same order as the cross-sectional

radiusRcs, and ‘K ¼ 2Rcs, in the case of tangent hard spheres.

Of course, if one would choose ‘K not much larger than

d in the model of freely jointed cylinders [Figure 2(b)],

there would no longer be an essential difference to the

hard sphere chain [Figure 2(d)], but then the WLC

model[28] no longer is a valid analytical approximation of

the model.

In this paper, two models will be studied: (i) the SAW on

the simple cubic lattice[64] with an energy parameter eb
associated with 908 turns of the SAW, applying the pruned-

enriched Rosenbluth method (PERM)[65–67] and studying

single chains up to Nb¼ 50 000. This model [Figure 2(c)] is

well suited to study the crossover between the SAW and

WLC models[44] [The Semiflexible Self-avoiding Walk (SAW)

Model section]. A brief preliminary account of this work

was presented in a Letter.[44] (ii) The second model (Scaling

Analysis of the Bond Fluctuation Model for Bottle-brush

Polymers section) that is studied here is the bond

fluctuation model of bottle-brush polymers on the simple
2011, 20, 510–525
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cubic lattice, extending work presented earlier.[41–44] We

shall show that for this model a regime where the WLC

model provides an accurate coarse-grained description does

not exist, and hence relations such as ‘K ¼ 2‘p (which are

based on ignoring excluded volume interactions, assuming

Gaussian chain statistics[22,58–60] cannot be found.

We rather show that a model such as a flexible chain of

tangent hard spheres [Figure 2(d)] is a more appropriate

coarse-grained description of such bottle-brush polymers.

In this context, we then discuss in which way one can

extract a meaningful estimate of the persistence length ‘p
for bottle-brush polymers, such that it describes their

‘‘intrinsic’’ stiffness, independent of the length Nb of the

backbone. Concluding Remark section summarizes our

conclusions.
The Semiflexible Self-avoiding Walk (SAW)
Model

In order to describe local chain stiffness, it is natural to

introduce a bond-bending potential, that depends on the

angle ubetween subsequent bond vectors.[22,58–60] A simple

choice is
Ubend uð Þ ¼ "b 1�cosuð Þ: (2)
On the simple cubic lattice, the only possible values are

u¼ 08 and 908, of course, and hence Ubendð0Þ ¼ 0 if the SAW

continues straight while Ubend ¼ "b for u¼ 908.
However, in order to make contact with the standard

theory[22,58–60] we remind the reader of a corresponding off-

lattice model where the angle u is not ‘‘quantized’’ so that for

large eb we expect that the chain typically makes small

angles u from one bond to the next one. If one ignores

excluded volume, the mean square end-to-end distance

then becomes (Nb ! 1; note hcosui � 1�hu2i=2Þ
R
�

R2
e

� �
¼ Nb‘

2
b

1 þ cosuh i
1� cosuh i � 4

�
hu2i

� �
‘2
bNb; (3)
where ‘b is the step length. Introducing then the Kuhn step

length ‘K from a model with n steps of an equivalent freely

jointed chain,
R2
e

� �
¼ n‘2

K ; n‘K ¼ Nb‘b (4)
immediately yields
‘K ¼ 4‘b
�

u2
� �

: (5)
On the other hand, the standard definition of a

persistence length[58–60] ‘p introduces it as the decay length

of the orientational correlation of bonds that are s steps
Macromol. Theory Simul.
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apart along the chain,
2011, 2
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cosu sð Þh i ¼ exp �s‘b
�
‘p

� �
: (6)
Noting that for Gaussian chains subsequent bond orienta-

tions are uncorrelated, hence cosuðsÞh i ¼ cosuh is ¼
exp sln cosuh i½ � � exp �shu2i=2d e, one finds
‘p ¼ 2‘b
�
hu2i ¼ ‘K=2: (7a)
and hence
R2
e

� �
¼ 2‘p‘bNb: (7b)
These considerations are easily extended to include effects

of finite chain length and thus describe the crossover

toward the limit of hard rods. For example, introducing the

contour length L as L ¼ Nb‘b, in the continuum limit

(keeping L finite, ‘p finite, but taking Nb ! 1 and ‘b ! 0)

one finds[28]
R2
e

� �
¼ 2‘pL 1� ‘p

L
1�exp �L

�
‘p

� �	 
� �
: (8)
For L ! 1 Equation (8) yields the standard Gaussian

behavior R2
e

� �
¼ 2‘pL ¼ ‘KL ¼ ‘K‘bNb while for L � ‘p the

rod-like behavior occurs,
ffiffiffiffiffiffiffiffiffiffi
R2
e

� �q
¼ L ¼ ‘bNb: (9)
Note that in Equation (3)–(9) it makes sense to consider Nb

as the number of bonds rather than the number of

monomers (which then is Nbþ 1) of the chain. An

extension of Equation (8) to a discrete WLC (without

excluded volume) is[68]
2
e

�
¼ Nb‘

2
b

1 þ cosuh i
1� cosuh i þ 2 cosuh i

Nb

cosuh iNb�1

ðhcosui�1Þ2

" #
: (10)
Here cosuh i ¼ cosu s ¼ 1ð Þh i.
However, we stress that real polymer chains never fully

behave like Gaussian chains.[69–74] Even in dense melts,

where Equation (4) still holds asymptotically, Equation (6)

fails and one rather encounters a power-law decay of bond

orientational correlations[69–72]
cosu sð Þh i / s�3=2; 1 � s � Nb: (11)
The same behavior was found for polymer chains in

dilute solution at the u point[43,74] (note that there the

applicability of the Kuhn length concept is already an

approximation, due to the expected logarithmic correc-

tions[12,22,23] to the simple power law R2
e

� �
/ Nb as Nb!1).
0, 510–525
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But Equation (3) and (10) are particularly misleading when

one considers polymers under good solvent conditions:

since R2
e

� �
/N2n

b with[75] n� 0.588, a naive use of R2
e

� �
¼ n‘2

K

and n ¼ Nb‘b=‘K would require a Kuhn step length ‘K that

diverges toward infinity as ‘K/N2n�1
b for Nb !1, which is

not a sensible result.

Moreover, Equation (6) fails also, one again encounters a

power law decay as well[76]
www.M
cosuðsÞh i/s�b; s� < s � Nb; b ¼ 2�2n ¼ 0:824: (12)
Figure 5. log–log plot of the rescaled mean square end-to-end
distance R2

e
� ��

2‘bN2n
b

� �
versus Nb, for chain lengths Nb up to

Nb¼ 50 000, and many values of the stiffness parameter qb, as
indicated. The straight line with slope 2–2n (for smallNb) indicates
the limiting slope reached for hard rods, while the slope 1–2n
(for intermediate values of Nb) indicates the behavior expected
for Gaussian chains. Solid horizontal plateaus show estimates for
Here s� is of order unity for fully flexible chains, but may be

much larger for locally stiff chains [for which Equation (2)

holds with "b � kBT, the thermal energy, as discussed

below]. For the sake of completeness, we mention that an

alternative definition of a ‘‘local’’ persistence length ‘pðkÞ
referring to the bond vector ~ak connecting monomers at

positions ~rk and ~rk�1 ~ak ¼~rk�~rk�1ð Þ[54,58,77]
‘p;RðqbÞ, as estimated below (using Figure 11). Adapted from Hsu
et al.[44]
‘p kð Þ ¼ ‘b ~ak � ~Re

.
j~akj2

D E
(13)
is not useful in the case of SAWs either, since[77]
‘p kð Þ � a‘b k Nb�kð Þ=Nb½ �2n�1: (14)
As will be discussed below, only the prefactor a in

Equation (14) can be taken as a measure of intrinsic chain

stiffness, but not ‘p kð Þ itself, since ‘p kð Þ exhibits a

maximum at k¼Nb/2 which diverges to infinity propor-

tional to N2n�1
b as Nb!1.[43,77] We recall that this problem

is not improved when one considers an average of ‘pðkÞ
along the chain,[58] while no divergence occurs for[58] ‘pð1Þ.
However, in simulations the use of ‘pð1Þ is inconvenient,

due to the limited statistical accuracy. Note that in the

SAW model on the simple cubic lattice we take the lattice

spacing as the unit of length and then j~akj ¼ ‘b ¼ 1, but for

other models (such as the bond-fluctuation model,[24,78,79]

for instance) ‘b may take a different value.

For the SAW model with an energy term as written in

Equation (2) the partition function of a walk with Nb steps

and Nbend 908 bends [Figure 2(c)] can be written as
ZNb
qbð Þ ¼

X
config:

CNb;Nbend
qNbend

b (15)
where qb ¼ exp �Ubend=kBTð Þ ¼ exp �"b=kBTð Þ. For stan-

dard SAW’s qb 
 1, of course. It turns out that the PERM

algorithm,[65–67] which is a biased chain growth algorithm

with resampling, can be applied to the present model for

chain lengths up to Nb¼ 50 000. We have explored the

range from 0:005 � qb � 1:0, covering the full range from

very stiff to fully flexible chains.
aterialsViews.com
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Since in ref.[41] it was suggested that a simple general-

ization of Equation (7b) to the excluded volume case is
2011, 2
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R2
e

� �
¼ 2‘p;R‘bN

2n
b ; (16)
we plot in Figure 5 R2
e

� ��
2‘bN

2n
b

� �
versus Nb: if for large Nb a

constant plateau is reached, we can estimate the constant

‘p;R from this plateau value.

We see that for not so stiff chains

qb00:4ð ; e:g:; hcosui90:413Þ the approach of

R2
e

� ��
2‘bN

2n
b

� �
is monotonic, while for stiffer chains

(qb< 0.4) this ratio develops a maximum, and this

maximum shifts to larger and larger chain length as qb
decreases (and hence the chain stiffness increases). It is

clearly seen that for qb90:05 there is a regime of

short chains where the end-to-end distance indeed

exhibits rod-like behavior, R2
e

� �
¼ ‘2

bN
2
b and therefore

R2
e

� ��
2‘bN

2n
b

� �
¼ ‘b=2ð ÞN2�2n

b . Before the data settle down

to the asymptotic plateau value described by Equation (16),

the data in Figure 5 decreases after the maximum again;

and for very small qb (such as qb¼ 0.01) this decrease is

consistent with Gaussian behavior of the chains.

A convenient characterization of chain stiffness of the

present model is obtained from the distribution PðnstrÞ,
Figure 6, where we simply count (using the data for

Nb¼ 50 000 only, to avoid effects due to the chain ends) how

often sequences of nstr bonds without chain bending occur

in the chain conformation [see Figure 2(c)]. The straight line

fits included in Figure 6 suggest that irrespective of chain

stiffness the distribution always is compatible with a
0, 510–525
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Figure 6. Semi-log plot of the distribution P(nstr) versus nstr, for qb
in the range from qb¼0.1 to 1.0, i.e., including rather flexible
chains (a) and for rather stiff chains 0.005� qb�0.05 (b). The
straight lines indicate fits to simple exponential functions,
PðnstrÞ ¼ apexp �nstr

�
np

� �
. The constants ap and np are quoted

in Table 1. All data are taken for Nb¼ 50 000. Adapted from Hsu
et al.[44]

Table 1. Values of the persistence length ‘p, and the constants ap,
np, and the first moment hnstri obtained through the curve fitting
using Equation (6) and (17), respectively, for semiflexible chains
with various values of qb.

qb 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0

‘p 52.61 26.87 13.93 9.54 5.96 3.35 2.05 – –

ap 0.02 0.04 0.08 0.12 0.19 0.38 0.73 1.42 3.37

np 51.17 25.95 13.30 9.07 5.68 3.12 1.82 1.13 0.68

hnstri 51.72 26.50 13.83 9.60 6.20 3.65 2.36 1.70 1.29
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simple exponential, for large enough nstr
 0.01
 0  70  140  210  280
P nstrð Þ ¼ apexp �nstr

�
np

� �
: (17)
slb

Figure 7. Semi-log plot of hcosuðsÞi versus the contour length s‘b,
for qb in the range from qb¼0.1 to 1.0 (a) and for rather stiff
chains, 0.005� qb�0.05 (b). All data are taken for Nb¼ 50 000,
and the straight lines indicate fits to Equation (6). The constants
‘pðqbÞ are also included in Table 1. For rather flexible chains
(qb¼ 1.0 and 0.4) meaningful fits are not possible. Adapted from
Hsu et al.[44]
Table 1 lists the constants ap, np and the first moment nstrh i
of this distribution as function of qb. Note that the length

‘b nstrh i (with ‘b ¼ 1 in our model) could be taken as a

possible definition of a persistence length characterizing

the intrinsic chain stiffness of the model. Of course, only

for qb� 0.05 this length is much larger than the bond

length, and for qb! 0 the difference between nstrh i and the

decay length np disappears.

While the quantities np, nstrh i are well-defined for all

values ofqb, this is not the case for the standard definition of

the persistence length ‘p, as the decay length of orienta-

tional correlations, Equation (6), as Figure 7 shows: in no

case one can rely on Equation (6) for the asymptotic decay

s ! 1 (of course, always Nb � s has to be considered).

Equation (6) can be used to describe only the initial decay of

cosuðsÞh i with s and not the final decay, which always is
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described by the power law, Equation (12), see also

Figure 8(a). While for qb¼ 1.0 the data rapidly approach

the asymptotic power law and also for small s the

deviations from the power law are rather small and hence

it is clear that no region where the exponential law,

Equation (6), applies, for qb¼ 0.1 (and smaller) the power

law only is valid for s‘b � 30 (or larger), as expected from
2011, 20, 510–525
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Figure 8. (a) log–log plot of hcosuðsÞi versus s‘b, for qb¼0.05, 0.1,
0.2, 0.4, and 1.0, including only data for Nb¼ 50 000. The straight
line indicates a fit of the power law, Equation (12), to the data for
qb¼ 1.0, including only data for s‘b � 10 in the fit, and requesting
the theoretical exponent, b¼ 2 – 2n¼0.824. (b) Local persistence
length ‘pðkÞ plotted versus k/Nb, for qb¼ 1.0 (i.e., the standard
SAW model), including chain lengths Nb¼400– 6 400, as indi-
cated. Curves show fits to Equation (14), with a resulting prefactor
a¼ 1.6888.
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Figure 8(a), since for qb¼ 0.1 the exponential decay is a

good description for s‘b < 10. Of course, the crossover

from the exponential law at small s to the power law at

larger s is rather gradual and in the crossover regime

10 � s‘b < 30 for qb¼ 0:1ð Þ neither of these laws is accu-

rate.

Qualitatively, the behavior for all smaller values of qb is

similar [Figure 7(b)]: the exponential decay for qb� 0.05

extends to about cosuðsÞh i � 0:05, and then a slow crossover

to the power law sets in, which is reached when cosuðsÞh ihas

decayed further to about cosuðsÞh i � 0:01. Since the decay

length ‘p increases strongly with decreasingqb, the range (in

the variable s‘b) over which the exponential decay holds gets

larger with decreasing qb, of course. However, one must be

aware of the condition that s should be at least an order of

magnitude smaller than Nb, otherwise the decay of cosuðsÞh i
is affected by effects due to the finiteness of the chain length,

as demonstrated in our earlier work.[43] Thus, one has to be
www.MaterialsViews.com
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very careful with the analysis of the decay of cosuðsÞh i to

avoid misleading conclusions. For very small qb (qb� 0.05)

the results for ‘p from the exponential fits (Table 1) agree

roughly with the length hnstri; for qb¼ 0.4 and 1.0 estimates

for ‘p are not quoted, however, since Figure 7(a) implies that

there is no significant range of exponential decay. Also the

use of ‘pðkÞ does not help, since the result strongly depends

on Nb, as Figure 8(b) demonstrates, and as is expected from

Equation (14). For semiflexible chains, we expect that also

‘pðkÞ will be strongly affected by crossover effects between

the various regimes (rod-like versus Gaussian behavior

versus excluded volume effects), but these phenomena are

left for future studies.

Figure 9 summarizes our results for the standard

persistence length ‘p and the alternative estimates hnstri
and np. It is seen that for qb� 0.1 different methods of

estimation give somewhat different answers, and also we

do not have the condition ‘p � ‘b fulfilled. For qb� 0.05

the results based on PðnstrÞ and on cosuðsÞh i agree,

and furthermore we have the simple relation that

‘p ¼ const:=qb.

Thus, it is of interest to what extent Equation (8) or (10)

provide accurate descriptions of the data (Figure 10). Since

L ¼ ‘bNb holds, and both ‘p and cosuh i have been accurately

estimated (Table 1), this comparison does not involve any

adjustable parameter whatsoever. Indeed, we see that

Equation (8 and 10) agree almost perfectly with each other,

indicating that the discreteness of our lattice model is

irrelevant with respect to our conclusions to what extent

the Kratky–Porod WLC model is a valid description of

semiflexible polymers under good solvent conditions.

Indeed, one can see that this model for small qb� 0.1

describes rather accurately the initial rod-like behavior

(where the ratio hR2
ei
�
Nb increases almost linearly), and for

still smaller qb (�0.03) also the onset of the Gaussian

plateau is nicely reproduced. However, in all cases for large
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enough Nb systematic deviations due to excluded volume

effects occur. While for qb¼ 0.005 these deviations are

relatively small and occur for extremely long chains only, so

the Gaussian plateau extends over more than a decade in

Nb, for qb¼ 0.05 the data rise upward from the Gaussian

plateau already near Nb¼ 1 000, excluded volume effects

clearly being important.

In order to describe the crossover from the Gaussian

behavior applicable to semiflexible chains at intermediate

values of the chain length to the swollen coil behavior due

to excluded volume interactions, we plot in Figure 11

R2
e

� ��
2‘b‘p qbð ÞNb

� �
versus Nb and Nb

�
N�

b qbð Þ. Here, this

crossover chain length N�
bðqbÞ was found empirically by

requiring an optimal fit of the family of curves [Figure 11(a)]

on a master curve.

Of course, the scaling shown in Figure 11 is motivated by

theoretical arguments, based on a Flory-like treatment.[80,81]

When we consider a model such as shown in Figure 2(b)

where rods of length ‘K and diameter d are jointed such that

the contour length L ¼ Nb‘b ¼ n‘K , one can argue that the
Macromol. Theory Simul.
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second virial coefficient is proportional to y2 ¼ ‘2
Kd (any

prefactors of order unity will be ignored here throughout).

Then, the free energy of a chain contains twoterms, the elastic

energy and the energy due to interactions. Treating the elastic

energy as for a free Gaussian chain, and the repulsive

interactions in mean-field approximation, one finds
2011, 2

H & Co
DF � R2
e

�
‘KLð Þ þ y2R

3
e L=‘Kð Þ

�
R3
e

	 
2
; (18)
since the average density of rods in the volume R3
e is n

�
R3
e .

Minimizing DF with respect to Re, for L ! 1 one finds the

standard Flory-type result
Re � y2=‘Kð Þ1=5L3=5 ¼ ‘Kdð Þ1=5 Nb‘bð Þ3=5: (19)
When one calculates then the free energy cost DF, one finds

that the contribution of the second term in Equation (18) is

negligible in comparison with the first one if Nb < N�
b with
N�
b ¼ ‘3

K

�
‘bd

2
� �

: (20)
Hence, for Nb < N�
b one simply has the scaling of Gaussian

coils, R2
e ¼ ‘KL ¼ ‘K‘bNb. Comparing this result with

Equation (8), which implies rod-like behavior for L � ‘K ,

i.e., Nb � ‘K=‘b, we recognize that the intermediate
0, 510–525
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Gaussian behavior should only exist for
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‘K=‘b < Nb < N�
b: (21)
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In our SAW model we may take d ¼ ‘b and then

N�
b ¼ ‘K=‘bð Þ3, while for a model where ‘K / d (as we

shall see, this case applies to bottle-brush polymers!) one

would have N�
b / ‘K=‘b, i.e., both boundaries of the

inequality, Equation (21), are of the same order, and then

the intermediate Gaussian regime is absent altogether.

When we consider Re, as given by Equation (19),

normalized by its Gaussian result, we find that the result

can be cast into the form

Figure 12. log–log plot of the effective persistence length ‘p;R and
of the crossover chain length N�

b as a function of the persistence
length ‘pðqbÞ that describes the initial exponential decay of
hcosuðsÞi versus s, for the semiflexible SAW model. Theoretical
R2
e

�
‘K‘bNbð Þ ¼ Nb

�
N�

b

� �1=5
for Nb � N�

b: (22)
predictions and the best fit of our data are shown by solid lines,
and thin solid lines, respectively.
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Since for Nb ¼ N�
b the ratio considered in Equation (22) is of

order unity, we expect that R2
e

�
‘K‘bNbð Þ is a function of

Nb

�
N�

b over the whole range of Nb

�
N�

b , apart from the

region of very small values ofNb

�
N�

b [where the crossover to

rod-like behavior occurs, which is not described by

Equation (18). Beyond the realm of the Flory approximation

we expect that the exponent 1/5 in Equation (22) has to be

replaced by 2n – 1, of course. But it is an interesting

question to clarify how the length ‘p;R [Equation (16)] and

the crossover chain length N�
b scale with the persistence

length ‘p. Equation (19) would imply that
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and in order to test these relations, Figure 12 presents log–

log plots of ‘p;R and N�
b versus ‘p.

A generalization to other scaling exponents would yield

N�
b ¼ ‘K=‘bð Þz instead of Equation (20). Then ‘p;R / ‘mK

follows with m ¼ 1�z 2n�1ð Þ by using Equation (22).

Figure 12 suggests that z � 2:5 and then m � 0:56 would

fit the data better than the corresponding exponents of

Equation (23) z ¼ 3; m ¼ 0:4f g. We have no explanation for

this discrepancy.

We conclude this section by considering the structure

factor S(q), since this quantity is experimentally accessible

via scattering intensities in dilute solution (Figure 13).

The structure factor is defined as
 0.001  0.01  0.1  1

q
q* 0.001  0.01  0.1  1

q
q*

Figure 13. Structure factor S(q) normalized such that S(q¼0)¼ 1
on a log–log plot versus wavenumber q (a) and the corresponding
SðqÞ ¼ 1

ðNb þ 1Þ2

XNb

j¼0

XNb

k¼0

exp i~q � ½~rj�~rk�
� �* +

(24)
Kratky-plot {qS(q) vs. q} (b). Data for Nb¼ 50 000 are shown,
including all values of qb, as indicated. Part (a) shows the slopes
predicted theoretically for the standard excluded volume case
fSðqÞ/q�1=n with n¼0.588} and for the Gaussian case fSðqÞ/q�2g
as well as for scattering from rigid rods fSðqÞ/q�1g. Part (b)
indicates the estimation of a characteristic wavenumber q� from
the onset of a flat part (‘‘Holtzer plateau’’) in the Kratky-plot.
where ~rj
 �

are the positions of the (Nbþ 1) monomers in a

conformation that is averaged over. As expected, for q! 0

we have SðqÞ � 1�q2hR2
gi=3, while for q � 1=

ffiffiffiffiffiffiffiffiffi
hR2

gi
q

power

laws set in: for the ordinary SAW case (qb¼ 1) we have

an extended regime where SðqÞ / q�1=n, as expected,

while for very small qb, such as qb¼ 0.005, we rather
aterialsViews.com
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see that S(q) is compatible with S(q) / q�2 for small

q and then crosses gradually over to S(q) / q�1 (as

expected for the scattering from rigid rods[82]) for

larger q.

In order to be able to distinguish the various regimes

more clearly, it is customary to analyze the scattering in

terms of the so-called Kratky-plot,[83] qSðqÞ is plotted

versus q [Figure 13(b)]. Then, for q � 1=
ffiffiffiffiffiffiffiffiffi
hR2

gi
q

one has a

linear increase, reaches a maximum at qmax / 1=
ffiffiffiffiffiffiffiffiffi
hR2

gi
q

,

followed by a power law decay [qSðqÞ / q1�1=n for the good

solvent regime,S(q)/q�1 for Gaussian chains, respectively].

While the simulation data for fully flexible chains (qb¼ 1.0)

indeed exhibit a straight-line behavior on the log–log plot

over almost two decades, 0.01< q< 1.0, and the slope of this

straight line is compatible with the theoretical value

1�1=n � �0:70, for small qb the behavior is less convincing.

In principle, for large enoughNb, where Equation (16) holds,

we should see the same exponent from qmax < q < qcross �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2

gicross

q
, with R2

g

D E
cross

� 1=3ð Þ‘b‘pN�
b ¼ 8=3ð Þ‘4

p

.
‘2
b,

where we have used Equation (20). At q¼ qcross the

crossover from excluded-volume dominated behavior to

Gaussian-like behavior occurs, i.e., we should seeqS(q)/q�1

for qcross �
ffiffiffiffiffiffiffiffi
3=8

p
‘b=‘

2
p < q < ‘�1

p . Since for Nb¼ 50 000 we

are obviously (Figure 5) too close to N�
b , a significant region

where qmax is clearly smaller than qcross does not occur, if qb
is small (such as qb¼ 0.005). However, since ‘p � 53 for

qb¼ 0.005, we would expect two decades in q where the

power law q�1 can be observed in Figure 13(b), but actually

there is only a single decade (0.002< q< 0.02) available, due

to extended regions of smooth crossover. Figure 13 shows

that the onset of the deviation from the law qS(q) / q�1 at

about q� 0.02 yields a reasonable estimate for ‘�1
p , and not

the onset of the so-called ‘‘Holtzer plateau’’[84] atq��1 where

qSðqÞ becomes strictly independent of q for a (not very

extended) region ofq. This failure of the method of finding ‘p
by the onset of the ‘‘Holtzer plateau’’ for the model studied

in this section is expected, of course, from the explicit

calculation of S(q) for the Kratky–Porod WLC model,[85]

which shows that the crossover from the S(q) / q�2 law to

the S(q) / q�1 law is very wide, and hence any onset

wavevectorq� for the onset of the ‘‘Holtzer plateau’’ is rather

ill-defined. Of course, this problem is not really rectified if

one uses ‘p ¼ 3:5=q�, as suggested by Lecommandoux

et al.,[13] rather than ‘p ¼ 1=q�.
Scaling Analysis of the Bond Fluctuation
Model for Bottle-brush Polymers

In this section, we first summarize the most pertinent

findings of our previous Monte Carlo simulations of bottle-

brush polymers under very good solvent conditions[41–43]

and then describe a scaling analysis by which the model

[Figure 2(a)] is essentially mapped on a bead-spring type
Macromol. Theory Simul.
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model [Figure 2(d)]. This analysis (which was briefly

mentioned in our Letter[44]) implies that bottle-brush

polymers are not well-described by concepts based on

the Kratky–Porod[28] WLC model, even if weak excluded

volume interactions [Figure 2(c)] with ð‘K � dÞare included.

Of course, if one chooses a model of cylindrical beads with ‘K
of the same order as d, one does obtain a valid coarse-

grained model of bottle-brush polymers, since for such

coarse-grained models, the shape of the effective beads

(bulky cylinders or spheres) does not really matter. This

conclusion, in fact, is already suggested by the snapshot

[Figure 2(a)]. Since details on the simulation model and

methods have been given elsewhere,[4–43] here we give only

the salient features. As is well-known,[24,78,79] effective

monomers in the bond-fluctuation model block all eight

corners of an elementary cube of the simple cubic lattice

from further occupation, thus realizing excluded volume

interactions. Bond vectors are taken from the set

{ð	2; 0; 0Þ; ð	2;	1; 0Þ; ð	2;	1;	1Þ; ð	2;	2;	1Þ; ð	3; 0; 0Þ;
ð	3;	1; 0Þ; and permutations thereof}. A combination

of local moves (the ‘‘L26’’ move[72]) and pivot moves[86]

provides fast relaxation (see[87] for details on the

algorithm).

First of all, we demonstrate that the classical formulas for

defining a persistence length, such as Equation (6) or (13), do

not work.[43] As an example, Figure 14 shows ‘pðkÞ for one

choice of side chain length N N ¼ 24ð Þ. It is seen that

Equation (14) provides a reasonable description of the data

for all Nb. The prefactor a increases with Nb up to Nb � 400

and then settles down at a plateau value a� 17 for N¼ 24.

Note that this value increases with N, of course, since

increasing the side-chain length causes chain stiffening.[43]

When we study the rescaled mean-square end-to-end

distance as a function ofNb, controlling chain stiffness now

by varying side chain length N, the resulting picture

[Figure 15(a)] differs qualitatively from the SAW model

with variable chain stiffness (Figure 5). While in the latter

case with increasing stiffness q�1
b a well-developed rod-like

regime followed by a Gaussian behavior resulted, as

discussed at length in the previous section, now we

encounter a gradual crossover from almost rod-like

behavior for relatively short backbone lengths Nb directly

to the SAW limit. Irrespective of the side-chain lengthN, the

data qualitatively resemble the SAW model with qb¼ 0.4 or

1.0, respectively (Figure 5). There is one important

distinction; however, while for the SAW model in this

case the effective persistence length ‘p;R is very small

[in Figure 5, 15(a)] the effective persistence length ‘p;R
can be read off as the plateau value reached for large Nb,

which is less than unity for qb> 0.1, for bottle-brush

polymers ‘p;R is much larger, and clearly ‘p;R increases with

increasing N.

Figure 15(b) shows that actually the bottle-brush end-to-

end distances satisfy a simple scaling behavior, if R2
e;bb

D E
is
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Figure 14. (a) Local persistence length ‘pðkÞ [Equation (13)] plotted
vs. k/Nb for the bond fluctuation model of bottle-brush polymers
with grafting density s¼ 1 and fixed side chain length N¼ 24, for
several values of the backbone length: Nb¼ 131, 259, 515, and 963
(from bottom to top). These data can be well fitted by
Equation (14), where ‘b ¼ 2:7 lattice spacings for the bond fluctu-
ation model, if one allows the constant a to depend on Nb.
(b) Prefactor a obtained from fitting Equation (14) to the data
of part (a), and the data for Nb¼ 195, 387, 643, 771, and 1 027,
plotted versus Nb. For the range of the fit, only 0:3 < k=Nb < 0:7
was used. Note that for Nb�400 a value a� 17 independent of Nb
results. Adapted from Hsu et al.[43]
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Figure 15. (a) Rescaled mean-square end-to-end distance
hR2

e;bbi=ð2‘bN2n
b Þ of the bottle-brush polymers plotted for grafting

density s¼ 1 and several choices of the side chain length N as
function of the backbone chain length Nb. Adapted from Hsu
et al.[43] (b) Rescaled mean-square end-to-end distance
hR2

e;bbi=ð2‘b‘p;RN2n
b Þ plotted versus the rescaled chain length

Nb=sblob (cf. Figure 16 for the construction of sblob). Adapted from
Hsu et al.[44]
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also scaled with ‘p;R (in addition to the factor 2‘bN
2n
b ) and the

abscissa variable Nb is scaled with the appropriate blob

chain length sblob. This blob size is constructed following the

idea of Figure 2 that a bottle-brush polymer can be viewed

as a chain of blobs whose radii are chosen such that they

reproduce the cross-sectional radius RcsðNÞ. Computing the

end-to-end distance of subchains of s subsequent mono-

mers taken from the interior of our backbone chains, we get

a function Dr(s) shown in Figure 16(a). When we now also

record the radial monomer density distribution r(r),

Figure 16(b), we can compute Rcs (cf. Figure 3) and find

the number of monomers in a blob from the condition that

the blob diameter equals 2Rcs,
www.M
Dr sblobð Þ ¼ 2Rcs Nð Þ: (25)
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The construction is shown in Figure 16(a), and the values

sblob(N) resulting from this approach are then used to

rescale Nb in Figure 15(b). The success of this scaling

description shows that we have succeeded to coarse-grain

bottle-brush polymers by mapping them to an effective

chain model, but this effective model is not the WLC model

of Figure 2(b) nor an SAW with high resistance toward

bending [Figure 2(c)], but rather the correct picture is a

chain of blobs with diameter of the order of the cross-

sectional diameter of the bottle-brush polymer, 2Rcs(N).

Noting that the radio of ‘p;R
�
Rcs ¼ 1:11, 1.16, 1.23, and 1.28

for N¼ 6, 12, 18, and 24, respectively, we have verified that

the effective persistence length ‘p;R and the cross-sectional

radius are the same, apart from a constant of order unity.

This result is consistent with the early predictions by

Birshtein et al.[61]. At this point, we remind the reader of

the criterion for a possible regime of Gaussian behavior of

semiflexible chains, Equation (19, 20): if we take d¼ 2Rcs

and ‘K ¼ 2‘p;R ¼ 2Rcs as well, we would conclude that

N�
b ¼ 2Rcs=‘b ¼ ‘K=‘b, i.e., lower and upper limit of the

inequality Equation (21) coincide, as we have announced
2011, 20, 510–525
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above. Thus, indeed there is no contradiction with our

finding that the WLC model of semiflexible chains is not a

faithful description of bottle-brush polymers and no

intermediate regime of backbone chain lengths can be

found where Gaussian behavior occurs. Thus, Equation (8)

must not be used for bottle-brush polymers under good

solvent conditions!

In view of the fact that experimental AFM pictures of real

bottle-brush polymers (e.g., ref. [3,10]) as well as the

snapshot from our own simulation reproduced in

Figure 2(a) have sometimes the character of WLCs, the

above conclusion may sound surprising at first sight.

However, both the snapshot [Figure 2(a)] and the AFM

pictures do reveal also some strongly bent regions, where

the chains locally have a ‘‘horseshoe’’ or ‘‘meander’’-like

appearance. Thus, we feel that experimental work based on

the analysis of AFM pictures via fits to Equation (6) or (8) can

yield unreliable results. Of course, it is possible (depending
Macromol. Theory Simul.
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on the chemical structure of both the backbone chain and

the side chains and the solvent quality) that one works with

chains which are intrinsically stiff, so that the radio ‘p;R
�
Rcs

becomes much larger than unity; then a regime where the

WLC model applies indeed could exist. Also, when Nb is

rather short [so that in the scaled plot, Figure 15(b), one

works in the regime Nb=sblob < 20], it is possible that the

WLC model still could be fit to the data, although the

resulting values of ‘p should not be trusted.

As a final caveat, we draw attention to the fact that the

curve Dr(s) versus s in Figure 16(a) for our model is not

strictly universal (i.e., independent ofN), but there is a slight

but systematic increase of Dr(s) at fixed s with increasing N

(also there is a related slight but systematic increase of the

ratio ‘p;R
�
Rcs with N, as quoted above.) These observations

are the only indications of our results that in fact for very

large N a different scaling behavior should emerge, where

‘p
�
Rcs � 1. The scaling theory of Fredrickson[62] predicts

that
2011, 2

H & Co
Rcs / N3=4; ‘p / N15=8 (26)
and if the regime where the power laws hold could be

reached, Equation (19, 20) would yield (taking

‘K / ‘p; d / Rcs)
‘p;R / ‘Kdð Þ1=5 / N21=40; N�
b / N33=8 (27)
and hence for N15=8 � Nb � N33=8, a Gaussian behavior

could exist also for bottle-brush polymers. However,

Monte Carlo studies for bottle-brush polymers with rigid

straight backbones, which allow to use side chains of

length of several hundred, gave no evidence for the

relation Rcs / N3=4 yet.[57] Moreover, numerical self-con-

sistent field calculators of Feuz et al.[63] gave compelling

evidence that side-chain lengths of N � 103 or larger are

required in order to reach the regime where

Equation (26, 27) hold. Such long side chains are not

accessible in simulations, but also rather irrelevant for

experiment.
Concluding Remark

It has been already discussed in our earlier work[41–43] that

for bottle-brush polymers formed from flexible chains (both

the backbone and the side chains were assumed to behave

identical or at least similar) under good solvent conditions

the standard approach to introduce a persistence length

from the decay of bond-orientational correlations

[Equation (6)] fails: on semilog-plots of cosuðsÞh i versus

the ‘‘chemical distance’’ s along the backbone one

encounters a systematic curvature, and if one extracts a

decay length from a part of such a curve, it is found to
0, 510–525
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increase systematically with the chain length of the

backbone, and is unsuitable as a characteristic of the

intrinsic stiffness of the chain.

In the present paper, we have focused upon an

alternative approach, namely the use of the Kratky–Porod

WLC model [Equation (8)–(10)] to describe the linear

dimensions of the chain. While for the SAW model on the

simple cubic lattice, where one may introduce an energy

parameter penalizing chain bends, one finds a regime

of rather stiff chains, where this model provides a reason-

able description, before for chain lengths Nb > N�
b a

crossover to excluded-volume dominated behavior occurs

[Equation (18)–(23)], we found that for bottle-brush

polymers this model does not hold. Rather we have found

that bottle-brush polymers can be mapped on an effective

bead-rod or bead-spring model of ‘‘blobs’’ having a diameter

equal to the cross-sectional diameter of the bottle-brush

polymer. In the regime of side-chain lengths accessible in

simulations and experiments, the effective persistence

length is of the same order as this cross-sectional diameter,

and an additional backbone stiffening predicted by theory

is not (yet?) effective. We feel that these findings provide an

understanding why experimental studies[13–21] have some-

times yielded contradicting results. Most of these studies

have taken relations such as Equation (6)–(8) as granted,

while our work implies that none of these relations applies

for bottle-brush polymers under good solvent conditions,

when both backbone and side chains are intrinsically

flexible. Note that use of Equation (6) to fit experimental

data or simulations over some restricted range of s typically

will yield too large values of the persistence length, since

the data actually would be described by Equation (12), if Nb

is large enough [if Nb=sblob < 20, in Figure 15(b) the

resulting persistence length depends strongly on Nb, as

demonstrated in ref.[41–43]]. Due to the dependence of ‘pðkÞ
on Nb, Equation (14), also the use of ‘pðkÞ leads to an

overestimate of the persistence length, in comparison with

‘p;R. This latter quantity is perfectly well-defined also in the

case of strong excluded volume interactions, and for our

model varies from about 6.4 (N¼ 6) to about 17.6 (N¼ 24)

lattice spacings (which would correspond to a variation

from about 1.7 nm to about 4.64 nm, if the translation factor

of Figure 3, 4 is invoked: these numbers are much smaller

than the estimates quoted in the experimental work).

Another length of interest is the contour length Lcc

(Figure 1). Taking the mapping of Figure 2(a)–(d) seriously,

we would obtain Lcc ¼ 2RcsNb=sblob, which would yield

(forNb¼ 1 027 and N¼ 6, 12, 18, and 24, respectively) that

Lcc ¼ 1 989, 1 824, 1 963, and 2 016, instead of Nb‘b � 2 773

lattice spacings. Thus, the coarse-grained contour length Lcc

is about 30% smaller than the ‘‘chemical’’ contour length

Nb‘b, in our model.

Our findings imply, however, that for polymers which are

locally rather stiff and thin, so that the model of Figure 2(c)
www.MaterialsViews.com
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implies, one can find a region of small enough s so that

Equation (6) can be used for s< s
�
, before a significant

deviation from the exponential decay due to crossover to

the power law, Equation (12), occurs (Figure 7). Since this

crossover is somewhat gradual, a precise choice of s
�
cannot

be given. In the range 0.005� qb� 0.05 of our model [The

Semiflexible Self-avoiding Walk (SAW) Model section] a

choice s� � 3‘p seems reasonable (with ‘p varying in

between 6 and 53 lattice spacings in this range). In terms

of Equation (6) this means that R2
e

� �
has reached about 68%

of its (Gaussian) saturation value. Obviously, this is a much

smaller value of Nb rather than the value N�
b where

crossover to excluded-volume dominated behavior in the

mean-square end-to-end distance occurs (Figure 10–12)
Nomenclatures
~ak b
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ond vector of bond k.
CNb;Nbend
n
umber of chain configurations with Nb bonds

and Nbend kinks on the sc lattice
d d
iameter of a (locally) cylindrical chain
H H
amiltonian
k b
ond index k ¼ 1; . . . ;Nbð Þ

kB B
oltzmann’s constant
L (a
ctual) contour length of a linear polymer

L ¼ Nb‘bð Þ

Lcc e
ffective contour length of a coarse-grained

chain
‘b le
ngth of a bond connecting two subsequent

(effective) monomers
‘K K
uhn length of a Gaussian chain
‘p p
ersistence length, defined from (initial) expo-

nential decay of bond orientational correlation
‘p;R p
ersistence length defined from the chain end-

to-end distance, in the presence of excluded

volume.

~‘s b
ond vector connecting two subsequent (effec-

tive) side chain monomers
M
sc
n m
olecular weight (g�mol�1)
N c
hain length of the side chain of a bottle-brush

polymer
Nb ‘‘
Chain length’’, i.e., number of bonds in a chain

(or in the backbone of a bottle-brush polymer,

respectively)
N�
b c
rossover ‘‘chain length’’ above which self-

avoiding walk statistics holds for stiff chains
n n
umber of Kuhn steps for a Gaussian chain
nstr n
umber of straight bonds, withouts kink in

between
np d
ecay constant of pðnstrÞ

PðnstrÞ p
robability that nstr consecutive straight bonds

occur on the sc lattice
q w
avenumber
–525
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qb s
tatistical weight of a bond of a semiflexible

chain qb ¼ exp �"b=kBTð Þð Þ

qcross c
rossover wavenumber
qmax w
avenumber where a maximum in the Kratky-

plot occurs
q
�

w
ave number where Holtzer plateau sets in
Rcs c
ross-sectional radius of a bottle-brush polymer

~Re e
nd-to-end vector of a side chain of a bottle-

brush polymer or of a linear chain

~Re;bb e
nd-to-end vector of the backbone of a bottle-

brush polymer
Rg g
yration radius
Rg;bb g
yration radius of the backbone of a bottle-

brush polymer
r r
adial coordinate (perpendicular to the back-

bone of a cylindrical chain)

~rðtÞ d
escribes the contour of length Lcc
~rk p
osition of effective monomer with label k
S(q) s
tructure factor
s m
onomer index difference along the chain

contour
s� c
rossover index (above which orientational

correlations display a power law)
sblob n
umber of monomers per blob
T a
bsolute temperature
t c
oordinate along the (curved) contour of the

coarse-grained polymer
UbendðuÞ b
ending energy
n2 s
econd virial coefficient
Z p
artition sum
b e
xponent which describes the power law decay

of orientational correlations [Equation (2)]
DF f
ree energy
DrðsÞ e
nd-to-end distance of s subsequent monomers

on the backbone of bottle-brush polymers
" b
ending energy
z e
xponent which describes the power law

dependence of N�
b on ð‘K=‘bÞ
u b
ond angle
k b
ending rigidity
m e
xponent which desribes the power law depen-

dence of ‘p;R on ‘K

n ‘‘
Flory’’ exponent (n � 0.588)
neff e
ffective ‘‘Flory’’ exponent determined for short

side chain lengths of bottle-brush polymers
rcsðrÞ c
ross-sectional monomer density
s g
rafting density
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[23] L. Schäfer, Excluded Volume Effects in Polymer Solutions as
Explained by the Renormalization Group, Springer, Berlin
1999.

[24] W. Paul, K. Binder, D. W. Heermann, K. Kremer, J. Phys. II 1991,
1, 37.

[25] M. Müller, K. Binder, L. Schäfer, Macromolecules 2000, 33,
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