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Understanding the Multiple Length Scales
Describing the Structure of Bottle-brush
Polymers by Monte Carlo Simulation Methods

Hsiao-Ping Hsu,” Wolfgang Paul,* Kurt Binder*

Bottle-brush polymers contain a long flexible macromolecule as a backbone to which flexible
side chains are grafted. Through the choice of the grafting density and the length of the side
chains the local stiffness of this cylindrical molecular brush can be controlled, but a quan-
titative understanding of these phenomena is lacking. Monte Carlo simulation results are
presented and discussed which address this issue, extracting mesoscopic length scales (such as
the cross-sectional radius, persistence length, and contour length of these objects). Large-scale
simulations of the bond fluctuation model are
combined with simulations of the simple self-
avoiding walk (SAW) model with flexibility con-
trolled by a bond-angle potential, using the
pruned-enriched Rosenbluth algorithm. It is
shown that under good solvent conditions the
bottle-brush polymers never display a pre-asymp-
totic Gaussian regime that would be described by
the Kratky—Porod worme-like chain model, unlike
the semiflexible SAW model. Implications of these
results for the proper interpretation of exper-
iments are discussed.

Introduction and Overview and references therein). Due to the interplay of steric

repulsion between the monomers of the densely grafted
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Macromolecules with comb-like chemical architecture,
where linear side chains are grafted to a backbone polymer
chain have recently found a lot of interest (see reviews!*™
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side chains with effective attractive interactions that can be
controlled e.g., by solvent quality, intricate spatial self-
organization of these molecular brushes becomes possible.
With increasing chain length N of the side chains and
increasing grafting density already in good solvent
conditions a stiffening of an intrinsically flexible backbone
can be induced. Since the global conformations of the
complex macromolecules are rather sensitive to various
external stimuli, various applications have been envisaged
(sensors, actuators, building blocks in supramolecular
assemblies, etc.>>®). Also in a biological context biopoly-
mers with bottle-brush architecture occur in a variety of
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contexts.[”) For example, aggrecane molecules that occur in
the soft layers of mammalian joints are thought to
contribute to the excellent lubricating function of these
layers.!® Similar structures occur in neurofilaments.*!

For designing such molecules for possible applications, or
for understanding the function of bottle-brush polymers in
a biological context, the relation between the properties
characterizing the chemical architecture (chemical nature
of the backbone and its chain length N,; grafting density o
of the side chains, their chemical nature and their chain
length N) and the geometrical structure needs to be
understood. This turns out to be a difficult problem, since
the conformation of these bottle-brush polymers is
characterized by a multitude of length scales. Sometimes
one relies on atomic force microscopy observations of
bottle-brush polymers adsorbed on substrates, e.g., mica,[lol
but there is clear simulation evidence™ that the config-
urational properties of adsorbed (quasi-two-dimensional)
bottle-brush polymers differ very much from their (three-
dimensional) counterparts in dilute solution. This differ-
ence is no surprise, of course, since a linear flexible
macromolecule with a chain length N, (we denote by
“chain length” the number of effective subunits of the
polymer throughout this paper) exhibits a scaling of its
(gyration) radius Ry o< Nj wherel® v ~ 0.588 in d=3
dimensions while v=3/4 for d=2, in good solvent
conditions. Thus, most conclusions about the structure of
bottle-brush polymers result from the analysis of small
angle neutron scattering (often combined with light
scattering) from bottle-brush polymers in solution, e.g,
ref. 2 Such an analysis is difficult for a variety of
reasons: (i) in order tohave enough scattering intensity, one
often does not work in extremely dilute solution, but under
conditions where the bottle-brush polymers overlap.[*%?!]
As expected from the behavior of ordinary linear poly-
mers,[*>?22725 in semidilute solutions the chain conforma-
tions differ substantially from those under very dilute
conditions. As is well-known, a description of the concen-
tration dependence is subtle,?>2°! simplistic theories like
the random phase approximation (RPA)*? cannot be
quantitatively relied upon.?#?32%! Thus, the extrapolation
of the excess scattering due tothe polymers to small volume
fraction is difficult. (ii) Real polymers never are strictly
monodisperse. For bottle-brush polymers, corrections due
to the polydispersity of both the backbone chain and the
side chains may be necessary. (iii) The scattering back-
ground intensity must be properly subtracted. (iv) While
the mean square gyration radius (R;) of the bottle-brush
polymer as a whole can be extracted independent from
model assumptions from the behavior at small scattering
wave number, g, from a Taylor expansion of the total
structure factor S(q) = $(0)[1—q*(R7)/3 + — -], all other
mesoscopic length scales of interest (Figure 1) such as the
cross-sectional radius R, the contour length L.. and the
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Figure 1. Schematic explanation of the multiple length scales for
molecular bottle-brush polymers. A coarse-grained continuum
description depicts the polymer as a flexible sphero-cylinder with
a cross-sectional radius R.; and a contour length L . along the axis
of the coarse-grained cylinder. Over a length scale ¢y, the per-
sistence length, the cylinder is straight, while over larger length
scales it bends. The monomer density distribution in the cylinder
is assumed to be uniform. A less coarse-grained view (lower part
of the figure) depicts the backbone of the bottle-brush polymer as
an SAW of N, effective monomeric units connected by effective
bonds Z,. Side chains of chain length N (with bond vectors ZS) are
grafted at the effective monomers of the backbone with grafting
density o. Characteristic lengths of interest are the end-to-end
distances and gyration radii of both side chains (/(R2), /(R2))
and of the backbone (, /(R ;). | /(R? ), respectively.

persistence length ¢, can only be extracted via an intricate
fitting procedure to a complicated model.*#82%) This
model?! relies on approximations which have been shown
to be somewhat inaccurate.*”]

In view of all these caveats, it is no surprise that serious
disagreements between the findings of various experi-
mental groups on the properties of chemically very similar
bottle-brush polymers occur.**7*¢! Even if one accepts a
description in terms of a coarse-grained continuum picture
as sketched in Figure 1, the question must be asked what is
the quantitative relation between thelengths /, and L..and
the chain lengths N, N, and the grafting density o.
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Figure 2. (a) Snapshot of a typical conformation of a simulated bottle-brush polymer
[using backbone chain length N, =1027, side chain length N = 24, in the framework of
the bond fluctuation model, see The Semiflexible Self-avoiding Walk (SAW) Model
section], and three possible corresponding coarse-grained models, a model of freely
jointed rods of Kuhn step length ¢« and diameter d (b), an SAW model on the simple
cubic lattice where 9o° bends cost an energy ¢, > kg T, so the chain consists of straight
pieces of ny, > 1 steps (c), and a model of tangent hard spheres with radius R (d).

Actually, two scenarios are conceivable (Figure 2): if the
coarse-grained length scales satisfy the inequality £, > R,
the coarse-grained bottle-brush polymer can be described
by the Kratky—Porod!?®! worm-like chain (WLC) model. It
can be described by a Hamiltonian!?*3!

H=" O/ dt(d;tg )) 0

where the curve 7(t) describes the contour of length L,
and the parameter « =/{,kgT describes the bending
stiffness. Here, t is a coordinate along the (curved) contour
of the coarse-grained polymer in Figure 1. Equation (1)
neglects excluded volume completely; Pedersen and
Schurtenberger!®®  consider a discrete version of
Equation (1) numerically, where cylinders of diameter
d = 2R and a Kuhn step length fx = 2/, are freely jointed
[Figure 2(b)], assuming /x = 5d, and respecting excluded
volume. As will be discussed below, this model is
equivalent to the original Kratky—Porod model only for
not too large N, (and L..). The same statement applies to a
lattice variant of the Kratky—Porod model with excluded
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volume, that will be studied in the
l k present paper, the self-avoiding walk
(SAW) on the simple cubic lattice with an
energy penalty €, /ksT > 1 for 90° bends
to the chain [Figure 2(c)]. However, if in
the Pedersen—Schurtenberger model'®)
one would choose /¢ and d of the same
order, or in the SAW model ¢, is of the
same order as the thermal energy kgT,
even for small N, the Kratky—Porod
model?®! is not a reasonable approxima-
tion, as will be shown in the present
paper: rather the polymer conformation
then resembles a chain of freely jointed
spheres of radius R [Figure 2(d)]. Other
variants of the Kratky—Porod model,
such as the “discrete chain model,”!
which are used in the context of the
stretching response of semiflexible poly-
mers,1*27%% are essentially equivalent
to the model of jointed cylinders
[Figure 2(b)].

Another questionable approximation
implicitly inherent in the coarse-grained
picture of Figure 1 is that the monomer
density inside the effective cylinder stays
approximately constant up to the radius
R.sandis zero outside (r > R, see insert of
Figure 3). The actual monomer density
profile, as it results from simulations of
model polymer brushes!?”4*~#4 differs
very much from a constant (Figure 3), and also the
popular assumption** of a Gaussian density profile,
pes(1) o< exp(—r? /R%) provides a good fit of the simulation
only for r > 3 nm, but not close to the backbone. It is clear
that a constant density profile p.s(r) may be appropriate for
the description of cylindrical micelles, or for bottle-brush
polymers in poor solvent conditions, but both the experi-
ments32Y with which we are concerned here, and the
simulations!?”4*7] all deal with good solvent conditions,
for which excluded volume effects must be consid-
ered 2223

Experiments indeed indicate that the length scales
of the coarse-grained description (Figure 1) are difficult to
understand. For example, Zhang et all*®! present a
comparative discussion of the dependence of both R
and the Kuhn length /¢ (taking the relation ¢x = 2¢, for
granted, as usually donel®®*)) on side chain length, for
bottle-brush polymers composed from polymethylmetha-
crylate as a backbone chain and polystyrene side chains.
Taking work from several groups in good solvents
(cyclohexane, toluene) they report™® exponents veg in
the relation R oc N'eff in the range from 0.56 < vegr < 0.67
(we use here the notation veg instead of the standard

[13—-21]
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Figure 3. Radial density distribution of the monomers p(r) in the
direction perpendicular to the cylinder axis, for a simulated
bottle-brush polymer [using the bond fluctuation model, see
The Semiflexible Self-avoiding Walk (SAW) Model section] with
a backbone chain of length N, =259, grafting density o =1, and
side chains of length N =48 (circles connected by a dotted curve)
compared to a Gaussian which results from a fit to an exper-
imental system.'4! Note that R, according to this fit is 6.3nm
while the corresponding value of the simulation (defined from
R =27 [ Bdrpe(r) with 27 [° rdrp(r) =1) is snm. In this
comparison, a conversion of lengths from the simulation
to the experiment was done requiring that 1nm=3.79 lattice
spacings, since then a very good agreement between the
experimental™ and simulated!#" structure factor is obtained,
without any adjustable parameters whatsoever (Figure 4). The
insert shows another popular assumption for p.(r), namely
pes(r) = const. for o <r <R and zero else.

notation v for the Flory exponent[1#22235960] since the data
refertoafitintherange 6 <N < 33).Whilee.g., for side chain
molecular weight M = 3.5. x 10°gmol ' these experi-
ments all yield R.s ~ 3 nm, the corresponding estimates for
lx vary from 20 to 65 nm.[*® While some of these
experiments indicate a rapid increase of ¢ with N, other
experiments indicate a slow increase,[16] and for the system
of Rathgeber et al**! (analyzed in Figure 3, 4) it was
suggestedthat ¢y = 70 + 4 nmfor N > 22 independent of N,
so that ¢k /R.s then is a decreasing function of N, contrary to
theoretical expectations.[>#®1¢3] Also the estimated
values for the effective contour length L. of the cylindrical
brush (Figure 1) seem to be problematic, and our conclusion
is that the experiments are not fully understood. We feel
that claims in the literature,?!) that bottle-brush polymers
can be fully accounted for by the WLC model, “flexible
cylinders with a circular cross-section and a uniform
scattering length density,” are overly optimistic (note that
this work!?!) did neither study the variation of the lengths
Res, Uk, L with side chain length Nnor with backbonelength
Ny, unlike*).

In view of these problems, we wish to clarify by
systematic simulation studies whether bottle-brush poly-
mers with both intrinsically flexible backbone and side
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Figure 4. log-log plot of the experimental structure factor S*P(q)
of a bottle-brush (with a polyhydroxyethylmethacrylate) [PMMA]
backbone of N;* = 400 monomers, poly(n-butyl acrylate) [PnBA]
side chain containing N®? = 62 monomers, grafting density o =1)
versus the wavenumber g scaled with the gyration radius
(Rg® = 30.5nm) of the total bottle-brush polymer (curve). The
corresponding simulation result are shown by circles (as dis-
cussed in ref. 4! roughly three chemical monomers in the exper-
iment correspond to two effective monomers of the simulation),
with N, =259 and N = 48. Since in the simulation R; = 115.8 lattice
spacings, a conversion of lengths units such that 1nm=3.79
lattice spacings was chosen. Note that both the simulation
and the experiment correspond to good solvent conditions (using
in the experiment toluene as a solvent, and strictly repulsive
excluded volume interactions in the simulation model).

chains under good solvent conditions (as studied experi-
mentally**72%) on a coarse-grained scale are described by
the WLC model [with relatively small excluded volume, i.e.,
in its discretized version, Figure 2(b), the length ¢ of
the cylinders is much larger than the diameter] or by a
flexible chain of hard spheres [Figure 2(d)], where the
sphere radius is of the same order as the cross-sectional
radius R, and fx = 2R, inthe case of tangent hard spheres.
Of course, if one would choose ¢ not much larger than
d in the model of freely jointed cylinders [Figure 2(b)],
there would no longer be an essential difference to the
hard sphere chain [Figure 2(d)], but then the WLC
model®! no longer is a valid analytical approximation of
the model.

In this paper, two models will be studied: (i) the SAW on
the simple cubic latticel® with an energy parameter &,
associated with 90° turns of the SAW, applying the pruned-
enriched Rosenbluth method (PERM)!®>~*"] and studying
single chains up to N, =50 000. This model [Figure 2(c)] is
well suited to study the crossover between the SAW and
WLC models*¥ [The Semiflexible Self-avoiding Walk (SAW)
Model section]. A brief preliminary account of this work
was presented in a Letter.**! (ii) The second model (Scaling
Analysis of the Bond Fluctuation Model for Bottle-brush
Polymers section) that is studied here is the bond
fluctuation model of bottle-brush polymers on the simple
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cubic lattice, extending work presented earlier.*™#4! we
shall show that for this model a regime where the WLC
model provides an accurate coarse-grained description does
not exist, and hence relations such as ¢x = 2/, (which are
based on ignoring excluded volume interactions, assuming
Gaussian chain statistics?*°®7% cannot be found.
We rather show that a model such as a flexible chain of
tangent hard spheres [Figure 2(d)] is a more appropriate
coarse-grained description of such bottle-brush polymers.
In this context, we then discuss in which way one can
extract a meaningful estimate of the persistence length ¢,
for bottle-brush polymers, such that it describes their
“intrinsic” stiffness, independent of the length N, of the
backbone. Concluding Remark section summarizes our
conclusions.

The Semiflexible Self-avoiding Walk (SAW)
Model

In order to describe local chain stiffness, it is natural to
introduce a bond-bending potential, that depends on the
angle H between subsequent bond vectors.?>°#7%% A simple
choice is

Ubend(e) = Eb(l—COSQ). (2)

On the simple cubic lattice, the only possible values are
6=0°and 90°, of course, and hence Upeng(0) = 0 if the SAW
continues straight while Upeng = €5 for 6=90°.

However, in order to make contact with the standard
theory!?%°875% we remind the reader of a corresponding off-
lattice model where the angle fisnot “quantized” so that for
large ¢, we expect that the chain typically makes small
angles 0 from one bond to the next one. If one ignores
excluded volume, the mean square end-to-end distance
then becomes (N, — oo; note (cosf) ~ 1—(6?)/2)

» 1+ (cosb)

2\ _
(Re) = Nyl 1—(cosb)

~ (4/(6%)) 3Ny, (3)

where /), is the step length. Introducing then the Kuhn step
length /x from a model with n steps of an equivalent freely
jointed chain,

(RZ) = nlg, ntx = Nyt (4)
immediately yields

lx = 40,/ {6%). (5)

On the other hand, the standard definition of a

persistence length(®®7°l 7, introduces it as the decay length
of the orientational correlation of bonds that are s steps
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apart along the chain,
(cosb(s)) = exp(—stp/lp). (6)

Noting that for Gaussian chains subsequent bond orienta-
tions are uncorrelated, hence (cosé(s)) = (cost)* =
exp[sln(cos)] ~ exp[—s(6?)/2], one finds

by =20, /(07) = g /2. (7a)
and hence
(R2) = 2£,(,Np. (7b)

These considerations are easily extended to include effects
of finite chain length and thus describe the crossover
toward the limit of hard rods. For example, introducing the
contour length L as L= N/, in the continuum limit
(keeping L finite, ¢, finite, but taking N}, — co and ¢, — 0)
one finds!?*!

() = ZEPL{lf% [1—exp(~L/%,)] } ®)

For I — oo Equation (8) yields the standard Gaussian
behavior (R?) = 2(,L = IxL = lxl,N, while for L < ¢, the
rod-like behavior occurs,

(R2) =L = (,Np. (9)

Note that in Equation (3)—(9) it makes sense to consider N,
as the number of bonds rather than the number of
monomers (which then is N,+1) of the chain. An
extension of Equation (8) to a discrete WLC (without
excluded volume) is[®®

1+ (cosf) 2{cosh) (cos@)No—1
1—(cost) Ny ({cost)—1)*|

(R2) = Npl (10)

Here (cost) = (cosf(s = 1)).

However, we stress that real polymer chains never fully
behave like Gaussian chains.®®74 Even in dense melts,
where Equation (4) still holds asymptotically, Equation (6)
fails and one rather encounters a power-law decay of bond
orientational correlations[®°~72]

(cosf(s)) o s/,

1 < s < Np. (12)
The same behavior was found for polymer chains in
dilute solution at the 6 point!*>74! (note that there the
applicability of the Kuhn length concept is already an
approximation, due to the expected logarithmic correc-
tions!*2?2231 o the simple power law (R2)  Nj as N, — o).
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But Equation (3) and (10) are particularly misleading when
one considers polymers under good solvent conditions:
since (R?)ocN2” with!”®! v ~ 0.588, a naive use of (R2) = n/2
and n = Npfy,/¢x would require a Kuhn step length /¢ that
diverges toward infinity as fxocNZ"~* for Nj, — oo, which is
not a sensible result.

Moreover, Equation (6) fails also, one again encounters a
power law decay as welll”®!

(cos(s))oxs™# 5" < s < Np; p=2-2v=0.824. (12)

Here s” is of order unity for fully flexible chains, but may be
much larger for locally stiff chains [for which Equation (2)
holds with ¢, > kgT, the thermal energy, as discussed
below]. For the sake of completeness, we mention that an
alternative definition of a “local” persistence length ¢, (k)
referring to the bond vector d) connecting monomers at
positions 7, and 7y_1 (@ = Fp—Tp_1)>*°%77!

6 (k) = (G R /|il?) (13)

is not useful in the case of SAWs either, sincel””]

(k) ~ aly[R(Np—k) /Np*" " (14)

As will be discussed below, only the prefactor « in
Equation (14) can be taken as a measure of intrinsic chain
stiffness, but not /¢,(k) itself, since /,(k) exhibits a
maximum at k=N,/2 which diverges to infinity propor-
tional to N?'~* as Nj, — 00.1**7”) We recall that this problem
is not improved when one considers an average of /,(k)
along the chain,'*® while no divergence occurs for®® £,(1).
However, in simulations the use of /,(1) is inconvenient,
due to the limited statistical accuracy. Note that in the
SAW model on the simple cubic lattice we take the lattice
spacing as the unit of length and then |G| = ¢, = 1, but for
other models (such as the bond-fluctuation model,?47%7°!
for instance) ¢, may take a different value.

For the SAW model with an energy term as written in
Equation (2) the partition function of a walk with N, steps
and Npeng 90° bends [Figure 2(c)] can be written as

Zn, (qp) = Z CNb~Nbendq£Ibend (15)

config.

where q, = exp(—Upenda/keT) = exp(—ey/kgT). For stan-
dard SAW'’s g, = 1, of course. It turns out that the PERM
algorithm,®>=7) which is a biased chain growth algorithm
with resampling, can be applied to the present model for
chain lengths up to N, =50 000. We have explored the
range from 0.005 < g, < 1.0, covering the full range from
very stiff to fully flexible chains.
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Figure 5. log-log plot of the rescaled mean square end-to-end
distance (R2)/(2(,N2") versus Np, for chain lengths N, up to
N, =750000, and many values of the stiffness parameter g, as
indicated. The straight line with slope 2—2v (for small N,) indicates
the limiting slope reached for hard rods, while the slope 1-2v
(for intermediate values of N,) indicates the behavior expected
for Gaussian chains. Solid horizontal plateaus show estimates for
Lo (qp), as estimated below (using Figure ). Adapted from Hsu
et al.l44

Since in ref.* it was suggested that a simple general-
ization of Equation (7b) to the excluded volume case is

(RZ) = 26prtN}", (16)

we plot in Figure 5 (R?) /(2¢,N3") versus N,,: if for large Nj a
constant plateau is reached, we can estimate the constant
{y ¢ from this plateau value.

We see that for not so stiff chains
(qpb=20.4, e.g., (cost)<0.413) the approach of
(R%)/(26,N?*) is monotonic, while for stiffer chains
(gp<0.4) this ratio develops a maximum, and this
maximum shifts to larger and larger chain length as g,
decreases (and hence the chain stiffness increases). It is
clearly seen that for g, <0.05 there is a regime of
short chains where the end-to-end distance indeed
exhibits rod-like behavior, (R2) = (2N} and therefore
(R?)/(2,N?") = (£,/2)N2~?". Before the data settle down
to the asymptotic plateau value described by Equation (16),
the data in Figure 5 decreases after the maximum again;
and for very small g, (such as g, =0.01) this decrease is
consistent with Gaussian behavior of the chains.

A convenient characterization of chain stiffness of the
present model is obtained from the distribution P(nsy),
Figure 6, where we simply count (using the data for
N, =750000 only, toavoid effects due to the chain ends) how
often sequences of ng, bonds without chain bending occur
in the chain conformation [see Figure 2(c)]. The straight line
fits included in Figure 6 suggest that irrespective of chain
stiffness the distribution always is compatible with a
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Figure 6. Semi-log plot of the distribution P(ng,) versus ng,, for g,
in the range from g,=o0.1 to 1.0, i.e., including rather flexible
chains (a) and for rather stiff chains 0.005<¢q,<o0.05 (b). The
straight lines indicate fits to simple exponential functions,
P(ng) = apexp(—ny/n,). The constants a, and n, are quoted
in Table 1. All data are taken for N, =50 00o0. Adapted from Hsu
et al.l44]

simple exponential, for large enough ng,
P(ngy) = apexp(—nsy /np). (17)

Table 1 lists the constants a,, n, and the first moment (ns,)
of this distribution as function of g,. Note that the length
lp(nsty) (with £, =1 in our model) could be taken as a
possible definition of a persistence length characterizing
the intrinsic chain stiffness of the model. Of course, only
for g, <0.05 this length is much larger than the bond
length, and for g, — 0 the difference between (ng,) and the
decay length n, disappears.

While the quantities np, (ns,) are well-defined for all
values of g, thisis not the case for the standard definition of
the persistence length ¢, as the decay length of orienta-
tional correlations, Equation (6), as Figure 7 shows: in no
case one can rely on Equation (6) for the asymptotic decay
s — oo (of course, always N, > s has to be considered).
Equation (6) can be used to describe only the initial decay of
(cost(s)) with s and not the final decay, which always is
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Table 1. Values of the persistence length ¢,, and the constants a,,
np, and the first moment (ng,) obtained through the curve fitting
using Equation (6) and (17), respectively, for semiflexible chains
with various values of g,.

qp 0.005 0.01 0.02 0.03 0.05 0.10 0.20 0.40 1.0
Ly 52.61 26.87 13.93 9.54 596 3.35 205 - -
ap 0.02 0.04 0.08 0.12 0.19 0.38 0.73 1.42 3.37

n, 5117 2595 13.30 9.07 5.68 3.12 1.82 1.13 0.68

sly,
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o
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Figure 7. Semi-log plot of (cosf(s)) versus the contour length s¢;,
for g, in the range from g,=o0.1 to 1.0 (a) and for rather stiff
chains, 0.005 < g, < 0.05 (b). All data are taken for N, =50 000,
and the straight lines indicate fits to Equation (6). The constants
4,(qp) are also included in Table 1. For rather flexible chains
(g5 =1.0 and 0.4) meaningful fits are not possible. Adapted from
Hsu et al.l44!

described by the power law, Equation (12), see also
Figure 8(a). While for g, =1.0 the data rapidly approach
the asymptotic power law and also for small s the
deviations from the power law are rather small and hence
it is clear that no region where the exponential law,
Equation (6), applies, for g, =0.1 (and smaller) the power
law only is valid for s¢;, > 30 (or larger), as expected from
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Figure 8. (a) log—log plot of (cos6(s)) versus s¢, for g, =0.05, 0.1,
0.2, 0.4, and 1.0, including only data for N, =50 000. The straight
line indicates a fit of the power law, Equation (12), to the data for
q»=1.0, including only data for s¢, > 10 in the fit, and requesting
the theoretical exponent, 8 =2 - 2v=0.824. (b) Local persistence
length £, (k) plotted versus k/N,, for q,=1.0 (i.e., the standard
SAW model), including chain lengths N, =400- 6400, as indi-
cated. Curves show fits to Equation (14), with a resulting prefactor
o =1.6888.

Figure 8(a), since for g, =0.1 the exponential decay is a
good description for s¢, < 10. Of course, the crossover
from the exponential law at small s to the power law at
larger s is rather gradual and in the crossover regime
(10 < sf, < 30 for gp= 0.1) neither of these laws is accu-
rate.

Qualitatively, the behavior for all smaller values of g, is
similar [Figure 7(b)]: the exponential decay for g, <0.05
extends to about (cosé(s)) ~ 0.05, and then a slow crossover
tothe powerlaw sets in, which is reached when (cosd(s)) has
decayed further to about (cosé(s)) ~ 0.01. Since the decay
length ¢, increases strongly with decreasing g;, the range (in
the variable s¢,) over which the exponential decay holds gets
larger with decreasing gy, of course. However, one must be
aware of the condition that s should be at least an order of
magnitude smaller than N, otherwise the decay of (cos6(s))
is affected by effects due to the finiteness of the chainlength,
as demonstrated in our earlier work.*3! Thus, one has to be
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length £, versus q,. Straight line indicates the asymptotic beha-

I Figure 9. log-log plot of several estimates for the persistence
vior {pyoxq,”.

very careful with the analysis of the decay of (cosé(s)) to
avoid misleading conclusions. For very small g, (g, <0.05)
the results for ¢, from the exponential fits (Table 1) agree
roughly with the length (ng); for g, = 0.4 and 1.0 estimates
for ¢, are not quoted, however, since Figure 7(a) implies that
there is no significant range of exponential decay. Also the
use of /,(k) does not help, since the result strongly depends
on Ny, as Figure 8(b) demonstrates, and as is expected from
Equation (14). For semiflexible chains, we expect that also
£,(k) will be strongly affected by crossover effects between
the various regimes (rod-like versus Gaussian behavior
versus excluded volume effects), but these phenomena are
left for future studies.

Figure 9 summarizes our results for the standard
persistence length ¢, and the alternative estimates (ns)
and n,. It is seen that for g, >0.1 different methods of
estimation give somewhat different answers, and also we
do not have the condition ¢, > ¢, fulfilled. For g, <0.05
the results based on P(nsg) and on (cosf(s)) agree,
and furthermore we have the simple relation that
£, = const./q.

Thus, it is of interest to what extent Equation (8) or (10)
provide accurate descriptions of the data (Figure 10). Since
L = {,N, holds, and both ¢, and (cosf) have been accurately
estimated (Table 1), this comparison does not involve any
adjustable parameter whatsoever. Indeed, we see that
Equation (8 and 10) agree almost perfectly with each other,
indicating that the discreteness of our lattice model is
irrelevant with respect to our conclusions to what extent
the Kratky—Porod WLC model is a valid description of
semiflexible polymers under good solvent conditions.
Indeed, one can see that this model for small q;,<0.1
describes rather accurately the initial rod-like behavior
(where the ratio (R?) /N, increases almost linearly), and for
still smaller g, (<0.03) also the onset of the Gaussian
plateau is nicely reproduced. However, in all cases for large
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Figure 10. Plot of (R2) /(2(,N}) versus Nj, on linear-linear scales,
for N, < 40 and for 0.005 < g, < 0.1 (a) and on log-log scales, up
to Ny =50 000 (b), using the data for 0.005 < g, < 0.2. Solid and
dotted curves are the predictions of the Kratky-Porod model,
Equation (8 and 10), respectively, using the observed results for 7,
or (cos), respectively [note that on the chosen scales differences
between Equation (8 and 10) are almost invisible.] Vertical arrows
show our estimates for N (see Figure 11 below). Adapted from
Hsu et al.l44]

enough N, systematic deviations due to excluded volume
effects occur. While for g, =0.005 these deviations are
relatively small and occur for extremely long chains only, so
the Gaussian plateau extends over more than a decade in
N,, for g, =0.05 the data rise upward from the Gaussian
plateau already near N, =1 000, excluded volume effects
clearly being important.

In order to describe the crossover from the Gaussian
behavior applicable to semiflexible chains at intermediate
values of the chain length to the swollen coil behavior due
to excluded volume interactions, we plot in Figure 11
(R%)/(26ptp(qp)Np) versus N, and N,/N;(qp). Here, this
crossover chain length N;(q,) was found empirically by
requiring an optimal fit of the family of curves [Figure 11(a)]
on a master curve.

Of course, the scaling shown in Figure 11 is motivated by
theoretical arguments, based on a Flory-like treatment [
When we consider a model such as shown in Figure 2(b)
where rods of length /¢ and diameter d are jointed such that
the contour length L = N/}, = nfk, one can argue that the
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I Figure 11. log-log plot of (R2)/(20,0,(qs)Np) versus N, (a) and
order to obtain an optimal fit on a single master curve.

second virial coefficient is proportional to v, = (2d (any
prefactors of order unity will be ignored here throughout).
Then, the free energy of a chain contains two terms, the elastic
energy and the energy due to interactions. Treating the elastic
energy as for a free Gaussian chain, and the repulsive
interactions in mean-field approximation, one finds

AF ~ R/ (txL) + v R3[(L/tx) JR2)?, (18)

since the average density of rods in the volume R? is n/R2.
Minimizing AF with respect to R,, for L — oo one finds the
standard Flory-type result

Re & (0o/lx)*°13/% = (txd)™® (Ny0,)/". (19)

When one calculates then the free energy cost AF, one finds
that the contribution of the second term in Equation (18) is
negligible in comparison with the first one if N, < Nj; with

Ny = 63/ (6pd?). (20)

Hence, for N, < N}, one simply has the scaling of Gaussian
coils, R2 = (gL = lgf,Np. Comparing this result with
Equation (8), which implies rod-like behavior for L < /g,
ie, Np </(g/l,, we recognize that the intermediate
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Gaussian behavior should only exist for 10°
N
KK/éb <Nb<N;;. (21) 104 M R 1
3 P slope =2.5
In our SAW model we may take d=/¢, and then 107 1 |
N, = (ZK/Zb)3, while for a model where /¢ ocd (as we 102 |
shall see, this case applies to bottle-brush polymers!) one
would have Nj o« fx/lp, ie, both boundaries of the 10 } slope = 2/5 -
inequality, Equation (21), are of the same order, and then
the intermediate Gaussian regime is absent altogether. 10° slope = 0.56 ]
When we consider R, as given by Equation (19), 1 10 100

normalized by its Gaussian result, we find that the result |p (Qp)

can be cast into the form
Figure 12. log—log plot of the effective persistence length £,z and

2 . #\1/5 . of the crossover chain length Nj as a function of the persistence

R‘-’/(ZK&’Nb) o (Nb/Nb) for Ny > N, (22) length £,(qy) that describes the initial exponential decay of

(cosd(s)) versus s, for the semiflexible SAW model. Theoretical

Since for Nj, = Nj, the ratio considered in Equation (22) is of predictions and the best fit of our data are shown by solid lines,
order unity, we expect that R2 /({x¢,N}) is a function of and thin solid lines, respectively.

N, /N; over the whole range of N,/Nj, apart from the
region of very small values of N, /N [where the crossover to

1 T
rod-like behavior occurs, which is not described by a) qbfé'g v
Equation (18). Beyond the realm of the Flory approximation 101} gz; 0.2 ; |
we expect that the exponent 1/5 in Equation (22) has to be
replaced by 2v — 1, of course. But it is an interesting 102 rq -1/0.588
question to clarify how the length ¢, [Equation (16)] and i

the crossover chain length N; scale with the persistence

=0.05
length ¢,. Equation (19) would imply that 4 gE=0-03
1071 go=0.02
tpr o (6,d)P00° Ny o 63/ (4pd)? (23) 5 | Gb=0.01
pr o (6d)° 6%, Ny o6} /(b 10° | B8
and in order to test these relations, Figure 12 presents log— 0.001 0.01 0.1 1
log plots of ¢,z and N; versus /. q
A generalization to other scaling exponents would yield b) 102

N; = (g /ty)° instead of Equation (20). Then f,z o /¢
follows with u =1-¢(2v—1) by using Equation (22).
Figure 12 suggests that ¢ ~ 2.5 and then u ~ 0.56 would
fit the data better than the corresponding exponents of
Equation (23) {¢ = 3, u = 0.4}. We have no explanation for
this discrepancy.

We conclude this section by considering the structure
factor S(g), since this quantity is experimentally accessible
via scattering intensities in dilute solution (Figure 13).
The structure factor is defined as

q S(q)

v 0.601 0.I01 OI.1
1 b b
_ — q
S(q) T <Z > exp(ig - [T rk})> (24)

Jj=0 k=0 Figure 13. Structure factor S(q) normalized such that S(g=0)=1

on a log-log plot versus wavenumber q (a) and the corresponding
where {7]} are the positions of the (N, + 1) monomers in a Kratky-plot {gS(q) vs. g} (b). Data for N,=50000 are shown,
conformation that is averaged over. As expected, for q— 0 including all values of qp, aS indicated. Part (a) shows the SIOPeS
we have 5(q) ~ 17q2<R;>/3, while for g > 1/ /(R§> power predicted theoretically for the standard excluded volume case

. . {5(q)xg™"" with v= 0.588} and for the Gaussian case {S(q)xq 2}
laws set in: for the ordinary SAW case (g, =1) we have as well as for scattering from rigid rods {S(q)xq'}. Part (b)

an extended regime where S(q) x g ", as expected, indicates the estimation of a characteristic wavenumber g from
while for very small g, such as g,=0.005, we rather the onset of a flat part (“Holtzer plateau”) in the Kratky-plot.
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see that S(g) is compatible with S(g) « g2 for small
q and then crosses gradually over to S(g) « g ' (as
expected for the scattering from rigid rods®?) for
larger q.

In order to be able to distinguish the various regimes
more clearly, it is customary to analyze the scattering in
terms of the so-called Kratky-plot,'®®! gS(q) is plotted
versus q [Figure 13(b)]. Then, for g < 1/,/(R?) one has a
linear increase, reaches a maximum at gmax x 1/ (R;},
followed by a power law decay [gS(q) o g*~*/* for the good
solvent regime, S(q) o q~* for Gaussian chains, respectively].
While the simulation data for fully flexible chains (g, = 1.0)
indeed exhibit a straight-line behavior on the log-log plot
over almosttwo decades, 0.01 < g < 1.0, and the slope of this
straight line is compatible with the theoretical value
1-1/v =~ —0.70, for small g, the behavior is less convincing.
In principle, for large enough N, where Equation (16) holds,
we should see the same exponent from gmax < @ < Geross ~
1/ < o With gze? ~ (1/3)6,(,N; = (8/3)(4 / 2,
where we have use quatlon (20). At g@=(cross the
crossover from excluded-volume dominated behavior to
Gaussian-like behavior occurs, i.e., we should see gS(q) xq*
fOr Geross < \/3’/_84;,/K12) < q <, Since for N,,= 50000 we
are obviously (Figure 5) too close to N}, a significant region
where gmax is clearly smaller than g.,.ss does not occur, if g,
is small (such as g, =0.005). However, since ¢, ~ 53 for
q»=0.005, we would expect two decades in g where the
power law g~ * can be observed in Figure 13(b), but actually
thereisonly asingle decade (0.002 < g < 0.02) available, due
to extended regions of smooth crossover. Figure 13 shows
that the onset of the deviation from the law gS(g) o< g * at
about g ~ 0.02 yields a reasonable estimate for Z;, 1 and not
the onset of the so-called “Holtzer plateau”®* at g*~* where
qS(q) becomes strictly independent of g for a (not very
extended) region of . This failure of the method of finding ¢,
by the onset of the “Holtzer plateau” for the model studied
in this section is expected, of course, from the explicit
calculation of $(q) for the Kratky—Porod WLC model,®]
which shows that the crossover from the S(q) « g2 law to
the S(q) o< g * law is very wide, and hence any onset
wavevector g* for the onset of the “Holtzer plateau”is rather
ill-defined. Of course, this problem is not really rectified if
one uses ¢, =3.5/q%, as suggested by Lecommandoux
et al,**] rather than ¢, = 1/g".

Scaling Analysis of the Bond Fluctuation
Model for Bottle-brush Polymers

In this section, we first summarize the most pertinent
findings of our previous Monte Carlo simulations of bottle-
brush polymers under very good solvent conditions!**~**!
and then describe a scaling analysis by which the model
[Figure 2(a)] is essentially mapped on a bead-spring type
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model [Figure 2(d)]. This analysis (which was briefly
mentioned in our Letter’*¥) implies that bottle-brush
polymers are not well-described by concepts based on
the Kratky—Porod®®! WLC model, even if weak excluded
volume interactions [Figure 2(c)] with (¢x > d)areincluded.
Of course, if one chooses amodel of cylindrical beads with ¢k
of the same order as d, one does obtain a valid coarse-
grained model of bottle-brush polymers, since for such
coarse-grained models, the shape of the effective beads
(bulky cylinders or spheres) does not really matter. This
conclusion, in fact, is already suggested by the snapshot
[Figure 2(a)]. Since details on the simulation model and
methods have been given elsewhere,“#* here we give only
the salient features. As is well-known,?*787°! effective
monomers in the bond-fluctuation model block all eight
corners of an elementary cube of the simple cubic lattice
from further occupation, thus realizing excluded volume
interactions. Bond vectors are taken from the set
{(£2,0,0); (2,41, 0); (£2, +1, £1); (£2; +2; £1); (+3,0, 0);
(£3,£1,0); and permutations thereof}. A combination
of local moves (the “L26” movel”?)) and pivot moves®®
provides fast relaxation (seel®”) for details on the
algorithm).

First of all, we demonstrate that the classical formulas for
defining a persistence length, such as Equation (6) or (13),do
not work.1**! As an example, Figure 14 shows #,(k) for one
choice of side chain length N(N = 24). It is seen that
Equation (14) provides a reasonable description of the data
for all N, The prefactor « increases with N, up to Nj, ~ 400
and then settles down at a plateau value « ~ 17 for N = 24.
Note that this value increases with N, of course, since
increasing the side-chain length causes chain stiffening.**]

When we study the rescaled mean-square end-to-end
distance as a function of N, controlling chain stiffness now
by varying side chain length N, the resulting picture
[Figure 15(a)] differs qualitatively from the SAW model
with variable chain stiffness (Figure 5). While in the latter
case with increasing stiffness g, * a well-developed rod-like
regime followed by a Gaussian behavior resulted, as
discussed at length in the previous section, now we
encounter a gradual crossover from almost rod-like
behavior for relatively short backbone lengths N, directly
tothe SAW limit. Irrespective of the side-chain length N, the
data qualitatively resemble the SAW model with g, = 0.4 or
1.0, respectively (Figure 5). There is one important
distinction; however, while for the SAW model in this
case the effective persistence length {,z is very small
[in Figure 5, 15(a)] the effective persistence length /,¢
can be read off as the plateau value reached for large N,
which is less than unity for g, >0.1, for bottle-brush
polymers /¢ is much larger, and clearly ¢, ¢ increases with
increasing N.

Figure 15(b) shows that actually the bottle-brush end-to-
end distances satisfy a simple scaling behavior, if <Re bb>

M \Ilfﬁ"ﬁ

www.MaterialsViews.com



Understanding the Multiple Length Scales Describing. ..

Ty
L - ¥ v 4 i FRE

17 K X '

3 ¥

15 * 1

13 . : : : :
0 200 400 600 800 1000

Np

Figure 14. (a) Local persistence length £, (k) [Equation (13)] plotted
vs. k/N,, for the bond fluctuation model of bottle-brush polymers
with grafting density o =1 and fixed side chain length N =24, for
several values of the backbone length: N, =131, 259, 515, and 963
(from bottom to top). These data can be well fitted by
Equation (14), where ¢, = 2.7 lattice spacings for the bond fluctu-
ation model, if one allows the constant « to depend on N.
(b) Prefactor o obtained from fitting Equation (14) to the data
of part (a), and the data for N, =195, 387, 643, 771, and 1027,
plotted versus N,. For the range of the fit, only 0.3 < k/N, < 0.7
was used. Note that for N, > 400 a value o ~ 17 independent of N,,
results. Adapted from Hsu et al.43!

alsoscaled with ¢, ¢ (in addition to the factor 2¢,N2") and the
abscissa variable N, is scaled with the appropriate blob
chainlength syop. This blob sizeis constructed following the
idea of Figure 2 that a bottle-brush polymer can be viewed
as a chain of blobs whose radii are chosen such that they
reproduce the cross-sectional radius R.s(N). Computing the
end-to-end distance of subchains of s subsequent mono-
mers taken from the interior of our backbone chains, we get
a function Ar(s) shown in Figure 16(a). When we now also
record the radial monomer density distribution pf(r),
Figure 16(b), we can compute R (cf. Figure 3) and find
the number of monomers in a blob from the condition that
the blob diameter equals 2R,

Ar(sblob) = 2RCS(N). (25)
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Figure 15. (a) Rescaled mean-square end-to-end distance

(R2 )/ (20pN37") of the bottle-brush polymers plotted for grafting
density o=1 and several choices of the side chain length N as
function of the backbone chain length N,. Adapted from Hsu
et al! (b) Rescaled mean-square end-to-end distance
(R2 )/ (20plygN7") plotted versus the rescaled chain length
Np /spiob (cf. Figure 16 for the construction of sy o). Adapted from
Hsu et al.l44!

The construction is shown in Figure 16(a), and the values
Splob(lN) resulting from this approach are then used to
rescale N, in Figure 15(b). The success of this scaling
description shows that we have succeeded to coarse-grain
bottle-brush polymers by mapping them to an effective
chain model, but this effective model is not the WLC model
of Figure 2(b) nor an SAW with high resistance toward
bending [Figure 2(c)], but rather the correct picture is a
chain of blobs with diameter of the order of the cross-
sectional diameter of the bottle-brush polymer, 2R.(N).
Noting that the radio of ¢,z /Res = 1.11,1.16, 1.23, and 1.28
for N=6,12, 18, and 24, respectively, we have verified that
the effective persistence length ¢,z and the cross-sectional
radius are the same, apart from a constant of order unity.
This result is consistent with the early predictions by
Birshtein et al.l®}]. At this point, we remind the reader of
the criterion for a possible regime of Gaussian behavior of
semiflexible chains, Equation (19, 20): if we take d =2R.
and fx = 2{pr = 2Rs as well, we would conclude that
N; = 2R/, = lx/lp, ie, lower and upper limit of the
inequality Equation (21) coincide, as we have announced
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Figure 16. (a) End-to-end distance Ar(s) of subchains containing s
successive backbone monomers for N=6, 12, 18, and 24. The
horizontal solid lines indicate the choices Ar(s) =2R.(N), from
which the corresponding values spiop can be read off (vertical
straight lines) (b) radial monomer density profiles p(r) in planes
locally perpendicular to the backbones of bottle-brush polymers
with backbone lengths N, =1027 plotted versus distances r for
side chain lengths N =24, 18, 12, and 6. Adapted from Hsu et al.l44l

above. Thus, indeed there is no contradiction with our
finding that the WLC model of semiflexible chains is not a
faithful description of bottle-brush polymers and no
intermediate regime of backbone chain lengths can be
found where Gaussian behavior occurs. Thus, Equation (8)
must not be used for bottle-brush polymers under good
solvent conditions!

Inview of the fact that experimental AFM pictures of real
bottle-brush polymers (e.g., ref. [3,10]) as well as the
snapshot from our own simulation reproduced in
Figure 2(a) have sometimes the character of WLCs, the
above conclusion may sound surprising at first sight.
However, both the snapshot [Figure 2(a)] and the AFM
pictures do reveal also some strongly bent regions, where
the chains locally have a “horseshoe” or “meander”-like
appearance. Thus, we feel that experimental work based on
the analysis of AFM pictures via fits to Equation (6) or (8) can
yield unreliable results. Of course, it is possible (depending
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on the chemical structure of both the backbone chain and
the side chains and the solvent quality) that one works with
chains which are intrinsically stiff, so that the radio 4, & / Res
becomes much larger than unity; then a regime where the
WLC model applies indeed could exist. Also, when N, is
rather short [so that in the scaled plot, Figure 15(b), one
works in the regime Nj/spop < 20], it is possible that the
WLC model still could be fit to the data, although the
resulting values of ¢, should not be trusted.

As a final caveat, we draw attention to the fact that the
curve Ar(s) versus s in Figure 16(a) for our model is not
strictly universal (i.e., independent of N), but thereis a slight
but systematic increase of Ar(s) at fixed s with increasing N
(also there is a related slight but systematic increase of the
ratio f,p / Res with N, as quoted above.) These observations
are the only indications of our results that in fact for very
large N a different scaling behavior should emerge, where
£, /Res > 1. The scaling theory of Fredrickson!®?! predicts
that

Res o< N34, 0, oc N*5/8 (26)

and if the regime where the power laws hold could be

reached, Equation (19, 20) would yield (taking
lg < Ly, d o Res)
o o (Ued)'® o N?Y/40 Ny oc N33/ (27)

and hence for N'°/8 « N, < N33/8 a Gaussian behavior
could exist also for bottle-brush polymers. However,
Monte Carlo studies for bottle-brush polymers with rigid
straight backbones, which allow to use side chains of
length of several hundred, gave no evidence for the
relation Res o« N3/4 yet.®”) Moreover, numerical self-con-
sistent field calculators of Feuz et al.l®®! gave compelling
evidence that side-chain lengths of N ~ 10 or larger are
required in order to reach the regime where
Equation (26, 27) hold. Such long side chains are not
accessible in simulations, but also rather irrelevant for
experiment.

Concluding Remark

It has been already discussed in our earlier work****! that
for bottle-brush polymers formed from flexible chains (both
the backbone and the side chains were assumed to behave
identical or at least similar) under good solvent conditions
the standard approach to introduce a persistence length
from the decay of bond-orientational correlations
[Equation (6)] fails: on semilog-plots of (cosé(s)) versus
the “chemical distance” s along the backbone one
encounters a systematic curvature, and if one extracts a
decay length from a part of such a curve, it is found to
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increase systematically with the chain length of the
backbone, and is unsuitable as a characteristic of the
intrinsic stiffness of the chain.

In the present paper, we have focused upon an
alternative approach, namely the use of the Kratky—Porod
WLC model [Equation (8)—(10)] to describe the linear
dimensions of the chain. While for the SAW model on the
simple cubic lattice, where one may introduce an energy
parameter penalizing chain bends, one finds a regime
of rather stiff chains, where this model provides a reason-
able description, before for chain lengths N, > N; a
crossover to excluded-volume dominated behavior occurs
[Equation (18)—(23)], we found that for bottle-brush
polymers this model does not hold. Rather we have found
that bottle-brush polymers can be mapped on an effective
bead-rod or bead-spring model of “blobs” having a diameter
equal to the cross-sectional diameter of the bottle-brush
polymer. In the regime of side-chain lengths accessible in
simulations and experiments, the effective persistence
length is of the same order as this cross-sectional diameter,
and an additional backbone stiffening predicted by theory
isnot (yet?) effective. We feel that these findings provide an
understanding why experimental studies* 2" have some-
times yielded contradicting results. Most of these studies
have taken relations such as Equation (6)—(8) as granted,
while our work implies that none of these relations applies
for bottle-brush polymers under good solvent conditions,
when both backbone and side chains are intrinsically
flexible. Note that use of Equation (6) to fit experimental
data or simulations over some restricted range of s typically
will yield too large values of the persistence length, since
the data actually would be described by Equation (12), if N,
is large enough [if Njp/spob < 20, in Figure 15(b) the
resulting persistence length depends strongly on N,, as
demonstrated in ref.****)]. Due to the dependence of /, (k)
on N,, Equation (14), also the use of /,(k) leads to an
overestimate of the persistence length, in comparison with
{, ». This latter quantity is perfectly well-defined also in the
case of strong excluded volume interactions, and for our
model varies from about 6.4 (N=6) to about 17.6 (N =24)
lattice spacings (which would correspond to a variation
fromabout 1.7 nmto about 4.64 nm, if the translation factor
of Figure 3, 4 is invoked: these numbers are much smaller
than the estimates quoted in the experimental work).

Another length of interest is the contour length L.
(Figure 1). Taking the mapping of Figure 2(a)—(d) seriously,
we would obtain Le = 2RsNp/Spiob, Which would yield
(forN,=1027 and N=6, 12, 18, and 24, respectively) that
L.=1989,1824,1963, and 2016, instead of N, ~ 2 773
lattice spacings. Thus, the coarse-grained contour length L.
is about 30% smaller than the “chemical” contour length
Np/p, in our model.

Ourfindings imply, however, that for polymers which are
locally rather stiff and thin, so that the model of Figure 2(c)

'a\
M“""\hi,,§

www.MaterialsViews.com

Macromol. Theory Simul. 2011, 20, 510-525
© 201 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Macromolecular
Theory and Simulations

www.mts-journal.de

implies, one can find a region of small enough s so that
Equation (6) can be used for s<s’, before a significant
deviation from the exponential decay due to crossover to
the power law, Equation (12), occurs (Figure 7). Since this
crossover is somewhat gradual, a precise choice of s cannot
be given. In the range 0.005 < g, < 0.05 of our model [The
Semiflexible Self-avoiding Walk (SAW) Model section] a
choice s* =~ 3(, seems reasonable (with ¢, varying in
between 6 and 53 lattice spacings in this range). In terms
of Equation (6) this means that (R?) has reached about 68%
of its (Gaussian) saturation value. Obviously, this is a much
smaller value of N, rather than the value Nj; where
crossover to excluded-volume dominated behavior in the
mean-square end-to-end distance occurs (Figure 10-12)

Nomenclatures
dp bond vector of bond k.
CnyN,.,; number of chain configurations with N, bonds

and Nypeng kinks on the sc lattice

d diameter of a (locally) cylindrical chain

H Hamiltonian

k bond index (k =1, ... ,Np)

ks Boltzmann’s constant

L (actual) contour length of a linear polymer
(L = Nplp)

Lec effective contour length of a coarse-grained
chain

O length of a bond connecting two subsequent
(effective) monomers

Uk Kuhn length of a Gaussian chain

b persistence length, defined from (initial) expo-
nential decay of bond orientational correlation

lpr persistence length defined from the chain end-
to-end distance, in the presence of excluded
volume.

I bond vector connecting two subsequent (effec-

tive) side chain monomers

M molecular weight (g-mol )

N chain length of the side chain of a bottle-brush
polymer

N, “Chain length”, i.e,, number of bonds in a chain
(or in the backbone of a bottle-brush polymer,
respectively)

Nj; crossover ‘“chain length” above which self-
avoiding walk statistics holds for stiff chains

n number of Kuhn steps for a Gaussian chain

Nstr number of straight bonds, withouts kink in
between

np decay constant of p(nst)

P(nstr) probability that ng, consecutive straight bonds
occur on the sc lattice

q wavenumber
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v statistical weight of a bond of a semiflexible
chain (qp = exp(—ep/ksT))

Geross crossover wavenumber

Qrax wavenumber where a maximum in the Kratky-
plot occurs

q wave number where Holtzer plateau sets in

Res cross-sectional radius of a bottle-brush polymer

R, end-to-end vector of a side chain of a bottle-
brush polymer or of a linear chain

Ropp end-to-end vector of the backbone of a bottle-
brush polymer

Ry gyration radius

Ry.b» gyration radius of the backbone of a bottle-
brush polymer

r radial coordinate (perpendicular to the back-
bone of a cylindrical chain)

r(t) describes the contour of length L.

T position of effective monomer with label &

S(q) structure factor

s monomer index difference along the chain
contour

s* crossover index (above which orientational
correlations display a power law)

Sblob number of monomers per blob

T absolute temperature

t coordinate along the (curved) contour of the
coarse-grained polymer

Upend(¢) bending energy

Vo second virial coefficient

Z partition sum

B exponent which describes the power law decay
of orientational correlations [Equation (2)]

AF free energy

Ar(s) end-to-end distance of s subsequent monomers
on the backbone of bottle-brush polymers
bending energy

e exponent which describes the power law
dependence of N} on ({g//)
bond angle

K bending rigidity
exponent which desribes the power law depen-
dence of /¢ on /g

v “Flory” exponent (v = 0.588)

Veff effective “Flory” exponent determined for short
side chain lengths of bottle-brush polymers

Pes(T) cross-sectional monomer density

o grafting density
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